6.842 Randomness and Computation	April 25, 2022
Lecture 22	
Lecturer: Ronitt Rubinfeld	Scribe: Kai Zheng

Definition 1 An algorithm \mathcal{A} weakly PAC learns concept class \mathcal{C} if there is a $\gamma > 0$ such that, for any $c \in \mathcal{C}$, distribution \mathcal{D} , and $\delta > 0$, with probability at least $1 - \delta$, given examples of c from the distribution \mathcal{D} , \mathcal{A} outputs a function h such that $\operatorname{err}_{\mathcal{D}}(h) \equiv \operatorname{Pr}_{\mathcal{D}}[h(x) \neq c(x)] \leq \frac{1}{2} - \frac{\gamma}{2}$.

Notice that in the above definition, the learned function is only required to be correct a $\gamma/2$ fraction of time more than simply guessing. Our objective for these notes is to show that distribution-free weak learning implies strong learning, which is defined as follows.

Definition 2 An algorithm \mathcal{A} strongly PAC learns concept class \mathcal{C} if for any $c \in \mathcal{C}$, distribution \mathcal{D} , and $\epsilon, \delta > 0$, with probability at least $1 - \delta$, given examples of c from the distribution \mathcal{D} , \mathcal{A} outputs a function h such that $\operatorname{err}_{\mathcal{D}}(h) \equiv \Pr_{\mathcal{D}}[h(x) \neq c(x)] \leq \epsilon$.

Theorem 3 C is weak learnable $\implies C$ is strong learnable.

1 Part 1: Modest Boosting

We will show that through a modest accuracy boosting algorithm, we may use an algorithm \mathcal{A} that weakly PAC learns \mathcal{C} , to strongly learn the concept class. The algorithm works as follows.

Suppose that we are given labelled samples of a function $f \in C$, $(x_1, f(x_1)), (x_2, f(x_2)), \ldots$, where the x_i are drawn from \mathcal{D} . Our goal is to strongly learn f using \mathcal{A} .

- 1. Run \mathcal{A} on \mathcal{D} for f, output a function h_1 .
- 2. Create an example oracle \mathcal{D}_2 as follows, so that \mathcal{D}_2 outputs an x such that h(x) = f(x) with probability 1/2. Run \mathcal{A} on \mathcal{D}_2 , for f and output a function h_2 .
- 3. Create an example oracle \mathcal{D}_3 that only outputs x such that $h_1(x) \neq h_2(x)$. Run \mathcal{A} on \mathcal{D}_3 for f, output a function h_3 .
- 4. Output $h \equiv \text{maj}(h_1, h_2, h_3)$.

Note that we may generate \mathcal{D}_2 by flipping a coin, and if heads, drawing samples from \mathcal{D} until we obtain an x such that h(x) = f(x), and if tails drawing samples from \mathcal{D} until we obtain an x such that $h(x) \neq f(x)$. We will show later that if h_1 is not already close to f, then this will not take too many samples. This allows us to efficiently sample from \mathcal{D}_2 .

We first show the following lemma, which quantifies the modest boost. It will help to define the following quantities.

- $\beta_1 = \Pr_{\mathcal{D}}(h_1(x) \neq f(x))$
- $\beta_2 = \Pr_{\mathcal{D}_2}(h_2(x) \neq f(x))$
- $\beta_3 = \Pr_{\mathcal{D}_3}(h_3(x) \neq f(x))$

By construction, for x such that h(x) = f(x), $\mathcal{D}_2(x) = \frac{1}{2} \Pr_{\mathcal{D}}[x \mid h(x) = f(x)] = \frac{\mathcal{D}(x)}{2(1-\beta_1)}$, or equivalently $\mathcal{D}(x) = 2(1-\beta_1)\mathcal{D}_2(x)$. A similar conditional expectation yields that for x such that h(x) = f(x), $\mathcal{D}(x) = 2\beta_1\mathcal{D}_2(x)$.

Lemma 4 Let $\beta = \max(\beta_1, \beta_2, \beta_3)$. Then, $\operatorname{err}(h) \leq g(\beta) = 3\beta^2 - 2\beta^3$.

Proof The function h can err if $h_1(x) \neq f(x)$ and $h_2(x) \neq f(x)$, or $h_1(x) \neq h_2(x)$ and $h_3(x) \neq f(x)$. Formally,

$$\operatorname{err}_{\mathcal{D}}(H) = \Pr_{\mathcal{D}}[h_1(x) \neq f(x), h_2(x) \neq f(x)] + \Pr_{\mathcal{D}}[h_3(x) \neq f(x) \mid h_1(x) \neq h_2(x)]$$

$$\leq \Pr_{\mathcal{D}}[h_1(x) \neq f(x), h_2(x) \neq f(x)] + \beta_3 \Pr_{\mathcal{D}}[h_1(x) \neq h_2(x)].$$

