Lecture 5

Uniform generation
- Uniformly generating satisfying assignments to DNF formula

Counting problems
- \#P

Approximate counting
- connection to uniform generation
Uniform sampling of satisfying assignments to DNF formula

DNF Formula:
“or of ands”

e.g. \(\varphi(x_1 \ldots x_n) = x_1 \overline{x}_2 x_3 \lor x_2 \overline{x}_3 x_4 x_5 \lor x_8 \overline{x}_{10} x_{11} \lor \ldots \)

Notation: implicit \(\land \)'s (we don’t bother to write them)

Task: Find satisfying assignment to \(\varphi \)
easy!
pick one term \(\lor \) set literals in it to true (satisfied if \(\exists \) term st. not both \(x_i \lor \overline{x}_i \) in it)

Task: Find random satisfying assignment to \(\varphi \)
uniform over all sat assignments
Is it doable???

Special case:

Only one conjunction

\[F = y_1 y_2 \ldots y_k \quad \text{for } y_i \in \{ x_i, \overline{x_i}, x_i \overline{x_i} \} \]

e.g. \(F = x_1 \overline{x_2} x_3 \)

sat assignments \(=\) any assignment st.

\[X_1 = T, \ X_2 = F, \ X_3 = T \]

random satisfying assignment to \(F \):

Let \(X_1 = T, \ X_2 = F, \ X_3 = T \)

\(\ast \) pick \(X_4 \ldots X_n \) randomly \(\in \{ T, F \} \)

in general, satisfy literals in \(F \)

\(\ast \) pick other settings randomly
Two Conjunction Case:

Algorithm Attempt:

- Pick $i \in \{1,2,3\}$
- Set vars in conjunction i to "true"
- Set other vars randomly

Example: $x_1 x_2 \lor x_3$

- Pick 1
- Set $x_1 = x_2 = T$
- Set $x_3 = T$

Not uniform:

1) 2nd conjunction has more sat assignments
2) Some assignments can be chosen multiple ways

Pr[output TTF] = $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

Pr[output TFT] = $\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$

Pr[output TTT] = $\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$

$Pr[TTF] = \frac{1}{4}$
$Pr[TFT] = \frac{1}{8}$
$Pr[TTT] = \frac{3}{8}$
main ideas to fix algorithm:

1) choose conjunction proportionally to \# sat assignments

2) if assignment can be output in >1 way, "correct" for it

"rejection sampling"

Let \(\hat{A}_i \subseteq \{ x = (x_1 \ldots x_n) \mid x \text{ satisfies } C_i \} \) assignments that satisfy clause \(i \)
Algorithm: Input: $\Phi = \bigvee_{i=1}^{m} C_i$

Let $A_i \leftarrow \exists \bar{x} = (x_1 \ldots x_n) \mid \bar{x} \text{ satisfies } C_i \exists$

Repeat
 Pick i with prob $\frac{|A_i|}{\sum_{j \in \Phi} |A_j|}$
 Pick uniform assignment \bar{b} in A_i
 Let $t_5 \leftarrow |\exists j \mid \bar{b} \text{ satisfies } A_j \exists|$
 Output \bar{b} with prob $\frac{1}{t_5}$

Until succeed
Uniformity:

\[\forall b \text{ st. } \overline{b} \text{ satisfies } \varnothing : \]

\[
\Pr[\text{output } b \text{ in round } i] = \frac{1}{t_b} \sum_{j \in [m], \text{ s.t. } b \in S_j} \Pr[\text{pick } j \text{ in round } i] \cdot \frac{1}{|S_j|}
\]

\[
= \frac{1}{t_b} \sum_{j \in S_j, \text{ s.t. } b \in S_j} \frac{|S_j|}{|S_j|} \cdot \frac{1}{|S_j|}
\]

\[
= \frac{1}{t_b} \frac{\sum_{k \in [m]} \frac{|S_k|}{|S_k|}}{k} = \frac{1}{m} \sum_{k \in [m]}|S_k|
\]

same for all \(b\) that satisfy \(\varnothing\)

Runtime:

\[
\Pr[\text{loop succeeds}] \geq \frac{1}{\max t_b} = \frac{1}{m}
\]

\[E[\# \text{ loops until succeeds}] \leq m\]

time per loop is \(\text{poly}(m+n)\)
Counting Problems

$\#P = \text{class of problems that count}$
$\# \text{ accept paths in poly-time non deterministic Turing machines}.$

$\#P$-complete:
- in $\#P$
- every problem in $\#P$ has Turing reduction \leq_T to it
 poly-time reduction

$\#\text{SAT} : \#\text{ of assignments satisfying Boolean formula } \phi$
$\#P$-complete!
Is \(\#\text{DNF} \) easier?

