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Fast Local Computation Algorithms

Ronitt Rubinfeld∗ Gil Tamir† Shai Vardi‡ Ning Xie §

Abstract

For inputx, let F (x) denote the set of outputs that are the “legal” answers for a computational
problemF . Supposex and members ofF (x) are so large that there is not time to read them in their
entirety. We propose a model oflocal computation algorithmswhich for a given inputx, support queries
by a user to values of specified locationsyi in a legal outputy ∈ F (x). When more than one legal output
y exists for a givenx, the local computation algorithm should output in a way thatis consistent with at
least one suchy. Local computation algorithms are intended to distill the common features of several
concepts that have appeared in various algorithmic subfields, including local distributed computation,
local algorithms, locally decodable codes, and local reconstruction.

We develop a technique, based on known constructions of small sample spaces ofk-wise independent
random variables and Beck’s analysis in his algorithmic approach to the Lovász Local Lemma, which
under certain conditions can be applied to construct local computation algorithms that run inpolyloga-
rithmic time and space. We apply this technique to maximal independent set computations, scheduling
radio network broadcasts, hypergraph coloring and satisfying k-SAT formulas.
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1 Introduction

Classical models of algorithmic analysis assume that the algorithm reads an input, performs a computation
and writes the answer to an output tape. On massive data sets,such computations may not be feasible, as both
the input and output may be too large for a single processor toprocess. Approaches to such situations range
from proposing alternative models of computation, such as parallel and distributed computation, to requiring
that the computations achieve only approximate answers or other weaker guarantees, as in sublinear time
and space algorithms.

In this work, we consider the scenario in which only specific parts of the outputy = (y1, . . . , ym) are
needed at any point in time. For example, ify is a description of a maximal independent set (MIS) of a
graph such thatyi = 1 if i is in the MIS andyi = 0 otherwise, then it may be sufficient to determine
yi1 , . . . , yik for a small number ofk vertices. To this end, we define alocal computation algorithm, which
supports queries of the form “yi =?” such that after each query by the user to a specified locationi, the local
computation algorithm is able to quickly outputsyi. For problems that allow for more than one possible
output for an inputx, as is often the case in combinatorial search problems, the local computation algorithm
must answer in such a way that its current answer to the query is consistent with any past or future answers
(in particular, there must always be at least one allowable output that is consistent with the answers of the
local computation algorithm ). For a given problem, the hopeis that the complexity of a local computation
algorithm is proportional to the amount of the solution thatis requested by the user. Local computation
algorithms are especially adapted to computations of good solutions of combinatorial search problems (cf.
[36, 30, 35]).

Local computation algorithms are a formalization that describes concepts that are ubiquitous in the lit-
erature, and arise in various algorithmic subfields, including local distributed computation, local algorithms,
locally decodable codes and local reconstruction models. We subsequently describe the relation between
these models in more detail, but for now, it suffices it to say that the aforementioned models are diverse in
the computations that they apply to (for example, whether they apply to function computations, search prob-
lems or approximation problems), the access to data that is allowed (for example, distributed computation
models and other local algorithms models often specify thatthe input is a graph in adjacency list format),
and the required running time bounds (whether the computation time is required to be independent of the
problem size, or whether it is allowed to have computation time that depends on the problem size but has
sublinear complexity). The model of local computation algorithms described here attempts to distill the
essential common features of the aforementioned concepts into a unified paradigm.

After formalizing our model, we develop a technique that is specifically suitable for constructing poly-
logarithmic time local computation algorithms. This technique is based on Beck’s analysis in his algorithmic
approach to the Lovász Local Lemma (LLL) [11], and uses the underlying locality of the problem to con-
struct a solution. All of our constructions must process thedata somewhat so that Beck’s analysis applies,
and we use two main methods of performing this processing.

For maximal independent set computations and scheduling radio network broadcasts, we use a reduction
of Parnas and Ron [36], which shows that, given a distributednetwork in which the underlying graph has
degree bounded by a constantD, and a distributed algorithm (which may be randomized and only guaranteed
to output an approximate answer) using at mostt rounds, the output of any specified node of the distributed
network can be simulated by a single processor with query access to the input withO(Dt+1) queries. For
our first phase, we apply this reduction to a constant number of rounds of Luby’s maximal independent set
distributed algorithm [29] in order to find a partial solution. After a large independent set is found, in the
second phase, we use the techniques of Beck [11] to show
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For hypergraph coloring andk-SAT, we show that Alon’s parallel algorithm, which is guaranteed to find
solutions by the Lovász Local Lemma [2], can be modified to runin polylogarithmic sequential time to
answer queries regarding the coloring of a given node, or thesetting of a given variable. For most of the
queries, this is done by simulating the work of a processor and its neighbors within a small constant radius.
For the remainder of the queries, we use Beck’s analysis to show that the queries can be solved via the brute
force algorithm on very small subproblems.

Note that parallelO(log n) time algorithms do not directly yield local algorithms under the reduction of
Parnas and Ron [36]. Thus, we do not know how to apply our techniques to all problems with fast parallel
algorithms, including certain problems in the work of Alon whose solutions are guaranteed by the Lovász
Local Lemma and which have fast parallel algorithms [2]. Recently Moser and Tardos [32, 33] gave, under
some slight restrictions, parallel algorithms which find solutions of all problems for which the existence of
a solution is guaranteed by the Lovász Local Lemma [11, 2]. Ithas not yet been resolved whether one can
construct local computation algorithms based on these morepowerful algorithms.

1.1 Related work

Our focus on local computation algorithms is inspired by many existing works, which explicitly or implicitly
construct such procedures. These results occur in a number of varied settings, including distributed systems,
coding theory, and sublinear time algorithms.

Local computation algorithms are a generalization oflocal algorithms, which for graph theoretic prob-
lems represented in adjacency list format, produce a solution by adaptively examining only a constant sized
portion of the input graph near a specified vertex. Such algorithms have received much attention in the dis-
tributed computing literature under a somewhat different model, in which the number of rounds is bounded
to constant time, but the computation is performed by all of the processors in the distributed network [34, 31].
Naor and Stockmeyer [34] and Mayer, Naor and Stockmeyer [31]investigate the question of what can be
computed under these constraints, and show that there are nontrivial problems with such algorithms. Several
more recent works investigate local algorithms for variousproblems, including coloring, maximal indepen-
dent set, dominating set (some examples are in [25, 26, 24, 27, 23, 22, 39, 9, 10, 40]). Although all of these
algorithms are distributed algorithms, those that use constant rounds yield (sequential) local computation
algorithms via the previously mentioned reduction of Parnas and Ron [36].1

