
Lecture 21

• weak learning of monotone fctns

• begin : distribution- free weak learning
⇒ strong learning
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Monotone Functions

def
. partial order ≤ : ✗≤≤y iff ti Xi ≤ yi

monotone fctn f- : ✗≤y ⇒
f- 1×1 ≤ fly)

Are there fast learning algorithms for the class

of monotone functions ?

Occam's razor !

poly Hog ICI) samples suffice

↑ Class of monotone fctns

≥ 227ᵗʰ monotone films

so only gives exponential bound



why so many
monotone films ?

Consider
"

slice
" fetus : set middle row

in all possible-1
ways 40

Violating
monotonicity

Note : on uniform dist,

easy to learn slice fetus. ¥É optionsi.e. Output
"

Majority "

⇒ Occam is " weak" on this class/ distribution all are monotone !

Own)
H.W. : 2 random samples suffice

for unit dist

Today : what if
you compromise on error ?

Can get very slight
"
win

"

All monotone fans have weak

agreement with some dictator

fctn
.



Thin Ff monotone
, Fg C- { 1=1,4 ,Xa

,
. . . Xn} :S

'

sit
. 17×11-1×1=21×1] ≥ 'z+RHn)

↑ uniform ↑
distribution slightly

better thannots slice fans have weak
random

agreement with all dictators guessing
on uniform dist (can get tatter

it add majority )

⇒ learning algorithm :
estimate agreement of f with all members off'

output best

PI
.

Cases : f- 1×1 has weak agreement with +1 or -1 ✓

Case 2 : otherwise Pr[ f- 1×1=1] C- [¥1,34]

Lets first look at monotone

} excuse fora
fetus in a different way : detour



Monotone Functions on Boolean Cube :

111 " 't

monotone ⇒ no blue above

any red4¥,µ,µ;,µ
" "
""
" ""

✗≤ y it
ti ki ≤ yi

f monotone it

f ✗≤y , f-A) ≤ fly)
000.-0

Influence off ?

lnfilf ) =

H-red-bluegn.ee?gesinithdir--Prxfflx)-tflx+i) ]
[ ✗ with ith bit flipped

In f- (f) = #red-b!genedges_
n

=

,

Inti (f)



That f monotone ⇒ infill )=f^( { is)

Think majority fctnflxksign / Éxi) loddn)
1=1

maximizes influence among
monotone fetus

Pfs on hw
.

Plan :

note : infill )=§( { is) ( Thm 1)
early Fourier lecture:

agreement= 2. pr[fW=X] - I
vs

.

~ Fourier coefts

Xi

so showing lnfilf) ≥rHn)
weak learner

is equivalent to showing our

Pr [ f- 1×1=4.] ≥ lztinfifl ≥ 'z + Ilk)

such an i would give us our theorem!



To show that such an i exists
,
will use a cool tool:

Canonical Path Argument

Plain 111 define canonical path for every

red- blue pair of nodes

(such a path must cross at least

one red- blue edge)

(2) Show upper bound on # of c.p. 's

passing through any edge

(in particular, any red- blue edge)

(3) Conclude lower bound on # of red-blue

edges .



Part : define canonical path for every

red- blue pair of nodes

def-V-lx.gl sit
. ✗ red

try blue

"
canonical path from ✗ to y

"

is :

scan bits left to right

flipping where needed

each flip→ step in path

examples :
dimension I 2 3 4

✗ = - I +1 H +1

b
w = +1 +1 +1 +1 ✗→ w→z→yb

+ I - I +1 +1
each step

2 =

has Hammingby= 1- I -1 +1 -1 distance 1

note : c.pis can go up & down
e.g. ✗→w is up step w→z is downstep



Big question:

How many red- blue ×,y pairs have

canonical paths?

recall
,
Prlflxl -- I] c- [&

,
? ]

#paths ≥ 4- • 2
"

. 1-4.2
"
= % . 22h

in

I.b. On 1.b. On

# red

~

# blue

woa
,
thats abignumberl.NL
"
◦ ¥
"



