Lecture 5

Uniform generation

- Vnitionly generating satisfying assignments to DNF formula

Counting problems

$$
-\# P
$$

Approximate counting

- Connection to uniform generation

Uniform sampling of satisfying assignments
to DNF formula

DNF Formula:
"or of ands"

$$
\text { e.g. } \varphi\left(x_{1} \cdots x_{n}\right)=x_{1} \bar{x}_{2} x_{3} \vee x_{2} \bar{x}_{3} x_{4} x_{10} \vee x_{8} \bar{x}_{10} x_{11} \vee \ldots
$$

\hat{Y}^{1} : implicit Λ^{\prime} s
(we dort bother to write them)

Task: Find Satisfying assignment to φ
easy!
pick one term $*$ set literals in it to true (satisfied if \exists term sit. not both $x_{i}+\bar{x}_{i}$ in it)
Task: Find $\frac{\text { random satisfying assignment to }}{\tau}$ uniform over all sat assignments

Is it doable???

Special case:
Only one conjunction

$$
F=y_{1} \wedge y_{2} \wedge \ldots \wedge y_{k} \quad \text { for } y_{i} \in\left\{x_{1}, \bar{x}_{1}, x_{2}, \bar{x}_{2} \ldots\right\}
$$

ecg. $F=x_{1} \bar{X}_{2} X_{3}$
sat assignments \equiv any assignment st.

$$
x_{1}=T, x_{2}=F, x_{3}=T
$$

random satisfying assignment to F :
Let $x_{1}=T, x_{2}=F, x_{3}=T$
α pick $X_{Y} \cdots X_{n}$ randomly $\in\{T, F\}$
in general, satisfy literal in F

* pick other settings randomly

Two Conjunction Case:

Algorithm Attempt:
example: $x_{1} x_{2} \vee x_{3}$ pick $\quad \lambda \in\{1,2\}$ prick 1
set vars in conjunction i to "true" set $x_{1}=x_{2}=T$
set other vas randomly
$\operatorname{set} X_{3}=T$
 x_{3}

$$
x_{1} x_{2}
$$

not Uniform:

1) $2^{\text {nd }}$ conjunction has more sat assignments

$$
\operatorname{Pr}[\text { output TTT] }=
$$

$$
\begin{equation*}
\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{4}=3 / 8 \tag{1}
\end{equation*}
$$

2) Some assignments can be chosen multiple
ways
pick ${ }^{T}{ }_{\text {pick }} x_{3}=T\left\{\begin{array}{l}\text { pick } 2\end{array}\right.$ pick $x_{2}=T$ ways
main ideas to fix algorithm:
3) Choose conjunction proportimully to \# sat assignments
4) if assignment con be output in >1 way, "correct" for it.
"rejection sampling"

3 times more likely to be picked. correct by tossing coin of bias $\frac{1}{3}$ to decide if to output
be picked.
Correct by tossing bias $\frac{1}{2}$ coin to decide if to atput
Let $\dot{A}_{i} \in\left\{\bar{X}=\left(x_{1} \cdots x_{n}\right) \mid \bar{X}\right.$ satisfies $\left.C_{i}\right\}$
assignments that satisfy clave i x

Algorithm: Input: $\varphi=V_{i=1}^{m} C_{i}^{\iota^{\text {conjunctions }}}$

Let $\dot{A}_{i} \leftarrow\left\{\bar{X}=\left(x_{1} \cdots x_{n}\right) \mid \bar{x}\right.$ satisfies $\left.C_{i}\right\}$
Repeat
we already
sow \rightarrow
Pick uniform assignment \bar{b} in A_{i}

Output \bar{b} with prob $y_{t_{\overline{5}}}$
Until succeed

Uniformity:
$\forall \bar{b}$ st. \bar{b} satisfies φ :

$$
\begin{aligned}
& \operatorname{Pr}[\text { output } \bar{b} \text { in round } i]=\frac{1}{t_{b}} \sum_{\substack{j \in[m] \\
\text { set. } b}} \operatorname{Pr}[\text { pick } j \text { in round } i] \cdot \frac{1}{\left|S_{j}\right|} \\
& =\frac{1}{t_{b}} \sum_{\substack{j \text { set. } \\
b \in s_{j}}} \frac{\left|s_{j}\right|}{\sum\left|s_{j}\right|} \cdot \frac{1}{\left|s_{j}\right|} \\
& =\frac{1}{t_{5}} \frac{t_{\overline{5}}}{\sum_{k}\left|s_{k}\right|}=\frac{1}{\sum_{k}\left|s_{k}\right|}
\end{aligned}
$$

Runtime:

$$
\operatorname{Pr}[\text { loop succeeds }] \geq \frac{1}{\max } t_{5} \geq \frac{1}{m}
$$

$E[\#$ loops until succeeds $] \leq m$ time per loop is poly $(m+n)$

Counting Problems
$\# P=$ class of problems that count \# accept paths in poly-time non deterministic Turing machines.
\#P-complete:

$$
\text { - in } \# P
$$

- every problem in \#P has Turing reduction z to it
soly-time reduction
\#SAT: \# of assignments satisfying Boolean formula φ \# P-complete!

