Lecture 21

- weak learning of monotone fetus
- begin: distribution-free weak learning
\Rightarrow strong learning

Boolean Cube

hypercube
level k :
nodes labeled by

$$
K H^{\prime}+n-k \text { o's }
$$

\#nodes on level k :

$$
\binom{n}{k}
$$

edges:

$$
x \rightarrow y
$$

if flip one 0 in x to $a 1$ to get y
\# nodes: 2^{n}
\#edges: $\frac{n \cdot 2^{n}}{2}$
example for $n=3$

Monotone Functions
def. partial order $\leq: x \leq y$ iff $\forall i \quad x_{i} \leq y_{i}$
monotone fath $f: x \leq y \Rightarrow f(x) \leq f(y)$

Are there fast learning algorithms for the class of monotone functions?

Occam's razor:
poly $(\log |C|)$ samples suffice
$\tau_{\text {class of monotone fens }}$

$$
\geq 2^{2 / \sqrt{n}} \text { monotone futons }
$$

So only gives exponential bound

Why so many monotone futons?

Consider "slice" fetus;

Note: on uniform dist, easy to lean slice forms.
ie. Output "Majority"
\Rightarrow Occam is "wack" on this class/distribution in all possible ways who violating minntmicity
\qquad
H.W.: $2^{O(\sqrt{n})}$ random samples suffice for unit dist

Today: what if you compromise on error?
can get very slight "win"

All monotone fetus have weak agreement with Some dictator feta.

The $\forall f$ monotone, $\exists g \in\left\{ \pm 1, x_{1}, x_{2}, \ldots x_{n}\right\} \equiv S$
sit. $\operatorname{Pr}_{x}[f(x)=g(x)] \geq \frac{1}{2}+\Omega\left(\frac{1}{n}\right)$
${ }^{\text {un form }}$ distribution
note slice fetus have weak agreement with all dictators on uniform dist
\Rightarrow learning algorithm:
estimate agreement of f with all members of S^{\prime} output best

Pf
Case 1: $f(x)$ has weak agreement with +1 or -1
Case 2: otherwise $\operatorname{Pr}[f(x)=1] \in\left[\frac{1}{4}, 3 / 4\right]$

Let's first look at monotone \sum excuse for fetus in a different way:
a detour

Monotone Functions on Boolean Cube:

A "graph" view
monotone \Rightarrow no blue above any red
$x \leq y$ if $\forall i \quad x_{i} \leq y_{i}$
f monotone if

$$
\forall x \leq y, \quad f(x) \leq f(y)
$$

Influence of f :

$$
\begin{aligned}
\ln f_{i}(f) & =\frac{\# \text { red- blue edges in } i^{\text {th dir }}}{2^{n-1}} \\
& =\operatorname{Pr}_{x}\left[f(x) \neq f\left(x^{\oplus i i}\right)\right] \\
\ln f(f) & =\frac{\# \text { with } \text { i th }^{\text {th }} \text { blue edges flipped }}{2^{n}} \\
& =\sum_{i=1}^{n} \ln f_{i}(f)
\end{aligned}
$$

Tho f monotone $\Rightarrow \inf _{i}(f)=\hat{f}(\{i\})$
Them 2 majority fete $f(x) \equiv \operatorname{sign}\left(\sum_{i=1}^{n} x_{i}\right) \quad($ odd $n)$ maximizes influence among monotone fetus

Pis on how.

Plan:
note: $\inf _{i}(f)=\hat{f}(\{i\}) \quad($ Th 1)

$$
=2 \cdot \operatorname{Pr}[f(x)=\underbrace{\left.x_{s B}(x)\right]}_{x_{i}}-1
$$

vs.

Fourier coff
so showing $\ln f_{i}(f) \geq \Omega\left(\frac{1}{n}\right)$
is equivalent to showing

$$
\operatorname{Pr}\left[f(x)=x_{i}\right] \geq \frac{1}{2}+\frac{\operatorname{inf_{i}}(f)}{2} \geq \frac{1}{2}+\Omega\left(\frac{1}{n}\right)
$$

such an i would give us our theorem!

To show that such an is exists, will use a cool tool:
Canonical Path Argument

Plan (1) define canonical path for every red-blue pair of nodes
(such a path must cross at least
one red-blue edge)
(2) Show upper bound on \# of c.p.'s passing through any edge
(in particular, any red-blue edge)
(3) Conclucle lower bound on \# of red-blue edges.