There has been much recent interest among the sublinear timealgorithms community in devising local
algorithms for problems on constant degree graphs and othersparse optimization problems. The goals of
these algorithms have been to approximate quantities such as the optimal vertex cover, maximal matching,
maximum matching, dominating set, sparse set cover, sparsepacking and cover problems [36, 26, 30, 35,
18, 42]. One feature of these algorithms is that they show howto construct an oracle which for each
vertex returns whether it part of the solution whose size is being approximated – for example, whether it
is in the vertex cover or maximal matching. Their results show that this oracle can be implemented in
time independent of the size of the graph (depending only on the maximum degree and the approximation
parameter). However, because their goal is only to compute an approximation of their quantity, they can
afford to err on a small fraction of their local computations. Thus, their oracle implementations give local
computation algorithms for finding relaxed solutions to thethe optimization problems that they are designed
for. For example, constructing a local computation algorithm using the oracle designed for estimating the
size of a maximal independent set in [30] yields a large independent set, but not necessarily a maximal

1Note that the parallel algorithms of Luby [29], Alon [2] and Moser and Tardos [33] do not automatically yield local algorithms
via this transformation since their parallel running timesaret = Ω(log n).
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independent set. Constructing a local computation algorithm using the oracle designed for estimating the
size of the vertex cover [36, 30, 35] yields a vertex cover whose size is guaranteed to be only slightly larger
than what is given by the2-approximate algorithm being emulated – namely, by a multiplicative factor of at
most2 + δ (for anyδ > 0).

Recently, local algorithms have been demonstrated to be applicable for computations on the web graph.
In [19, 12, 38, 8, 7], local algorithms are given which, for a given vertexv in the web graph, computes an
approximation tov’s personalized PageRank vector and computes the vertices that contribute significantly
to v’s PageRank. In these algorithms, evaluations are made onlyto the nearby neighborhood ofv, so
that the running time depends on the accuracy parameters input to the algorithm, but there is no running
time dependence on the size of the web-graph. Local graph partitioning algorithms have been presented in
[41, 8] which find subsets of vertices whose internal connections are significantly richer than their external
connections. The running time of these algorithms depends on the size of the cluster that is output, which
can be much smaller than the size of the entire graph.

Though most of the previous examples are for sparse graphs orother problems which have some sort of
sparsity, local computation algorithms have also been provided for problems on dense graphs. The property
testing algorithms of [17] use a small sample of the vertices(a type of a core-set) to define a good graph
coloring or partition of a dense graph. This approach yieldslocal computation algorithms for finding a large
partition of the graph and a coloring of the vertices which has relatively few edge violations.

The applicability of local computation algorithms is not restricted to combinatorial problems. One
algebraic paradigm that has local computation algorithms is that oflocally decodable codes[21], described
by the following scenario: Supposem is a string with encodingy = E(m). On inputx, which is close in
Hamming distance toy, the goal of locally decodable coding algorithms is to provide quick access to the
requested bits ofm. More generally, thereconstructionmodels described in [1, 13, 37] describe scenarios
where a string that has a certain property, such as monotonicity, is assumed to be corrupted at a relatively
small number of locations. LetP be the set of strings that have the property. The reconstruction algorithm
gets as input a stringx which is close (inL1 norm), to some stringy in P . For various types of properties
P , the above works construct algorithms which give fast queryaccess to locations iny.

1.2 Followup work

In a recently work, Alon et al. [6] further show that the localcomputation algorithms in this work can be
modified to not only run in polylogarithmic time but also in polylogarithmic space. Basically, they show
that all the problems studied in this paper can be solved in a unified local algorithmic framework as follows:
first the algorithm generates some random bits on a read-onlyrandom tape of size at most polylogarithmic
in the input, which may be thought as the “core” of a solutiony ∈ F (x); then each bit of the solutiony can
be computeddeterministicallyby first querying a few bits on the random tape and then performing some
fast computations on these random bits. The main technical tools used in [6] are pseudorandomness, the
random ordering idea of [35] and the theory of branching processes.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we present our computation model. Some prelim-
inaries and notations that we use throughout the paper appear in Section 3. We then give local computation
algorithms for the maximal independent set problem and the radio network broadcast scheduling problem
in Section 4 and Section 5, respectively. In Section 6 we showhow to use the parallel algorithmic version of

3



the Lovász Local Lemma to give local computation algorithmsfor finding the coloring of nodes in a hyper-
graph. Finally, in Section 7, we show how to find settings of variables according to a satisfying assignment
of ak-CNF formula.

2 Local Computation Algorithms: the model

We present our model oflocal computation algorithmsfor sequential computations of search problems,
although computations of arbitrary functions and optimization functions also fall within our framework.

2.1 Model Definition

We writen = |x| to denote the length of the input.

Definition 2.1. For input x, let F (x) = {y | y is a valid solution for input x}. Thesearch problemis to
find anyy ∈ F (x).

In this paper, the description of bothx andy are assumed to be very large.

Definition 2.2 ((t, s, δ)-local algorithms). Let x andF (x) be defined as above. A(t(n), s(n), δ(n))-local
computation algorithmA is a (randomized) algorithm which implements query access to an arbitraryy ∈
F (x) and satisfies the following:A gets a sequence of queriesi1, . . . , iq for anyq > 0 and after each query
ij it must produce an outputyij satisfying that the outputsyi1 , . . . , yiq are substrings of somey ∈ F (x).
The probability of success over allq queries must be at least1 − δ(n). A has access to a random tape
and local computation memory on which it can perform currentcomputations as well as store and retrieve
information from previous computations. We assume that theinput x, the local computation tape and any
random bits used are all presented in the RAM word model, i.e., A is given the ability to access a word of
any of these in one step. The running time ofA on any query is at mostt(n), which is sublinear inn, and the
size of the local computation memory ofA is at mosts(n). Unless stated otherwise, we always assume that
the error parameterδ(n) is at most some constant, say,1/3. We say thatA is a strongly local computation
algorithmif both t(n) ands(n) are upper bounded bylogc n for some constantc.

Definition 2.3. LetSLC be the class of problems that have strongly local computation algorithms.

Note that when|F (x)| > 1, they according to whichA outputs may depend on the previous queries toA
as well as any random bits available toA. Also, we implicitly assume that the size of the outputy is upper-
bounded by some polynomial in|x|. The definition of local-computation algorithms rules out the possibility
that the algorithms accomplish their computation by first computing the entire output. Analogous definitions
can be made for a bit model. In principle, the model applies togeneral computations, including function
computations, search problems and optimization problems of any type of object, and in particular, the input
is not required by the model to be in a specific input format.

The model presented here is intended be more general, and thus differs from other local computation
models in the following ways. First, queries and processingtime have the same cost. Second, the focus
is on problems with slightly looser running time bound requirements – polylogarithmic dependence on the
length of the input is desirable, but sublinear time in the length of the input is often nontrivial and can be
acceptable. Third, the model places no restriction on the ability of the algorithm to access the input, as is the
case in the distributed setting where the algorithm may onlyquery nodes in its neighborhood (although such
restrictions may be implied by the representation of the input). As such, the model may be less appropriate
for certain distributed algorithms applications.
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Definition 2.4 (Query oblivious). We say an LCAA is query order oblivious(query obliviousfor short) if
the outputs ofA do not depend on the order of the queries but depend only on theinput and the random bits
generated by the random tape ofA.

