Lecture 24

Szemerédi's Regularity Lemma
Testing dense graph properties via SRL:
Δ-freeness

Graphs with "random" properties:

Example question:
How many triangles in a random tripartite graph?

$$
\text { density } \eta
$$

$$
\begin{aligned}
& \forall u \in A, v \in B, w \in C: \\
& \operatorname{Pr}[u \sim v \sim w]=\eta^{3} \quad \sigma_{u, v, w}= \begin{cases}1 & \text { if } u \sim v \sim w \\
0 & 0 . w .\end{cases} \\
& E\left[\sigma_{u, v, w}\right]=\eta^{3} \\
& E[\pm \text { triangles } \quad
\end{aligned}
$$

Can we make weaker assumptions a still get reasonable bounds?

Density \& Regularity of set pars:
def. For $A, B \leq V$ st.
(1) $A \cap B=\varphi$
(2) $|A|,|B|>1$

Say A, B is γ-regular if $\forall A^{\prime} \leq A, B^{\prime} \leq B$

Let $e(A, B)=\#$ edges between $A+B$

+ density $d(A, B)=\frac{e(A, B \mid}{|A \cdot| B \mid}$

$$
\begin{array}{ll}
\text { st. } \quad\left|A^{\prime}\right| & \geq \gamma|A| \\
\left|B^{\prime}\right| \geq \gamma|B| \\
\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma
\end{array}
$$

(parameter γ vied in 2 ways to "conserve" on parameters)

Lemma density freglanity prosemeter,

$$
\begin{aligned}
& \forall \eta>0 \quad \exists \gamma^{\quad \text { regolepends onygn }}=\frac{1}{2} \eta \equiv \gamma^{D}(\eta) \\
& \begin{array}{l}
\delta=(1-\eta) \frac{n^{3}}{8} \geqslant \frac{\eta^{3}}{16} \equiv \delta^{8}(\eta) \\
\uparrow \begin{array}{l}
\text { if } \eta<1 / 2
\end{array} \\
\text { \#ning leses, } \\
\text { depends only on } \eta
\end{array}
\end{aligned}
$$

S.t. if A, B, C disjoint subsets of V s.t. each pair
is γ-regular with density $>\eta$
then G contains $\geq \delta \cdot|A| \cdot|B| \cdot|C|$ distinct $\Delta^{\prime} s$ with node in each of A, B, C.
compare to random graphs: $\geq \eta^{3}|A| \cdot|B| \cdot|C|$

Proof:
$A^{*} \leftarrow$ nodes in A with $\geq|\eta-\gamma| \cdot|B|$ nbrs in $B \quad\left\{\begin{array}{l}\text { if this were a random graph, } \\ \text { yon would expect to have } \\ \text { w }\end{array}\right.$ $\geq|\eta-\gamma| \cdot|C|$ noes in $C \quad$ you would expect to have $\geq \eta|B|$ nbs \pm some error. $\exists_{\eta}(c)$
Claim $\left|A^{*}\right| \geq(1-2 \gamma)|A|$
so these an He nodes that "look random"

Why? (Pf of claim)
$A^{\prime} \in$ "ba din nodes writ. $B \quad(\angle|\eta-\gamma| \cdot|B|$ nous in $B)$

$$
A^{\prime \prime} " \quad " \quad . \quad C
$$

then $\left|A^{\prime}\right| \leq \gamma|A| \quad\left(+\left|A^{\prime \prime}\right| \leq \gamma|A|\right)$
why? consider pair A^{\prime}, B. $\quad \operatorname{def}$ of A^{\prime}

$$
d\left(A^{\prime}, B\right)<\frac{\left|A^{\prime}\right| \cdot|\eta-\gamma| \cdot|B|}{\left|A^{\prime}\right| \cdot|B|}=\eta-\gamma
$$

but $d(A, B)>\eta$
so $\left|d\left(A^{\prime}, B\right)-d(A, B)\right|>\gamma$
$+|B| \geq \gamma|B|$
So if $\left|A^{\prime}\right| \geq \gamma|A|$ then (A, B) is not $\underset{\rightarrow-\text {-regular }}{\substack{x}}$

