Lecture 9
More applications of pairwise independence

- Interactive proofs.

Public cons vs, private coins

Desandomization via method of conditional expectations

Another setting in which k-wise independence is useful:

Interactive Proofs
$N P=$ all decision problems for which "Yes" answers can be verified in polytime by a deterministic TM ("verifier")
$\mathbb{P}:$
generalization of NP
Short proofs \Rightarrow short interactive proofs "Conversations that convince"

IP Model

def. [Goldwasser Micali Rackoff]
can show that "all-powerfu" prover doesit need random coins (is. anything it can do with coins, it com also do without coins) An Interactive Proof System (IPS) for language L is protocol sit.

- if $x \in L+$ both $V_{1} P$ follow protocol then

$$
\operatorname{Pr}_{V^{\prime} \text { coins }}[V \text { accepts } x] \geq 2 / 3
$$

- if $X \notin L+V$ follows protocol then (no matter what Pdoes)

$$
\operatorname{Pr}_{V^{\prime} s c o i n s}[V \text { rejets } x] \geq 2 / 3
$$

The [Goldwasser Sipser]
GS's Answer: No!

$$
\mathbb{P}_{\substack{\text { private } \\ \text { coins }}}=\mathbb{P}_{\substack{\text { public } \\ \text { coins }}}
$$

anything that has protocol with private coins also has (possibly different) protocol with public coins.
today we will see a building block for theorem:
$\frac{\text { Informally: }}{\text { Given }}$

- Given set S st. $S \in I P<$ interesting even if SeP
- Protocol in which P con convince V that size of set S is "big"
Let $S_{\phi} \equiv\{x \mid x$ satisfies formula $\psi\}\left\{\begin{array}{c}\text { can be } \\ \text { replaced } \\ \text { by any }\end{array}\right.$
(note $\left.S_{\varphi} \in P\right)$
Claim \exists protocol st. on input φ
- if $\left|S_{\varphi}\right|>k+$ if $V_{1} p$ follow protocol then $\operatorname{Pr}[V$ accepts $] \geq 2 / 3$
- if $\left|S_{\varphi}\right|<\frac{k}{\Delta}+$ if V follows protocol $\leqslant P$ cleats! for now assume $\Delta=4 \rightarrow$ then $\operatorname{Pr}[V$ accepts $]<1 / 3$

Note:
can use protocol to show that \#random strings which cause algorithm of to accept on input $x \geq 2 / 3$

First idea Random Sampling

Repeat? times:
V picks random assignment x

- evaluates $\varphi(x)$

$$
\text { Output } \frac{\text { satisfying } X^{\prime} s}{\text { total } \# \text { repetitions }}
$$

how many repetitions?

$$
\Omega\left(\frac{\text { \# total assignments }}{\# \text { satisfying assignments }}\right) \leftarrow \text { could be }
$$

All assignments

SAT assignments
to
Problem:
What if S_{p} is small?

Fix: Universal hashing
Recall:
Family of fetus $G_{A}=\left\{h_{1} h_{2} \ldots\right\}$
for $h_{i}:[N] \rightarrow[M]$ is
"pairwise independent" if when $h \epsilon_{u}$ H
(1) $\forall x \in[N], \quad h(x) \epsilon_{n}[M]$

equivalently:

$$
\begin{aligned}
& \forall x_{1} \neq x_{2} \in[N] \\
& \forall y_{1}, y_{2} \in[M] \\
& \operatorname{Pr}\left[h\left(x_{1}\right)=y_{1}+h\left(x_{2}\right)=y_{2}\right]=\frac{1}{M^{2}}
\end{aligned}
$$

How does it help?

