
Maintaining a Large Matching and a Small Vertex Cover

Krzysztof Onak∗

MIT
konak@mit.edu

Ronitt Rubinfeld†

MIT and Tel Aviv University
ronitt@csail.mit.edu

March 20, 2012

Abstract

We consider the problem of maintaining a large matching and a small vertex cover in a dynamically
changing graph. Each update to the graph is either an edge deletion or an edge insertion. We give
the first randomized data structure that simultaneously achieves a constant approximation factor and
handles a sequence of K updates in K · polylog(n) time, where n is the number of vertices in the graph.
Previous data structures require a polynomial amount of computation per update.

1 Introduction

Suppose one is given the task of solving a combinatorial problem, such as vertex cover or maximum matching,
for a very large and constantly changing graph. In this setting, it is natural to ask, does one need to recompute
the solution from scratch after every update?

Such questions have been asked before for various combinatorial quantities—examples include minimum
spanning tree, shortest path length, min-cut, and many others (some examples include [3, 2, 6, 15, 8, 14]).
Classic works for these problems have shown update times that are sublinear in the input size. For the
problem of maximum matching, Sankowski [13] shows that it can be maintained with O(n1.495) computation
per update (n is the number of vertices in the graph), which for dense graphs is sublinear in the number of
edges.

For very large graphs, it may be crucial to maintain the maximum matching with much faster, even
polylogarithmic, update time. Note that this may be hard for maximum matching, since obtaining o(

√
n)

update time, even in the case when only insertions are allowed, would improve on the 30-year-old algorithm
of running time O(m

√
n) due to Micali and Vazirani [11], where m is the number of edges in the graph.

Therefore, some kind of approximation may be unavoidable. Following similar considerations, Ivković and
Lloyd [7] give a factor-2 approximation to both vertex cover and maximum matching, by maintaining a
maximal matching (which is well known to give the desired approximation for maximum matching and
minimum vertex cover). Their update time is nevertheless still polynomial in n. More precisely, it is
O((n + m)0.7072), which is o(n) for sparse graphs.

In this paper, we concentrate on the setting in which slightly weaker, but still O(1), approximation factors
are acceptable, and in which it is crucial that update times be extremely fast, in particular, polylogarithmic
in the graph size.

1.1 Problem Statement and Our Results

Recall that in the maximum matching problem, one wants to find the largest subset of vertex disjoint edges.
In the vertex cover problem, one wants to find the smallest set of vertices such that each edge of the graph

∗Supported by NSF grants 0732334 and 0728645.
†Supported by NSF grants 0732334 and 0728645, Marie Curie Reintegration grant PIRG03-GA-2008-231077, and the Israel

Science Foundation grant nos. 1147/09 and 1675/09.

1

is incident to at least one vertex in the set.
Our goal here is to design a data structure that handles edge removals and edge insertions. The data

structure provides access to a list of edges that constitute a large matching or a list of vertices that constitute
a small vertex cover. We assume that we always start with an empty graph, and n is known in advance.

The main result of the paper is the following:

There is a randomized data structure for maximum matching and vertex cover that

(a) achieves a constant approximation factor,

(b) runs in

O

(
min{K, n2} · log n · log

1

δ
+ K · log2 n

)

time for a fixed sequence of K updates with probability 1 − δ.

Furthermore, the first step in our presentation is a deterministic data structure for vertex cover. The
data structure keeps a vertex cover that gives an O(log n) approximation to the minimum vertex cover. The
amortized update time of the data structure is O(log2 n). Though the approximation factor achieved by this
algorithm is relatively weak, the algorithm may be of independent interest because of its relative simplicity
and efficient update time.

1.2 Overview of Our Techniques

We present our main result in two stages.

A Deterministic O(log n)-Approximation Data Structure: We construct a data structure that makes
use of a carefully designed partition of vertices into a logarithmic number of subsets. The partition is
inspired by a simple distributed algorithm of Parnas and Ron [12]. In [12], the first subset in the partition
corresponds to removing vertices of degree approximately n. The second subset corresponds to removing
vertices of degree close to n/4 from the modified graph. In general, the i-th subset is a set of vertices that are
approximately n/4i−1 in the graph with all previous subsets of vertices removed. Finally, after a logarithmic
number of steps, the remaining graph has no edges. This implies that the union of all subsets removed so
far constitutes a vertex cover. For each of the removed subsets, it is easy to show that the subset size is
bounded by O(VC(G)), where VC(G) is the size of the minimum vertex cover. Hence the total vertex cover
is bounded by O(VC(G) · log n).

