6.842 Lecture 3

- The Lovasz Local Lemma (recap + finish)
- Polynomial Identity Testing

Lavas Local Lemma: Recap + finish
Goal: Show that possibly no bad events happen!
possible took:

- if independent, then obvious

- if not independent, use union bound \leftarrow major a ssurejtion
- What if Ais have "some" independence? "pis."
def. A "independent" of $B_{1} B_{2} \ldots B_{k}$ if
$\begin{aligned} & \forall J \leq[k] \\ & J \neq \emptyset\end{aligned}$ then $\operatorname{Pr}\left[A \cap \bigcap_{j \in J} B_{j}\right]$
note:
$[k]$ means $\{1 . . . k\}$

$$
=\operatorname{Pr}[A] \cdot \operatorname{Pr}\left[\bigcap_{j \leqslant J} B_{j}\right]
$$

def. $A_{1} \ldots A_{n}$ events
$D=(V, E)$ with $V=[n]$ is
"dependency digraph of $A_{i} \cdot A_{n}$ "
if each A_{i} independent of all A_{j} that are not neighbors in D (ie. all $A_{j} s t,(i, j) A E$)

Lovász Local Lemma (symmetric version)
$A_{1} . . A_{n}$ events sit. $\operatorname{pr}\left(A_{i}\right) \leqslant p \quad \forall i$ with dependency digraph D st. D has max degree $\leq d$.
If $\operatorname{ep}(d+1) \leq 1$ then

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \bar{A}_{i}\right]>0
$$

Application

Th m. Given $\quad S_{1} \ldots S_{m} \leq \bar{X} \quad\left|S_{i}\right|=\ell$
each S_{i} intersects at most d other S_{s}^{\prime} s
$\left.\begin{array}{l}\text { previously } \\ \text { needed }\end{array}\right]$, if $e \cdot(d+1) \leq 2^{l-1}$
$\left.\begin{array}{l}\text { needed } \\ m<2^{-1}\end{array}\right\}$
now no restriction on m but there is a restriction on "degree"
then can 2 -color X such that each S_{i} not monochromatic
ie. It is hypergraph with m edge, each containing l nodes + each intersecting $\leq d$ other edges

Stronger assumptions:
(1) For today, assume l, d constants
(2)

$$
\begin{gathered}
\text { Binary } \begin{array}{c}
\text { Entropy } H(x) \equiv-x \log _{2} x-(1-x) \log _{2}(1-x) \\
\text { Let } P=2 \cdot 2^{(H(\alpha)-1) \cdot l} \\
e^{2} p^{\frac{1}{d+1}}<1 / 2
\end{array}
\end{gathered}
$$

(3) $2 e(d+1)<2^{\alpha n}$

Algorithm: Given $S_{1} \ldots S_{m} \leq \mathbb{X} \quad\left|S_{i}\right|=\ell \forall i$
First pass:
for each $j \in X$ pick color red/blue via coin toss
S_{i} is "bad" if $\leq \alpha \cdot l$ reds or $\leq \alpha \cdot l$ blues
$B \leftarrow\left\{S_{i} \mid S_{i}\right.$ is bad $\}$
|st pass is successful if all "connected components" of B are $\leq d \log m$ edge bet
(if not successful, retry) $A \cdot A_{A}$ if $A_{n} A_{j} \neq \varphi$
(will change def later)

Second Puss:
Brute force each connected component maybe
efficient? efficient? (who violating their nbrs)

After ${ }^{s t}$ pass: orange S_{i}^{\prime} 's are "good, red $S_{i}^{\prime} s$ are "bad"

Some questions:
(1) - why is output legal? what if C hanging $S!\cdot \sin B$ makes $S_{j} \notin B$ monochromatic?
(2). How fast is pass 2?
(3). How man times to repent pass 1?

How could His work??
(1) Why is output legal?

First pass:
for each $j \in X$ pick color red/blue via coin toss

$$
\begin{aligned}
& S_{i} \text { is "bad" if } \begin{aligned}
& \text { or } \\
\text { or } & \leq \alpha l
\end{aligned} \text { rds } \text { blues } \\
& B \leftarrow\left\{S_{i} \mid S_{i} \text { is bad }\right\}
\end{aligned}
$$

pass successful if all "connected components" of bad $S_{\Lambda}^{\prime} s$ are $\leq d \log m$
(if not successful, retry)
Second Pass: Brute force each connected component

Main idea'
remaining subproblems each have property that all remaining sets have enough uncolored points so that UL
\Rightarrow soln exists

If S_{i} not bad $+\angle \alpha n$ nodes in bad nbs
then S i will still be bichromaticafter recoloring.
If S_{i} not bad + has $\geq \alpha l$ nodes in bad nbrs, then $\geqslant \alpha l$ nodes get recolored
note:
wont use
aborthmm - if recolored randomly, $\operatorname{Pr}\left[S_{i}\right.$ is monochrome $]$ this algorithm - using LU L $<2^{-\alpha l}$
$\frac{\operatorname{assumption} x}{\operatorname{tassume} 2 e(d+1)}<2^{\alpha \ell} \quad \nrightarrow$ Solution exists assumption 3
(2) How fast is Pass 2?

