
6.842 Lecture 3

• The Lovasz Local Lemma (recap + finish)

^ Polynomial Identity Testing

Louisa Local Lemma : Recap + finish

Goal : Show that possibly no bad events

happen !

possible tools :

• if independent, then obvious
← easy ,

no major
as"mPt

""

on prob off
:# hvgoen

bad e÷¥nmp¥p%aene
• if not independent, use union bound c-major assumptionneeded on

• What if Ai's have
"

some

"

independence ? Pis .

def . A
"

independent
"

of B
,
Ba . . . Bk if

V- J c- [K] then Pr[ARAB;]
J -1-0 jet

note :
=Pr[A) PRIAB;][K]means{lnk3J. jet

d¥
.

A
,
. . . An events

D= IV. E) with V=[n] is

"

dependency digraph of Ai . An "

if each Ai independent of all Aj that
are not neighbors in D lie

.

all Ajs.t.li,j)¢E)

Lovoisz Local Lemma (symmetric version)

A-
i. An events st

. prlAi±p fi
with dependency digraph D sit

.

D

has max degree ⇐ d.

If epcdti) c- 1 then

Pr[II. I;] > 0

Application

This
.

Given S
,
. . . S.me#lSi1--l

each S
;
intersects at most d- other § 's

previously
needed
,,}

if e. Lotti) e- 21-1
M<2

then can 2- color ¥ such that
now no

restriction
on m each Si not monochromatic
but there

is a

restriction
on

" degree
" ie

.

His hypergraph with m edges,
each containing l nodes teach
intersecting Ed other edges

stronger assumptions :

(1) For today , assume I ,d constants

(2) Binary . Hlx) I -✗ logax - ltxlogaltx)Entropy
.

let
p= 2. 24th

) -1) I

ed•pd¥ < Ya

(3) Zelda) < 2
"

Algorithm : Given S
,
.
. -5m£ # Isil -1 tri

First pass :

for each je# pick color red /blue via coin toss

Si is
"
bad " if £21 reds

01 Eal blues

B. ← { Si / Si is bad }

lstpassis successful if all
" connected components

"

Tof B are c- dlogm edge bet
Ajit(if not successful

, retry) AnnAjtp
(will change
defn later)

Second Pass: few sets
so

maybeBrute force each connected component efficient?

(w/o violating their nbrs)

After 1stpass: orange Si
's are

"

good,
"

red Si's are

"

bad
"

bad
size2

{Connected

component

bad ↳ ¥ÉÉted componentconnected component T
size2

size B good connectedcomponent
can be huge

Some questions :

① • why is output legal ? what if changing Si
's int

makes sy¢B monochromatic?

② . How fast is pass 2 ?

③ • How many times to repeat pass 1 ?

Howcouldlhisworkz.mg Nowaythisisfast!Mf
-

¥ÉI; o o
o
o e

① Why is output legal ?

First pass :

for each je# pick color red /blue via coin toss

Main idea:
Si is

"
bad " if £21 reds

01 Eal blues

remaining subproblems
B. ← { Si / Si is bad} each have property
pass

successful if all
" connected components

"

that all remainingof bad Sis are Ed logon
sets have enough(if not successful

, retry) uncolored points
second Pass : Brute force each connected component so that LLL

⇒ sun exists

If Si not bad + < an nodes in bad nbrs

then Si will still be bichromate after

recoloring .

If Si not bad & has 221 nodes in bad nbrs
,

then 7dL nodes get recolored
note :
won't use

→
- if recolored randomly , Prfsi

is monochrome]
this algorithm < 2-2-1-

using LLL
aptn* < 2×1

'

⇒ solution exists !
this was

assumption}

Main idea :
② How fast is Pass 2 ?

components small
⇒ involve few sets

⇒ involve few

elementssize of surviving components :& Old /OJM) (since assume
his 047)

⇒ can brute
#
settings to vars in a surviving force

each one

component a- 21°
'd '%" separately

= mole 'd)
add) 01kt)

total time :# surviving components xm
= M

T.vn

if d,l constant : polylm) time * assumption

else
,
recourse on components

③ How many times to repeat pass 1 ?

Complications :
- need " refined

"

def of
"

connected

component
"

for pass 2 to work

why ? since need to recolor

some non bad sets that

neighbor bad sets

Let's be more careful in our defn
. of conn components:

Hypergraph: nodes for each ✗ EI
→

Input hyperedge Si corresponds to

subset of ¥

(all Isil --2 ⇒ usual notion d- graph)
not directed in
if this case

Dependency digraph : nodes for each Si

regular → edge between sit Sj if intersect

typeefdge!

§ hyperedge
hyperedges;

"

All Si's :

i
"

12

,

°

"

↳

""

15

14

2 I 6
7

7-
'•°-•

"

Piece d- Dependency Digraph :¥ÉEI7•,_•%← assumption ⇒ this graph
has degree Ed

g-
6

After 1stpass: orange Si
's are

"

good,
"

red Si's are

"

bad
"

How should we define
"

connected component
"

?