Not if \(P \neq \text{NP} \)

Why?

Given \(\phi \) in \(\text{CNF} \)

\(\phi \) is sat iff \(\overline{\phi} \) has \(>1 \) unsat assignments

\(P=\text{NP} \iff \) ability to exactly count in poly time \(\iff \) ability to exactly count \(\#\text{DNF} \) in poly time

\(\#\text{DNF} \) is \(\#\text{P}\text{-complete} \)
Approximate Counting

Fully polynomial randomized approximation scheme (FPRAS)

\[
\text{Given } \mathcal{P}, \varepsilon \\
\text{s.t. } z = \# \text{ sat assignments to } \mathcal{P}
\]

\[
\text{Output } y \text{ s.t. } \\
\frac{z}{1+\varepsilon} \leq y \leq z(1+\varepsilon)
\]

with prob \(\geq 3/4 \)

Hope: runtime poly in \(|\mathcal{P}|, \frac{1}{\varepsilon} \)

pset 1 problem 1:

algorithm that satisfies "hope"

\[\Rightarrow \text{ poly in } |\mathcal{P}|, \frac{1}{\varepsilon}, \log \frac{1}{\delta} \]

approx error

\[\propto \text{ prob of too much approx error} \]

"Confidence"
FPRAS for SAT?

FPRAS for SAT \Rightarrow ptime algorithm for SAT:

Algorithm for SAT: Given formula φ

- Call FPRAS on φ with $\varepsilon = \frac{1}{2}$
- if output > 0 output "Satisfiable"
- else output "unsatisfiable"

Correctness

- if φ satisfiable, $\#\varphi \geq 1$ so
 - $y > \frac{1}{1+\varepsilon} > 0 \Rightarrow$ output "sat"
- if φ unsatisfiable, $\#\varphi = 0$ so
 - $y = 0 \Rightarrow$ output "unsat"
Exact vs. Approx Counting

Counting # SAT assignments to CNF is #P-complete

DNF

perfect matchings in graph

spanning trees in graph is in polytime

Is it hard to approx count?

CNF hard

DNF polytime ← today

Matching polytime

Spanning trees polytime

Your favorite problem?
Fully polynomial randomized approximation scheme (FPRAS)

Given \(\emptyset, \epsilon \)

\[\text{s.t. } z = \# \text{ sat assignments to } \emptyset \]

Output \(y \) s.t.

\[\frac{z}{1+\epsilon} \leq y \leq z \cdot (1+\epsilon) \]

with \(\text{prob} \geq 3/4 \)

Approx counting for DNF:

Will use:

1. Uniform generation of DNF sat assignments
2. "Downward self-reducibility" of DNF

Downward self-reducibility: (dsr)

Can compute problem by solving smaller subproblems & putting together answers via poly time computation.
Why is $\# -\text{DNF}$ dsr.?

\[\# \phi(x_1 \ldots x_n) = \pm \phi(x_1 = T, x_2, \ldots x_n) + \]

both are still DNFs

but in $n-1$ vars.

\[\# \phi(x_1 = F, x_2, \ldots x_n) \]

\[\begin{aligned}
\text{e.g.,} & \quad \#(x_1 \bar{x}_2 \lor x_1 x_2 \lor \bar{x}_2) \\
& = \#(\bar{x}_2 \lor x_2 \lor \bar{x}_2) \\
& \quad + \#(\bar{x}_2) \\
\end{aligned} \]

$\leq \#\text{settings}$

where $x_1 = T$

$\leq \#\text{settings}$

where $x_1 = F$
Downward Self-Reducibility Tree

\[F = \neg \varphi(x_1 \ldots x_n) = F_0 + F_1 \]

\[F_0 = \neg \varphi(F_0, F_1, x_3 \ldots x_n) = F_{00} + F_{01} \]

\[F_1 = \neg \varphi(T_1, x_2 \ldots x_n) = F_{10} + F_{11} \]

Each node is sum of children.

Leaves either 1 = true, 0 = false.

DNF in 0 vars \(\Rightarrow \) either True or False.
Example

\[\# (x_1 \overline{x_2} \lor x_1 x_2 \lor \overline{x_2}) = 3 \]

\[\# (\overline{x_2} \lor x_2 \lor \overline{x_2}) = 2 \]

\[\# (\overline{x_2}) = 1 \]
Approximate Counting Algorithm for #DNF

Let $S_i = \frac{F_i}{F} \Rightarrow F = \frac{F_i}{S_i}$

$\left\lfloor \text{Fraction of sat assignments st. } x_i = T \right\rfloor$

Main insight: for DNF, we can estimate S_i via sampling!

- Uniformly generate K sat assignments
- $S_i \left\lfloor \text{ with } x_i = T \right\rfloor \left\lceil \text{ for } DNF\right\rfloor$!

