Lecture 23

Probabilistically Checkable Proof Systems

- from earlier lecturesthomeworks:
- Freivald's test
- self-testing correcting linear fens
- model
$-N P \subseteq \operatorname{PCP}\left(n^{3}, 1\right)$
- arithmetization

Recall some useful facts

Freivald's test
if vectors $a \neq b$ then $\operatorname{Pr}\left[r \in\{0,1\}^{n}\right]\left[\begin{array}{c} \\ \end{array} a \cdot r\right] \geq \frac{1}{2}$
if matrices $A \cdot B \neq C$ then $\operatorname{Pr}_{r \in\left\{_{1} 1\right\}^{n}}[A \cdot B \cdot r \neq C \cdot r] \geq \frac{1}{2}$

Pf. pair vectors that differ in coordinate i st. $a_{i} \neq b_{i}$ or $A \cdot B_{i j}=C_{i j}$
(as in proof of orthogonality of
Fourier basis)

Comment also true for equality mod 2

The Model

def. $L \in P C P(r, q)$ if $\exists V($ ptime $T M)$ st.

1) $\forall x \in L \quad \exists \pi \quad$ s.t. $\operatorname{Pr}\left[V_{i} \pi\right.$ accepts $]=1$
2) $\forall x \notin L \quad \forall \pi^{\prime}, \operatorname{Pr}_{\substack{\text { asthenic }}}\left[V, \pi^{\prime}\right.$ accepts $]<1 / 4$

Vases $\leq r(n)$ random bits a makes $\leq q(n)$ queries to Π bit each
eeg. $S A T \in P C P(0, n)$
τ all settings of vars

Today $N P \subseteq P C P\left(O\left(n^{3}\right), O(1)\right)$
Actually $N P \subseteq P C P(O(\log n), O(1))$$\left\{\begin{array}{l}\text { verifier } \\ \text { cant see } \\ \text { significant } \\ \text { portion of } \\ \text { assignment (??! }\end{array}\right.$

SAT: $F=\Lambda C_{i}$ st. $C_{i}=\left(y_{i_{1}} v y_{i_{2}} v y_{i_{3}}\right)$
where $y_{i_{j}} \in\left\{x_{1} \cdot x_{n} \bar{x}_{1} \cdot \bar{x}_{n}\right\}$
is F satisfiable?
if so, how would you prove t?

First Crack:
$\pi=$ settings of sat assignment a

$$
\begin{aligned}
& a_{1}=T \\
& a_{2}=F
\end{aligned}
$$

Protocol for V:
pick random clause C_{i} check if setting \bar{a} satisfies C_{i}

Why good?
if \bar{a} satisfies C then Pr$\left[V_{\text {succeed }}\right]=1$
Why bad?
if \bar{a} doesn't satisfy C,
\exists clause i st. \bar{a} does' satisfy C_{i}
So $\operatorname{Pr}\left[V\right.$ finds unsat $\left.c_{i}\right] \geq \frac{1}{m}$
not so great since m can be big a need to repent $O(m)$ times to find one

Arithmetization of SAT
boolean formula F
arithmetic formula $A(F)$ over \mathbb{Z}_{2}

$X_{i} \longleftrightarrow X_{i}$
$\bar{x}_{i} \longleftrightarrow 1-x_{i}$
$\alpha \wedge \beta \longrightarrow \alpha \cdot \beta$
$\alpha V \beta \longleftrightarrow 1-(1-\alpha)(1-\beta)$
$\alpha V \beta \vee \gamma \longleftrightarrow 1-(1-\alpha)(1-\beta)(1-\gamma)$
examples:

$$
\begin{array}{ll}
\left(x_{1} \vee x_{2}\right) \wedge \bar{x}_{3} & \left(1-\left(1-x_{1}\right)\left(1-x_{2}\right)\right) \cdot\left(1-x_{3}\right) \\
x_{1} \vee \bar{x}_{2} \vee x_{3} & 1-\left(1-x_{1}\right)\left(1-\left(1-x_{2}\right)\right)\left(1-x_{3}\right) \\
& =1-\left(1-x_{1}\right) x_{2}\left(1-x_{3}\right)
\end{array}
$$

F satisfied by a iff $A(a)=1$

Strange Arithmetization:
arithmetize complement of each clause separately

$$
C_{\uparrow}(x)=\left(\hat{C}_{1}(x), \hat{C}_{2}(x), \ldots\right)
$$

complements of each clave C_{i} evaluate to 0 if x satisfies C_{i}
each $\hat{C}_{i}(x)$ is degree ≤ 3 poly in X Δ verifier knows the coefficients

Need to convince verifier that

$$
C(a)=(0,0, \ldots 0) \quad \text { wo sending } a
$$

haw to test vector is all 0?
weird idea: try to use "Freivald's test"??
how? assume \exists little birdie who tells V dot products of $C(a)$ with random vectors $(\bmod 2)$

