Lecture 8
More applications of pairwise independence

- reducing error
- Interactive proofs.

$$
\mid P
$$

Graph $⿻=$
Public cons vs, private coins

Last time:
define pairwise independence
show how to extend m truly random bits
into $n \gg m$ pairwise indep random bits
e.g. pick random $a, b \in\{0 \ldots g-1\}$
$\begin{array}{rr}\text { output } \quad b \bmod q \\ a+b \bmod q\end{array}>$

Using Pairwise Independence to Reduce Error

Given RP algorithm d :

- if $x \in L \quad \operatorname{Pr}_{r}[d(x ; r)]=a c$ capt $\left.t\right]>1 / 2$
- if $x \notin L \operatorname{Pr} \operatorname{Pr}_{r}[A(x, r)]=$ accept $]=0$

How to reduce confidence error?

Old way:
repeat of k times with new random bits each time - it ever see "accept" then output "accept" $\sum \begin{aligned} & \text { O(krr) } \\ & \text { random } \\ & \text { bits }\end{aligned}$

- else output "reject" behavior:

$$
\begin{aligned}
& x \in L: \operatorname{pr}[\text { accept }] \geq 1-\left(1-\frac{1}{2}\right)^{k} \geq 1-\frac{1}{2^{k}} \\
& x \notin L: \operatorname{pr}[\text { accept }]=0 \quad \therefore \text { conf error }<2^{k} \\
& 1-\text { sided error }
\end{aligned}
$$

2-point sampling
idea use pairwise indep choices of random strings
assumption given 91, family of p.i.feths each $h \in \mathcal{H} \operatorname{maps}\left[2^{k+2}\right] \rightarrow\{0,1\}^{r}$ can pick random $h \in \mathcal{H}$ with $O(k+r)\left\{\begin{array}{l}\text { wi dit } \\ \text { dian } \\ \text { how } \\ \text { this }\end{array}\right.$ random bits α poly (k, r) time

Sampling algorithm:

$$
\begin{aligned}
& \begin{array}{l}
\text { only } \\
\text { place } \\
\text { rucudomness } \\
\text { is sid }
\end{array} \\
& \qquad \text { - for } i=1 \cdot 2^{k+2} \\
& \qquad r_{i} \leftarrow h(i) \\
& \text { if } A\left(x, r_{i}\right)=\text { "accept" output "accept" }+ \text { halt }
\end{aligned}
$$

- output "reject"
random bits used:

$$
\begin{equation*}
O(k+r) \tag{ن}
\end{equation*}
$$

runtime: $O\left(2^{k} \times\right.$ time for $\left.A\right)$
(i) but doesnt depend on n
behavior:
if $x \notin L, \quad \operatorname{Pr}[$ accept $]=0$
if $\quad x \in L$,
will misclassify if never see

$$
r_{i} \text { sit. } A\left(x, r_{i}\right)=\text { "Accept" }
$$

let $\quad G\left(r_{i}\right)= \begin{cases}0 & \text { if } A\left(x, r_{i}\right)=" \text { reject" } \\ 1 & 0 . \omega \text {. }\end{cases}$ incorrect correct

$$
\begin{aligned}
& E\left[G\left(r_{i}\right)\right]=\operatorname{Pr}\left[6\left(r_{i}\right)=1\right]=\operatorname{Pr}[\operatorname{accept}] \geqslant 1 / 2 \\
& \text { let } \quad Y=\sum_{i=1}^{q=2^{k+2}} 6\left(r_{i}\right) \\
& E\left[\frac{y}{q}\right] \geqslant \frac{2^{k+2}}{2^{k+2}} \cdot 1 / 2=1 / 2
\end{aligned}
$$

So if $x \in L$ expect to see $\geq 1 / 2$ "accept's. What is probability you doit see any? ie $\operatorname{Pr}[Y=0]$?

Two useful lemmas:

Chebysheo's $\neq: \quad X$ r.v.

$$
\begin{aligned}
& E[x]=\mu \\
& \operatorname{Pr}[|x-\mu| \geq \varepsilon] \leqslant \frac{\operatorname{Var}[x]}{\varepsilon^{2}}
\end{aligned}
$$

Pairwise Independence Tail \neq :

$$
\begin{aligned}
& x_{1} \cdots x_{t} \quad \text { pi. r.v.s in }[0,1] \\
& x=\frac{\sum x_{i}}{t} \\
& \mu=E[x] \\
& \text { then } \operatorname{Pr}[|x-\mu| \geq \varepsilon] \leq \frac{1}{t \varepsilon^{2}}
\end{aligned}
$$

Back to our analysis:
What is $\operatorname{Pr}[Y=0]$? only way we output wrong answer $\operatorname{Pr}\left[\frac{Y}{q}=0\right] ?$
why \leqslant ? $\begin{aligned} & \text { bsolute value can be } \geqslant 1 / 2 \\ & \text { if } Y / a=0 \text { or if } Y \geqslant 2\end{aligned}$

$$
\text { Note } \operatorname{Pr}\left[\frac{y}{q}=0\right] \leqslant \operatorname{Pr}[|\frac{y}{q}-\underbrace{E\left[\frac{y}{q}\right]}_{\mu \text { is } \geq y_{2}}| \geqslant \underbrace{E\left[\frac{y}{q}\right]}_{\underbrace{}_{\text {choose }} \varepsilon=y_{2}}]
$$

$$
\begin{aligned}
t_{\text {is }=q=2^{k 22}} & =\frac{1}{q \cdot\left(\frac{1}{2}\right)^{2}} \\
& =2^{-(k+2)} \cdot 4=2^{-k}
\end{aligned}
$$