The main idea behind our data structure is to modify the partition of Parnas and Ron in order to allow
efficient maintenance of this partition, under edge insertions and deletions. While this is not possible in the
partition of Parnas and Ron, it is possible in our relaxed version of it. As edges are inserted and removed,
we want to move vertices between subsets. In order to determine whether to move a vertex, we associate
a potential function with every vertex, and we allow a vertex to jump from one set to another only if it
has collected enough potential. To do this, we set two thresholds τ1 < τ2 for each subset. A vertex can
move into the subset from a subset corresponding to a lower degree if its number of neighbors in a specific
graph is at least τ2. Then the vertex can move back to a subset corresponding to a lower degree only if the
number of edges decreases to τ1 in the same graph. A slight technical difficulty is presented by the fact that
moving vertices may increase the potential of other vertices. We overcome this obstacle by carefully selecting
constants in the potential function so that the potential of the vertex that moves is spent on increasing the
potential of its neighbors.

A Randomized O(1)-Approximation Data Structure: In this case, we redesign the partition, building
upon the previous one. In the process of defining the partition, whenever we remove a large subset W of
vertices of degree approximately n/4i, we also show the existence of a matching M which is smaller than
W by at most a constant factor. To build the next set of the partition, we not only remove W but also
all vertices matched in M . In this way we achieve a matching and a vertex cover of sizes that are within

2

a constant factor of each other. Therefore, both give a constant factor approximation to their respective
optimal solutions.

Efficient maintenance of the new partition is more involved, as we are sometimes forced to recompute
a matching. This can happen, for instance, when many edges in the matching are deleted from the graph.
Unfortunately, the creation of a new matching is expensive, since we have modified the set of the vertices
matched in M that are deleted together with W . If the edges in the matching are deleted too quickly, we
have to create a new matching often, in which case we do not know how to maintain small update time.
Fortunately, by picking a large random matching, we can ensure that it is unlikely that many edges from the
matching get deleted in a short span of time. Thus, by the time the matching gets deleted, we are likely to
have collected enough potential to pay for the creation of a new matching.

1.3 Other Related Work

A sequence of papers [5, 10, 16, 4] considers computing a large matching or a large weight matching (in the
weighted case) in the semi-streaming model. The stream is a sequence of edges, and the goal of an algorithm

is to compute a large matching in a small number of passes over the stream, using O(n · logO(1) n) space,
and preferably at most polylog(n) update time. Results in this model correspond to results for dynamically
changing graphs in which only edge insertions occur, except that the matching is only output once, at the
end of the processing. To the best of our knowledge, it is not known how to achieve a better approximation
factor than 2 in one pass for the maximum matching problem.

Lotker, Patt-Shamir, and Rosén [9] show how to maintain a large matching in a distributed network.

2 Preliminaries

We assume that all the necessary simple set operations (insert, remove, find, . . .) on ordered sets of size
t can be implemented in O(log t) time. A number of tree based dictionaries (AVL trees, red-black trees,
etc.) have this property (see for instance the textbook of Cormen et al. [1]). We also assume that the first
s items in a set can be accessed in O(s) time, which can usually easily be achieved by augmenting a given
data structure with additional links.

Throughout the paper, α is a fixed integer greater than 1. We write kα to denote ⌊logα n⌋+2. Moreover,
VC(G) is the minimum vertex cover size in G, and MM(G) is the maximum matching size in G.

2.1 Basic Facts

Fact 1 Let G be a graph, and let M be a matching in G. Then, VC(G) ≥ |M |.

Lemma 2 Let G be a graph of maximum degree d. Let V ′ be a subset of vertices such that every vertex in
V ′ has degree between d/γ and d. The following holds:

• There is a matching M of size at least |V ′|/(4γ) with each edge incident to a vertex in V ′.

• |V ′| ≤ 4γ · VC(G).

Proof There are at least X
def

= d|V ′|
2γ

edges incident to vertices in V ′. Each such edge is adjacent to at most

Y
def

= 2(d − 1) other such edges. This implies that G has a matching of size at least X/(Y + 1) ≥ |V ′|/(4γ).
By Fact 1, |V ′| ≤ 4γ · VC(G). �

2.2 Simple O(d)-Update-Time Data Structure

We now describe a straightforward data structure for maintaining a maximal matching in a graph of maxi-
mum degree bounded by d. To the best of our knowledge, the data structure was first described by Ivković
and Lloyd [7].

3

For every vertex, the data structure maintains information indicating whether it is matched. Whenever
an edge is inserted, the data structure checks if its endpoints are matched or not. If none of them are, the
edge is added to the matching. Whenever an edge e in the maximal matching is removed, the data structure
checks whether the remaining matching may be extended by adding edges incident to the endpoints of e. To
do this, the data structure goes over O(d) edges that were adjacent to e, and greedily tries to extend the
matching with each of them.

It is easy to show that the matching held by the data structure is maximal. It can be used for obtaining
a 2-approximation of both the minimum vertex cover (use the endpoints of edges in the matching) and the
maximum matching (use the maximal matching itself). The Insert operation takes O(1) time, and the
Delete operation requires O(d) time.