Definition 2.5 (Parallelizable). We say an LCAA is parallelizableif A supports parallel queries.

We remark that not all local algorithms in this paper are query oblivious or easily parallelizable. How-
ever, this is remedied in [6].

2.2 Relationship with other distributed and parallel models

A question that immediately arises is to characterize the problems to which the local-computation algorithm
model applies. In this subsection, we note the relationshipbetween problems solvable with local computa-
tion algorithms and those solvable with fast parallel or distributed algorithms.

From the work of [36] it follows that problems computable by fast distributed algorithms also have local
computation algorithms.

Fact 2.6([36]). If F is computable int(n) rounds on a distributed network in which the processor intercon-
nection graph has bounded degreed, thenF has adt(n)-local computation algorithm.

Parnas and Ron [36] show this fact by observing that for any vertex v, if we run a distributed algorithm
A on the subgraphGk,v (the vertices of distance at mostk from v), then it makes the same decision about
vertexv as it would if we would runD for k rounds on the whole graphG. They then give a reduction from
randomized distributed algorithms to sublinear algorithms based on this observation.

Similar relationships hold in other distributed and parallel models, in particular, for problems com-
putable by low depth bounded fan-in circuits.

Fact 2.7. If F is computable by a circuit family of deptht(n) and fan-in bounded byd(n), thenF has a
d(n)t(n)-local computation algorithm.

Corollary 2.8. NC0 ⊆ SLC.

In this paper we show solutions to several problemsNC1 via local computation algorithms. However,
this is not possible in general as:

Proposition 2.9. NC1 * SLC.

Proof. Consider the problemn-XOR, theXOR of n inputs. This problem is inNC1. However, no sublinear
time algorithm can solven-XORbecause it is necessary to read alln inputs.

In this paper, we give techniques which allow one to construct local computation algorithms based on
algorithms for finding certain combinatorial structures whose existence is guaranteed by constructive proofs
of the LLL in [11, 2]. It seems that our techniques do not extend to all such problems. An example of such a
problem isEven cycles in a balanced digraph: find an even cycle in a digraph whose maximum in-degree is
not much greater that the minimum out-degree. Alon [2] showsthat, under certain restriction on the input
parameters, the problem is inNC1. The local analogue of this question is to determine whethera given
edge (or vertex) is part of an even cycle in such a graph. It is not known how to solve this quickly.
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2.3 Locality-preserving reductions

In order to understand better which problems can be solved locally, we definelocality-preserving reductions,
which capture the idea that if problemB is locally computable, and problemA has a locality-preserving
reduction toB thenA is also locally computable.

Definition 2.10. We say thatA is (t′(n), s′(n))-locality-preserving reducibletoB via reductionH : Σ∗ →
Γ∗, whereΣ andΓ are the alphabets ofA andB respectively, ifH satisfies:

1. x ∈ A ⇐⇒ H(x) ∈ B.

2. H is (t′(n), s′(n), 0)-locally computable; that is, every word ofH(x) can be computed by querying
at mostt(n) words ofx.

Theorem 2.11. If A is (t′(n), s′(n), 0)-locality-preserving reducible toB and B is (t(n), s(n), δ(n))-
locally computable, thenA is (t(n) · t′(n), s(n) + s′(n), δ(n))-locally computable.

Proof. As A is (t′(n), s′(n), 0)-locality-preserving reducible toB, to determine whetherx ∈ A, it suffices
to determine ifH(x) ∈ B. Each word ofH(x) can be computed in timet′(n) and using spaces′(n), and
we need to access at mostt(n) such words to determine whetherH(x) ∈ B. Note that we can reuse the
space for computingH(x).

3 Preliminaries

Unless stated otherwise, all logarithms in this paper are tothe base2. LetN = {0, 1, . . .} denote the set of
natural numbers. Letn ≥ 1 be a natural number. We use[n] to denote the set{1, . . . , n}.

Unless stated otherwise, all graphs are undirected. LetG = (V,E) be a graph. Thedistancebetween
two verticesu andv in V (G), denoted bydG(u, v), is the length of a shortest path between the two vertices.
We writeNG(v) = {u ∈ V (G) : (u, v) ∈ E(G)} to denote the neighboring vertices ofv. Furthermore, let
N+

G (v) = N(v) ∪ {v}. Let dG(v) denote the degree of a vertexv. Whenever there is no risk of confusion,
we omit the subscriptG from dG(u, v), dG(v) andNG(v).

The celebrated Lovász Local Lemma plays an important role inour results. We will use the simple
symmetric version of the lemma.

Lemma 3.1(Lovász Local Lemma [15]). LetA1, A2, . . . , An be events in an arbitrary probability space.
Suppose that the probability of each of thesen events is at mostp, and suppose that each eventAi is mutually
independent of all but at mostd of other eventsAj . If ep(d+ 1) ≤ 1, then with positive probability none of
the eventsAi holds, i.e.,

Pr[∩n
i=1Āi] > 0.

Several of our proofs use the following graph theoretic structure:

Definition 3.2 ([11]). Let G = (V,E) be an undirected graph. DefineW ⊆ V (G) to be a3-tree if the
pairwise distances of all vertices inW are each at least3 and the graphG∗ = (W,E∗) is connected, where
E∗ is the set of edges between each pair of vertices whose distance is exactly3 in G.
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4 Maximal Independent Set

An independent set (IS) of a graphG is a subset of vertices such that no two vertices are adjacent. An
independent set is called amaximal independent set(MIS) if it is not properly contained in any other IS.
It is well-known that a sequential greedy algorithm finds an MIS S in linear time: Order the vertices inG
as1, 2, · · · , n and initializeS to the empty set; fori = 1 to n, if vertex i is not adjacent to any vertex in
S, addi to S. The MIS obtained by this algorithm is call thelexicographically first maximal independent
set (LFMIS). Cook [14] showed that deciding if vertexn is in the LFMIS isP -complete with respect to
logspace reducibility. On the other hand, fast randomized parallel algorithms for MIS were discovered in
1980’s [20, 29, 3]. The best known distributed algorithm forMIS runs inO(log∗ n) rounds with a word-size
of O(log n) [16]. By Fact 2.6, this implies adO(log∗ n·logn) local computation algorithm. In this section, we
give a query oblivious and parallelizable local computation algorithm for MIS based on Luby’s algorithm
as well as the techniques of Beck [11], and runs in timeO(dO(d log d) · log n).

Our local computation algorithm is partly inspired by the work of Marko and Ron [30]. There they
simulate the distributed algorithm for MIS of Luby [29] in order toapproximatethe minimum number of
edges one need to remove to make the input graph free of some fixed graphH. In addition, they show that
similar algorithm can also approximate the size of a minimumvertex cover. We simulate Luby’s algorithm
to find anexact and consistentlocal solution for the MIS problem. Moreover, the ingredient of applying
Beck’s idea to run a second stage greedy algorithm on disconnected subgraphs seems to be new.