So $O(k+|R|)$ random bits give $\leq 2^{-k}$ prob of error
note: runtime is $O\left(2^{k} \cdot T_{d}(n)\right)$
bad? Θ
but doosnt depend on n. (i)

Another setting in which k-wise independence is useful:

Interactive Proofs
$N P=$ all decision problems for which "Yes" answers can be verified in polytime by a deterministic TM ("verifier")
$\mathbb{P}:$
generalization of NP
Short proofs \Rightarrow short interactive proofs "Conversations that convince"

The Pepsi Challenge (1975)

How to prove you can tell the difference:
S. we toss coin (σ doit show it to you)

Do $\begin{aligned} & H: \text { we give you Pepsi } \\ & K\end{aligned}$
times T : we give you Coke

- you taste +tell US which one

If you get it right K times, I'll believe you why?

If you can tell difference, you will always get it right If you cant, you will get it right with prob $1 / 2$ \Rightarrow prob you are right all k tins $=1 / 2 k$ So, if you get it right k times, you know or are very lucky!

IP Model

def. [Goldwasser Micali Rackoff]
can show that "all-powerfu" prover doesit need random coins (is. anything it can do with coins, it com also do without coins) An Interactive Proof System (IPS) for language L is protocol sit.

- if $x \in L+$ both $V_{1} P$ follow protocol then

$$
\operatorname{Pr}_{V^{\prime} \text { coins }}[V \text { accepts } x] \geq 2 / 3
$$

- if $X \notin L+V$ follows protocol then (no matter what Pdoes)

$$
\operatorname{Pr}_{V^{\prime} s c o i n s}[V \text { rejets } x] \geq 2 / 3
$$

So, if $X \in L, P$ can "convince" V of that fact小 if $x \notin L$, even if P tries to cheat it cannot convince V to accept.
why interesting?
Example 1 Cryptography
assume (1) L is a hard language to compute
$+(2) X \in L \leftrightarrow P$ is "the bank"

- Pean convince V to trust it if it rally is the bank
- no impostor can convince V to trust it
(leads to further notions such as zero-knowledge...)

For more take a crypto class!

Example 2 Complexity
def $\quad \mathbb{P}=\{L \mid L$ has $\mathbb{P S}\}$

Clearly $N P \subseteq \mathbb{P}$
To show $x \in L$ for L in $N P$

- P constructs $N P$-proof a sends to V
- Verifies the proof
for $x \notin L$, there is no proof that would convince V
turns out
The IP = PSPACE
protocol involves several rounds of interaction between $P+V$

Gruph Isomorphism

Given gruphs G $+H$, are they isomorphic?
$\pi: V_{G} \rightarrow V_{H}$ is isomorphism if satisfies

$$
(u, v) \in E_{G} \text { iff }(\pi(u), \pi(v)) \in E_{H}
$$

yes!

no!

"quasi pady"
IS Gruph \cong in P? we don't know. Fecently $O\left(n^{\text {poylgon }}\right)$ So unlitely to be NP-complete

Example of problem that has interesting interactive proof:

- Graph isomorphism ENP
- Graph Isomorphism \in WP? (yes if GI $\in P$, but we
but $\overline{G I} \in I P$:
Proving $\quad G_{1} \neq G_{2}$:
Protocol:
Verifier picks $c \in\{1,2\}$ rundmem
Verifier picks random relabeling of nodes in G_{C} t sends new adjacency matrix to P P guesses c

Why does it work?
if $G_{1} G_{2}$, P (who has unbounded computation) can guess correctly every time
if $G_{1} \cong G_{2}, \quad P$ needs to guess coin flips correctly each time, con do this with prob $\leq 1 / 2^{k}$
Question: do V's coins need to be private?
in this example, if P saw V's choice, it could cheat

The [Goldwasser Sipser]
GS's Answer: No!

$$
\mathbb{P}_{\substack{\text { private } \\ \text { coins }}}=\mathbb{P}_{\substack{\text { public } \\ \text { coins }}}
$$

anything that has protocol with private coins abs has (possibly different) patrol with public coins.
today we will see a building block for theorem:
Informally:

- Given set S st. $S \in I P \leftarrow$ interesting even if SeP
- Protocol in which P con convince V that size of set S is "big"

Let $S_{\phi} \equiv\{x \mid x$ satisfies formula $\varphi\}$ (note $S_{\varphi} \in P$)
Claim \exists protocol st. on input φ

- if $\left|S_{p}\right|>K+$ if $V_{1} P$ follow protrol then $\operatorname{Pr}\left[V_{\text {accepts }}\right] \geq 2 / 3$
- if $\left|S_{\varphi}\right|<\frac{K}{\Delta}+$ if V follows protocol $\leftarrow P$ even if for now assume $\Delta=4$ then $\operatorname{Pr}[V$ accepts $]<1 / 3$