3 Warmup: Deterministic O(log n)-Approximation for Vertex Cover

3.1 A Sequential Algorithm

Consider first the sequential Algorithm 1. The algorithm is a modification of a simple distributed algorithm
for vertex cover that was used by Parnas and Ron [12].

Algorithm 1: A sequential O(log n)-approximation algorithm for vertex cover

Input: graph G, integer α > 1
kα := ⌊logα n⌋ + 21

Gkα
:= G2

for i := kα downto 1 do3

Vi := {vertices of degree ≥ αi−1 in Gi}4

∪ {arbitrary subset of vertices of degree5

in [αi−2, αi−1) in Gi}6

Gi−1 := Gi with vertices in Vi removed7

return
⋃kα

i=1 Vi8

Lemma 3 Let α be an integer greater than 1. The size of each set Vi in Algorithm 1 is bounded by
4α2 VC(G). Algorithm 1 computes a vertex cover of size ≤ 4α2 · kα · VC(G).

Proof The algorithm repeatedly removes vertices and their adjacent edges from the original graph, and
adds the removed vertices to the cover. To see that the algorithm computes a vertex cover, note that the final
graph G0 has no edges, which means that all edges of G have been covered by the output of the algorithm.

Let i be any integer between 1 and kα. The maximum degree of Gi is bounded by αi. By Lemma 2,
|Vi| ≤ 4α2 · VC(Gi) ≤ 4α2 · VC(G). This implies that the size of the cover returned by the algorithm is at
most kα · 4α2 VC(G). �

3.2 The Data Structure

We design a data structure that keeps a partition of vertices into a logarithmic number of sets Vi, 0 ≤ i ≤ kα.
The partition is one that could potentially be created in an execution of Algorithm 1. We refer to sets Vi

as buckets. The sets Vi with i > 0 are sets of vertices removed in consecutive executions of the loop of
Algorithm 1, and V0 is the set of vertices that are not removed from the graph by the algorithm. For i > 0,
each Vi consists of vertices that at the time of removal, have degree between αi−2 and αi. The union of Vi

over i > 0 is the current vertex cover.
For every vertex v, we maintain the following variables:

index[v]: the index of the set Vi that contains v.

4

neighbors[v, j] for j ≥ index[v]: the set of neighbors of v that that belong to Vj .

below[v, j] for j ≥ index[v]: the total number of all neighbors of v in sets V0 through Vj .

lower-neighbors[v]: the set of neighbors of v that belong to Vi for i < index[v].

We call the collection of vertices involving v the structures of v.
Initially, the graph is empty, so all sets of neighbors are empty, and index[v] = 0 and below[v, j] = 0 for

all v and j.
We maintain the following invariants for each vertex v after each update to the graph:

• To ensure that v’s bucket number index[v] is not too high, i.e., that it has enough edges to nodes in
lower buckets, we ask that if index[v] > 0, then below[v, index[v]] > αindex[v]−2 .

• On the other hand, to ensure that v’s bucket number is not too low, i.e., that it should not have been
placed in a higher bucket, we ask that for each i ∈ {index[v] + 1, . . . , kα}, below[v, i] < αi−1.

Note that if this is the case, then the sets Vi, 1 ≤ i ≤ kα defined as Vi = {v ∈ V : index[v] = i} could
potentially be created by the non-deterministic Algorithm 1.

As a result of edge removals and insertions, the invariants may no longer hold. We first design a procedure
Restabilize that given a set of vertices for which the invariant may not hold (we call such vertices dirty),
attempts to fix the partition given by index[·]. As long as there is a dirty vertex v, the procedure does the
following.

• If there is an i > index[v], such that below[v, i] ≥ αi−1, the procedure sets index[v] to the highest
such i. (This could happen if many edges adjacent to v have been added to the graph, or if many edges
have been deleted from v’s neighbors that were previously in higher buckets than the i-th, causing
them to be demoted to lower buckets.)

Let t and t⋆ be the new and old value of index[v], respectively. The move of v from Vt⋆
to Vt may

invalidate the invariant for neighbors of v in buckets Vt to Vt⋆−1. Therefore, the procedure marks all
of them as dirty.

Next, the procedure updates neighbors[u], below[u, ·], and lower-neighbors[u] for all neighbors u
of v in buckets V0 through Vt. Then the procedure updates the structures for v as well. Note that
updating all the structures takes at most O(below[v, t] · log n) time, because this requires at most a
constant number of set operations per each of the neighbors in consideration, and for each vertex u,
the array below[u, ·] can be updated in O(kα) = O(log n) time.

Finally, the procedure marks v as no longer dirty.

• Otherwise, if index[v] > 0, and below[v, index[v]] ≤ αindex[v]−2, the procedure decreases index[v] by
one. (This could happen if many edges adjacent to v have been deleted, or if many edges are added to
v’s neighbors that were previously in lower buckets than v, causing them to jump to higher buckets.)