Let $A^{*}=A \backslash\left(A^{\prime} \cup A^{\prime \prime}\right)$ then $\left|A^{*}\right| \geq|A|-\left|A^{\prime}\right|-\left|A^{\prime \prime}\right| \geq|A|-2 \gamma|A|=(1-2 \gamma) \cdot|A|$

Using Claim:
For each $u \in A^{*}$: define $B_{u} \equiv$ nbs of u in $B y$ portly

$$
C_{u} \equiv \text { nbs of } u \text { in } C^{d} \text { by def of ft }
$$

$$
\text { 2 } \begin{aligned}
& \text { since } \gamma<\eta \\
&\left.\quad\left|B_{u}\right| \geq(\eta-\gamma)|B| \geq \gamma\right)^{2}\left|C_{u}\right| \geq(\eta-\gamma)|C| \geq \gamma|C|
\end{aligned}
$$

\#edges between $B_{a}+C_{n} \Rightarrow$ lower bond on \# distend Δ 's in which u participates

$$
d\left(B_{c} C\right) \geq \eta \Rightarrow d\left(B_{n}, C_{4}\right) \geq \eta-\gamma \quad \Rightarrow e\left(B_{n}, C_{u}\right) \geq(\eta-\gamma)\left|B_{n}\right|\left|C_{1}\right| \geq(\eta-\gamma)^{3} \cdot|B| \cdot|C|
$$

B_{u}, C_{u} bigenough $+(B, C)$ is γ regular

$$
\text { so total } \pm \Delta^{\prime} s \geq \underbrace{(1-2 \gamma)|A|}_{\begin{array}{c}
\text { this is } \\
\text { where clime } \\
\text { Find } \\
\text { gets soused } \\
\text { of } \\
\text { distucht }
\end{array}} \cdot(\eta-\gamma)^{3}|B||C| \geq(1-\eta)(\eta / 2)^{3}|A||B||C|
$$

Δ

Do interesting graphs have regularity properties?
Yes in some sense, all graphs do "can be approximated as small collection of random graphs"
Szemerédis Regularity Lemma
would like it to say:
"one can equipartition nodes of V into $V_{1 . . .} V_{k}$ (for cons k) s.t.

$$
\begin{aligned}
& \underbrace{\text { all }}_{\text {onlymost }} \text { pairs }\left(v_{i j} v_{j}\right) \text { are } \text { regular" } \\
& \text { ser }\left(r_{2}\right) \\
& \text { are not }
\end{aligned}
$$

Sometrues seed $K>m$ for some m ($k=1, k=n$ trivia) useful in applications

Szemerédi's Regularity Lemma: (especially useful version)

$$
\forall m, \varepsilon>0 \quad \exists \quad T=T(m, \varepsilon) \quad \text { s.t. } \quad \text { given } \quad G=(V, E) \quad \text { sit. }|V|>T
$$

- an equipartition of V into sets
then exists equipartition B into k sets which refines A st $\quad m \leq k \leq T$
$+\quad \leq \varepsilon\binom{k}{2}$ set pairs not ε-regular
cons \# partitions st.
\checkmark each pair behwes like $\underbrace{\text { random graph }}$
Note: T does not depend on |V|

Why was SRL first studied?
to prove conjecture of Erdös + Turán: Sequences of int have long arithmetic progressions

Very rough idea of proof:
Same densities
"expectation

$$
\begin{aligned}
& \text { "expectation } \\
& \text { of } d^{2}\left(v_{i}, j, j\right) \rightarrow \text { ind }\left(V_{1} \ldots V_{k}\right)=\frac{1}{k^{2}} \sum_{i=1}^{k} \sum_{j=i+1}^{k} d^{2}\left(v_{j}, v_{j}\right) \leq \frac{1}{2} \quad \text { "Variance of } d^{k} \text { " }
\end{aligned}
$$

 so in less then $\frac{1}{\varepsilon^{c}}$ refinements, havegood partition
How big is k ? v.b. Tower of sine $\frac{1}{\varepsilon^{c}}$
issue:: what it
Sp lt v_{i} for mana v_{j} ?
\Rightarrow split into exponemitid subsets

An application of the SRL:

Given G in adj matrix form
ls it Δ-free?
desired behavior: if G is Δ-free, output PASS
if $G \underbrace{E-\text { far }}_{\text {mot }}$ delete from Δ-free output FAIL

$$
\geq \sum n^{2} \text { edges }
$$

Algorithm:
$O\left(8^{-1}\right)$ times:

$$
\begin{aligned}
& \text { Pick } V_{1}, V_{2}, V_{3} \in r V \\
& \text { if } \Delta \text { reject \& halt }
\end{aligned}
$$

