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In this lecture, we will look at more applications of pairwise independence, specifically we will
present the following:

(1) Reducing confidence error using pairwise independence.

(2) Interactive proofs - public vs. private coins

1 Using Pairwise Independence to Improve Confidence

Recall that for a language L ∈ RP, there exists a polynomial time algorithm A such that

• if x ∈ L, then Pr[A(x, r) = “accept”] ≥ 1/2

• if x ̸∈ L, then Pr[A(x, r) = “accept”] = 0

To improve the confidence error 1
2 , one naive way is to repeat the algorithm k times using new

random bits and output “accept” if any of the results is “accept”; otherwise output “reject”. This
reduces the confidence error to 2−k for x ∈ L. However, the drawback is that if the algorithm A
uses r random bits, then we need O(rk) random bits to do k repetitions. Thus, we introduce a
technique that allows us to use less random bits at the expense of a slower running time utilizing
pairwise independence random strings.

2-Point Sampling Assume that there exists a family of pairwise independent function H = {h :
[2k+2] → {0, 1}r}, such that we can use O(k + r) random bits to randomly pick a function h ∈ H
and h evaluates in poly(k, r) time. Consider the following sampling algorithm to improve confidence
error for a given algorithm A for a language L ∈ RP:

2-Point Sampling

1 : h
R← H

2 : for i = 1 · · · 2k+2 do

3 : ri ← h(i)

4 : if A(x, ri) = accept

5 : return accept

6 : endfor

7 : return reject

Since the only step that requires randomness is picking h uniformly at random from H, it is
clear that we only need O(k+ r) bits. In terms of running time, suppose that A runs in time T (n),
then the above algorithm runs in time O(2k · T (n)) (which is slower than O(k · T (n)) if we do naive
repetition).

Now we show that pairwise independent random strings can also efficiently improve the confidence
error. Before analyzing the confidence error of the above algorithm, we first recall two useful lemmas:

Lemma 1 (Chebyshev’s Inequality). X is a random variable with expectation µ = E[X], then

Pr [|x− µ| ≥ ε] ≤ Var[x]

ε2
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However, it might not be easy to calculate the variance of the sum of dependent random variables.
Fortunately, we have the following inequality for pairwise independent random variables.

Lemma 2 (Pairwise Independent Tail Inequality). Let X1, X2, . . . , Xt be pairwise independent ran-

dom variables that takes value in the range [0, 1]. Let X =
∑

i Xi

t and µ = E[X], then

Pr[|X − µ| ≥ ε] ≤ 1

tε2

Now we are ready for the analysis of the confidence error.

• If x ̸∈ L, then the algorithm runs to the end and rejects with probability 1.

• If x ∈ L, let δ(ri) be the indicator variable defined as

δ(ri) =

{
0, if A(ri, x) = “reject”

1, if A(ri, x) = “accept”

Let Y =
∑2k+2

i=1 δ(ri)/2
k+2 be the average of all indicator variables. If any of the variable is 1,

then the sampling algorithm outputs “accept”, which is correct. Therefore,

Sampling algorithm outputs incorrect answer ⇐⇒ Y = 0

The original algorithm A guarantees that E[δ(ri)] ≥ 1/2, so

E[Y ] ≥ 1/2

Using Pairwise Independent Tail Inequality, we have

E[Y = 0] ≤ E[|Y − E[Y ]| ≥ E[Y ]] ≤ 1

2k+2E[Y ]2
= 2−k

Therefore, it has the same confidence error as repeating the algorithm k times, with less random
bits but slower running time.

2 Interactive Proof Systems

Interactive proof is a new type of proof system where the verifier can not only read the proof from
the prover, but also interact/ask questions. Formally, we have a prover and a verifier, they both
share an input string, and can communicate with each other. The verifier is allowed to use private
random bits (unknown to the prover) and runs in polynomial time, while the prover has unbounded
time and space. Without loss of generality, we assume that the prover is deterministic (this result
is not trivial and the proof is outside of the scope).

Definition 3 (Goldwasser-Micali-Rackoff). An Interactive Proof System for a language L is a
protocol with verifier V and prover P such that

• if x ∈ L and both verifier and prover follow the protocol, PrV ’s coins[A(x) = “accept”] ≥ 2/3

• if x ̸∈ L and the verifier follows the protocol, PrV ’s coins[A(x) = “reject”] ≥ 2/3

Definition 4. IP is the class of languages that has an interactive proof system.
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Figure 1: Interactive Proof Model

It is easy to see that NP ⊆ IP since the problems in NP has a polynomial-time verifiable
certificate, and the prover can sends it to the verifier without further interaction. Surprisingly, this
proof system is so powerful that it is proven that IP = PSPACE. Here we give an example of an
interactive proof system for graph non-isomorphism.

Graph isomorphism (GI) is a well-known problem in NP that it remains unknown whether GI ∈
P, though we know that it is in quasi-P. In the complement of GI, called graph non-isomorphism
(GI), the prover needs to prove that two given graphs are not isomorphic. It’s unknown whether
GI ∈ NP, but we will show that GI ∈ IP by giving the following simple interactive proof system:

Given two graphs G0, G1,

1. The verifier picks a random bit c ∈ {0, 1}.

2. The verifier sends a random permutation π ∈ Sn of the graph Gc

3. The prover tries to determine the bit c and sends its answer c′ ∈ {0, 1}.

4. The verifier accepts if c = c′.

The above protocol is illustrated in the following Figure 2.

P (G1, G2) V (G1, G2)

c← {0, 1}

π
R← Sn

c, π(Gc)

c′ ← {0, 1}

c′

c′
?
= c

Figure 2: Interactive proof system of Graph Non-isomorphism

The above example illustrate why the verifier’s random bits have to be private – otherwise the
prover knows the value of c. However, it is proven that with clever transformation, every interactive
proof can be transformed to a public-random-bit interactive proof.
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