Need:

1. $\left|h\left(s_{\varphi}\right)\right| \approx\left|s_{\varphi}\right|$
2. h computable in poly time
idea

- clearly $\left|h\left(S_{\phi}\right)\right| \leqslant\left|S_{\phi}\right|$
this is a very nice
- hopefully $\left|h\left(S_{\phi}\right)\right|$ is not too much smaller than $\left|S_{p}\right|$ (we will show that whop $\left|h\left(s_{p}\right)\right|>\frac{\left|s_{p}\right|}{\Delta}$)
\Rightarrow if $\quad l . t \quad 2^{\ell}$ is raghly $\left|h\left(s_{\phi}\right)\right|$ then most of $1 . .2^{l}$ gets mapped to by $h\left(S_{q}\right)$ (uses that off is pi.)

A comment about pi. hash fetus
typical use:

smaller "space"
a good for storage, reducing size of "names" of elements ...

- need property of "few collisions"
since collisions cause problems, so need to minimize
(e.g. in hash tables, collisions \Rightarrow chaining length)
- here "few collisions" $\Rightarrow|h(s)|$ is not tiro much smaller than $|s|$

Why is that good?

- pick any pt in range, say 0^{l}
- if $h(s)$ big, it will probably hit 0^{l}
uses that λ $h(x)$ is unif dist

Protocol: for distinguishing set of size k from set of size k / Δ

Given off (p.i. fetus mapping $\{0,1\}^{n} \rightarrow\{0,1\}^{l}$)
1.V picks $h t_{R}$ of
2. $V \rightarrow P: \quad h$
3. $p \rightarrow V: \quad x \in S_{\varphi}$ st. $\quad h(x)=0^{l}$
4. V accepts iff $x \in S_{\phi}$

Idea: hope: $h\left(S_{p}\right)$ fills "random" portion of range, so can distinguish $1 h\left(S_{g}\right)$)
Cause $1 \quad\left|S_{\varphi}\right|>k$: large or small.
hopefully $\left|h\left(S_{\varphi}\right)\right| \approx K$ so 0^{l} is "hit" with reasonable $(\geq 1 / 2 ?)$ probability.
Then all-powerful P can find preimace in S_{ϕ}
Case $2\left|s_{\phi}\right|<\frac{k}{\Delta}$:
$\left|h\left(s_{\varphi}\right)\right|<k / \Delta$ so less likely $0^{l} h i t$. if not hit, P cant find preimage.
If P sends V a fake preimage, V will detect.

$$
\begin{aligned}
& \text { if } U \equiv S_{\phi}+h \\
& \text { se mups } S_{Q} \mid-1 \\
& \text { (minichish) }
\end{aligned}
$$

Lemma It is p.i., $U \leq\{0,1\}^{n}, a=\frac{|u|}{2 l}$ (winlikiey) then a then $a-\frac{a^{2}}{2} \leq P_{r_{h}}\left[0^{l} \in h(a)\right] \leq a$ is fraction moped to

Proof
RHS:
$\forall x \operatorname{Pr}_{h \in H}\left[0^{l}=h(x)\right]=2^{-l} \quad$ since H is p.i.
So $\operatorname{Pr}_{h}\left[0^{l} \in h(u)\right] \leqslant \sum_{\substack{ \\\text { Union bnd }}}^{\leq \operatorname{Pr}_{x \in U}\left[0^{l}=h(x)\right]=\frac{|u|}{2^{l}}=a}$

$$
\begin{aligned}
& \text { LHS: } \operatorname{Pr}\left[U A_{i}\right] \geq \sum_{\substack{\uparrow_{i} \\
\text { incusion } \\
\text { exclusion }}} \operatorname{Pr}\left[A_{i}\right]-\sum_{i \neq j} \operatorname{Pr}\left[A_{i} \cap A_{j}\right] \\
& \operatorname{Pr}_{h \in H^{\prime}}\left[0^{l} \in h(U)\right] \geq \sum_{x \in U} \operatorname{Pr}[\underbrace{0^{l}=h(x)}_{\partial^{-l}}]-\sum_{x \neq y \in U} \operatorname{Pr}[\underbrace{\left[0^{l}=h(x)=h(y)\right.}_{\partial^{-2 l} \text { if }}] \\
& \text { puiruise indep } \\
& =\frac{|u|}{2^{2}}-\binom{|u|}{2} \frac{1}{2^{2 l}} \geq \frac{|u|}{2^{2}}-\frac{|u|^{2}}{2} \cdot \frac{1}{2^{2 l}} \\
& \geq a-a^{2} / 2
\end{aligned}
$$