Man idea:
Components small
\Rightarrow involve few sets
\Rightarrow involve few elements (Since assume ℓ is $0(1)$)
\Rightarrow can brute force
\# settings to vars in a surviving

$$
\begin{aligned}
\text { component } & \leq 2^{\ell \text { o(dlog } m)} \\
& =m^{o(l \cdot d)}
\end{aligned}
$$

total time: \#surviving $\frac{\text { components }}{\text { cm }} \times m^{\text {old }}=m^{O(l d)}$
if $d_{l} l$ constant: poly (m) time $*$ assumption else, recurse on components
(3) How many times to repeat pass 1?

Complications:

- need "refined" def of "connected component" for pass 2 to work

Why? since need to recolor some nonbad sets that neighbor bad sets

Let's be more care fol in our defn. of conn components: Hypergraph: nodes for each $x \in X$
Input hyperedge S_{i} corresponds to subset of X
(all $\left|S_{i}\right|=2 \Rightarrow$ usual notion of graph)
not directed in \downarrow this case
Dependency digraph: nodes for each S_{i} regular
type odyl. \rightarrow edge between $S_{i}+S_{j}$ if intreat

Dree of Dependency Digraph :
 assumption \Rightarrow this graph has degree $\leq d$

After $1^{s t} p a s s$: orange S_{i}^{\prime} 's are "good, red $S_{i}^{\prime} s$ are "bad"

How shall we define "corrected component"?

Try 1: use dependency graph

degree sd by assumption
we will see a difficulty with this soon

Try 2: use "square" of dependency graph":
connect nodes of dist Ior 2
example:

degree of "square" graph:
deg \leq \#nodes that can be reached in for 2 steps in

$$
\leq d+\prod_{\uparrow}^{d} \cdot d_{1^{s t e x}} 2^{\text {nod step }} \leq 2 d^{2}
$$ original graph

why square graph?

$1+3$ both cause celts in 2 to be recolored
\Rightarrow step 2 needs to recolor 1,2,3 simultaneously

For this lecture,
"Connected" component means

all nodes reachable in square graph

After 1 st pass: orange S_{i}^{\prime} 's are "good, red $S_{i}^{\prime} s$ are "bad"

In pass 2, might need to fix
neighbors of bad components:
recall: If S_{i} not bad + has $\geq \alpha l$ nodes in bad nbrs, then $\geq \alpha l$ nodes get recolored
say S_{i} "Survives" if bad or has $\geq \alpha l$ nodes in bad nbs

We will show that connected components of "bad" sets S_{i} are small: $O(\log n)$

Algorithm needs to recolor bad sets

- possibly some of their noes in original (the ones that survive):
each bad set S_{i} has $\leq d$ noes
\Rightarrow total size (\#si's) of component to recolor is O(dlogn)

How many repetitions of Pass 1?

$$
\text { fact for } H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)
$$

$\forall S_{i}, \quad \operatorname{Pr}\left[S_{i}\right.$ bad $] \leq 2 \cdot \sum_{i \leq \alpha n}\binom{l}{i} / 2^{l} \leq \underbrace{\downarrow \cdot(H(\alpha)-1) l}$

$$
\leq p
$$

define this to be p

$$
\approx 2^{-c l} \text { for }_{\substack{\text { some } \\ \text { cons } c}}
$$

Given dependency digraph G,
put edge between $S_{i}+S_{j}$ if $S_{i} \cap S_{j} \neq \varphi$
if $S_{i_{1},} S_{i_{\gamma}} \ldots, S_{i_{m}}$ are independent set
(so $\left.\quad s_{i_{k}} \cap s_{\lambda_{l}}=\varphi \quad \forall i_{k}, i_{l}\right)$
then $\operatorname{Pr}\left[S_{i_{1}} \ldots S_{i_{m}}\right.$ all in $\left.B\right] \leqslant p^{m}$

First try

Show no big component survives:
sizes
$\operatorname{Pr}[$ specific big component survives $]$

- $\operatorname{Pr}[$ big independent set in component survives

$$
\leq p^{s^{\prime}}
$$

Pr [any big component survives]

can use degree bound to improve!!

