Lecture 4

Polynomial Identity Testing

applications to:

-"person on the moon" - bipartite matching

Polynomial Identity Testing Is P(x)= (x+1)2 the same as Q(x)= x2+ax+1? YESI'L O What about $P(x) = (x+3)^{38} (x-4)^{83}$ Doesn't look like it, $4 (\lambda(x) = (x-y)^{38} (x+3)^{83}$ but lots of terms to Obviously not! P(0) = Q(0)! LOmpase ! given 2 polynomials P, Q Problem : is P = Q? i.e. is $P(x) = Q(x) \forall x ?$ Problem '. given polynomial R Z Let S R(x) = P(w) - Q(x) then is R = 0?R=O iff P=R i.e. is R(x) = 0 4 x?

Fact: If R\$0 has degree Ed then R has at most d roots (recall; a "root" is x st. R(x) = 0Algorithm for deciding whether R=0: pick dr1 distinct inputs X1 ... Xd+1 if Vi R(x) = 0 output "R=o"

else $(\exists i s!, R(x_i) \neq 0)$ output " $R \neq 0$ "

Runtime; O(d) evaluations of R

* this is true over any field Z, mod q, ... prime > d

Faster randomized algorithm:

Pick 2d distinct inputs
$$X_1 \cdots X_{2d}$$

Do k times:
Pick $i \in [2d]$, if $R(x_i) \neq 0$ output " $R \neq 0$ "
Output " $R \equiv 0$ "

Behavior:
if
$$R \equiv 0$$
, $\forall X_{\lambda}$; $R(X_{\lambda}) = 0$ so always outputs
" $R \equiv 0$ "
if $R \equiv 0$, $\Pr [R(X_{\lambda}) = 0] \leq \frac{\# \text{ roots}}{2d} \leq \frac{1}{2}$
 $\Pr[\text{evr}] = \Pr[\text{ choose root in all K iterations}] \leq \frac{1}{2^{k}}$
 $\Rightarrow \Pr[\text{ output "} R \equiv 0"] \geq 1 - \frac{1}{2^{k}}$
If you are willing to tolerate prob of error $\leq \delta$,
 $\operatorname{pick} k = \log \sqrt{\delta}$

Application: "Person - on - the - moon" $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ $W = W_{0} \cdots W_{n} (n+1 \text{ bit String})$ W $Le + P(x) = W_n \cdot x^n + W_{n-1} \cdot x^{n-1} + \dots + W_1 X + W_0 \mod q$ $P^{*}(x) = W_{n}^{*} X^{n} + W_{n-1}^{*} X^{n-1} + ... + W_{1}^{*} X + W_{0}^{*} \mod q$ $W = W^* \iff P \equiv P^*$ for P, P^* of degree n O(n) bits of communication Instead of sending full description of w, $\begin{array}{c} \Gamma_{1}^{1}s \text{ in } [an] \\ \stackrel{\text{(an)}}{\stackrel{\text{(c)}}{\text{(communication)}}} \stackrel{\text{(arthman)}}{\stackrel{\text{(c)}}{\text{(communication)}}} \stackrel{\text{(arthman)}}{\stackrel{\text{(c)}}{\text{(communication)}}} \stackrel{\text{(arthman)}}{\stackrel{\text{(c)}}{\text{(communication)}}} \stackrel{\text{(c)}{\text{(communication)}} \stackrel{\text{(c)}}{\stackrel{\text{(c)}}{\text{(communication)}}} \stackrel{\text{(c)}{\text{(communication)}}}{\stackrel{\text{(c)}}{\text{(communication)}}} \stackrel{\text{(c)}{\text{(c)}}{\stackrel{\text{(c)}}{\text{(c)}}} \stackrel{\text{(c)}}{\stackrel{\text{(c)}}{\text{(c)}}} \stackrel{\text{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}}{\stackrel{(c)}{\text{(c)}}} \stackrel{\text{(c)}}{\stackrel{(c$

Multivariate Polynomial Identity Testing

Test if $R(x_1, x_2, ..., X_n) = 0$

Total degree ; Max (sum of degrees of x's) seterms

C.g. 2xy + 3z³ + 4xyz² total deg 4 deg 2 deg 3 deg 4 difficulty 1: R=0 can have infinitely many roots e.g. R(xy)= X.y $R_{\lambda}(x_{y}) = X - y$

difficulty 2: #terms in total degree of poly is $\leq \binom{n}{d}$ that's a lutil interpolation is tough!!

Good news! Schwartz-Zippel - De Millo Lipton For R of total degree d s.t. R \$ 0: Given 5 containing 20 elements Pick $X_{i} \notin S$ $\forall i \in Pick X_{i} \cdot X_{n}$ Then $\Pr[R(X_{i} \cdot \cdot X_{n}) = 0] \leq \frac{d}{|S|}$ Cube"

Prost induction on d

Application :

Bipartite Perfect Matching

Iday: another approach!

Note: permutation 8 matching of En] M i → 6(i) is edge in matching main insight. term triangle = 0 term Perfect ing matching $TT = a_{i,6}(a) \neq 0 \quad iff \quad b \quad is \quad a \quad matching$ 51 Det [Aa] = 0 iff I some 6 Some term which is a matching remains S0 Det[Aa] is a polynomial n² vars (1 for each edge) total degree n ~ huge !! # terms NI Algorithm'. Test Det[Aa] =0 also good for purallel algs > (need to compute det of integer matrices: O(n°) time)