To manipulate this expression, we split the error of h_2 into two values,

$$\alpha_1 = \Pr_{\mathcal{D}_2}[h_2(x) \neq f(x), h_1(x) = f(x)]$$

$$\alpha_2 = \Pr_{\mathcal{D}_2}[h_2(x) \neq f(x), h_1(x) \neq f(x)].$$

Note that $\beta_2 = \alpha_1 + \alpha_2$, and $\Pr_{\mathcal{D}}[h_1(x) \neq f(x), h_2(x) \neq f(x)] = \beta_1 \alpha_2$. Furthermore, by the observation that $\mathcal{D}(x) = 2(1 - \beta_1)\mathcal{D}_2(x)$ for all x such that h(x) = f(x),

$$\Pr_{\mathcal{D}}[h_2(x) \neq f(x), h_1(x) = f(x)] = 2(1 - \beta_1) \Pr_{\mathcal{D}_2}[h_2(x) \neq f(x), h_1(x) = f(x)] = 2(1 - \beta_1)\alpha_1.$$

By construction, $\Pr_{\mathcal{D}_2}[h_1(x) \neq f(x)] = \frac{1}{2}$, so $\Pr_{\mathcal{D}_2}[h_1(x) \neq f(x), h_2(x) = f(x)] = \frac{1}{2} - \alpha_2$, and by the observation that $\mathcal{D}(x) = 2\beta_1 \mathcal{D}_2(x)$ for all x such that $h(x) \neq f(x)$,

$$\Pr_{\mathcal{D}}[h_2(x) = f(x), h_1(x) \neq f(x)] = 2\beta_1 \Pr_{\mathcal{D}_2}[h_2(x) = f(x), h_1(x) \neq f(x)] = 2\beta_1(\frac{1}{2} - \alpha_2).$$

Putting it all together, we get that, $\Pr_{\mathcal{D}}[h_1(x) \neq h_2(x)] \leq 2(1-\beta_1)\alpha_1 + 2\beta_1(\frac{1}{2}-\alpha_2) = 2\alpha_1 + \beta_1 - 2\beta_1\beta_2$. Recall $\beta = \max(\beta_1, \beta_2, \beta_3)$. It will be necessary for the next part to note that by the distribution free learning guarantee of \mathcal{A} , we get the same bound of $\frac{1}{2} - \gamma$ for each of β_1, β_2 , and β_3 . For now, we simply conclude:

$$\operatorname{err}_{\mathcal{D}}(H) \le 2\beta_1 \alpha_2 + \beta_3 (2\alpha_1 + \beta_1 - 2\beta_1 \beta_2) \le 3\beta^2 - 2\beta^3$$

2 Part 2: Recursive Accuracy Boosting

The boosting algorithm above can take an error of $\beta < 1/2$, guaranteed by \mathcal{A} , and reduce this error to $3\beta^2 - 2\beta^3$. We now describe how to achieve strong learning through recursion.

Algorithm stronglearn(ρ, \mathcal{D}'):

- If $\rho < \frac{1}{2} \frac{\gamma}{2}$ return \mathcal{A} on \mathcal{D}' .
- Else, set $\beta = g^{-1}(\rho)$:
- Define, $\mathcal{D}'_2, \mathcal{D}'_3$ as in modest boost and let $\mathcal{D}'_1 = \mathcal{D}'$.
- Set $h_i \leftarrow \operatorname{stronglearn}(\beta, \mathcal{D}'_i)$ for i = 1, 2, 3.
- return $h \equiv \operatorname{maj}(h_1, h_2, h_3)$.

We analyze the sample complexity of this algorithm. For simplicity assume that the advantage of \mathcal{A} is at least 1/2, so $\gamma \geq 1/2$. Then $\beta < 1/4$ always, and $g(\beta) \leq 3\beta^2 = \frac{1}{3}(3\beta)^2$. Thus, after k recursive calls, the error is at most $\frac{1}{3}(3\beta)^{2^k}$ and $k = \Theta(\log \log(\frac{1}{\epsilon}))$ suffices to get error ϵ . In other words, for $k = \Theta(\log \log(\frac{1}{\epsilon}))$, $g^{-k}(\epsilon) \geq \frac{1}{2} - \frac{\gamma}{2}$, for $\gamma > 1/2$. Moreover, this results in an output hypothesis of size $O(s \log(1/\epsilon))$, describable, for example, by a circuit.

Moreover, it does not take too many samples from \mathcal{D}' to sample from the distributions \mathcal{D}'_2 and \mathcal{D}'_3 . We will not show this explicitly, but the intuition is that in order to find samples such that $h_1(x) = f(x)$, more than half of the samples should satisfy this requirement. For samples such that $h_1(x) \neq f(x)$, if we cannot find such samples efficiently, then h_1 is already a good approximation of f. Likewise, if samples such that $h_1(x) \neq h_2(x)$ are hard to find, then we do not need h_3 to define $h \equiv \text{maj}(h_1, h_2, h_3)$ anymore. Altogether, this shows the following theorem.

Theorem 5 If C is weakly learnable and size at most s, then there exists an efficient algorithm using $\frac{poly(n,s,\log(1/\epsilon),\log(1/\delta))}{\epsilon}$ samples that outputs hypotheses of size $poly(n,s,\log(1/\epsilon))$ that has error at most ϵ with probability at least $1 - \delta$.