Lecture 9

More applications of pairwise independence

- Interactive proofs.
 Public coins vs. private coins

Derandomization via method of conditional expectations
Another setting in which k-wise independence is useful:

Interactive Proofs

\[\text{NP} = \text{all decision problems for which "Yes" answers can be verified in polytime by a deterministic TM ("verifier")} \]

IP:

- Generalization of NP
- Short proofs \(\Rightarrow \) short interactive proofs

 “Conversations that convince”
IP Model

- "All-powerful" prover P: unbounded time but recursive
- e.g. can't solve halting problem
- Input
- R
- W
- Conversation tapes
- R
- W
- Private workspace

- poly-time verifier V
- Private workspace
- Random bits $\$`

Def. [Goldwasser Micali Rackoff]

An Interactive Proof System (IPS) for language L is protocol $st.$

- if $x \in L$ & both V, P follow protocol then

 $\Pr_{V \text{'s coins}} [V \text{ accepts } x] \geq 2/3$

- if $x \notin L$ & V follows protocol then (no matter what P does)

 $\Pr_{V \text{'s coins}} [V \text{ rejects } x] \geq 2/3$
Thm [Goldwasser Sipser]

\[\text{IP}_{\text{private coins}} = \text{IP}_{\text{public coins}} \]

GS's Answer: NO!

...anything that has protocol with private coins also has (possibly different) protocol with public coins.

Today we will see a building block for theorem:

Informally:

- Given set \(S \) s.t. \(S \in \text{IP} \) ← interesting even if \(S \in \text{P} \)
- Protocol in which \(P \) can convince \(V \) that size of set \(S \) is "big"

Let \(S_P = \exists x \mid x \text{ satisfies formula } \phi \)
(note \(S_P \in \text{P} \))

Claim \(\exists \) protocol s.t. on input \(\emptyset \)

- if \(|S_P| > k \) + if \(V \), \(P \) follow protocol
 then \(\Pr[V \text{ accepts}] \geq 2/3 \)

- if \(|S_P| < \frac{k}{\Delta} \) + if \(V \) follows protocol
 then \(\Pr[V \text{ accepts}] < 1/3 \)

(can be replaced by any \(L \in \text{IP} \))
Can use protocol to show that # random strings which cause algorithm A to accept on input $x = 2/3$.

First idea: Random Sampling

Repeat $? \times$ times:

- V picks random assignment x
- Evaluates $\Psi(x)$

Output $\frac{\text{# satisfying x's}}{\text{total # repetitions}}$

How many repetitions?

$\Omega\left(\frac{\# \text{ total assignments}}{\# \text{ satisfying assignments}}\right)$

$\Omega(2^n)$
All assignments

Problem: what if \mathcal{S} is small?

\[\text{SAR assignments to } \emptyset \]

\[\text{Fix: Universal hashing} \]

Recall:

Family of funs $\mathcal{H} = \{ h_1, h_2, \ldots \}$

for $h_x : [N] \to [M]$ is "pairwise independent" if

when $h \in \mathcal{H}$

1. $\forall x \in [N], \; h(x) \in_u [M]$

2. $\forall x_1 \neq x_2 \in [N], \; (h_1(x_1), h_2(x_2)) \in_u [M]^2$

equivalently:

$\forall x_1 \neq x_2 \in [N]
\forall y_1, y_2 \in [M]$

$\Pr_{h \in \mathcal{H}} \left[h(x_1) = y_1 \land h(x_2) = y_2 \right] = \frac{1}{M^2}$
How does it help?

Need:
1. \(|h(S_p)| \approx |S_p| \)
2. \(h \) computable in poly time

- idea
 - clearly \(|h(S_p)| \leq |S_p| \)
 - hopefully \(|h(S_p)| \) is not too much smaller than \(|S_p| \)
 (we will show that whp \(|h(S_p)| > \frac{|S_p|}{\Delta} \))
 - \(\Rightarrow \) if \(l \) s.t. \(2^l \) is roughly \(|h(S_p)| \)
 then most of \(1..2^l \) gets mapped to by \(h(S_p) \)

(uses that \(H \) is p.i.)
A comment about p.i. hash fcn.

Typical use:

- Map set S into smaller "space"
- Good for storage, reducing size of "name" of elements...
- Need property of "few collisions"
 since collisions cause problems, so need to minimize (e.g., in hash tables, collisions \Rightarrow chaining length)
 - Here "few collisions" $\Rightarrow |h(S)|$ is not too much smaller than $|S|$

Why is that good?