DNF is in φ
Is $\#$ DNF easier?
so shuld be eagy!!!il
Not if $P \neq N P$
De Horgan's law:
Why?

$$
\underbrace{(\overline{A V B})}_{\text {clave }}=\underbrace{\bar{A} \wedge \bar{B}}_{\text {Conjjuction }}
$$

Given φ in CNF

$P=N P \Leftrightarrow$ ability to exactly count CNF \Leftarrow ability to exactly count DNF in poly tive
\#DNF is \#P-complete

Approximate Counting
Fully polynomial randomized approximation Scheme (FPRAS)
Given φ, ε
sit. $z=\#$ sat assignments to φ
Output y sit.

$$
\frac{z}{1+\varepsilon} \leq y \leq z \cdot(1+\varepsilon)
$$

with prob $\geq 3 / 4$

Hope: runtime poly in $|0|, \frac{1}{\varepsilon}$
poet 1 problem 1:
algorithm that satisfies "hope"

FPRAS for SAT?
FPRAS for $S A T \Rightarrow$ prime algontthn for SAT:

Algorithm for SHT: Given formula Q
Call FPRAS on \varnothing wt $\varepsilon=1 / 2 \leftarrow$ amy $\varepsilon>0$ if output >0 output "Satisfiable" else output "unsatisfiable"

Correctness if φ satisfiable, $\# \varphi \geqslant 1$ so

$$
y>\frac{1}{1+\varepsilon}>0 \Rightarrow \text { output "sat" }
$$

if φ unsatisfiable, $\# \varphi=0$ so

$$
y=0 \quad \Rightarrow \text { output "unsay" }
$$

Exact vs. Approx Counting

Counting \# SAT assignments to CNF is $\# P$-complete
" "perfect matchings in graph
" " spanning trees ingraph is in poly time

Is it hard to approx count?
CNF hard
DNF polytive <today
Matching polytime
Spanning trees polytime
your favorite problem?

Fully polynomial randomized aporriximation Scheme (IPRAS)
Given φ, ε
st. $z=\#$ sat assignments to \varnothing
Approx counting for
$D N F:$
Output y st.

$$
\frac{z}{1+\varepsilon} \leq y \leq z \cdot(1+\varepsilon)
$$

with prob $\geq 3 / 4$

Will use:
(1) uniform generation of DNF sat assignments
(2) "Down ward self-reducibility" of DNF

Downward self-reducibility: (dsr)

Can compute problem by solving smaller subproblems \& putting together answers via polytime computation.

Why is \#-DNF dst??

$$
\# \varphi\left(x_{1} \cdots x_{n}\right)=\# \varphi\left(x_{1}=T, x_{2}, \ldots x_{n}\right)+
$$

but in $n-1$ vars.

$$
\text { e.y. } \begin{aligned}
& \#\left(x_{1} \bar{x}_{2} \vee x_{1} x_{2} \vee \bar{x}_{2}\right) \\
& =\#\left(\bar{x}_{2} \vee x_{2} \vee \bar{x}_{2}\right) \\
& +\#\left(\bar{x}_{2}\right)
\end{aligned}
$$

Downward Self-Reducibility Tree

example

$$
\begin{aligned}
& \#\left(x_{1} \bar{x}_{2} \vee x_{1} x_{2} \vee \bar{x}_{2}\right)=3 \\
& x_{1}=T
\end{aligned}
$$

$$
\#\left(\bar{x}_{2} \vee x_{2} \vee \bar{x}_{2}\right)=2
$$

$$
\#\left(\bar{x}_{2}\right)=1
$$

$$
x_{2}=T
$$

$$
=\#(T)
$$

$$
x_{2}=F
$$

$$
x_{2}=T
$$

\square

Approximate Counting Algorithm for \#DNF

Let $S_{1}=\frac{F_{1}}{F} \Rightarrow F=\frac{F_{1}}{S_{1}}$
Fraction of SAT assignments

$$
\text { st. } x_{1}=T
$$

main insight: for DNF, we can estimate S_{1} via sampling!

- uniformly generate k sat assignments ho know
- $\tilde{S}_{1} \leftarrow \frac{\# \text { with } X_{1}=T}{K}$

But how do we compute F_{1} ?
recursively!

$$
F_{1}=\frac{F_{11}}{S_{11}} \longleftarrow \text { recourse }
$$

So

$$
\begin{aligned}
F= & \frac{F_{b_{1}}}{S_{b_{1}}}=\frac{F_{b_{1} b_{2}}}{S_{b_{1}} \cdot s_{b_{1} b_{2}}}=\frac{F_{b_{1} b_{2} b_{3}}}{S_{b_{1}} \cdot s_{b_{2} b_{2}} \cdot S_{b_{1} b_{2} b_{3}}} \\
& \vdots \\
& =\frac{1}{\prod_{i=1}^{n} S_{b_{1}} \cdot b_{i}}
\end{aligned}
$$