4.1 Overview of the algorithm

LetG be an undirected graph onn vertices and with maximum degreed. On input a vertexv, our algorithm
decides whetherv is in a maximal independent set using two phases. In Phase1, we simulate Luby’s parallel
algorithm for MIS [29] via the reduction of [36]. That is, in each round,v tries to put itself into the IS with
some small probability. It succeeds if none of its neighborsalso tries to do the same. We run our Phase1
algorithm forO(d log d) rounds. As it turns out, after Phase1, most vertices have been either added to the
IS or removed from the graph due to one (or more) of their neighbors being in the IS. Our key observation is
that – following a variant of the argument of Beck [11] – almost surely, all the connected components of the
surviving vertices after Phase1 have size at mostO(log n). This enables us to perform the greedy algorithm
for the connected componentv lies in.

Our main result in this section is the following.

Theorem 4.1. Let G be an undirected graph withn vertices and maximum degreed. Then there is a
(O(dO(d log d) · log n), O(n), 1/n)-local computation algorithm which, on input a vertexv, decides ifv is in
a maximal independent set. Moreover, the algorithm will give a consistent MIS for every vertex inG.

4.2 Phase 1: simulating Luby’s parallel algorithm

Figure 1 illustrates Phase1 of our local computation algorithm for Maximal IndependentSet. Our algorithm
simulates Luby’s algorithm forr = O(d log d) rounds. Every vertexv will be in one of three possible states:

• “selected” —v is in the MIS;

• “deleted” — one ofv’s neighbors is selected andv is deleted from the graph; and

• “⊥” — v is not in either of the previous states.

7



Initially, every vertex is in state “⊥”. Once a vertex becomes “selected” or “deleted” in some round, it
remains in that state in all the subsequent rounds.

The subroutineMIS(v, i) returns the state of a vertexv in roundi. In each round, if vertexv is still in
state “⊥”, it “chooses” itself to be in the MIS with probability1/2d. At the same time, all its neighboring
vertices also flip random coins to decide if they should “choose” themselves.2 If v is the only vertex in
N+(v) that is chosen in that round, we addv to the MIS (“select”v) and “delete” all the neighbors ofv.
However, the state ofv in roundi is determined not only by the random coin tosses of vertices in N+(v)
but also by these vertices’ states in roundi − 1. Therefore, to computeMIS(v, i), we need to recursively
call MIS(u, i − 1) for everyu ∈ N+(v). 3 By induction, the total running time of simulatingr rounds is
dO(r) = dO(d log d).

If after Phase1 all vertices are either “selected” or “deleted” and no vertex remains in “⊥” state, then
the resulting independent set is a maximal independent set.In fact, one of the main results in [29] is that this
indeed is the case if we run Phase1 for expectedO(log n) rounds. Our main observation is, after simulating
Luby’s algorithm for onlyO(d log d) (a constant independent of the sizen) rounds we are already not far
from a maximal independent set. Specifically, if vertexv returns “⊥” after Phase1 of the algorithm, we call
it a survivingvertex. Now consider the subgraph induced on the surviving vertices. Following a variant of
Beck’s argument [11], we show that, almost surely, no connected component of surviving vertices is larger
thanpoly(d) · log n.

Let Av be the event that vertexv is a surviving vertex. Note that eventAv depends on the random coin
tossesv andv’s neighborhood of radiusr made during the firstr rounds, wherer = O(d log d). To get
rid of the complication caused by this dependency, we consider another set of events generated by a related
random process.

Consider a variant of our algorithmMIS, which we callMISB as shown in Fig 2. InMISB, every
vertexv has two possible states: “picked” and “⊥”. Initially, every vertex is in state “⊥”. Once a vertex
becomes “picked” in some round, it remains in the “picked” state in all the subsequent rounds.MISB and
MIS are identical except that, inMISB , if in some round a vertexv is the only vertex inN+(v) that is
chosen in that round, the state ofv becomes “picked”, but we do not change the states ofv’s neighboring
vertices. In the following rounds,v keeps flipping coins and tries to choose itself. Moreover, weassume
that, for any vertexv and in every round, the randomness used inMIS andMISB are identical as long as
v has not been “selected” or “deleted” inMIS. If v is “selected” or “deleted” inMIS, then we flip some
additional coins forv in the subsequent rounds to runMISB. We letBv be the event thatv is in state “⊥”
after runningMISB for r rounds (that is,v is never get picked during allr rounds ofMISB).

Claim 4.2. Av ⊆ Bv for every vertexv.4

Proof. This follows from the facts that a necessary condition forAv to happen isv never get “selected” in
any of ther rounds and deleting the neighbors ofv from the graph can never decrease the probability thatv
gets “selected” in any round. Specifically, we will show thatBv ⊆ Av.

Note thatBv = ∪r
i=1B

(i)
v , whereB

(i)
v is the event thatv is picked for the first time in roundi in MISB

(v may get picked again in some subsequent rounds). Similarly,Av = ∪r
i=1A

(i)
v , whereA

(i)
v is the event

2We store all the randomness generated by each vertex in each round so that our answers will be consistent. However, we
generate the random bits only when the state of corresponding vertex in that round is requested.

3A subtle point in the subroutineMIS(v, i) is that when we callMIS(v, i), we only check if vertexv is “selected” or not in
roundi. If v is “deleted” in roundi, we will not detect this until we callMIS(v, i+ 1), which checks if some neighboring vertex
of v is selected in roundi. However, such “delayed” decisions will not affect our analysis of the algorithm.

4Strictly speaking, the probability spaces in whichAv andBv live are different. Here the claim holds for any fixed outcomes of
all the additional random coinsMISB flips.
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MAXIMAL INDEPENDENTSET: PHASE 1
Input: a graphG and a vertexv ∈ V
Output: {“true”, “false”, “⊥”}

For i from 1 to r = 20d log d
(a) If MIS(v, i) = “selected”

return “true”
(b) Else ifMIS(v, i) = “deleted”

return “false”
(c) Else

return “⊥”

MIS(v, i)
Input: a vertexv ∈ V and a round numberi
Output: {“selected”, “deleted”, “⊥”}
1. If v is marked “selected” or “deleted”

return “selected” or “deleted”, respectively
2. For everyu in N(v)

If MIS(u, i− 1) = “selected”
markv as “ deleted” and return “deleted”

3. v chooses itself independently with probability12d
If v chooses itself

(i) For everyu in N(v)
If u is marked “⊥”, u chooses itself independently with probability12d

(ii) If v has a chosen neighbor
return “⊥”

(iii) Else
markv as “selected” and return “selected”

Else
return “⊥”

Figure 1: Local Computation Algorithm for MIS: Phase1

MISB(v, i)
Input: a vertexv ∈ V and a round numberi
Output: {“picked”, “⊥”}
1. If v is marked “picked”

return “picked”
2. v chooses itself independently with probability12d

If v chooses itself
(i) For everyu in N(v)

u chooses itself independently with probability12d
(ii) If v has a chosen neighbor

return “⊥”
(iii) Else

markv as “picked” and return “picked”
Else

return “⊥”

Figure 2: AlgorithmMISB
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that v is selected or deleted in roundi in MIS. Hence, we can write, for everyi, A
(i)
v = Sel

(i)
v ∪ Del

(i)
v ,

whereSel(i)v andDel
(i)
v are the events that, inMIS, v gets selected in roundi andv get deleted in roundi,

respectively.