But how do we compute F_i?

Recursively!

$F_i = \frac{F_{ii}}{S_{ii}}$ \leftarrow \text{ estimate}$
So \(F = \frac{F_{b_1}}{S_{b_1}} = \frac{F_{b_1}b_2}{S_{b_1}S_{b_1}b_2} = \frac{F_{b_1}b_2b_3}{S_{b_1}S_{b_2}S_{b_3}b_2b_3} \)

\[
= \frac{1}{\prod_{i=1}^{n} S_{b_i} \cdot b_i}
\]

Potential Difficulties:

1. If \(F_{b_1...b_n} = 0 \) this doesn't work
2. Is approximation of \(S_{b_1...b_i} \)'s good enough? Only get additive estimates

Idea: Always take path of "larger" child

Claim if always pick \(b_i \) s.t. \(F_{b_1...b_i} > F_{b_1...\bar{b}_i} \) then always reach SAT assignment leaf.

(\(S_{b_1...b_n} = 1 \))

\[\text{might guess wrong when both have lots of SAT assignments but soon will show that is ok} \]
estimate each $S_{b_1 \ldots b_i}$ to within $\frac{\varepsilon}{4n}$

additive error (using Chernoff bounds, need only $\text{poly}(\frac{\varepsilon^2}{\varepsilon}, \log \frac{1}{\varepsilon})$ samples to get error $< \frac{1}{4n}$)

$$1 + r + \frac{\varepsilon}{4n} \leq r\left(1 + \frac{\varepsilon}{4n}n\right) \leq r\left(1 + \frac{\varepsilon}{2n}\right)$$

union bound over all i to get prob of error $< \frac{1}{4}$

* Issue: might be estimating $1-r$ if pick wrong path. We will ignore this for now.

$$r - \frac{\varepsilon}{4n} \geq r\left(1 - \frac{\varepsilon}{4nr}\right) \geq r\left(1 - \frac{\varepsilon}{4n}\right)$$

Claim:

$$\text{output} \leq \frac{F_{b_1}}{S_{b_1}} \leq \frac{F_{b, b_2}}{S_{b_1} S_{b, b_2}} \leq \ldots \leq \frac{1}{\prod S_{b_1 \ldots b_n}}$$

$$\leq \left(1 + \frac{\varepsilon}{4n}\right)^n = F \cdot \left(1 + \frac{\varepsilon}{4n}\right)^n \leq F\left(1 - \frac{\varepsilon}{2}\right)^n \leq 1 + \frac{\varepsilon}{2}$$

Similarly, $\text{output} \geq \frac{F}{1 + \varepsilon}$.
Recursive Algorithm

- estimate S_0, S_1 from uniform generated SAT assignments
- let $b_i \leftarrow \text{argmax } \exists S_0, S_1$
- recurse on F_{b_i}

$\Pr[\text{algorithm fails}] \leq \sum_{i=1}^{n} \Pr[\text{estimate bad}] \leq n \cdot \frac{1}{8n} \leq \frac{1}{8}$.
Works for any d.s.r. problem!

poly time (almost)-uniform-generation of solutions

\[\uparrow \]

poly time approximate counting of #sols

Theorem [Jerrum, Valiant, Vazirani] for any problem in \(\text{NP} \)

that is d.s.r.:

ptime approx counting of #sols \iff ptime almost uniform generation
(easier case)

(Perfect) counting for $\# \text{DNF} \Rightarrow$

(perfect) Uniform generation

Recursive algorithm:

at $b_1 \ldots b_n$,

use (perfect) counter to compute

$F_0 = \overline{F_{b_1 \ldots b_n} 0}$

$F_1 = F_{b_1 \ldots b_n} 1$

go left with prob $\frac{r_0}{r_0 + r_1}$

and right o.w.

Claim (1) always reach SAT assignment

since never take branch with 0 SAT assignments underneath

(2) $\Pr[\text{output } b_1 \ldots b_n] = \frac{F_{b_1}}{F} \cdot \frac{F_{b_1 b_2}}{F_{b_1}} \cdot \frac{F_{b_1 b_2 b_3}}{F_{b_1 b_2}} \cdot \ldots \cdot \frac{1}{F_{b_1 \ldots b_n}}$

$= \frac{1}{F} \leftrightarrow$ same for every SAT assignment
Question: what if only have approx counter?

Answer: \[
\text{RHS} \leq \frac{1}{F} \left(\frac{1+1}{3-1} \right)^n \leq \frac{1}{F} \cdot \frac{1}{3-1} \\
\text{if choose } \varepsilon > \frac{3}{2n} \\
\Rightarrow \text{close to uniform generation of sat assignments}
\]