Finishing up:
Pick l st. $\quad 2^{l-1} \leq k \leq 2^{l}$
let $a=\frac{\left|S_{\varphi}\right|}{2^{l}}$
If $\left|S_{\varphi}\right|>k$ then $a \geq 1 / 2$
So $\operatorname{Pr}\left[0^{l} \in h\left(S_{\varphi}\right)\right] \geq a-\frac{a^{2}}{2} \geq 3 / 8$
if $\left|S_{\phi}\right|<k / \Delta$ then $a<\frac{k}{\Delta}<\frac{1}{\Delta}$ assumption
so $\operatorname{Pr}\left[0^{l} \in h\left(s_{\phi}\right)\right] \leqslant a<\frac{1}{\Delta}$
e.g. picking $\Delta=4$

$$
\leq 1 / 4
$$

If repeat $O\left(\log ^{1} / \beta\right)$ times,
Chernoff \Rightarrow with prob $\geq 1-\beta$
if $\left|S_{\varphi}\right| \geq k$ then P is successful $\geq 3 / 8-0$ (1) of repetitions
if $\left|s_{\varphi}\right| \leq \frac{k}{\Delta}$ then p is successful $\leq y_{4}+o(1)$ of repetitions

Comments - Can improve so $x=1-\varepsilon$ (how??)

- can use same idea to prove

$$
\mathbb{P}_{\substack{\text { private } \\ \text { cons }}}=\mathbb{P}_{\substack{\text { public } \\ \text { coins }}}
$$

argue that 1.6. protocol can be used to show size of accept region probability mass is large.
(need that V can verify a conversation/random coin flips transcripts falls into accept region).

Derandomization via the method of
conditional expectations
idea: New coin tosses of algorithm as path down tree of depth m \# coin tosses

depth $m=\#$ coin tosses

good = correct/reach wituess/good approximation/pass...
good randomized algorithm \Rightarrow most leaves good
idea: find a good path to kef "bit-by-bit"
more formally：
Fix randomized algorithm A
input x
$m= \pm$ random bits used by of on x

$$
\text { for } 1 \leq i \leq m+r_{1} \ldots r_{i} \in\{0,1\}
$$

set $1^{\text {st }} ;$ bits to $r_{1} \cdots r_{i}$
pice（i＋1位ts randomly $e\left(r_{1} \ldots r_{i}\right)=$ average cut value if set first i nodes to $r_{1} \cdots r_{i}$

$$
\begin{aligned}
p\left(r_{1} \cdots r_{i}\right)= & \frac{1}{2} \cdot p\left(r_{1} \cdots r_{i} 0\right) \\
& +\frac{1}{2} \cdot p\left(r_{1} \cdots r_{i} l\right)
\end{aligned}
$$

by averaging，\exists setting of r_{i+1} to 0 or 1 s．t．$p\left(r_{1} \ldots r_{i+1}\right) \geq p\left(r_{1} \cdots r_{\Lambda}\right)$ figure out whichone？
if $p\left(r_{1} \cdot \ldots r_{i+1}\right) \geq p\left(r_{1} \cdot r_{i}\right) \quad \forall i$
then $p\left(r_{1} \ldots r_{m}\right) \geq p\left(r_{1} \ldots r_{m-1}\right) \geq \ldots \geq p\left(r_{1}\right) \geq$ fraction of
\uparrow
this is a
leaf so
value is $10 r 0$
but if $\geq 2 / 3$
it must be 1
main issue:
how do we choose best r_{i+1} setting at each step?