We prove by induction oni that∪i
j=1B

(j)
v ⊆ ∪i

j=1A
(j)
v . This is clearly true fori = 1 asB

(1)
v = Sel

(1)
v .

Assume it holds for all smaller values ofi. Consider any fixed random coin tosses of all the vertices in the
graph before roundi such thatv is not “selected” or “deleted” before roundi. Then by induction hypothesis,
v is not picked inMISB before roundi either. LetN (i)(v) be the set of neighboring nodes ofv that are in
state “⊥” in round i in algorithmMISB. Clearly,N (i)(v) ⊆ N(v).

Now for the random coins tossed in roundi, we have

B
(i)
v = {v chooses itself in roundi} ∩w∈N(v) {w does not chooses itself in roundi}

⊆ {v chooses itself in roundi} ∩w∈N(i)(v) {w does not chooses itself in roundi}

= Sel(i)v .

Therefore,B
(i)
v ⊆ Sel

(i)
v ⊆ A

(i)
v . This finishes the inductive step and thus completes the proof of the

claim.

As a simple corollary, we immediately have

Corollary 4.3. For any vertex setW ⊂ V (G), Pr[∩v∈WAv] ≤ Pr[∩v∈WBv].

A graphH on the verticesV (G) is called adependency graphfor {Bv}v∈V (G) if for all v the eventBv

is mutually independent of allBu such that(u, v) /∈ H.

Claim 4.4. The dependency graphH has maximum degreed2.

Proof. Since for every vertexv, Bv depends only on the coin tosses ofv and vertices inN(v) in each of the
r rounds, the eventBv is independent of allAu such thatdH(u, v) ≥ 3. The claim follows as there are at
mostd2 vertices at distance1 or 2 from v.

Claim 4.5. For everyv ∈ V , the probability thatBv occurs is at most1/8d3.

Proof. The probability that vertexv is chosen in roundi is 1
2d . The probability that none of its neighbors is

chosen in this round is(1− 1
2d )

d(v) ≥ (1− 1
2d )

d ≥ 1/2. Since the coin tosses ofv and vertices inN(v) are
independent, the probability thatv is selected in roundi is at least 12d · 1

2 = 1
4d . We get that the probability

thatBv happens is at most(1− 1
4d )

20d log d ≤ 1
8d3

.

Now we are ready to prove the main lemma for our local computation algorithm for MIS.

Lemma 4.6. After Phase1, with probability at least1 − 1/n, all connected components of the surviving
vertices are of size at mostO(poly(d) · log n).

Proof. Note that we may upper bound the probability that all vertices in W are surviving vertices by the
probability that all the events{Bv}v∈W happen simultaneously:

Pr[all vertices inW are surviving vertices]

= Pr[∩v∈WAv]

≤ Pr[∩v∈WBv].
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The rest of the proof is similar to that of Beck [11]. We bound the number of3-trees inH (the dependency
graph for events{Bv}) of 3-trees of sizew as follows.

LetH3 denote the “distance-3” graph ofH, that is, verticesu andv are connected inH3 if their distance
in H is exactly3. We claim that, for any integerw > 0, the total number of3-trees of sizew in H3 is at
mostn(4d3)w. To see this, first note that the number of non-isomorphic trees onw vertices is at most4w

(see e.g. [28]). Now fix one such tree and denote it byT . Label the vertices ofT by v1, v2, . . . , vw in a way
such that for anyj > 1, vertexvj is adjacent to somevi with i < j in T . How many ways are there to
choosev1, v2, . . . , vw from V (H) so that they can be the set of vertices inT? There aren choices forv1.
As H3 has maximum degreeD = d(d − 1)2 < d3, therefore there are at mostD possible choices forv2.
and by induction there are at mostnDw−1 < nd3w possible vertex combinations forT . Since there can be
at most4w differentT ’s, it follows that there are at mostn(4d3)w possible3-trees inG.

Since all vertices inW are at least3-apart, all the events{Bv}v∈W are mutually independent. Therefore
we may upper bound the probability that all vertices inW are surviving vertices as

Pr[∩v∈WBv]

=
∏

v∈W

Pr[Bv]

≤

(

1

8d3

)w

,

where the last inequality follows from Claim 4.5.
Now the expected number of3-trees of sizew is at most

n(4d3)w
(

1

8d3

)w

= n2−w ≤ 1/n,

for w = c1 log n, wherec1 is some constant. By Markov’s inequality, with probabilityat least1−1/n, there
is no 3-tree of size larger thanc1 log n. By a simple variant of the4-tree Lemma in [11] (that is, instead
of the “4-tree lemma”, we need a “3-tree lemma” here), we see that a connected component of sizes in H
contains a3-tree of size at leasts/d3. Therefore, with probability at least1 − 1/n, there is no connected
surviving vertices of size at leastO(poly(d) · log n) at the end of Phase1 of our algorithm.

4.3 Phase 2: Greedy search in the connected component

If v is a surviving vertex after Phase1, we need to perform Phase2 of the algorithm. In this phase, we
first explorev’s connected component,C(v), in the graph induced onG by all the vertices in state “⊥”. If
the size ofC(v) is larger thanc2 log n for some constantc2 which depends only ond, we abort and output
“Fail”. Otherwise, we perform the simple greedy algorithm described at the beginning of this section to find
the MIS inC(v). To check if any single vertex is in state “⊥”, we simply run our Phase1 algorithm on this
vertex and the running time isdO(d log d) for each vertex inC(v). Therefore the running time for Phase2 is
at mostO(|C(v)|) · dO(d log d) ≤ O(dO(d log d) · log n). As this dominates the running time of Phase1, it is
also the total running time of our local computation algorithm for MIS.

Finally, as we only need to store the random bits generated byeach vertex during Phase1 of the algorithm
and bookkeep the vertices in the connected component duringPhase2 (which uses at mostO(log n) space),
the space complexity of the local computation algorithm is thereforeO(n).
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5 Radio Networks

For the purposes of this section, aradio networkis an undirected graphG = (V,E) with one processor
at each vertex. The processors communicate with each other by transmitting messages in a synchronous
fashion to their neighbors. In each round, a processorP can either receive a message, send messages to all
of its neighbors, or do nothing. We will focus on the radio network that is referred to as aType II network:5

in [2]. P receives a message from its neighborQ if P is silent, andQ is the only neighbor ofP that transmits
in that round. Our goal is to check whether there is a two-way connection between each pair of adjacent
vertices. To reach this goal, we would like to find a schedule such that each vertex inG broadcasts in one of
theK rounds andK is as small as possible.