Let t be the new value of index[v]. The move of v can affect the invariant for neighbors of v in sets V0

through Vt−1, so the procedure marks all of them as dirty.

The procedure also updates neighbors[u], below[u, ·], and lower-neighbors[u] for all neighbors u of v
in buckets V0 to Vt+1. Next it does the same for the structures of v. In total, this takes O(below[v, t+1]·
log n) time, since at most a constant number of set operations per each of the neighbors in consideration
is necessary, and for each of them below[·, ·] can be updated in O(kα) = O(log n) time.

In this case, the procedure does not change the status of v. It still remains dirty, since the procedure
may have to decrease index[v] further1.

1One could immediately decrease index[v] to the right value, but it is easier to analyze the complexity of this version of the
procedure.

5

• If none of the previous cases occurred, v is already in the right bucket, and there is no need to move
it. The procedure marks the vertex as no longer dirty.

It is not immediately clear that the above procedure Restabilize always stops. We show that this is the
case in Section 3.3.

It is easy to implement operations Insert and Delete that are responsible for inserting and removing
an edge by using Restabilize. It suffices to modify first the corresponding below[u, ·], neighbors[u, ·],
and lower-neighbors[u] for each of the edge’s endpoints u (this can be done in O(log n) time), mark the
endpoints as dirty, and run Restabilize to fix the partition of vertices if necessary.

3.3 Complexity Analysis

Theorem 4 The amortized complexity of the operations Insert and Delete in the deterministic data struc-
ture is O(log2 n) for α = 4.

Proof The use the following potential function. The potential of a vertex v equals

Φ(v)
def

= Φ1(v) + Φ2(v),

where
Φ1(v)

def

= 0,

if index[v] = 0,

Φ1(v)
def

= 8 · min

{

max
{
αindex[v]−1 − below[v, index[v]], 0

}
,

αindex[v]−1 − αindex[v]−2

}

for index[v] > 0, and

Φ2(v)
def

= 12 ·
kα∑

i=index[v]+1

max
{
below[v, i] − αi−2, 0

}
.

Φ1(v) corresponds to losing neighbors. When v loses sufficiently many of them, there is enough potential
to pay for decreasing index[v]. Φ2(v) is related to the number of neighbors u with index[u] > index[v]. We
only increase index[v] if there are sufficiently many of them, and then Φ2(v) provides enough potential to
conduct the operation. For the initial empty graph, all Φ(v) = 0.

Each unit of the potential corresponds to O(log n) computation. Inserting or removing an edge can only
change the potential of the endpoints of the edge, and the change is bounded by O(kα), because each of O(kα)
terms can only change by a constant. We show that fixing the invariant of the data structure, i.e., executing
the procedure Restabilize, is almost entirely paid for by potentials of vertices. More precisely, we show
that the amortized complexity of Restabilize is the number of vertices that are initially marked as dirty
times O(log n). Assuming this, the amortized cost of both Insert and Delete is O(kα · log n) = O(log2 n).

Consider the case when Restabilize increases index[v] for a vertex v. If this happens, index[v] becomes
t such that below[v, t] ≥ αt−1. We can use up to 12 ·

(
below[v, t] − αt−2

)
units of the potential of v. This

comes from the decrease in Φ(v), and more precisely in Φ2(v). Once index[v] is set to t, Φ1(v) becomes 0,
and Φ2(v) only equals

kα∑

i=t+1

max
{
below[v, i] − αi−2, 0

}
.

Restabilize updates structures for all neighbors u of v such that index[u] ≤ t. It also marks some of them
as dirty, and the potential has to pay also for checking later whether the invariant holds for them. This

6

costs at most O(log n) · below[v, t], that is, below[v, t] units of potential. Additionally, modifying index[v]
can result in decreasing below[u, index[u]] for some of the same neighbors u of v. The potential, therefore,
has to pay another 8 · below[v, t] units to compensate for the change in Φ1(u) for those neighbors. The total
expense can be bounded by

below[v, t] + 8 · below[v, t]

= 9 · below[v, t]

below[v, t] − αt−2
·
(
below[v, t] − αt−2

)

≤ 9 · αt−1

αt−1 − αt−2
·
(
below[v, t] − αt−2

)

=
9α

α − 1
·
(
below[v, t] − αt−2

)

= 12 ·
(
below[v, t] − αt−2

)
,

which is not more than the available budget.
Consider now the other case when Restabilize decreases index[v] by one for a vertex v. Let t be the

new index[v], i.e., the old index[v] minus one. Note that the old Φ1(v) equals 8 · (αt −αt−1). Restabilize
updates structures for at most αt−1 neighbors u of v, and it also marks some of them as dirty. This costs
at most αt−1 units of potential together with checking later whether the invariant holds for them. Moving
v may also increase below[u, t] by one for all of them, and this may increase their potential Φ2. The total
increase is at most 12 · αt−1 units of potential. Furthermore, the new potential Φ1(v) can still be positive,
but it can be bounded by 8 · (αt−1 −αt−2). Finally, we pay 1 for reverifying if the invariant holds for v after
the modification of index[v]. The total expense is bounded by