Part I: define canonical path for every red-blue pair of nodes
def $\forall(x, y)$ sit. x red $+y$ blue
"Canonical path from x to y " is:
scan bits left to right
flipping where needed each flip \longrightarrow step in path
example:

$$
\begin{array}{llllll}
x= & \zeta_{1}^{-1} & +1 & +1 & +1 & \\
w= & \begin{array}{llll}
+1 & +1 & +1 & x \rightarrow w \rightarrow 2 \rightarrow y \\
z= & +1 & -1 & +1 \\
+1 & \text { each step } \\
\text { has Hamming }
\end{array} \\
y= & +1 & -1 & +1 & -1 & \text { distance 1 }
\end{array}
$$

note: C.p.'s can go up + down e.i.g. $x \rightarrow w$ is upstep $w \rightarrow 2$ is downstep

Big question:
How many red-blue x, y pairs have canonical paths?
recall, $\operatorname{Pr}[f(x)=1] \in\left[\frac{1}{4}, \frac{3}{4}\right]$
\#paths $\geq \underbrace{\frac{1}{4} \cdot 2^{n}}_{\begin{array}{c}\text { lib. on } \\ \text { \# red }\end{array}} \cdot \underbrace{\frac{1}{4} \cdot 2^{n}}_{\begin{array}{c}\text { 1.b.0n } \\ \text { \#blue }\end{array}}=\frac{1}{16} \cdot 2^{2 n}$

Purr II: Show upper bound on \# of c.p.'s
passing through any edge
for any red-blue edge e, how many $x-y$ pairs can cross it with canonical $x-y$ path?

y

Main point: all canonical paths crossing $u, u^{\theta i}$
agree on

$$
\begin{aligned}
& y_{1} \cdots y_{i-1}+x_{i+1} \cdots x_{n} \\
\Rightarrow & \leqslant 2^{n} \text { possible paths for each } \begin{array}{l}
x_{1} \cdots x_{i} \\
y_{i} \cdots y_{n}
\end{array}
\end{aligned}
$$

example: $\downarrow^{\text {started at } \mathrm{trt+}}$
$(-t+t)$ or $(t+t)$ must come from node with this suffix two options

Part III: Conclucle lower bound on \# of red-blue edges.
(\#red-blue edges) (max \# canonical paths that use each edge)
$\geq \#$ red-blue canonical paths
$\tau_{\text {since each crosses }} \geq 1$ red-blue edge

$$
\Rightarrow \text { \# red blue edges } \geq \frac{\frac{1}{16} \cdot 2^{2 n}}{2^{n}}=\frac{1}{16} \cdot 2^{n}
$$

ヘv.b.on \# canonical paths crossing any lye
$\Rightarrow \exists$ i st. $\geq \frac{2^{n}}{16} \cdot \frac{1}{n}$ red-blue edges in direction is

$$
\begin{aligned}
\Rightarrow J_{i} \text { st. } \ln f_{i}(f)= & \hat{f}(\{i\})=2 \cdot f\left[f\left[f(x)=y_{i}\right]-1\right. \\
\geqslant & \frac{2^{n}}{16 n}=\frac{1}{8 n} \\
& \begin{aligned}
2^{n-1}
\end{aligned} \\
& 个_{\text {total }} \# \\
& \text { edges in dir } i
\end{aligned}
$$

$$
\Rightarrow \exists_{i} \text { st. } \operatorname{Pr}\left[f(x)=x_{i}\right] \geq \frac{1}{2}+\frac{1}{16 n}
$$

Other uses of canonical path arguments:

- routing
- expansion/conductance of hypercube/other Markov chains

What good is weak learning?
unclear
here can only weakly learn on uniform distribution
ability to weakly learn on all distributions
\Rightarrow ability to strongly learn [Schapire]
"boosting"

Weak vs. Strong Learning

Def. Algorithm A "weakly PAC learns" concept class C if $J \gamma>0$
st. $\forall c \in C+\forall$ dist D

$$
\forall \delta>0 \quad<\quad\left(\delta=\frac{1}{4} \text { or } \frac{1}{n^{2}}\right. \text { does nt }
$$

with prob $\geq 1-\delta$ affect)
given examples of C
A outputs h sit. $\operatorname{Pr}_{d}[h(x)=c(x)] \geq \frac{1}{2}+\frac{\gamma}{2}$ $\begin{gathered}\text { not good } \\ \text { Compared } \\ \text { to } \\ 1-\sum \text { or } 99 \%\end{gathered} \begin{gathered} \\ \text { advantage } \\ \text { over } \\ \text { guessing }\end{gathered}$
It was first conjectured that weak learning is easier then strong (ie. Ifetus that an weakly learn but not strongly learn)
Surprise!!
Can "boost" a weak learner

The it C can be weakly learned on any dist \mathcal{D} then C can be (strongly) learned
ie. $\forall \varepsilon$
dependence on γ ?
δ ?
ε ?

Will prove for case of $\partial_{0}=U$

Applications:

1) "theoretical"

- uniform distribution algorithms for \geqslant low poly term DNF
weight-w poly threshold fetus

$$
\text { (Boosting }+ \text { KM) }
$$ does 4

work well

- Ave case vs. worst case complexity

2) practical: "Boosting"

Freund-Schapire

Good \& Bad Ideas

1) Simulate weak learner several times on same distribution α take
majority answer
or
best answer

- gives better confidence
- but doesnt reduce error - what if always get some answer?

2) filter out examples on which current hypothesis does well \& run weak learner on part where yon do badly

Problem. given new example, how do you know which section it is in?
3) Keep some samples on which you are ok in your filtering.
Always use majority vote on previous hypotheses to predict value of new Samples.
history: Schapire, Freund-Schapire, Impagliazzo-
Servedio-kivens

Filtering Procedures:

- decide which samples to keep vs. throw out
- samples on which you guess
correctly; needed for checking fut ure hypotheses
incorrectly: needed for improvement