Definition 5.1 (Broadcast function). LetG = (V,E) be an undirected graph. We sayFr : V → [K] is a
broadcast functionfor the networkG if the following holds:

1. Every vertexv broadcasts once and only once in roundFr(v) to all its neighboring vertices;

2. No vertex receives broadcast messages from more than one neighbor in any round;

3. For every edge(u, v) ∈ G, u andv broadcast in distinct rounds.

Let ∆ be the maximum degree ofG. Alon et. al. [4, 5] show that the minimum number of roundsK
satisfiesK = Θ(∆ log∆). Furthermore, Alon [2] gives anNC1 algorithm that computes the broadcast
functionFr with K = O(∆ log∆). Here we give a local computation algorithm for this problem, i.e. given
a degree-bounded graphG = (V,E) in the adjacency list form and a vertexv ∈ V , we output the round
number in whichv broadcasts in logarithmic time. Our solution isconsistentin the sense that all answers
our algorithm outputs to the variousv ∈ V agree with some broadcast scheduling functionFr.

LetG1,2 be the “square graph” ofG; that is,u andv are connected inG1,2 if and only if their distance in
G is either one or two. Our algorithm is based on finding anindependent set coverof G1,2 which simulates
Luby’s Maximal Independent Set algorithm [29]. Note that ifwe denote the maximum degree ofG1,2 by d,
thend ≤ ∆2.

Definition 5.2 (Independent Set Cover). Let H = (V,E) be an undirected graph. A collection of vertex
subsets{S1, . . . , St} is an independent set cover(ISC) forH if these vertex sets are pairwise disjoint, each
Si is an independent set inH and their union equalsV . We callt thesizeof ISC{S1, . . . , St}.

Fact 5.3. If {S1, . . . , St} is an ISC forG1,2, then the function defined byFr(v) = i iff v ∈ Si is a broadcast
function.

Proof. First note that, since the union of{Si} equalsV , Fr(v) is well-defined for everyv ∈ G. That is,
everyv broadcasts in some round in[t], hence both directions of every edge are covered in some round. As
v can only be in oneIS, it only broadcasts once. Second, for any two verticesu andv, if d(u, v) ≥ 3,
thenN(u) ∩ N(v) = ∅. It follows that, if in each round all the vertices that broadcast are at least3-apart
from each other, no vertex will receive more than one messagein any round. Clearly the vertices in an
independent set ofG1,2 have the property that all the pairwise distances are at least 3.

The following is a simple fact about ISCs.

5The other model, Type I radio network, is more restrictive: AprocessorP receives a message from its neighborQ in a given
round only ifP is silent,Q transmits andP chooses to receive fromQ in that round.

12



Fact 5.4. For every undirected graphH on n vertices with maximum degreed, there is an ISC of size at
mostd. Moreover, such an ISC can be found by a greedy algorithm in time at mostO(dn).

Proof. We repeatedly apply the greedy algorithm that finds an MIS in order to find an ISC. Recall that the
greedy algorithm repeats the following until the graph has no unmarked vertex: pick an unmarked vertexv,
add it to the IS and mark off all the vertices inN(v). Clearly each IS found by the greedy algorithm has
size at least n

d+1 . To partition the vertex set into an ISC, we run this greedy algorithm to find an IS which
we callS1, and delete all the vertices inS1 from the graph. Then we run the greedy algorithm on the new
graph again to getS2, and so on. After running at mostd rounds (since each round reduces the maximum
degree of the graph by at least one), we partition all the vertices into an ISC of size at mostd and the total
running time is at mostO(dn).

Our main result in this section is a local computation algorithm that computes an ISC of sizeO(d log d)
for any graph of maximum degreed. On input a vertexv, our algorithm outputs the indexi of a vertex subset
Si to whichv belongs, in an ISC ofH. We will call i theround numberof v in the ISC. By Fact 5.3, applying
this algorithm to graphG1,2 gives a local computation algorithm that computes a broadcast function forG.

5.1 A local computation algorithm for ISC

Our main result for computing an ISC is summarized in the following theorem.

Theorem 5.5.LetH be an undirected graph onn vertices with maximum degreed. Then there is a(poly(d)·
log n,O(n), 1/n)-local computation algorithm which, on input a vertexv, computes the round number ofv
in an ISC of size at mostO(d log d). Moreover, the algorithm will give a consistent ISC for every vertex in
H.

On input a vertexv, our algorithm computes the round number ofv in two phases. In Phase 1 we
simulate Luby’s algorithm for MIS [29] forO(d log d) rounds. At each round,v tries to put itself in the
independent set generated in that round. That is,v chooses itself with probability1/2d and if none of its
neighbors choose themselves, thenv is selected in that round and we output that round number forv. As
we show shortly, after Phase 1, most vertices will be assigned a round number. We sayv survivesif it is not
assigned a round number. We consider the connected component containingv after one deletes all vertices
that do not survive from the graph. Following an argument similar to that of Beck [11], almost surely, all
such connected components of surviving vertices after Phase 1 have size at mostO(log n). This enables us,
in Phase 2, to perform the greedy algorithm onv’s connected component to deterministically compute the
round number ofv in timeO(log n).

5.1.1 Phase 1 algorithm

Phase 1 of our local computation algorithm for computing an ISC is shown in Figure 3.6

For everyv ∈ V , letAv be the event that vertexv returns “⊥”, i.e. v is not selected afterr rounds. We
call such av a survivingvertex. After deleting allv that do not survive from the graph, we are interested in
bounding the size of the largest remaining connected component. Clearly eventAv depends on the random
coin tosses ofv andv’s neighboring vertices in all ther rounds. A graphH on the verticesV (H) (the indices

6In 2(b), we flip random coins foru even ifu is selected in a previous round. We do this for the technical reason that we want
to rid the dependency ofv on nodes that are not neighbors to simplify our analysis. Thus our analysis is overly pessimistic since if
selected neighbors stop choosing themselves, it only increases the chance ofv being selected.
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INDEPENDENTSET COVER: PHASE 1
Input: a graphH and a vertexv ∈ V
Output: the round number ofv in the ISC or “⊥”
1. Initialize all vertices inN+(v) to state “⊥”
2. Fori = 1 to r = 20d log d

(a) If v is labeled "⊥"
v chooses itself independently with probability12d

(b) If v chooses itself
(i) For everyu ∈ N(v)

(even ifu is labeled “selected in roundj”
for somej < i, we still flip random coins for it)
u chooses itself independently with probability12d

(ii) If v has a chosen neighbor,
v unchooses itself

(iii) Else
v is labeled “selected in roundi”
returni

3. return “⊥”

Figure 3: Algorithm for finding an Independent Set Cover: Phase 1.

for theAv) is called adependency graphfor {Av}v∈V (H) if for all v the eventAv is mutually independent
of all Au with (u, v) /∈ H.

The following two claims are identical to Claim 4.4 and Claim4.5 in Section 4 respectively, we therefore
omit the proofs.

Claim 5.6. The dependency graphH has maximum degreed2.

Claim 5.7. For everyv ∈ V , the probability thatAv occurs is at most1/8d3.