Example Max cut (second way to de randomize)
recall algorithm:
flip n coins $r_{1} \cdots r_{n}$
put node i in S if $r_{n}=0+T$ if $r_{i}=1$
Output S,T

Recall from lecture 7:
Analysis:
Let $1_{u_{1} v} \equiv \begin{cases}1 & \text { if } r_{u} \neq r_{v} \\ 0 & 0 . w .\end{cases}$

$$
\begin{aligned}
& \text { Cut size }=\sum_{(u, v) \in E} 1_{u, v} \\
& \begin{aligned}
E[\text { cut size }] & =E\left[\sum_{(u, v) \in E} 1_{u, v}\right] \\
& =\sum_{(u, v) \in E} E\left[1_{u, v}\right]=\sum_{(u, v) \in E} \operatorname{Pr}\left[1_{u, v}=1\right] \\
& =\sum_{(u, v) \in E} \operatorname{Pr}\left[\left(r_{u}=1+r_{v}=0\right) r r\left(r_{u}=0+r_{v}=1\right)\right] \\
& =|E| \cdot\left[\frac{1}{4}+\frac{1}{4}\right]=\frac{|E|}{2}
\end{aligned}
\end{aligned}
$$

So expect $\frac{1}{2}$ the edges to cross cut!

$$
\text { Note: } \underbrace{\left[\begin{array}{ccc|}
\text { cut size }]
\end{array}\right.}_{\begin{array}{c}
\text { average cut } \\
\text { size produced } \\
\text { by algorithm }
\end{array}}=\frac{|E|}{2} \Rightarrow 7 \underbrace{\text { cut of size } \frac{|E|}{2}}_{\begin{array}{l}
\text { must be one } \\
\text { that is at least } \\
\text { as big as the } \\
\text { average }
\end{array}}
$$

derandomization:

$$
\begin{aligned}
& e\left(r_{1} \ldots r_{i}\right)=E_{R_{i+1} \ldots R_{n}}\left[|\operatorname{cut}(S, T)| \text { given } r_{1} \ldots r_{i} \text { choices made }\right] \\
& e(\text { no choices fixed yet }) \geq \frac{|E|}{2} \quad \text { (previous lecture) }
\end{aligned}
$$

how do we calculate $e\left(r_{1} \ldots r_{i+1}\right)$?
Let

$$
\left.\begin{array}{l}
S_{i+1}=\left\{\text { nodes } j \mid j \leq i+1, r_{j=0}\right\} \\
T_{i+1}=\left\{\text { nodes } j \left\lvert\, \begin{array}{l}
\text { Sot } \\
\text { So i+1 }, \\
r_{j}=1
\end{array}\right.\right\}\left\{\begin{array}{l}
\text { so far }
\end{array}\right. \\
U_{i+1}=\{\text { nodes } j \mid j \geq i+2+j \leq n\}
\end{array}\right\} \text { undecided } \$
$$

So:
fact $e\left(r_{1} \cdots r_{i+1}\right)=\left(\#\right.$ edges between $\left.S_{i+1}+T_{i+1}\right)$

$$
+\frac{1}{2}\left(\# \text { edges touching } U_{i+1}\right)
$$

(follows from same reasoning as last lecture)
Not: don't need to calculate $e^{\left(r_{1} \ldots r_{i+1}\right)} L^{\operatorname{main}_{\text {inisigtt\#2 }}}$ just need to figure out which is bigger

$$
e\left(r_{1} \ldots r_{i} 0\right) \text { or } e\left(r_{1} \ldots r_{i} 1\right)
$$

how do we do this?
\#edyes between $S_{i+1}+T_{i+1}$ same for both
U_{i} is same for both
U_{i+1} differs only on edges to node $i t+$

yields:
Greedy Algorithm

1) $S \leftarrow \varphi, T \leftarrow \varphi$
2) For $i=0 \cdots n-1$
place $\begin{array}{r}V_{i} \text { in } S \text { if \#edges between } V_{i}+T \\ \geq " \cdots " S\end{array}$ else place v_{i} in T