Freivald's test on $C(a):$

Fix a :

$$
\begin{aligned}
&\left(\hat{C}_{1}(a), \ldots, \hat{C}_{m}(a)\right) \cdot\left(r_{1} \cdots r_{m}\right) \equiv \sum r_{i} \hat{C}_{i}(a) \bmod 2 \\
& \operatorname{Pr}\left[\sum r_{i} \cdot \hat{C}_{i}(a) \equiv 0 \bmod 2\right] \text { (la) satisfied } \\
&=\left\{\begin{array}{lll}
1 & \text { if } \quad \forall i & \hat{C}_{i}(a)=0 \\
\frac{1}{2} & 0 \cdot \omega . & \leftarrow C(a) \text { not } \\
\text { sutisfied }
\end{array}\right.
\end{aligned}
$$

Problem why believe the birdie?

Believing the birdie

1) we choose r_{i}^{\prime} s
2) we know coifs of polys in \hat{C}_{i}^{\prime} 's
3) polys of \hat{c}_{i}^{\prime} s are degree ≤ 3 in $a_{i}^{\prime} s$

from here on:

$$
\alpha_{i} \rightarrow x_{i}
$$

$$
\rightarrow x_{i}
$$

$\beta_{i j} \rightarrow y_{i j}$

- depend on $r_{i}^{\prime}+$ coeffs of polys $\left.\gamma_{i j k} \rightarrow z_{i j k}\right)$
- do not depend on $a_{n}^{\prime} s$
- Complied by V
no relation to vars of 3SAT
- since working mod 2, all values are in $\{0,1\}$
example

$$
\begin{gathered}
\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right)\left(x_{1} \vee x_{2}\right) \Rightarrow\left(\frac{\left(1-x_{2}+x_{1} x_{2}+x_{2} x_{3}-x_{1} x_{2} x_{3}\right)}{\left.\left(1-x_{1}+x_{1} x_{2}\right)\right)}\right. \\
\Rightarrow\left(\left(x_{2}-x_{1} x_{2}-x_{2} x_{3}+x_{1} x_{2} x_{3}\right),\left(x_{1}-x_{1} x_{2}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& r_{1} \cdot\left(x_{2}-x_{1} x_{2}-x_{2} x_{3}+x_{1} x_{2} x_{3}\right)+r_{2} \cdot\left(x_{1}-x_{1} x_{2}\right) \\
& \begin{aligned}
&=0 \cdot 1+r_{2} \cdot x_{1}+r_{1} \cdot x_{2}-\left(r_{1}+r_{2}\right) x_{1} x_{2}-r_{1} \cdot x_{2} x_{3} \\
&+0 \cdot x_{1} x_{3}+r_{1} \cdot x_{1} x_{2} x_{3}
\end{aligned}
\end{aligned}
$$

Functions for the "birdy"
def [outer product] $w=u \circ v$ if $w_{i j}=u_{i} \cdot v_{j}$

def

$$
\begin{aligned}
& A: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2} \quad A(x)=\sum_{i} a_{i} x_{i}=a^{\top} \cdot x \\
& B: \mathbb{F}_{2}^{n^{2}} \rightarrow \mathbb{F}_{2} \quad B(y)=\sum_{1, j} a_{i} a_{j} y_{i j}=(a \circ a)^{\top} \cdot y \\
& C: \mathbb{F}_{2}^{n^{3}} \rightarrow \mathbb{F}_{2} \quad C(y)=\sum_{i j k} a_{i} a_{j} a_{k} z_{i j k} \\
& =(a \circ a \circ a)^{\top} \cdot z
\end{aligned}
$$

Proof π :
Complete description of truth tables $\tilde{A}, \tilde{B}, \tilde{C}$
V really only needs to know A, B, C at input $x, y+z$ (which it knows)
other entries help in checking II

- check that tables of correct forms (linear fates)
- self-correct to get values of linear form at x, y, z

What does verifier need to check in T?
(1) $\tilde{A}, \tilde{B}, \tilde{C}$ are of right form:

- all are linear fetus
can only test close-to-linear but can self-correct
- correspond to same assigment a ie.

$$
\begin{aligned}
\tilde{A}(x)=a^{\top} \cdot x & \Rightarrow \tilde{B}(y)=(a \circ a)^{\top} \cdot y \\
& \Rightarrow \tilde{C}(z)=(a \circ a \circ a)^{\top} \cdot z
\end{aligned}
$$

test that self-corrections are
consistent according to consistent according to
(2) a is SKT assignment

- all \hat{c}_{i}^{\prime} 's evaluate to 0 on a

How to do (1):

- Test $\tilde{A}, \tilde{B}, \tilde{C}$ each $\frac{1}{8}$-close to linear via
\#randombits
\#queries $O(1)$
runtime $\left.a_{n}{ }^{3}\right)$. from now on, access $\tilde{A}, \tilde{B}, \tilde{C}$ via self-corrector on all inputs.

