Definition 1 An algorithm \mathcal{A} weakly PAC learns concept class \mathcal{C} if there is a $\gamma>0$ such that, for any $c \in \mathcal{C}$, distribution \mathcal{D}, and $\delta>0$, with probability at least $1-\delta$, given examples of c from the distribution \mathcal{D}, \mathcal{A} outputs a function h such that $\operatorname{err}_{\mathcal{D}}(h) \equiv \operatorname{Pr}_{\mathcal{D}}[h(x) \neq c(x)] \leq \frac{1}{2}-\frac{\gamma}{2}$.

Notice that in the above definition, the learned function is only required to be correct a $\gamma / 2$ fraction of time more than simply guessing. Our objective for these notes is to show that distribution-free weak learning implies strong learning, which is defined as follows.

Definition 2 An algorithm \mathcal{A} strongly PAC learns concept class \mathcal{C} if for any $c \in \mathcal{C}$, distribution \mathcal{D}, and $\epsilon, \delta>0$, with probability at least $1-\delta$, given examples of c from the distribution \mathcal{D}, \mathcal{A} outputs a function h such that $\operatorname{err}_{\mathcal{D}}(h) \equiv \operatorname{Pr}_{\mathcal{D}}[h(x) \neq c(x)] \leq \epsilon$.

Theorem $3 \mathcal{C}$ is weak learnable $\Longrightarrow \mathcal{C}$ is strong learnable.

1 Part 1: Modest Boosting

We will show that through a modest accuracy boosting algorithm, we may use an algorithm \mathcal{A} that weakly PAC learns \mathcal{C}, to strongly learn the concept class. The algorithm works as follows.

Suppose that we are given labelled samples of a function $f \in \mathcal{C},\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right), \ldots$, where the x_{i} are drawn from \mathcal{D}. Our goal is to strongly learn f using \mathcal{A}.

1. Run \mathcal{A} on \mathcal{D} for f, output a function h_{1}.
2. Create an example oracle \mathcal{D}_{2} as follows, so that \mathcal{D}_{2} outputs an x such that $h(x)=f(x)$ with probability $1 / 2$. Run \mathcal{A} on \mathcal{D}_{2}, for f and output a function h_{2}.
3. Create an example oracle \mathcal{D}_{3} that only outputs x such that $h_{1}(x) \neq h_{2}(x)$. Run \mathcal{A} on \mathcal{D}_{3} for f, output a function h_{3}.
4. Output $h \equiv \operatorname{maj}\left(h_{1}, h_{2}, h_{3}\right)$.

Note that we may generate \mathcal{D}_{2} by flipping a coin, and if heads, drawing samples from \mathcal{D} until we obtain an x such that $h(x)=f(x)$, and if tails drawing samples from \mathcal{D} until we obtain an x such that $h(x) \neq f(x)$. We will show later that if h_{1} is not already close to f, then this will not take too many samples. This allows us to efficiently sample from \mathcal{D}_{2}.

We first show the following lemma, which quantifies the modest boost. It will help to define the following quantities.

- $\beta_{1}=\operatorname{Pr}_{\mathcal{D}}\left(h_{1}(x) \neq f(x)\right)$
- $\beta_{2}=\operatorname{Pr}_{\mathcal{D}_{2}}\left(h_{2}(x) \neq f(x)\right)$
- $\beta_{3}=\operatorname{Pr}_{\mathcal{D}_{3}}\left(h_{3}(x) \neq f(x)\right)$

By construction, for x such that $h(x)=f(x), \mathcal{D}_{2}(x)=\frac{1}{2} \operatorname{Pr}_{\mathcal{D}}[x \mid h(x)=f(x)]=\frac{\mathcal{D}(x)}{2\left(1-\beta_{1}\right)}$, or equivalently $\mathcal{D}(x)=2\left(1-\beta_{1}\right) \mathcal{D}_{2}(x)$. A similar conditional expectation yields that for x such that $h(x)=f(x)$, $\mathcal{D}(x)=2 \beta_{1} \mathcal{D}_{2}(x)$.