Plan: hope to show no big component sorvives.
if big component C survives,
can get \rightarrow then C has a big subtree good bound on \# banded degree that survives subtrees! then can find (less) big independent \uparrow in whip since \longrightarrow set in subtree banded degree

Well known fact:
\# subtrees of size u in graph of

$$
\begin{aligned}
\begin{array}{l}
\text { degree } \leq \Delta \quad \text { is } \\
\text { \#nodes }=n
\end{array} & \leq n \cdot \frac{1}{(\Delta-1)(u+1)}\binom{\Delta u}{u} \\
& \leq n(e \Delta)^{u}
\end{aligned}
$$

much much better than $\binom{n}{u}$ when Δ is constant

Given subtree of size $u_{\text {, }}$
it has indep set of size $\geq \frac{U}{\Delta+1}$
why?
Repeat
each round: $\{I \leftarrow$ arbitrary node u in sobtree interesting it $\Delta \ll n$

- Igets biggerbyl remove $u+$ all ibis of u from
- subtree gets Smaller by subtree $\leq \Delta+1 \quad$ Until subtree is empty

$$
\Rightarrow \# \text { rounds }=|I| \geq \frac{u}{\Delta+1}
$$

New try:

Show no big component survives:
$E[\#$ of sire $>S$ subtrees that survive $]$ $\leq \sum_{i=s}^{m} E[\#$ size i subtrees that survive $]$
hiding $\begin{gathered}\text { and } \\ \text { indicator } \\ \text { argument } \\ \text { in there }\end{gathered} \rightarrow \leq \sum_{i=s}^{m}$ (\# size i subtrees) $\operatorname{Pr}\left[\begin{array}{c}\text { size i subtree }] \\ \text { survives }\end{array}\right]$
(i)

$$
\begin{equation*}
\leq \sum_{i=s}^{m} m \cdot \underbrace{(\text { this is }<1 / 2}_{\underbrace{\left(e d^{2} p^{\frac{1}{d+1}}\right.}_{\text {assume }})^{i}} \tag{x}
\end{equation*}
$$

$$
\begin{aligned}
& \qquad \leq \sum_{i=s}^{m} m \cdot \frac{1}{2} i \leq \frac{m}{2^{s-1}} \quad \begin{array}{c}
\text { upper } \\
\text { bound on } \\
\text { expected }
\end{array} \\
& \text { for } s=\log 4 m \quad \leq \frac{m}{4 m}=1 / 4 \begin{array}{l}
\text { \# of } \\
\text { big } \\
\text { components }
\end{array}
\end{aligned}
$$

By Markov's \neq :

$$
x . \geq 1
$$

$$
\operatorname{Pr}[\# \text { of size } \geq \log 4 m \text { subtrees } \cdot>0]<\frac{1}{4}
$$

so $\operatorname{Pr}[\#$ components of size $\geq \log 4 m$ is $>0]<1 / 4$
\Rightarrow expected \# times to repeat first pass

$$
\leq 4
$$

Polynomial Identity Testing

Is $P(x)=(x+1)^{2}$ the same as $Q(x)=x^{2}+2 x+1$?

What about $P(x)=(x+3)^{38}(x-4)^{83}$

Problem: given 2 polynomials P, Q
is $\quad P \equiv Q$?
ie. is $P(x)=Q(x) \forall x$?
Problem': given polynomial $R \quad$ Let
is $R \equiv 0$?

$$
R(x)=P(x)-Q(x)
$$

then
ie. is $R(x)=0 \forall x$?
$R \equiv 0$ if $P \equiv Q$

Fact: If $R \neq 0$ has degree $\leq d$ then
R has at most d roots (recall:

$$
\begin{array}{ll}
\text { a } & \text { root" is } \\
x & \text { st. } R(x)=0)
\end{array}
$$

Algonthm for deciding whether $R \equiv 0$:
pick $d+1$ distinct inputs $X_{1} \cdots x_{d+1}$
if $\quad \forall i \quad R\left(x_{x}\right)=0 \quad$ output " $R \equiv 0$ "
else $\left(\exists i\right.$ st. $\left.R\left(x_{i}\right) \neq 0\right)$ output " $R \neq 0$ "
Runtime: $O(d)$ evaluations of R

