
Lecture 22

distribution- free weak learning }
"

boosting
"

⇒ strong learning

average us. worst case complexity



Weak us
. Strong Learning

Det
. Algorithm d- "

weakly PAC learns
"

concept

class C if 78>0

s.t.V-cc-C.tt/distsD

V8 > 0 ← ( 8=1, or# doesn't

affect)
with prob ≥ ,-8

given examples of c

d- outputs ns.t.prgfhlxl-clxl] ≥ 's +%
notgood ↑
Compared
to advantage

1-{ or 99% over

guessing
It was first conjectured that weak learning is

easier than strong lie. Ffctns that can
weakly learn but not

strongly learn)

surprise ! !
Can

"

boost" a weak learner



Thin if C can be weakly learned on

any dist D then C can be

(strongly learned
in

i.e. V-E

dependence on 8 ?

8 ?

E ?



Applications :

1)
" theoretical "

• uniform distribution algorithms for low

poly term DNF degree
weight- w poly threshold fetus }aYdoesn't

work
( Boosting + KM) well

• Ave case us .
worst case complexity

2) practical :
"

Boosting
"

Freund- Schapire



Good & Bad Ideas

simulate weak learner several times

on same distribution & take

majority answer

01

best answer

• gives better confidence

• but doesn't reduce error - what if

always get same answer?

2) filter out examples on which current

hypothesis does well & run weak

learner on part where you do badly
1-2+2 ←tats of non-purple

Problem : given Lew example , how

do you
know which section it is in?



3) keep some samples on which
you are

ok in your filtering .

Always use majority vote on previous

hypotheses to predict value of new

samples .

history : Schapiro, Freund- Schapire
,
/mpagliazzo

-

Serrediotdirans

Filtering Procedures :

• decide which samples to keep us
.

throw out

• samples on which
you guess

correctly : needed for checking future

hypotheses
incorrectly : needed for improvement



The setting

• Given labelled examples

IX. f- kid) 1×2,1-1×21) . . .

Xi c-RD

f c- C
"

target function
"

• Given weak learning alg WL which

weakly learns (advantage E) on any distdt
"

error 1-2-12
~

errand"

Xp =Pr*§fkHhkD

Plan :

1. simple
"

modest" accuracy boosting procedure

2. recursively use ① to drive down error



Part I : Modest Improvement

Given : oracle to f

example oracle D
weak learning algorithm WL

Algorithm :

h
,

← run WL on D for fctnf
note:
now also create example oracle D2 : Question - how many sampleshave
oracle of & needed per
fork ! flip coin : output sample ofDa?

heads - draw examples from &"

normalize
"

until find ✗ sit
.D

to make h
,

h
,
1×1=1-1×1 "

h
,
correct

"

err half output ✗
the time { ya, , , draw example, f.mg

so err 1h
,)=tz

82 Until find ✗ S.t.

h.IN/--flx)
"

h
,

incorrect
"

output ✗



(Algorithm cont)

note h2← run WL on Da for f
errlh.IE
D2
sohithn Create example Oracle Ds :

draw examples from ☆ until find

✗ St
,

h
,
1×1 that

output ✗

h
}
← run WL on for f

output h = majlhyha, b)
in

on ×
,
evaluate 41×1, hail, -41×1
+output majority answer



Error Analysis Of "

Modest Improvement
"

define 3 error probabilities :

B , = Pr[ h.CH#flxI]
A

Bs=Prag[hzlx)≠fH]

As -_ Pry,[ 41×11=1-1×1]

Observation :

if h ,l☒)=flx) then Dix) = 211 - B.) Dalx)
" "

≠
" "

Dad = 2ps , Dalx)

why?
hilxt 4 regions :

Rt : h ,=hz=f
majority☐ ;!"

≠ ""

correct

(sort
X 's a. → Rj. hit -1ha h

] helps?
" that

D2tyy¥g¥ ,
b≠f{
xp Rj. h ,=hz≠f majority

picture incorrect
works) ↑ Ryihithjf hshelps?
- error

w.r.t.h.IN-1-1-1×1 D
,

h
>

"

good
"

in Ra
, Ry



On reweighing between Dirk : (proof of
observation)

for ✗ S.t. h
,
# flx) :

Total wt of ✗ it
. 4,1×1=1-1×1

goes
from 1-B , to Ya

t relative wts of ×'s stays same

{ DIN -

- 1- Bi
✗ St.

hlxkflx) } 1- B.¥
2 DIAL = 1-2 So

, Dalx)=DHt&
✗ S.t.

had-1-41*21×1 =2¥pp .DK)
+ Dkk 211-A) Dslx)

for ✗ S.t. h
,
1×11=1-1×1 :

B. = 2¥'

so Dahl=L
'

.DK/)--2tp,Dkl&Dlx1--2ADalx)



More general observation :

Ys
, Pray [✗ c- s] -= 211 - B.) . Pr [ h , kl -_ fail ✗ c- S]

✗c-D2

+ 2B
,

- Prxepgfh , 1×1=11-1×1 Axes]
(*)

Bounding error of WL :

P ← error guarantee (by assumption) on WL 's output

glp) ← 3p2-2ps

Maina : err
,
1h1 ≤ glp)

note : glp)≤B but how much
better?