Potential Difficulties:
$F_{b_{1} b_{2} \cdots b_{n}}$

1. if $F_{b_{1}-b_{n}}=0$ this doesn't work
2. Is approximation of

$$
S_{b_{1} \cdot b_{i}}{ }^{\prime}
$$

good enough? only get additive estimates
Idea Always take path of "larger" child
$\tau_{\text {might guess wrong }}$
Claim if always proc when both have lots of SAT assignments b_{i} st, $\quad F_{b_{1} \cdot b_{i}}>F_{b_{1} \cdot b_{i}}$ but soon will show then always reach SAT that is ok assignment leaf. $\left(s_{0}-\bar{F}_{b} \cdot b_{n}=1\right)$

Idea estimate each $S_{b_{1} \cdot b_{i}}$ to within $\frac{\varepsilon}{4 n}$
additive error (using Chernoff buds, need only
\Rightarrow if $1 \geq r \geq 1 / 2$

$$
r+\frac{\varepsilon}{4 n} \leq r\left(1+\frac{\varepsilon}{4 n \cdot r}\right) \leq r\left(1+\frac{\varepsilon}{2 n}\right)
$$

* slight issue: might be estivating $1-r$
if pick wrong path. We will ignore Hiis-or

$$
r-\frac{\varepsilon}{4 n} \geq r\left(1-\frac{\varepsilon}{4 n r}\right) \geq r\left(1-\frac{\varepsilon}{4 n}\right)
$$

Claim

$$
\begin{aligned}
& \text { output } \leq \frac{F_{b_{1}}}{\tilde{S}_{b_{1}}} \leq \frac{F_{b_{1} b_{2}}}{\tilde{S}_{b_{1} S_{b_{1} b_{2}}}} \leq \ldots \leq \frac{1}{\pi \tilde{S}_{b_{1}, b_{i}}} \\
& \begin{array}{l}
\leq \frac{\left(1+\frac{\varepsilon}{4 n}\right)^{n}}{\pi S_{b_{1} \ldots b_{i}}}=F \cdot \underbrace{\left(1+\frac{\varepsilon}{4 n}\right)^{n}}_{\left.1+\frac{\varepsilon}{4}+\frac{\left(\frac{\varepsilon}{4}\right)^{2}}{2!}+\ldots\right\} \text { Taybr }} \leq F\left(1+\frac{\varepsilon}{2}\right) \\
\text { output } \geq \frac{F}{1+\varepsilon} \quad \leq 1+\frac{\varepsilon}{2}
\end{array}
\end{aligned}
$$

Recursive Algonthm

- estimate $S_{0,} S_{1}$ from unif generated

SAT assignments

- let $b_{1} \leftarrow \operatorname{argmax}\left\{S_{0}, S_{1}\right\}$
- recuse on $F_{b_{1}}$
runtime?

total: poly $\left(n, \frac{1}{\varepsilon}\right)$
$\operatorname{Pr}[$ algorithm fails $] \leq \sum_{\substack{\text { recorsionlevel } \\ i=1}}^{n} \operatorname{Pr}[$ estimate bad $] \leq n \cdot \frac{1}{y_{n}} \leq \frac{1}{4}$.

Works for any d.s,r. problem!
polytime (almost)-uniform-generation of solutions \Downarrow
\uparrow what about this direction?
polytime approximate counting of a solus

The [Jorum Valiant Vizirani] for any problem in NP that is d.s.r::
prime approx counting \Leftrightarrow prime almost uniform of \# solutions generation
(easier case)
(Perfect) counting for $\#$ NF \Rightarrow
(perfect) Uniform generation

-
$:$
Recursive algorithm: at $b_{1} \ldots b_{i}$,
use (perfect) counter to compute

$$
\begin{aligned}
& r_{D}=F_{b_{1} \cdots b_{i} 0} \\
& r_{1}=F_{b_{1} \cdots b_{i} l}
\end{aligned}
$$

go left with prob $\frac{r_{0}}{r_{0}+r_{1}}$

+ right $0 . \omega$.

Claim (1) always reach SAT assignment
sincenever take branch with 0 SAT assignments underneath
(2) $\operatorname{Pr}\left[\right.$ output $\frac{\left.b_{1} \ldots b_{n}\right]}{\text { SAT assignment }}=\frac{F_{b_{1}}}{F} \cdot \frac{F_{b_{1} b_{2}}}{\frac{F_{b_{1}}}{F_{1}} \cdot \frac{F_{b_{1} b_{2} b_{3}}}{F_{b_{2} b_{2}}} \cdot \ldots \cdot \frac{1}{F_{b b_{2} \cdot b_{n}}}}$ $=\frac{1}{F} \ll$ same for every sat assign mont

Question what if only have approx counter?
Answer RHS $\leq \frac{1}{F}\left(\frac{1+\varepsilon^{1}}{1-\varepsilon^{\prime}}\right)^{n} \leq \frac{1}{F} \cdot \frac{1}{1-\varepsilon}$
if choose $\quad \varepsilon^{\prime}<\frac{\varepsilon}{2 n}$
\Rightarrow close to uniform generation of sat assignments

