
6.842 Randomness and Computation April 25, 2022

Lecture 22
Lecturer: Ronitt Rubinfeld Scribe: Kai Zheng

Definition 1 An algorithm A weakly PAC learns concept class C if there is a γ > 0 such that, for any
c ∈ C, distribution D, and δ > 0, with probability at least 1− δ, given examples of c from the distribution
D, A outputs a function h such that errD(h) ≡ PrD[h(x) ̸= c(x)] ≤ 1

2 −
γ
2 .

Notice that in the above definition, the learned function is only required to be correct a γ/2 fraction
of time more than simply guessing. Our objective for these notes is to show that distribution-free weak
learning implies strong learning, which is defined as follows.

Definition 2 An algorithm A strongly PAC learns concept class C if for any c ∈ C, distribution D, and
ϵ, δ > 0, with probability at least 1− δ, given examples of c from the distribution D, A outputs a function
h such that errD(h) ≡ PrD[h(x) ̸= c(x)] ≤ ϵ.

Theorem 3 C is weak learnable =⇒ C is strong learnable.

1 Part 1: Modest Boosting

We will show that through a modest accuracy boosting algorithm, we may use an algorithm A that
weakly PAC learns C, to strongly learn the concept class. The algorithm works as follows.

Suppose that we are given labelled samples of a function f ∈ C, (x1, f(x1)), (x2, f(x2)), . . ., where
the xi are drawn from D. Our goal is to strongly learn f using A.

1. Run A on D for f , output a function h1.

2. Create an example oracle D2 as follows, so that D2 outputs an x such that h(x) = f(x) with
probability 1/2. Run A on D2, for f and output a function h2.

3. Create an example oracle D3 that only outputs x such that h1(x) ̸= h2(x). Run A on D3 for f ,
output a function h3.

4. Output h ≡ maj(h1, h2, h3).

Note that we may generate D2 by flipping a coin, and if heads, drawing samples from D until we
obtain an x such that h(x) = f(x), and if tails drawing samples from D until we obtain an x such that
h(x) ̸= f(x). We will show later that if h1 is not already close to f , then this will not take too many
samples. This allows us to efficiently sample from D2.

We first show the following lemma, which quantifies the modest boost. It will help to define the
following quantities.

• β1 = PrD(h1(x) ̸= f(x))

• β2 = PrD2
(h2(x) ̸= f(x))

• β3 = PrD3(h3(x) ̸= f(x))

By construction, for x such that h(x) = f(x), D2(x) =
1
2 PrD[x | h(x) = f(x)] = D(x)

2(1−β1)
, or equivalently

D(x) = 2(1 − β1)D2(x). A similar conditional expectation yields that for x such that h(x) = f(x),
D(x) = 2β1D2(x).

Lemma 4 Let β = max(β1, β2, β3). Then, err(h) ≤ g(β) = 3β2 − 2β3.

1

Proof The function h can err if h1(x) ̸= f(x) and h2(x) ̸= f(x), or h1(x) ̸= h2(x) and h3(x) ̸= f(x).
Formally,

errD(H) = Pr
D
[h1(x) ̸= f(x), h2(x) ̸= f(x)] + Pr

D
[h3(x) ̸= f(x) | h1(x) ̸= h2(x)]

≤ Pr
D
[h1(x) ̸= f(x), h2(x) ̸= f(x)] + β3 Pr

D
[h1(x) ̸= h2(x)].

To manipulate this expression, we split the error of h2 into two values,

α1 = Pr
D2

[h2(x) ̸= f(x), h1(x) = f(x)]

α2 = Pr
D2

[h2(x) ̸= f(x), h1(x) ̸= f(x)].

Note that β2 = α1 + α2, and PrD[h1(x) ̸= f(x), h2(x) ̸= f(x)] = β1α2. Furthermore, by the
observation that D(x) = 2(1− β1)D2(x) for all x such that h(x) = f(x),

Pr
D
[h2(x) ̸= f(x), h1(x) = f(x)] = 2(1− β1) Pr

D2

[h2(x) ̸= f(x), h1(x) = f(x)] = 2(1− β1)α1.

By construction, PrD2
[h1(x) ̸= f(x)] = 1

2 , so PrD2
[h1(x) ̸= f(x), h2(x) = f(x)] = 1

2 − α2, and by the
observation that D(x) = 2β1D2(x) for all x such that h(x) ̸= f(x),

Pr
D
[h2(x) = f(x), h1(x) ̸= f(x)] = 2β1 Pr

D2

[h2(x) = f(x), h1(x) ̸= f(x)] = 2β1(
1

2
− α2).

Putting it all together, we get that, PrD[h1(x) ̸= h2(x)] ≤ 2(1−β1)α1+2β1(
1
2 −α2) = 2α1+β1−2β1β2.

Recall β = max(β1, β2, β3). It will be necessary for the next part to note that by the distribution free
learning guarantee of A, we get the same bound of 1

2 − γ for each of β1, β2, and β3. For now, we simply
conclude:

errD(H) ≤ 2β1α2 + β3(2α1 + β1 − 2β1β2) ≤ 3β2 − 2β3

2 Part 2: Recursive Accuracy Boosting

The boosting algorithm above can take an error of β < 1/2, guaranteed by A, and reduce this error to
3β2 − 2β3. We now describe how to achieve strong learning through recursion.

Algorithm stronglearn(ρ,D′):

• If ρ < 1
2 −

γ
2 return A on D′.

• Else, set β = g−1(ρ):

• Define, D′
2,D′

3 as in modest boost and let D′
1 = D′.

• Set hi ←− stronglearn(β,D′
i) for i = 1, 2, 3.

• return h ≡ maj(h1, h2, h3).

2

We analyze the sample complexity of this algorithm. For simplicity assume that the advantage of A
is at least 1/2, so γ ≥ 1/2. Then β < 1/4 always, and g(β) ≤ 3β2 = 1

3 (3β)
2. Thus, after k recursive

calls, the error is at most 1
3 (3β)

2k and k = Θ(log log(1ϵ)) suffices to get error ϵ. In other words, for
k = Θ(log log(1ϵ)), g

−k(ϵ) ≥ 1
2 −

γ
2 , for γ > 1/2. Moreover, this results in an output hypothesis of size

O(s log(1/ϵ), describable, for example, by a circuit.
Moreover, it does not take too many samples from D′ to sample from the distributions D′

2 and D′
3.

We will not show this explicitly, but the intuition is that in order to find samples such that h1(x) = f(x),
more than half of the samples should satisfy this requirement. For samples such that h1(x) ̸= f(x), if we
cannot find such samples efficiently, then h1 is already a good approximation of f . Likewise, if samples
such that h1(x) ̸= h2(x) are hard to find, then we do not need h3 to define h ≡ maj(h1, h2, h3) anymore.
Altogether, this shows the following theorem.

Theorem 5 If C is weakly learnable and size at most s, then there exists an efficient algorithm using
poly(n,s,log(1/ϵ),log(1/δ))

ϵ samples that outputs hypotheses of size poly(n, s, log(1/ϵ)) that has error at most
ϵ with probability at least 1− δ.

3