The following observation is crucial in our local computation algorithm.

Lemma 5.8. After Phase 1, with probability at least1 − 1/n, all connected components of the surviving
vertices are of size at mostO(poly(d) · log n).

Proof. The proof is almost identical to that of Lemma 4.6 but is only simpler: we can directly upper bound
the probability

Pr[all vertices inW are surviving vertices] = Pr[∩v∈WAv]

by way of Beck [11] without resorting to any other random process. We omit the proof.

5.1.2 Phase 2 algorithm

If v is a surviving vertex after Phase 1, we perform Phase 2 of the algorithm. In this phase, we first explore
the connected component,C(v), that the surviving vertexv lies in. If the size ofC(v) is larger thanc2 log n
for some constantc2(d) depending only ond, we abort and output “Fail”. Otherwise, we perform the simple
greedy algorithm described in Fact 5.4 to partitionC(v) into at mostd subsets deterministically. The running
time for Phase 2 is at mostpoly(d) · log n. Since any independent set of a connected component can be
combined with independent sets of other connected components to form an IS for the surviving vertices, we
conclude that the total size of ISC we find isO(d log d) + d = O(d log d).
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5.2 Discussions

Now a simple application of Theorem 5.5 toG1,2 gives a local computation algorithm for the broadcast
function.

Theorem 5.9. Given a graphG = (V,E) withn vertices and maximum degree∆ and a vertexv ∈ V , there
exists a(poly(∆) · log n,O(n), 1/n)-local computation algorithm that computes a broadcast function with
at mostO(∆2 log∆) rounds. Furthermore, the broadcast function it outputs is consistent for all queries to
the vertices of the graph.

We note our round number bound is quadratically larger than that of Alon’s parallel algorithm [2]. We
do not know how to turn his algorithm into a local computationalgorithm.

6 Hypergraph two-coloring

A hypergraphH is a pairH = (V,E) whereV is a finite set whose elements are callednodesor vertices,
andE is a family of non-empty subsets ofV , called hyperedges. A hypergraph is calledk-uniform if
each of its hyperedges contains preciselyk vertices. Atwo-coloring of a hypergraphH is a mapping
c : V → {red, blue} such that no hyperedge inE is monochromatic. If such a coloring exists, then we say
H is two-colorable. We assume that each hyperedge inH intersects at mostd other hyperedges. LetN be
the number of hyperedges inH. Here we think ofk andd as fixed constants and all asymptotic forms are
with respect toN . By the Lovász Local Lemma, whene(d+1) ≤ 2k−1, the hypergraphH is two-colorable.

Let m be the total number of vertices inH. Note thatm ≤ kN , som = O(N). For any vertexx ∈ V ,
we useE(x) to denote the set of hyperedgesx belongs to. For convenience, for any hypergraphH = (V,E),
we define anm-by-N vertex-hyperedge incidence matrixM such that, for any vertexx and hyperedgee,
Mx,e = 1 if e ∈ E(x) andMx,e = 0 otherwise. A natural representation of the input hypergraph H is this
vertex-hyperedge incidence matrixM. Moreover, since we assume bothk andd are constants, the incidence
matrixM is necessarily very sparse. Therefore, we further assume that the matrixM is implemented via
linked lists for each row (that is, vertexx) and each column (that is, hyperedgee).

Let G be thedependency graphof the hyperedges inH. That is, the vertices of the undirected graphG
are theN hyperedges ofH and a hyperedgeEi is connected to another hyperedgeEj in G if Ei ∩ Ej 6= ∅.
It is easy to see that if the input hypergraph is given in the above described representation, then we can find
all the neighbors of any hyperedgeEi in the dependency graphG (there are at mostd of them) inO(logN)
time.

6.1 Our main result

A natural question to ask is: Given a two-colorable hypergraphH and a vertexv ∈ V (H), can we quickly
compute the coloring ofv? Here we would like the coloring to beconsistent, meaning all the answers we pro-
vide must come from thesamevalid two-coloring. Our main result in this section is, given a two-colorable
hypergraphH whose two-coloring scheme is guaranteed by the Lovász LocalLemma (with slightly weaker
parameters), we give a local computation algorithm which answers queries of the coloring of any single
vertex inpolylogN time, whereN is the number of the hyperedges inH. The coloring returned by our
oracle will agree with some two-coloring of the hypergraph with probability at least1− 1/N .
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Theorem 6.1. Letd andk be such that there exist three positive integersk1, k2 andk3 such that the follow-
ings hold:

k1 + k2 + k3 = k,

16d(d − 1)3(d+ 1) < 2k1 ,

16d(d − 1)3(d+ 1) < 2k2 ,

2e(d + 1) < 2k3 .

Then there exists a(polylogN,O(N), 1/N)-local computation algorithm which, given a hypergraphH and
any sequence of queries to the colors of vertices(x1, x2, . . . , xs), returns a consistent coloring for allxi’s
which agrees with some2-coloring ofH.

6.2 Overview of the coloring algorithm

Our local computation algorithm imitates the parallel coloring algorithm of Alon [2]. Recall that Alon’s
algorithm runs in three phases. In the first phase, we randomly color each vertex in the hypergraph following
some arbitrary ordering of the vertices. If some hyperedge hask1 vertices in one color and no vertices in the
other color, we call it adangerousedge and mark all the remaining vertices in that hyperedge astroubled.
Thesetroubledvertices will not be colored in the first phase. If the queriedvertex becomes atroubledvertex
from the coloring process of some previously queried vertex, then we run the Phase2 coloring algorithm.
There we first delete all hyperedges which have been assignedboth colors and call the remaining hyperedges
surviving edges. Then we repeat the same process again for thesurviving hyperedges, but this time a
hyperedge becomes dangerous ifk1 + k2 vertices are colored the same color and no vertices are colored by
the other color. Finally, in the third phase, we do a brute-force search for a coloring in each of the connected
components of the surviving vertices as they are of sizeO(log logN) almost surely.

A useful observation is, in the first phase of Alon’s algorithm, we can color the vertices inarbitrary
order. In particular, this order can be taken to be the order that queries to the local computation algorithm
are made in. If the coloring of a vertexx can not be determined in the first phase, then we explore the
dependency graph around the hyperedges containingx and find the connected component of thesurviving
hyperedges to perform the second phase coloring. To ensure thatall the connected components ofsurviving
hyperedgesresulting from the second phase coloring are of small sizes,we repeat the second phase colorings
independently many times until the connected components sizes are small enough. If that still can not decide
the coloring ofx, then we run the third (and final) phase of coloring, in which we exhaustively search for
a two-coloring for vertices in some very small (i.e., of sizeat mostO(log logN)) connected component in
G as guaranteed by our second phase coloring. Following Alon’s analysis, we show that with probability at
least1− 1/N , the total running time of all these three phases for any vertex inH is polylogN .