Accept

The $\forall \varepsilon, \quad \exists \delta^{\text {feta of e only }}$ sit. $\forall G \quad|V|=n$
$+s t_{1} G$ is E-far from Δ-free, then G has $\geq \delta\binom{n}{z}$ distinct $\Delta^{\prime} s$

Corr Algorithm has desired behavior

Why? if Δ-free i we never reject

- if ε-far from Δ-free:

$$
\geq \delta\left(\frac{n}{3}\right) \quad \Delta \prime s
$$

\Rightarrow each loop passes with prob $\subseteq 1-8$
$\operatorname{Pr}[$ dort final $\Delta] \leq(1-8)^{c / \delta}$

$$
\leq e^{-c}<\uparrow^{1 / 3}
$$

\uparrow
for proper choice
of c
\Rightarrow reject with prob $\geq 2 / 3$

Th m $\forall \varepsilon, \quad \exists \delta \quad$ sit $\quad \forall G \quad$ sit. $|V|=n$

+ st. G is ε-far from Δ-free,
then G has $\geq \delta\binom{n}{z}$ distinct Δ 's
Proof
use regularity to get equipartition $\left\{V_{1} \cdots V_{k}\right\}$ sit.

$$
\frac{5}{\varepsilon} \leq K \leq T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right) \quad \Leftarrow \text { need } \geq \frac{5}{\varepsilon} \text { sets in partition }
$$

equivalent: $\frac{\varepsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)}$
how? start with arbitrary equipartitionf into $5 / \varepsilon$ sets « this is whey we need ability to refine
for $\varepsilon^{\prime} \equiv \min \left\{\frac{\varepsilon}{5}, \gamma^{\Delta}\left(\frac{\varepsilon}{5}\right)\right\}$ any partition
st. $\leq \varepsilon^{\prime}\binom{k}{2}$ pairs not ε^{\prime}-regular
assume $\frac{n}{k}$ is integer

$$
G^{\prime} \equiv \text { take } G \text { and }
$$

1) delete edges internal to any V_{i} (if \#nodes per partition small, few internal edges)

$$
\begin{aligned}
\text { how many? } & \leq \frac{n}{k} \cdot n \leq \frac{\sum n^{2}}{5} \\
& \operatorname{deg}_{\substack{\text { whin } \\
V_{i}}} \quad \underbrace{\text { alludes }}_{\text {sum over }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\varepsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{5}, \varepsilon^{\prime}\right)} \\
& d(A, B)=\frac{e(A, B \mid}{|A \cdot| B \mid}
\end{aligned}
$$

A, B is γ-regular if $\forall A^{\prime} \leq A, B^{\prime} \leq B$
st. $\left|A^{\prime}\right| \geq \gamma|A|$
$\left|B^{\prime}\right| \geq \gamma|B|$

$$
\left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma
$$

$$
y^{8}(y)=\frac{1}{2} x
$$

$$
\delta^{4}(\eta) \equiv(1-\eta) \frac{x^{3}}{8} \geq \frac{x^{3}}{16}
$$

2) delete edges between E'-non regular pairs
how many?
$\varepsilon^{\prime} \equiv \min \left\{\frac{\varepsilon}{5}, \gamma^{\Delta}\left(\frac{\varepsilon}{5}\right)\right\}$
$\sigma \leq \varepsilon^{\prime}\binom{k}{2}$ pairs not ε^{\prime}-regular
3) delete edges between $\underbrace{\text { low density pairs }}_{\text {use }<\varepsilon / 5 \text { as cutoff }}$ how many?