- Pick any pt in range, say 0^e
- If $h(s)$ big, it will probably hit 0^e uses that $h(x)$ is unit dist
Protocol: for distinguishing set of size K from set of size K/Δ

Given H (p.i. fetus mapping $\{0,1\}^n \rightarrow \{0,1\}^k$)

1. V picks $h \in_R H$
2. $V \rightarrow P$: h
3. $P \rightarrow V$: $x \in S_F$ s.t. $h(x) = 0^\ell$
4. V accepts iff $x \in S_F$

Idea: hope: $h(S_F)$ fills "random" portion of range, so can distinguish $|h(S_F)|$ large or small.

Case 1: $|S_F| > K$:

- hopefully $|h(S_F)| \approx K$ so 0^ℓ is "hit" with reasonable ($\geq \frac{1}{2}$?) probability.
- Then all-powerful P can find preimage in S_F

Case 2: $|S_F| \leq \frac{K}{\Delta}$:

- $|h(S_F)| \leq \frac{K}{\Delta}$ so less likely 0^ℓ hit.
- if not hit, P can't find preimage.
- If P sends V a fake preimage, V will detect.
Lemma \[H \] is p.i., \(U \subseteq \mathcal{P} \), \(\alpha = \frac{|U|}{2^k} \), then \(\alpha - \frac{\alpha^2}{2} \leq \Pr_h [O^l \in h(U)] \leq \alpha \)

Proof:

RHS:
\[
\forall x \Pr_h [O^l = h(x)] = 2^{-l} \quad \text{since } \, H \text{ is p.i.}
\]

So \(\Pr_h [O^l \in h(U)] \leq \sum_{x \in U} \Pr_h [O^l = h(x)] = \frac{|U|}{2^k} = \alpha \)

LHS:\(\Pr [UA_1] \geq \sum \Pr [A_i] - \sum \Pr [A_i \cap A_j] \)

\[\Pr_h [O^l \in h(U)] \geq \sum \Pr_h [O^l = h(x)] - \sum \Pr_h [O^l = h(x) \cap h(y)] \]

\[
= \frac{|U|}{2^k} - \binom{|U|}{2} \frac{1}{2^{2k}} \geq \frac{|U|}{2^k} - \frac{|U|^2}{2^k} \cdot \frac{1}{2^{2k}}
\]

\[\geq \alpha - \frac{\alpha^2}{2} \]

\[\square \]
Finishing up:

Pick \(l \) s.t. \(2^{l-1} \leq k \leq 2^l \)

let \(a = \frac{|S_\varnothing|}{2^l} \)

If \(|S_\varnothing| > k \) then \(a \geq \frac{1}{2} \)

so \(\Pr[\text{0}^l \in h(S_\varnothing)] \geq a - \frac{a^2}{2} \geq \frac{3}{8} \)

if \(|S_\varnothing| \leq k \Delta \) then \(a \leq \frac{k}{2^l} \leq \frac{1}{\Delta} \)

so \(\Pr[\text{0}^l \in h(S_\varnothing)] \leq a \leq \frac{1}{\Delta} \)

\(\text{e.g. picking } \Delta = 4 \) gives \(\leq \frac{1}{4} \)

If repeat \(O(\log \frac{1}{\beta}) \) times,

Chernoff \(\Rightarrow \) with prob \(1-\beta \)

if \(|S_\varnothing| \geq k \) then \(P \) is successful \(\geq \frac{3}{8} - o(1) \) of repetitions

if \(|S_\varnothing| \leq \frac{k}{\Delta} \) then \(P \) is successful \(\leq \frac{1}{4} + o(1) \) of repetitions
Comments

- Can improve so $\Delta = 1 - \varepsilon$ (how?)

- Can use same idea to prove

 $1P_{\text{private coins}} = 1P_{\text{public coins}}$

 argue that 1.6 protocol can be used to show size of accept region probability mass is large.

 (need that V can verify a conversation/random coin flips transcripts falls into accept region).
Derandomization via the method of conditional expectations

Idea: view coin tosses of algorithm as path down tree of depth $m \leq \# \text{coin tosses}$

\[\text{good} = \text{correct} / \text{reach witness} / \text{good approximation} / \text{pass} \ldots \]

Good randomized algorithm \Rightarrow most leaves good

Idea: find a good path to leaf "bit-by-bit"
more formally:

Fix randomized algorithm A

\[\text{input } x \]
\[m = \# \text{ random bits used by } A \text{ on } x \]