Lemma 4 Let $\beta=\max \left(\beta_{1}, \beta_{2}, \beta_{3}\right)$. Then, $\operatorname{err}(h) \leq g(\beta)=3 \beta^{2}-2 \beta^{3}$.

Proof The function h can err if $h_{1}(x) \neq f(x)$ and $h_{2}(x) \neq f(x)$, or $h_{1}(x) \neq h_{2}(x)$ and $h_{3}(x) \neq f(x)$. Formally,

$$
\begin{aligned}
\operatorname{err}_{\mathcal{D}}(H) & =\underset{\mathcal{D}}{\operatorname{Pr}}\left[h_{1}(x) \neq f(x), h_{2}(x) \neq f(x)\right]+\underset{\mathcal{D}}{\operatorname{Pr}}\left[h_{3}(x) \neq f(x) \mid h_{1}(x) \neq h_{2}(x)\right] \\
& \leq \underset{\mathcal{D}}{\operatorname{Pr}}\left[h_{1}(x) \neq f(x), h_{2}(x) \neq f(x)\right]+\beta_{3} \underset{\mathcal{D}}{\operatorname{Pr}}\left[h_{1}(x) \neq h_{2}(x)\right] .
\end{aligned}
$$

To manipulate this expression, we split the error of h_{2} into two values,

$$
\begin{aligned}
& \alpha_{1}=\underset{\mathcal{D}_{2}}{\operatorname{Pr}}\left[h_{2}(x) \neq f(x), h_{1}(x)=f(x)\right] \\
& \alpha_{2}=\underset{\mathcal{D}_{2}}{\operatorname{Pr}}\left[h_{2}(x) \neq f(x), h_{1}(x) \neq f(x)\right] .
\end{aligned}
$$

Note that $\beta_{2}=\alpha_{1}+\alpha_{2}$, and $\operatorname{Pr}_{\mathcal{D}}\left[h_{1}(x) \neq f(x), h_{2}(x) \neq f(x)\right]=\beta_{1} \alpha_{2}$. Furthermore, by the observation that $\mathcal{D}(x)=2\left(1-\beta_{1}\right) \mathcal{D}_{2}(x)$ for all x such that $h(x)=f(x)$,

$$
\underset{\mathcal{D}}{\operatorname{Pr}}\left[h_{2}(x) \neq f(x), h_{1}(x)=f(x)\right]=2\left(1-\beta_{1}\right) \underset{\mathcal{D}_{2}}{\operatorname{Pr}}\left[h_{2}(x) \neq f(x), h_{1}(x)=f(x)\right]=2\left(1-\beta_{1}\right) \alpha_{1} .
$$

By construction, $\operatorname{Pr}_{\mathcal{D}_{2}}\left[h_{1}(x) \neq f(x)\right]=\frac{1}{2}$, so $\operatorname{Pr}_{\mathcal{D}_{2}}\left[h_{1}(x) \neq f(x), h_{2}(x)=f(x)\right]=\frac{1}{2}-\alpha_{2}$, and by the observation that $\mathcal{D}(x)=2 \beta_{1} \mathcal{D}_{2}(x)$ for all x such that $h(x) \neq f(x)$,

$$
\underset{\mathcal{D}}{\operatorname{Pr}}\left[h_{2}(x)=f(x), h_{1}(x) \neq f(x)\right]=2 \beta_{1} \underset{\mathcal{D}_{2}}{\operatorname{Pr}}\left[h_{2}(x)=f(x), h_{1}(x) \neq f(x)\right]=2 \beta_{1}\left(\frac{1}{2}-\alpha_{2}\right) .
$$