Ñ•→•°→"
\Tnf : use dependency graph i .¥•¥ÉE•T•→F¥¥•,

g-
6

degree :D by assumption
we will see a difficulty with this soon

TryI : use

"

Square
"

of dependency graph :
connect nodes of dist 1012

•-•→_%i ⇒ •→→#É
example: I 2 3 12-3-4

graph G graph G
'

degree of
"

square
"

graph :

deg' # nodes that can be reached in Ior 2 steps in
original graph

Edt d. d ±2d2
T T lststep 2ndstepI step z¥ps

why square graph ?.

3\
2

1+3 both cause elts in 2

to be recolored

⇒ step 2 needs to recolor

42,3 simultaneously
9

r•→¥→
"

For this lecture
, ¥ji•%¥•T•←!É%¥•

"

connected
"

component means s
6

all nodes reachable in square graph

After 1stpass: orange Si
's are

"

good,
"

red Si's are

"

bad
"

bad {""""d)component

bad Ln 5Éected componentconnected component T
size B good connectedcomponent

can be huge
same component
size4

In pass 2
, might need to fix

neighbors of bad components:

If Si not bad & has 221 nodes in bad nbrs
,

recall :

then 721 nodes get recolored

say Si if bad

or has 221 nodes in

bad nbrs

We will show that connected components
of

"

bad
"
sets Si are small : Ollogn)

Algorithm needs to recolor bad sets

& possibly some of their nbrsin original
graph(the ones that survive) :

each bad set Si has Ed nbrs

⇒ total size I# s.is) of component
to recolor is Oldlogn)

How many repetitions of Pass 1 ?

fact for HK)= -Nogi -4-xllogsltx)
t

tsi
,

Pr [Si bad] a- 2. E 1 ?) / al £2.214k)
- il

iE2n
~

define thisEp to be p
= 2-
cl
for
some
const c

Given dependency digraph G
,

put edge between sits; if {nsjtcf

are independent setif Si
, , 8in . "

) Sim
edges(so Sien sie =P tinie)
" "°

between
them

then Pr [Si
,

. . . Sim all inB) a- pm
t

since mutually
independent

Firsttry

Show no big component survives:

✗
sizes

Pr[specific big component survives]
✓
size sics

c- Pr [big independent set in component survived

a- ps
'

Pr [any big component survives]
every possible potentialI # big components • ps

'

connected subgraph#
of original graph . m¥y graph in
l¥s of these 1

what is a goodb how does s
'

compare to s ?
if component is clique,(f) ? way too big !! then s

' could be 1
but
,
use degree bound !

Can use degree bound
to improve ! !

Plan : hope to show no big component survives .
← thisif big component C survives

. doesn't exist
Whp

can get → then C has a big subtree

good bound ← this
on # bounded degree that survives doesn't
subtrees ! exist

then can find / less) big independent ?⃝ Whp

→ set in subtree show
since ←

this
bounded degree doesn't

exist
whp
Tirith
high "

'

probabilityWell known fact :

subtrees of size u in graph of

degree to is ± n•¥u+p(%)
#nodes = n

Ence O)
"

m

much much better than (1)
when D is constant

Given subtree of size u
,

it has indep set of size 21
0+1

4
why ? interesting
Repeat Ioan

each round : I← arbitrary node u in subtree
• I gets bigger by§ remove us all nbrs of u from
• subtree jets subtree
smaller by
⇐ 0+1

Until subtree is empty
⇒ # rounds -_ 1-1-1>-1

OH

New try :

show no big component survives:

E [# of size > s subtrees that survive]
m

± E EE# size i subtrees that survive]
i:S

hiding in

an ↳ ± E # size i subtrees)×Pr[size ; subtree]indicator
argument i :S. survives

in
there

± En m .@ dY✗(pd¥)
i=s -

(eÑpd¥)
"

④
we

assume this is < 42
m

E E m -

lzi ⇐ m upper
bound on

i=S Is- I expected
£ # offor s= dog 4m E Frm = Yy big

components

By mtlarkovlst ; i.e.at
Pr [# of size ? log4m subtrees . >o] < t

,

so Pr[# components of size = log4m is >07<114

⇒ expected # times to repeat first pass
EY

Polynomial Identity Testing

Is PA)= 1×+112 the same as Qlxt-1/4-2×+1?

YE ¥
What about PW = 1×+354×-4)"

t 04×1=1×-41381×+3) Doesnt look
like it'

but lots
of terms

to

obviovslynotl.PH#QlD& compwe!?⃝
¥
Problem : given 2 polynomials P

,
Q

is P=Q ?

i.e. is Pa)=Ql✗) Fx ?

Problem
'

? given polynomial R get121×1=17×1- Qlx)
is 12=-0 ? then

i.e. is RW = 0 Fx ? R=o iff F- Q

Fact : If 12=-10 has degree Ed then

R has at most d roots (recall :
a

" root" is

✗ St. 121×1=0)

Algorithm for deciding whether 12=-0 :

pick dtl distinct inputs :X, ' "Xd+ ,

if tii Rl=o output "R=o
"

else G- i s !
,
Rlx;) -1-0) output "R -1=0

"

Runtime : Old) evaluations of R

