Lecture 4

Poly nominal Identity Testing
applications to:
-"person on the moon"

- bipartite matching

Polynomial Identity Testing

Is $P(x)=(x+1)^{2}$ the same as $Q(x)=x^{2}+2 x+1$?

What about $P(x)=(x+3)^{38}(x-4)^{83}$

Problem: given 2 polynomials P, Q
is $\quad P \equiv Q$?
ie. is $P(x)=Q(x) \forall x$?
Problem': given polynomial $R \quad$ Let
is $R \equiv 0$?

$$
R(x)=P(x)-Q(x)
$$

then
ie. is $R(x)=0 \forall x$?
$R \equiv 0$ if $P \equiv Q$

Fact: If $R \neq 0$ has degree $\leq d$ then
R has at most d roots (recall:

$$
\begin{aligned}
& \text { a "root" is } \\
& x \text { st. } R(x)=0 \text {) }
\end{aligned}
$$

Algonthm for deciding whether $R=0$:
pick $d+1$ distinct inputs $X_{1} \cdots x_{d+1}$
if $\forall i \quad R\left(x_{x}\right)=0 \quad$ output " $R \equiv 0$ "
else $\left(\exists i\right.$ st. $\left.R\left(x_{i}\right) \neq 0\right)$ output " $R \neq 0$ "
Runtime: $O(d)$ evaluations of R

* this is true over any field $\mathbb{Z}, \bmod q, \cdots$ prime $>d$

Faster randomized algorithm:
Pick $2 d$ distinct inputs $X_{1} \cdots X_{2 d}$ Do k times:

Pick $i \in[2 d]$, if $R\left(x_{i}\right) \neq 0$ output " $R \neq 0$ " Output " $R=0$ "

Behavior:
if $R \equiv 0, \forall x_{i} R\left(x_{i}\right)=0$ so always outputs

$$
" R \equiv 0 "
$$

if $R \neq 0, \operatorname{Pr}\left[R\left(x_{i}\right)=0\right] \leq \frac{ \pm \text { roots }}{2 d} \leq 1 / 2$ $\operatorname{Pr}[$ err $]=\operatorname{Pr}[$ choose root in all k iterations $] \leq \frac{1}{2^{k}}$

$$
\Rightarrow \operatorname{Pr}\left[\text { output "R¥0"] } \geq 1-\frac{1}{2^{k}}\right.
$$

If you are willing to tolerate prob of error $\leq \delta$, pick $k=\log 1 / \delta$

Application: "Person-on-the-moon"

Communication is expensive!! what if they differ in only one bit?

$$
w=w_{0} \cdots w_{n} \quad(n+1 \text { bit string })
$$

there are lots of primes so q densest to pick q need to
be bigger pres prime
per be ban $C \cdot n \quad \downarrow$
Let $P(x)=w_{n} \cdot x^{n}+w_{n-1} \cdot x^{n-1}+\ldots+w_{1} x+w_{0} \bmod q$

$$
P^{*}(x)=w_{n}^{*} x^{n}+w_{n-1}^{*} x^{n-1}+\ldots+w_{1}^{*} x+w_{0}^{*} \bmod q
$$

$$
w=w^{*} \Leftrightarrow p \equiv p^{*} \text { for } p, p^{*}
$$ of degree n

$\theta(n)$ bits of communication
Instead of sending full description of w,

Multivariate Polynomial Identity Testing

Test if $R\left(x_{1}, x_{2}, \ldots, x_{n}\right) \equiv 0$

Total degree: $\quad \max _{s \in \text { terms }}($ sum of in gree of x is s)
e.g. $\quad{\underset{\operatorname{deg} 2}{ } 2 x y}_{2 x}^{3 z^{3}}+\underbrace{4 x y z^{2}}_{\operatorname{deg} 3}$ total deg 4
difficulty l: $R \neq 0$ can have infinitely many roots
e.g. $R(x, y)=x \cdot y$

$$
R_{2}(x, y)=x-y
$$

difficulty 2: \#terms in total degree.d poly is $\leq\binom{ n}{d}$
that's a lot!!

interpolation is twish'lly

Good news!
[Schwartz-Zippel - DeMillo Lipton]
For R of total degree d st. $R \neq 0$:
Given S containing $2 d$ elements
Pick $x_{i} \in S \quad \forall i \Leftarrow$ Pick $_{R} x_{1} \cdots x_{n}$
Then $\operatorname{Pr}\left[R\left(x_{1}, \cdots x_{n}\right)=0\right] \leq \frac{d}{|s|}$ from " n-dim Cube"

Proof induction on d

Application:
Bipartite Perfect Matching

$|L|=n \quad|R|=n$

Matching: $\quad M \leq E$
no two edges share
endpt
Perfect Matching:

$$
|M|=n
$$

(all nodes getmatched)
can solve in polytime via flows
Today: another approach!

Note:
$\left.\begin{array}{c}\text { permutation } 6 \\ \text { of }[n]\end{array} \longleftrightarrow \begin{array}{c}\text { matching } \\ M\end{array}\right) \longleftrightarrow 4$
$i \rightarrow \sigma(i)$ is edge in matching
$\frac{\text { main insight: }}{\text { term }}$
term
drops out
if not $\prod_{i=1}^{n} a_{i(1)}$ will be 0 if even if not perfect matching

$$
\text { One of }(i, b(i)) \notin E
$$

so $\prod_{i=1}^{n} a_{i, 6(1)} \neq 0$ ifs 6 is a matching
So $\underbrace{\operatorname{Det}\left[A_{a}\right] \neq 0}_{\text {Some term }}$ iff \exists some 6 which is a matching
$\operatorname{Det}\left[A_{a}\right]$ is a polynomial!
n^{2} vars (1 for each edge)
total degree n
\# terms n! \leftarrow huge!!
Algorithm: Test $\operatorname{Det}\left[A_{a}\right] \neq 0$
also good for pumilelalgs \rightarrow (need to compute det of integer matrices: $O\left(n^{d}\right)$ time $)$