αt−1 + 12 · αt−1 + 8 · (αt−1 − αt−2) + 1

≤
(

13

α − 1
+

8

α
+

1

αt − αt−1

)
· (αt − αt−1)

≤
(

13

3
+ 2 +

4

3

)
· (αt − αt−1) ≤ 8 · (αt − αt−1),

which is the old Φ1(v). �

4 Randomized O(1)-Approximation

We now describe a new data structure that maintains an O(1) approximation for maximum matching and
vertex cover. The data structure handles a sequence of ℓ updates in ℓ · polylog(n) time. In Section 4.1, we
describe a new method of creating a partition of the vertices along with the properties that the partition
satisifies. In Section 4.2, we describe how to generate a matching and vertex cover from the partition and
bound the approximation factor. In Section 4.4, we give the implementation details which allow one to
maintain the partition along with the required properties through the successive updates. In Section 4.5, we
describe the amortized analysis of the update time.

In the following description, we use sufficiently large positive constants C1, C2, and CT. We require that
C2 ≪ C1 and C2 ≪ CT. As before, we assume that the α we use equals 4. Recall also that kα = ⌊logα n+2⌋,
that is, kα = O(log n).

4.1 The new partition and its properties

As in the partition of Algorithm 1, we partition the vertices into a logarithmic number of sets. We remove a
set of vertices at each of logarithmically many phases based on the degrees of the vertices being considered.
However, whereas in Algorithm 1, only high degree vertices were removed at each phase, here we may remove

7

additional vertices. In the following, we mainly focus on describing differences from the partition constructed
by Algorithm 1.

Let ∆
def

= 2 + ⌈logα 2kα⌉. For all i ∈ {1, . . . , kα}, recall that Gi is the graph remaining in the i-th loop of
Algorithm 1, and Vi is the set of vertices of Gi. We define Ei as the edges incident to vertices in Vi in graph
Gi. The new partition differs as follows:

1. We stop partitioning the graph when i ≤ ∆ (i.e., step 3 of Algorithm 1 is changed to “for i := kα

to ∆ + 1”). The graph G∆ has degree bounded by α∆ ≤ 2α3kα = O(log n), and we use the simple
data structure of Section 2.2 to maintain a maximal matching M⋆ in that graph. Each update costs
O(log n).

2. For each i > ∆, we select a set Vi in the same way as in Algorithm 1. Each i > ∆ is either heavy or
light. In general, when |Vi| is sufficiently large, then i is heavy, and when |Vi| is sufficiently small, then
i is light, but there is a range of |Vi| for which either alternative may be the case. In Section 4.4, we
describe how the choice is made so that we can bound the amortized complexity of the data structure.

For each i > ∆, one of the following two is the case in the partition:

heavy i: Apart from Vi, the partition also identifies a set of vertices V ′
i , and a matching Mi ⊆ Ei such

that |Mi| ≥ |Vi ∪ V ′
i |/C1, and each edge in Mi connects vertices in Vi ∪ V ′

i . Gi−1 is created by
removing not only vertices in Vi, but also those in V ′

i . Vi∪V ′
i is a part of the current approximate

vertex cover.

light i: A given i can only be light if |Ei| ≤ CT · αi. In this case, we create Gi−1 by removing only
vertices in Vi. Vi is a part of the current approximate vertex cover.

4.2 Approximating the Maximum Matching

and the Minimum Vertex Cover

We now describe how the above partition is used to maintain a constant-factor approximation to both the
maximum matching and the minimum vertex cover.

The current matching and the current vertex cover kept by the data structure are the following:

• At the end of every Insert and Delete operation, we compute a matching Mlight that matches at least
one vertex in Vi for each light i with non-empty Vi. We pick one vertex from each such Vi. There are
at most kα such vertices, and each of them has degree greater than α∆/α2 ≥ 2kα. This means that
considering them in any order and going over the list of their neighbors, we eventually find a neighbor
that has not yet been matched. This way, we get a matching of size at least half the number of light
i. The whole procedure takes at most O(log2 n) time, because we consider at most O(log2 n) vertices,
and for each of them we check whether it is already matched in Mlight.

We write Mheavy to denote the union of all Mi for i heavy. Note that Mheavy ∪ M⋆ is a matching as
well. Combining Mheavy∪M⋆ with Mlight gives a graph of degree at most 2, and we use the simple data

structure of Section 2.2 to maintain a matching M̃ of size at least 1
2 max{|Mlight|, |Mheavy|+ |M⋆|}. M̃

is the current matching.