Parti: show upper bound on # of c.p. 's

passing through any edge

for any red- blue edge e, how
many X-y pairs

can cross it with canonical X-y path?

alsobig
!!!

b¥¥%÷✗

2
""

settings for Xi- Xi, { path
-v

[ ≤2
"

total
U Yi - . _ ' Yi-1 /Xiliti ' " Xn

≥ edge settings of
⊕i prefix ×, svftixyU y, . . _ - Yi- i /Yi / Xin - - . ✗n consistent with
-

<

this edge
path / 2

""

settings
for Yin - -'Yn

~

y

Mainpoint: all canonical paths crossing U,u⊕"

¥ on Yi
"

Yi-1 & Xin ' " Xn

⇒ ≤ 2h possible paths foreach
✗ '
" 'hi
yiiyn



exampte : ←
staieiidattttt

C- ttt) or 4-1-+1-1 must come from
node with this suffix

→ →↓ m
1- 1- + ttwo options
+ , + +2

e-_ (+¥
++)

for ✗
W difference in É=2

must go
to node with
this prefix*

.

(t - - -101 It - - t) ¥4 - + tort - tt
-

4 options for y



Parte : Conclude lower bound on # of red-blue

edges .

(# red-blue edges) ✗ (Max # canonical paths that use
each edge)

≥ # red -blue canonical paths
↑
since each crosses ≥ 1 red - blue edge

1.b. On
# r-b pairs

res

⇒ # red blue edges ≥ 1-6 . 22h
-

= to - 2h

2h
☒
v. b. on #

canonical paths
crossing any edge

n

⇒ F i sit
. 7-2-16 .tn red- blue edges in

direction i



⇒Fist. Infill) =↑({ iD-2.prlflxt.li] -1

≥ Én=¥n
27-1
↑total #

edges in dir i

⇒Fist
. pr[f↳)=Xi] ≥ £ + Ijn
/

☒

Other uses of canonical path arguments:

• routing
•

expansion/conductance of hypercube/other
Markov chains



What good is weak learning?

Unclear

here can only weakly learn on

uniform distribution

ability to weakly learn on

all distributions

⇒ ability to strongly learn
[Schapire]

"

boosting
"



Weak us
. Strong Learning

Det
. Algorithm d- "

weakly PAC learns
"

concept

class C if 78>0

s.t.V-cc-C.tt/distsD

V8 > 0 ← ( 8=1, or# doesn't

affect)
with prob ≥ ,-8

given examples of c

d- outputs ns.t.prgfhlxl-clxl] ≥ 's +%
notgood ↑
Compared
to advantage

1-{ or 99% over

guessing
It was first conjectured that weak learning is

easier than strong lie. Ffctns that can
weakly learn but not

strongly learn)

surprise ! !
Can

"

boost" a weak learner



Thin if C can be weakly learned on

any dist D then C can be

(strongly learned
me

i.e. V-E

dependence on 8 ?

8 ?

E ?

Will prove for case of Do = U



Applications :

1)
" theoretical "

• uniform distribution algorithms for low

poly term DNF degree
weight- w poly threshold fetus }aYdoesn't

work
( Boosting + KM) well

• Ave case us .
worst case complexity

2) practical :
"

Boosting
"

Freund- Schapire



Good & Bad Ideas

simulate weak learner several times

on same distribution & take

majority answer

01

best answer

• gives better confidence

• but doesn't reduce error - what if

always get same answer?

2) filter out examples on which current

hypothesis does well & run weak

learner on part where you do badly
1-2+2 ←tats of non-purple

Problem : given Lew example , how

do you
know which section it is in?



3) keep some samples on which
you are

ok in your filtering .

Always use majority vote on previous

hypotheses to predict value of new

samples .

history : Schapiro, Freund- Schapire
,
/mpagliazzo

-

Serrediotdirans

Filtering Procedures :

• decide which samples to keep us
.

throw out

• samples on which
you guess

correctly : needed for checking future

hypotheses
incorrectly : needed for improvement