$$
\begin{array}{ccc}
S C-\tilde{A}, & S C-\tilde{B}, S C-\tilde{C} \\
\hat{t} & \hat{\jmath} & \hat{\imath} \\
a & b & c
\end{array}
$$

use confidence parameter that is small enough to do union bud over all queries to sc- $\tilde{A}, s c-\tilde{B}, s c-\tilde{C}$ st. cam assume always get right answer with high (constant) probability

- test consistency of $s c-\tilde{A}, s c-\tilde{B}, s c-\tilde{C}$

$$
\text { ie. } b=a \circ a \quad+c=a \circ b
$$

Consistency test:
Pick random x_{1}, x_{2}, x, y
test that (1)Sc$\cdot \tilde{A}\left(x_{1}\right) \cdot \operatorname{sc} \tilde{A}\left(x_{2}\right)$

$$
\begin{aligned}
& =\sum_{i} a_{i} x_{i n} \cdot \sum_{j} a_{j} x_{2 j}=\sum_{i_{j j}} a_{i} a_{j} x_{1 i} x_{2 j} \\
& =\operatorname{SC} \tilde{B}\left(x_{1} x_{2}\right)
\end{aligned}
$$

\#randombits $O\left(n^{2}\right)$
\#queries $O(1)$
runtime $O\left(n^{3}\right)$

$$
\text { (2) } \begin{aligned}
S C-\tilde{A}(x) & =S(-\tilde{B}(y) \\
& =\sum_{i} a_{i} x_{i} \cdot \sum_{j, k} a_{j} a_{k} y_{j k}=\sum_{i j k} a_{i} a_{j} a_{k} x_{i} y_{j k} \\
& =\operatorname{Sc}-\tilde{C}(x \circ y)
\end{aligned}
$$

note $x_{1} 0 x_{2}+x \circ y$ are not unit dist vectors. (that's why we call $s C-\tilde{A}, s c-\tilde{E}, s c-\tilde{C}$ instead of $\hat{A}, \tilde{B}, \widetilde{C}$
proof of consistency test: let a, b, c be linear fetus directly) corresponding to $\delta_{c}-\tilde{A}, s c-\tilde{B}, s c-\tilde{C}$
if $b=a \circ a+c=a \circ a \circ a$ then test passes
else, if $b \neq a \cdot a$
if $b \neq a 0 a: P_{r_{x_{1}} x_{2}}\left[x_{1}(a \cdot a) \cdot x_{2}\right) \neq x_{1} \cdot\left(b \cdot x_{2}\right]$

$$
\begin{aligned}
& \geq \frac{1}{2} \cdot \operatorname{Pr}\left[(a \cdot a) x_{2} \neq b x_{2}\right] \\
& \geq 1 / 4
\end{aligned}
$$

$$
\geq 1 / 4
$$

(note, $x^{\prime} s$ are playing role of " r "'s here)

How to do (2):
recall:

- We call self-corrector,

So recovering consistent linear fours

$$
a, a 0 a, a \circ a b a
$$

- we don actually know a, but it represents the assignment
- does it satisfy? ie. are all $\hat{C}_{i}(a)=0$?

Satisfiability Test:
Pick $r \in \mathbb{Z}_{2}^{n}$
Compute $\Gamma, \alpha_{i}^{\prime} s, \beta_{i j}^{\prime} s, \gamma_{i j k}^{\prime} s \leftarrow$ fats of r
$\begin{array}{lll}\downarrow & \downarrow & \downarrow \\ x & y & z\end{array}$ +caffs of polys from constraints
query proof to get $\operatorname{sc}-\hat{A}(\alpha)=w_{0}$
$\delta\left(-\tilde{B}(\beta)=\omega_{1}\right.$
$S C-\tilde{C}(\gamma)=w_{2}$
Verify $0=\Gamma+\omega_{0}+\omega_{1}+\omega_{2} \leftarrow$ hopefully means

$$
\sum r_{i} \hat{c}_{i}(a)=0
$$

does it work?
if $\forall i, \quad \hat{C}_{i}(a)=0 \Rightarrow$ always pass
if \exists_{i} st. $\hat{c}_{i}(a) \neq 0 \Rightarrow$

$$
\begin{aligned}
& (0 \ldots 0) \neq\left(\hat{c}_{1}(a) \ldots \hat{c}_{m}(a)\right) \\
\Rightarrow & \operatorname{Pr}_{r}\left[\sum r_{i} \hat{c}_{i}(a)=0 \bmod 2=\sum 0 \cdot r_{i}\right] \leq \frac{1}{2}
\end{aligned}
$$

$\Rightarrow \operatorname{Pr}[$ passes all k times $] \leq 1 / 2 k$