For $1 \leq i \leq m \Rightarrow r_1^x \cdots r_x^x \in \Sigma_0,1^X$

\[\text{let } p(r_1^x \cdots r_i^x) = \text{ fraction of continuations } \]
\[\text{that end in "good" leaf} \]

\[e(r_1^x \cdots r_i^x) = \text{ average cut value if set } \]
\[\text{first } i \text{ nodes to } r_1^x \cdots r_i^x \]

\[p(r_1^x \cdots r_i^x) = \frac{1}{2} \cdot p(r_1^x \cdots r_i^x, 0) \]
\[+ \frac{1}{2} \cdot p(r_1^x \cdots r_i^x, 1) \]

by averaging, if setting of r_{i+1}^x to 0 or 1

st. $p(r_1^x \cdots r_{i+1}^x) \geq p(r_1^x \cdots r_i^x)$

Can we figure out which one?
if \(p(r_1 \ldots r_{x+1}) = p(r_i \ldots r_x) \quad \forall i \)

then \(p(r_1 \ldots r_m) \geq p(r_i \ldots r_{m-1}) \geq \ldots \geq p(r_i) = \text{fraction of good paths} \geq \frac{2}{3} \)

this is a leaf so value is 1 or 0

but if \(\geq \frac{2}{3} \)

it must be 1

main issue:

how do we choose best \(r_i \) at setting at each step?

Example Max cut (second way to de-randomize)

recall algorithm:

flip \(n \) coins \(r_1 \ldots r_n \)

put node \(i \) in \(S \) if \(r_i = 0 \) \& \(T \) if \(r_i = 1 \)

Output \(S, T \)
Recall from lecture 7:

Analysis:

Let \(1_{u,v} = \begin{cases} 1 & \text{if } r_u \neq r_v \\ 0 & \text{o.w.} \end{cases} \)

\[
\text{Cut size} = \sum_{(u,v) \in E} 1_{u,v}
\]

\[
E[\text{cut size}] = E\left[\sum_{(u,v) \in E} 1_{u,v} \right] = \sum_{(u,v) \in E} E[1_{u,v}] = \sum_{(u,v) \in E} \Pr[1_{u,v} = 1]
\]

\[
= \sum_{(u,v) \in E} \Pr[(r_u = 1 \land r_v = 0) \lor (r_u = 0 \land r_v = 1)]
\]

\[
= |E| \cdot \left(\frac{1}{4} + \frac{1}{4} \right) = \frac{|E|}{2}
\]

So expect \(\frac{1}{2} \) the edges to cross cut!

Note: \(E[\text{cut size}] = \frac{|E|}{2} \implies \exists \text{ cut of size } \frac{|E|}{2} \)
derandomization:

e(r_1...r_{\lambda}) = E_{R_1...R_\lambda} \left[\left| \text{cut } (S, T) \right| \text{ given } r_1...r_{\lambda} \text{ choices made} \right]

e (no choices fixed yet) = \frac{|E|}{2} \quad \text{(previous lecture)}

how do we calculate \(e(r_1...r_{\lambda}) \)?

Let

\(S_{\lambda+1} = \{ \text{nodes } j \mid j \leq i+1, \; r_j=0 \} \supset S+T \)
\(T_{\lambda+1} = \{ \text{nodes } j \mid j \leq i+1, \; r_j=1 \} \supset \text{so far} \)
\(V_{i+1} = \{ \text{nodes } j \mid j > i+2 \text{ or } j \leq n \} \supset \text{undecided} \)

so:

\text{fact } e(r_1...r_{\lambda}) = \left(\text{# edges between } S_{\lambda+1} + T_{\lambda+1} \right)
+ \frac{1}{2} \left(\text{# edges touching } V_{i+1} \right)

(follows from same reasoning as last lecture)

\text{Note: } \text{don't need to calculate } e(r_1...r_{\lambda})
\text{ just need to figure out which is bigger } e(r_1...r_{\lambda0}) \text{ or } e(r_1...r_{\lambda1})
how do we do this?

edges between $S_{ini} + T_{ini}$ same for both

U_i is same for both

U_{ini} differs only on edges to node iti

......

to maximize this, place node iti to maximize cut size:

compare
edges between $V_{ini} + S_{i}$
VS. " " " " " " T_i

\Rightarrow Can deterministically pick which choice gives bigger # edges touching U_{ini}

\Rightarrow if do this for each i, get solution which is \geq expected value in deterministic way

yields:

Greedy Algorithm

1) $S \leftarrow \emptyset$, $T \leftarrow \emptyset$

2) For $i=0 \ldots n-1$

 place V_i in S if $\#$ edges between $V_i + T \geq " " " "$ S

 else place V_i in T