$$
\begin{aligned}
& \leq \sum_{\substack{\text { low } \\
\text { density }}}\left(\frac{\varepsilon}{5}\right)\left(\frac{n}{k}\right)^{2} \quad \text { note } \sum\left(\frac{n}{k}\right)^{2} \leq\binom{ n}{2} \\
& \leq \frac{\varepsilon}{5}\binom{n}{2} \approx \frac{\varepsilon n^{2}}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\varepsilon n}{5} \geq \frac{n}{k} \geq \frac{n}{T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)} \\
& \qquad \left.d(A, B)=\frac{e(A, B \mid}{|A| \cdot|B|} \right\rvert\, \\
& \begin{array}{l}
A, B \text { is } \gamma-\text { regular if } \forall A^{\prime} \leq A, B^{\prime} \leq B \\
\text { st. }\left|A^{\prime} \geq \gamma\right| A \mid \\
\left|B^{\prime}\right| \geq \gamma|B|
\end{array} \\
& \left|d\left(A^{\prime}, B^{\prime}\right)-d(A, B)\right|<\gamma \\
& \varepsilon^{\prime} \equiv \min \left\{\frac{\varepsilon}{5}, \gamma^{\Delta}\left(\frac{\varepsilon}{5}\right\}\right. \\
& \sigma \leq \varepsilon^{\prime}\binom{k}{2} \text { pairs nt } \varepsilon^{\prime} \text {-regular }
\end{aligned}
$$

Total deleted edges: $\leq \frac{\sum n^{2}}{5}+\frac{\sum n^{2}}{10}+\frac{\sum n^{2}}{10}<\sum n^{2}$
But G is ε-far from Δ-free (must delete $\geq \varepsilon h^{2}$ edges to remove all Δs) so G^{\prime} must still have a triangle!!!
Δ in G^{\prime} must connect:

1) nodes in 3 distinct $V_{i} V_{j} V_{k}$
since no edges internal to partition in G^{\prime}
2) regular pairs

Since nonregular pair edges deleted in G^{\prime}
3) high density pairs
since removed low density pairs in G^{\prime}
$\therefore \exists i, j, k$ distinct st $x \in V_{i}, y \in V_{j}, z \in V_{k}$

$$
\begin{aligned}
& V_{i}, V_{j}, V_{k} \text { all } \geq \frac{\varepsilon}{5}^{l / \eta} \text { density pairs } \\
& \alpha \geq \underbrace{\gamma^{\Delta}\left(\frac{\varepsilon}{5}\right)} \text {-regular } \\
& \geq \frac{\eta}{2}
\end{aligned}
$$

Δ-counting lemma \Rightarrow

$$
\begin{aligned}
& \geq \delta^{\Delta}\left(\frac{\varepsilon}{5}\right)\left|V_{i}\right| \cdot\left|V_{j}\right| \cdot\left|V_{k}\right| \quad \text { triangles in } G^{\prime} \\
& \geq \frac{\delta^{\Delta}\left(\frac{\varepsilon}{5}\right) n^{3}}{\left(T\left(5 / \varepsilon, \varepsilon^{\prime}\right)\right)^{3}} \Delta^{\prime} s \\
& \text { where } \delta^{0}=(1-\eta) \frac{\eta^{3}}{8} \\
& \geq \frac{1}{2} \frac{\varepsilon^{3}}{8000}=\frac{\varepsilon^{3}}{110000} \\
& \geq \delta^{\prime} \cdot\binom{n}{3} \quad \Delta^{\prime} s \text { in } G^{\prime} \text { (lond thus in } G \text {) }
\end{aligned}
$$

for $\quad \delta^{\prime}=6 \delta^{\Delta}\left(\frac{\varepsilon}{5}\right)\left(T\left(\frac{5}{\varepsilon}, \varepsilon^{\prime}\right)\right)^{-3}$

This is a powerful technique!

- similar lemma to Δ-counting holds for all cost sized subgraphs
- almost "as is" can use same method to test all "lIst order" graph properties:

$$
\underbrace{\exists u_{1} u_{2} u_{3} \ldots u_{k}}_{\text {nodes }} \forall V_{1} \ldots v_{l} \underbrace{R\left(u_{1} \ldots u_{k} V_{1} \ldots V_{l}\right)}_{\text {defined via } \Lambda_{1} V_{1} \uparrow+\text { neighbors }} \underset{\begin{array}{c}
\text { queries to } \\
\text { adj } \\
\text { matrix }
\end{array}}{\substack{\text { a }}}
$$

ie. $\forall u_{1}, u_{2}, u_{3} \tau(\underbrace{\left.u_{1} \sim u_{2}, u_{2} \sim u_{3}, u_{3} \sim u_{1}\right)}_{\text {more generally, }}$
H-freeness for all const sized H