Putting it all together, we get that, $\operatorname{Pr}_{\mathcal{D}}\left[h_{1}(x) \neq h_{2}(x)\right] \leq 2\left(1-\beta_{1}\right) \alpha_{1}+2 \beta_{1}\left(\frac{1}{2}-\alpha_{2}\right)=2 \alpha_{1}+\beta_{1}-2 \beta_{1} \beta_{2}$. Recall $\beta=\max \left(\beta_{1}, \beta_{2}, \beta_{3}\right)$. It will be necessary for the next part to note that by the distribution free learning guarantee of \mathcal{A}, we get the same bound of $\frac{1}{2}-\gamma$ for each of β_{1}, β_{2}, and β_{3}. For now, we simply conclude:

$$
\operatorname{err}_{\mathcal{D}}(H) \leq 2 \beta_{1} \alpha_{2}+\beta_{3}\left(2 \alpha_{1}+\beta_{1}-2 \beta_{1} \beta_{2}\right) \leq 3 \beta^{2}-2 \beta^{3}
$$

2 Part 2: Recursive Accuracy Boosting

The boosting algorithm above can take an error of $\beta<1 / 2$, guaranteed by \mathcal{A}, and reduce this error to $3 \beta^{2}-2 \beta^{3}$. We now describe how to achieve strong learning through recursion.

Algorithm stronglearn $\left(\rho, \mathcal{D}^{\prime}\right)$:

- If $\rho<\frac{1}{2}-\frac{\gamma}{2}$ return \mathcal{A} on \mathcal{D}^{\prime}.
- Else, set $\beta=g^{-1}(\rho)$:
- Define, $\mathcal{D}_{2}^{\prime}, \mathcal{D}_{3}^{\prime}$ as in modest boost and let $\mathcal{D}_{1}^{\prime}=\mathcal{D}^{\prime}$.
- Set $h_{i} \leftarrow \operatorname{stronglearn}\left(\beta, \mathcal{D}_{i}^{\prime}\right)$ for $i=1,2,3$.
- return $h \equiv \operatorname{maj}\left(h_{1}, h_{2}, h_{3}\right)$.

We analyze the sample complexity of this algorithm. For simplicity assume that the advantage of \mathcal{A} is at least $1 / 2$, so $\gamma \geq 1 / 2$. Then $\beta<1 / 4$ always, and $g(\beta) \leq 3 \beta^{2}=\frac{1}{3}(3 \beta)^{2}$. Thus, after k recursive calls, the error is at most $\frac{1}{3}(3 \beta)^{2^{k}}$ and $k=\Theta\left(\log \log \left(\frac{1}{\epsilon}\right)\right)$ suffices to get error ϵ. In other words, for $k=\Theta\left(\log \log \left(\frac{1}{\epsilon}\right)\right), g^{-k}(\epsilon) \geq \frac{1}{2}-\frac{\gamma}{2}$, for $\gamma>1 / 2$. Moreover, this results in an output hypothesis of size $O(s \log (1 / \epsilon)$, describable, for example, by a circuit.

Moreover, it does not take too many samples from \mathcal{D}^{\prime} to sample from the distributions \mathcal{D}_{2}^{\prime} and \mathcal{D}_{3}^{\prime}. We will not show this explicitly, but the intuition is that in order to find samples such that $h_{1}(x)=f(x)$, more than half of the samples should satisfy this requirement. For samples such that $h_{1}(x) \neq f(x)$, if we cannot find such samples efficiently, then h_{1} is already a good approximation of f. Likewise, if samples such that $h_{1}(x) \neq h_{2}(x)$ are hard to find, then we do not need h_{3} to define $h \equiv \operatorname{maj}\left(h_{1}, h_{2}, h_{3}\right)$ anymore. Altogether, this shows the following theorem.

Theorem 5 If \mathcal{C} is weakly learnable and size at most s, then there exists an efficient algorithm using $\frac{\text { poly }(n, s, \log (1 / \epsilon), \log (1 / \delta))}{\epsilon}$ samples that outputs hypotheses of size poly $(n, s, \log (1 / \epsilon))$ that has error at most ϵ with probability at least $1-\delta$.