• The current vertex cover Ṽ is the union of all Vi for i > ∆, V ′
i for heavy i > ∆, and the vertices

matched in M⋆.

Since |M̃ | ≤ MM(G) ≤ VC(G) ≤ |Ṽ | (see Fact 1), it suffices to show that |M̃ | ≥ |Ṽ |/C, for some

constant C to prove that M̃ and Ṽ are constant factor approximations to maximum matching and vertex

8

cover, respectively. Note that
∣∣∣∣∣∣

⋃

light i

Vi

∣∣∣∣∣∣
≤ 2 · α2 · CT · |Mlight|,

∣∣∣∣∣∣

⋃

heavy i

(Vi ∪ V ′
i)

∣∣∣∣∣∣
≤ C1 · |Mheavy|,

|{endpoints of edges in M⋆}| ≤ 2 · |M⋆|.

Therefore,
∣∣∣Ṽ

∣∣∣ ≤ 2α2CT · |Mlight| + C1 · |Mheavy| + 2 · |M⋆|

≤ 2α2CT · |Mlight| + 2C1 · (|Mheavy| + |M⋆|)
≤ 2α2C1CT · |Mlight| + 2α2C1CT · (|Mheavy| + |M⋆|)
≤ 4α2C1CT · max{|Mlight|, |Mheavy| + |M⋆|}

= 8α2C1CT · 1

2
max{|Mlight|, |Mheavy| + |M⋆|}

≤ 8α2C1CT · |M̃ |.

4.3 Selecting a Large Matching Mi of Vi

We now describe how to select a large matching Mi for i heavy. The lemma states properties of our procedure,
which we will use in the next section.

Lemma 5 Let Gi be a graph of maximum degree αi. Let n be the number of vertices in Gi. Let Vi be a
set of vertices in Gi, each with degree in [αi−2, αi]. Let Ei be the set of edges in Gi incident to at least one
vertex in Vi, and let |Ei| ≥ CT · αi.

Let S be the distribution on subsets of Ei created by independently selecting every edge in Ei with proba-

bility p
def

= 1/(C2α
i).

There is an algorithm A that with the following properties:

• A selects a subset E′ of edges from a distribution S′ on subsets of Ei such that the statistical distance
between S′ and S is at most 1/1000.

• The size of E′ is at most 21
20 · p|Ei|.

• With probability 998/1000, A outputs a matching M that is a subset of E′ and |M | ≥ 9
10 · p|Ei|.

The running time of A is O(|Ei| log n).

Proof The set E′ is selected as follows. The algorithm goes over all edges in Ei, and selects each edge
independently with probability p. If at some point the number of selected edges reaches 21

20 · p|Ei|, the
procedure stops selecting new edges. If CT and C2 are large enough, then this does not happen with
probability greater than 1/1000 (via the Chernoff bound), so the statistical distance between S and S′ is at
most 1/1000.

Suppose for now that E′ is selected according to S, not S′. If C2 is large enough, then the probability
that a given edge in E′ intersects with another edge in E′ is small. Let M be the set of all those edges in E′

that do not intersect with other edges in E′. For sufficiently large C2 and CT such that C2 ≪ CT, the size
of M is close to its expectation via the Chernoff bound, and in particular |M | ≥ 9

10p|Ei| with probability
999/1000. Since the statistical distance between S and S′ is at most 1/1000, |M | ≥ 9

10p|Ei| with probability
at least 998/1000, even if E′ is selected from S′. �

9

4.4 Maintaining the Partition

We now describe how the partition is maintained. As before the data structure keep a value index[v] for
each vertex v. This time index[v] can only belong to the set {∆, ∆ + 1, ∆ + 2, . . . , kα − 1, kα}. The value ∆
corresponds to v remaining in the graph G∆, for which a separate copy of the simple data structure is kept.
Additionally, for each vertex v with index[v] > ∆, there is an additional Boolean variable promoted[v]. If
v belongs to Vindex[v] in the partition, then promoted[v] = false. Otherwise, if v belongs to V ′

index[v], then

promoted[v] = true. Initially, each j ∈ {∆ + 1, ∆ + 2, . . . , kα − 1, kα} is set to light.
We wish that all vertices v obey the invariant that there be no j > index[v] such that the number of neigh-

bors u of v with index[u] ≤ j is at least αj−1. Furthermore, we require that for v with promoted[v] = false

and index[v] > ∆, the number of neighbors u with index[u] ≤ index[v] be greater than αindex[v]−2. Note that
the difference from the previous data structures is that some vertices, namely those with promoted[v] = true,
do not obey the second invariant.