not always better since g
= 1-2



Proof errylh) from 2 types :

Type ④ ✗ St
. 41×1--41×71=1-1×1 (both haha wrong)

"

lost
cause

" { so no matter whether ↳ 1×1 wrong
or right

case
h = majlh , ,ha,hz) will be wrong

on ✗

Type ② ✗ sit
. hilxlthalx) def'%*

here hzlx) determines if h correct ↓ page

so errglh) = Pr [hdxltflx) thaw -1-1-1×1] }
'
↳

✗c- D

+ Pr×e☐[ hsklt-flxlh.CH/=halxD3defp:f.Pr*gh,Cx1t-halxD
≤ pr [hdxltflxthalxltflxl]

✗c-

Dega,
( o) + B. Prh .CH#halxD3Pi-P



Type② - Calculating Pgfhixtthslxl) :

Partition Da into 2 parts :

1) ✗ st
. 41×1=-11×7 regions R.kz

2) " " 4,1×11=1-1×1 regions Rally

Ra: d. = err of ha wrtdaonpartl = Pr [41×1=1-1×1 thzlxttf /xD
✗c-D2

Rj: b=
"

"

" " " " "

2 = prxygfhklt-fhdtho.LA -1-1-1×1

2,1-22 = B2

Ra:

Then Pr×←*[ hlxtflxlthglxtflxl] jvsereweighing

from= 2- 4-A) Pr*q[h-¥,≠
" '" "tons

before

= 24 - pit ,

> reweight these

<
"

%!
cases differently



✗
2And Pr [ h

,
1×11=1-1×1 thaw -71×1=12 - ×!

def" of

✗ c-D2
~

Pr = 's
by constructionof ☆2

so Pr*D[ h.CH/--flH1halxI=flx1] =

2ps , (1-2-22)

Putting together :

Pr
#*
[ had -1-11×1] =

prx.gg [h.lxt-flxthalxt-flxytprxc.gg[h ,W≠fH 1 hold -71×1]
= 24 - p,)d ,

1- 2ps , (1-2-22)

Finally :
errylh) ≤ 2ps,da + B(211

- B.)4 +2ps, 11-2-22)
assume

◦ f-pits
• fuse ✗it E-Bn
I

≤ pit 2ps 4- f) (2,1-4) ≤ 3 P2 - 2ps
}

•



Parti Recursive accuracy boosting

one application takes error B. → ≤ spin -2ps
we want tiny error

main idea : Recursion

Algorithm : given p , D
'

if p ≥ promised error of
WL
,
return result of
WL on D

'

else :

p← g-
' (p) terror required from level below

to get error ≤ p here)

define Dit Dj as in
"
modest boost

"

h
,
← strong learn / p , Exlf , D

'))

h2← strong learn 1ps , Exlf;D;D
h } ← strong learn lp , Exlf, D;D

h ← maj 1h , hah })

return h



¥!AN
NNN

issues :

- how
many recursive calls ?

depth & size of recursion tree

- how many samples to construct filtered distributions?



# samples :

problem .
. . filtering can take awhile

but good news !

if it takes a while to find good samples,
then we've already learned well !

e.g. to find samples St
. hilx --1-1×1

more than half should satisfy
(in any case if few such samples,

can output hi to get good
approx to f)

to find samples sit, h
,
1×11=1-1×1 :

it can't find
,
then hi is good

approx to
f

to find samples sit
. hilxtthzlx) :

if always agree, then
don't need h

,



depth of recursion :

assume WL advantage 8 is 'z ⇒ p≤ ty

(but also works if f- LAND

claim it p≤ 4 , glp) ≤ 3p2=jbp)2
error decrease in depth K is down to

≤ ↳ (sp)2
"

Important Consequences :
⇒ K -- Otogloglt) depth suffices to get error ≤e

⇒ size 31918¥ ⇐ 0-(19%1)
✗ s ← description of weak learning

hypothesis
= 015kg 'k)

suffices to describe circuit



[ is concept class where s bound size of concepts

Time C learnable ⇒ 1- efficient algorithm

◦ using polyln.si/oy#98) samples
+ time

• Outputs hypothesis of size

polyln , s, / og 'z)

(& can evaluate in poly time)

why ? given d- learning C

use d- with 4=44

boost d- to arbitrary E



GI Cleanable ⇒ all concepts CEC

have poly sized ckts

pfideafc.EC
,
use {< tin leg . no error)

will output consistent hypothesis of
poly size in n & 14

← # bits to

that is poly time describe a

evalvutable
.

⇒ poly sized ckt .

•



Thin
. Spose f cannot be computed by
poly sized ckts

. Then there is a sequence of

distrvbutiuns@I3s.t.f is "

average -

case hard
"

on {DIE
↑ n"

↑no poly sized
ck* gets f- need

right more hard distfor
than I +tpycn

each input
size to make it

of time
well defined

Pfidea
if not

,
f- can be weakly - learned

by poly sized clots

⇒ can strongly learn in size poly Hog 't, . . . )

⇒ can learn f with 0 error

⇒ f computable by poly- sized ckts