As before, some vertices will be marked as dirty in the course of the execution of the algorithm. When
an edge is removed or added, we mark its endpoints as dirty and update its structures. Then our algorithm
considers consecutive j starting with kα and goes down to ∆ + 1. For a given i > ∆:

1. The algorithm checks if there are dirty vertices v with index[v] < i such that the number of neighbors
u with index[u] ≤ i is at least αi−1. Those vertices have index[v] set to i, and the algorithms updates
structures below[v, ·], lower-neighbors[v], and neighbors[v, ·] for them and for their neighbors u
with index[u] ≤ i accordingly, as we did for the deterministic data structures. Furthermore, if there
are vertices v with index[v] = i and promoted[v] = true with the same property of the number
of neighbors, the algorithm sets promoted[v] = false for them. Finally, if there are vertices v with
index[v] = i, promoted[v] = false, and the number of neighbors u with index[u] ≤ i is at most αi−2,
the algorithm sets index[v] = i − 1 and updates all the structures accordingly, also marking specific
neighbors as dirty whenever necessary.

2. If i is heavy:

The algorithm checks if the old matching is large enough, and if not, the algorithm deletes it, and
computes a new matching. More specifically, if it is no longer the case that |Mi| ≥ |Vi ∪ V ′

i |/C1,
the algorithm goes over all v with index[v] = i and promoted[v] = true. For each such v, we set
promoted[v] to false. Moreover, for those v with the number of neighbors u with index[u] ≤ i at most
αi−2, we set index[v] = i − 1 and mark them as dirty.

If now |Ei| is at most CT · αi, we make i light. Otherwise, we use the procedure of Lemma 5 to select
a new matching Mi. We set V ′

i to the set of vertices matched by Mi that do not belong to Vi. As
long as |Mi| < 9

10 |Ei|/(C2α
i), we keep repeating the procedure of Lemma 5 until we succeed. For well

chosen constants, 9
10 |Ei|/(C2α

i) ≥ |Vi ∪ V ′
i |/C1, since C1 ≫ C2. Finally, for endpoints v of edges in

the new Mi that have index[v] < i, we set index[v] = i and promoted[v] = true, and update all the
structures for them and their neighbors accordingly, marking some of them as dirty.

3. If i is light:

If |Ei| > CT · αi, we make i heavy and construct Mi in the same way as for heavy i.

Otherwise, if |Ei| ≤ CT · αi, and we do nothing.

4.5 Complexity Analysis

We use almost the same potential functions for vertices as before. The only difference is that we multiply
all potentials by a constant factor so that when an edge is inserted into some set Ei or removed from it, we
can pass one unit of potential to a special fund. We will use this fund to pay for the cost of recomputing
matchings Mi. We will show that with large probability the fund deficit is small.

10

Whenever the data structure artificially moves a vertex v, creating or destroying some V ′
i , one has to

cover the cost associated with changing index[v]. In the deterministic data structure the cost of moving
vertices around was covered by the collected potential. Here, we have to find another source of funding.

Suppose that we want to create a matching Mi for a heavy i. We run the algorithm of Lemma 5, charging
its running time to the fund. If Mi is sufficiently large, we spend O(|Vi|αi) units of potential from the fund
on moving vertices in V ′ from other buckets (where the constant hidden in the big O notation is very small).
Later, moving vertices in V ′ back to their buckets will cost approximately the same, so we can assume that
we charge this cost to the fund in advance. If Mi that has been generated is too small and the data structure
has to rerun the process generating Mi, we say that we lose.

The matching Mi is relatively large compared to |Vi ∪V ′
i | right after we create it. The matching requires

recomputation if it becomes relatively small compared to |Vi ∪ V ′
i |. For this to happen, at least one of the

following two must be the case:

• A constant fraction of edges in Mi have been removed from Ei.

• The number of vertices in Vi must have grown by a constant factor.

Consider first the latter case. Since each new vertex in Vi contributes to the special fund at least αi−1 units
of potential, it is easy to set constants so that we can afford to pay for moving vertices in V ′

i (if their number
is sufficiently small, which is the case if C2 is large) and for the initial execution of the algorithm of Lemma 5,
which requires only Θ(|Vi|αi) units of potential. We can also set the constants in the data structure such
that in fact, we are left with a surplus of potential. We make sure that we collect a lot of potential. We say
that we win in this case.

The former case requires probabilistic analysis, which we now describe. Recall that a well chosen Mi is
at least a 4/5-fraction of a subset E′ of edges Ei. Therefore, to delete at least half the edges of the initial
Mi, one has to delete at least a 2/5-fraction of E′. We claim that with probability at least 3/4, one has to
delete at least a 1/100-fraction of Ei in order to delete a 2/5-fraction of E′. We now sketch a proof of this
claim.

Suppose to the contrary that one can delete at least a 2/5-fraction of E′ by deleting at most a
1/100-fraction of Ei with some probability greater than 1/4. Then, given how E′ is selected in
Lemma 5, one can delete at least |Ei|/(5C2α

i) edges of E′′ with probability at least 1/4− 1/100
(for well chosen constants) by selecting a subset of Ei of size |Ei|/100, where E′′ is created by
independently selecting each edge of Ei with probability 1/(C2α

i). Expressing the last sentence
in a slightly different way, the sum of |Ei|/100 independent variables Xj is at least |Ei|/(5C2α

i)
with probability at least 24/100, where each Xj is 1 with probability 1/(C2α

i), and 0, otherwise.
Using the Chernoff bound, one can show that this is not the case for well chosen constants.

The claim implies that with probability at least 3/4, we collect a lot of potential before a large fraction of Mi

gets deleted, and also in this case, we say that we win. Otherwise, when the edges are deleted very quickly,
we say that we lose.

Summarizing, we win with probability at least 2/3, in which case we collect a lot of potential (a large
constant times the invested potential), which goes to the fund. We lose with probability at most 1/3,
and in this case, the operation is paid by the fund. Consider a logarithmic number of ranges [2j, 2j+1)
corresponding to different sizes of |Ei| that may appear in the data structure. For a given range, we can
assume that whenever we play, we lose at most C · 2j , for some constant C, and we win at least 10 · C · 2j .

We initially provide the fund with enough potential to pay for the first t⋆
def

= C′ · log log n
δ

times we play the
game, for every j of interest, where C′ is a sufficiently large constant. Then, the probability that we ever
spend more than we gain for a given j is bounded by δ

2 log n
. To prove this, it suffices to give an upper bound

pt on the probability that we spend more than win in t games. Using the Chernoff bound, one can show pt’s
such that pt+1 ≤ pt · c, for t ≥ t⋆, where c is a constant in (0, 1). Using the Chernoff bound again, one can
show that if C′ is sufficiently large, pt⋆

≤ (1 − C) δ
2 log n

, and
∑∞

t=t⋆

pt ≤ δ
2 log n

. So by the union bound, the
probability that we ever spend more than we gain for any j is bounded by δ.

11

Recall that K is the total number of graph operations, which gives a bound on the maximum size of Ei

that can appear. The above analysis implies that for every j such that 2j ≤ n2 and K ≥ 2j, we can subsidize
the fund with O(2j · log log n

δ
) units of potential to make sure that with probability 1− δ, the fund’s balance

is always non-negative. In total, the aid for the fund is bounded by O(min{K, n2} · log log n
δ

). Therefore, the
total potential P spent by the algorithm can be bounded by

P = O

(
min{K, n2} · log

log n

δ
+ K · log n

)

= O

(
min{K, n2} · log

1

δ
+ K · log n

)

with probability 1 − δ. Recall that each unit of potential corresponds to O(log n) computation. Other
operations, which include computing Mlight and combining the three matchings, do not take more than
O(log2 n) time per update to the graph. Summarizing, we prove the following claim.

Corollary 6 For any sequence of K updates, the randomized data structure runs in

O

(
min{K, n2} · log n · log

1

δ
+ K · log2 n

)

time with probability 1 − δ, where δ ∈ (0, 1).

5 Open Problems

The two main questions left open by our paper are:

• Our approximation factors are large constants. How small can they be made with polylogarithmic
update time? Can they be made 2? Can the approximation constant be made smaller than 2 for
maximum matching?

• Is there a deterministic data structure that achieves a constant approximation factor with polyloga-
rithmic update time?

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press and McGraw-Hill Book Company, 2001.

[2] D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. CRC Press, 1997.

[3] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification—a technique for speeding up
dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

[4] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees for weighted match-
ing in the semi-streaming model. In STACS, 2010.

[5] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming
model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

[6] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with polylogarithmic time
per operation. J. ACM, 46(4):502–516, 1999.

[7] Z. Ivković and E. L. Lloyd. Fully dynamic maintenance of vertex cover. In WG, pages 99–111, 1993.

12

[8] P. N. Klein and S. Subramanian. A fully dynamic approximation scheme for shortest paths in planar
graphs. Algorithmica, 22(3):235–249, 1998.

[9] Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed approximate matching. In PODC, pages 167–174,
2007.

[10] A. McGregor. Finding graph matchings in data streams. In APPROX-RANDOM, pages 170–181, 2005.

[11] S. Micali and V. V. Vazirani. An O(
√

|V | · |E|) algorithm for finding maximum matching in general
graphs. In FOCS, pages 17–27, 1980.

[12] M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and a connection
to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–196, 2007.

[13] P. Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages 118–126, 2007.

[14] M. Thorup. Fully-dynamic min-cut. In STOC, pages 224–230, 2001.

[15] M. Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In STOC, pages 112–119,
2005.

[16] M. Zelke. Weighted matching in the semi-streaming model. In STACS, pages 669–680, 2008.

13