During the execution of the algorithm, each hyperedge will be in eitherinitial , safe, unsafe-1, unsafe-2,
dangerous-1 or dangerous-2 state. Vertices will be in eitheruncolored, red, blue, trouble-1 or trouble-2
state. The meanings of all these states should be clear from their names. Initially every hyperedge is in
initial state and every vertex is inuncoloredstate.

6.3 Phase 1 coloring

If x is already colored (that is,x is in eitherred or blue state), then we simply return that color. Ifx is
in the trouble-1 state, we invoke Phase2 coloring for vertexx. If x is in the trouble-2 state, we invoke
Phase3 coloring for vertexx. If x is uncolored, then we flip a fair coin to colorx red or blue with equal
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Phase1 Coloring(x)
Input: a vertexx ∈ V
Output: a color in {red, blue}
1. If x is already colored

Return the color ofx
2. If x is in trouble-1 state

ReturnPhase2 Coloring(x)
3. If x is in trouble-2 state

ReturnPhase3 Coloring(x)
4. If x is in uncoloredstate

(a) Uniformly at random choose a colorc for x from {red, blue}
(b) Update the states of all hyperedges inE(x)
(c) Return colorc

Figure 4: Phase1 coloring algorithm

probability (that is, vertexx’s state becomesred or blue, respectively). After that, we update the status of
all the hyperedges inE(x). Specifically, if someEi ∈ E(x) hask1 vertices in one color and no vertices in
the other color, then we changeEi from initial into dangerous-1 state. Furthermore, all uncolored vertices
in Ei will be changed totrouble-1 states. On the other hand, if both colors appear among the vertices of
Ei, we update the state ofEi from initial to safe. If none of the vertices in a hyperedge isuncoloredand
the hyperedge is still ininitial state (that is, it is neithersafeor dangerous-1), then we change its state to
unsafe-1. Note that if a hyperedge isunsafe-1 then all of its vertices are either colored or introuble-1 state,
and the colored vertices are monochromatic.
Running time analysis.The running time of Phase1 coloring for anuncoloredvertexx is O(kd) = O(1)
(recall that we assume bothk andd are constants). This is because vertexx can belong to at mostd + 1
hyperedges, hence there are at mostk(d+1) vertices that need to be updated during Phase1. If x is already a
coloredvertex, the running time is clearlyO(1). Finally, the running time of Phase1 coloring for atrouble-1
or trouble-2 vertex isO(1) plus the running time of Phase2 coloring orO(1) plus the running time of Phase
3 coloring, respectively.

6.4 Phase 2 coloring

During the second phase of coloring, given an input vertexx (which is necessarily atrouble-1), we first
explore the dependency graphG of the hypergraphH by keep coloring some other vertices whose colors
may have some correlation with the coloring ofx. In doing so, we grow a connected component ofsurviving-
1 hyperedges containingx in G. Here, a hyperedge is calledsurviving-1 if it is either dangerous-1 or
unsafe-1. We denote this connected component ofsurviving-1 hyperedges surrounding vertexx by C1(x).
Growing the connected component.Specifically, in order to find outC1(x), we maintain a set of hyper-
edgesE1 and a set of verticesV1. Throughout the process of exploringG, V1 is the set ofuncoloredvertices
that are contained in some hyperedge inE1. Initially E1 = E(x). Then we independently color each vertex
in V1 red or blueuniformly at random. After coloring each vertex, we update the state of every hyperedge
that contains the vertex. That is, if any hyperedgeEi ∈ V1 becomessafe, then we removeEi from V1 and
delete all the vertices that areonly contained inEi. On the other hand, once a hyperedge inV1 becomes
dangerous-2 (it hask2 vertices, all theuncoloredvertices in that hyperedge becometrouble-2 and we skip
the coloring of all such vertices. After the coloring of all vertices inV1, hyperedges inE1 are surviving
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Phase2 Coloring(x)
Input: atrouble-1 vertexx ∈ V
Output: a color in {red, blue} or FAIL
1. Start fromE(x) to exploreG in order to find the connected

components of all thesurviving-1 hyperedges aroundx
2. If the size of the component is larger thanc1 logN

Abort and returnFAIL
3. Repeat the followingO( logN

log logN
) times and stop if agoodcoloring is found

(a) Color all the vertices inC1(x) uniformly at random
(b) Explore the dependency graph ofG|S1(x)

(c) Check if the coloring isgood
4. Return the color ofx in the good coloring

Figure 5: Phase2 coloring algorithm

hyperedges. Then we check all the hyperedges inG that are adjacent to the hyperedges inE1. If any of these
hyperedges is not in thesafestate, then we add it toE1 and also add all itsuncoloredvertices toV1. Now we
repeat the coloring process described above for these newlyaddeduncoloredvertices. This exploration of
the dependency graph terminates if, either there is no more hyperedge to color, or the number ofsurviving-1
hyperedges inE1 is greater thanc1 logN , wherec1 is some absolute constant. The following Lemma shows
that, almost surely, the size ofC1(x) is at mostc1 logN .

Lemma 6.2([2]). LetS ⊆ G be the set of surviving hyperedges after the first phase. Thenwith probability
at least1 − 1

2N (over the choices of random coloring), all connected componentsC1(x) of G|S have sizes
at mostc1 logN .

Random coloring. SinceC1(x) is not connected to anysurviving-1 hyperedges inH, we can color the
vertices in the connected componentC1(x) without considering any other hyperedges that are outsideC1(x).
Now we follow a similar coloring process as in Phase1 to color the vertices inC1(x) uniformly at random
and in an arbitrary ordering. The only difference is, we ignore all the vertices that are already coloredred
or blue, and ifk1 + k2 vertices in a hyperedge get colored monochromatically, andall the rest of vertices in
the hyperedge are introuble-1 state, then this hyperedge will be indangerous-2 state and all the uncolored
vertices in it will be introuble-2 state. Analogously we defineunsafe-2 hyperedges as hyperedges whose
vertices are either colored or introuble-2 state and all the colored vertices are monochromatic. Finally, we
say a hyperedge is asurviving-2 edge if it is in eitherdangerous-2 state orunsafe-2 state.

LetS1(x) be the set of surviving hyperedges inC1(x) after all vertices inC1(x) are either colored or in
trouble-2 state. Now we explore the dependency graph ofS1(x) to find out all the connected components.
Another application of Lemma 6.2 toG|S1(x) shows that with probability at least1 − O( 1

log2 N
) (over the

choices of random coloring), all connected components inG|S1(x) have sizes at mostc2 log logN , wherec2
is some constant. We say a Phase2 coloring isgood if this condition is satisfied. Now if a random coloring
is not good, then we erase all the coloring performed during Phase2 and repeat the above coloring and
exploring dependency graph process. We keep doing this until we find a good coloring. Therefore, after
recoloring at mostO( logN

log logN ) times (and therefore with at mostpolylogN running time), we can, with

probability at least1− 1/2N2, colorC1(x) such that each connected component inG|S1(x) has size at most
c2 log logN . By the union bound, with probability at least1−1/2N , the Phase2 colorings for all connected
components find some good colorings.
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Phase3 Coloring(x)
Input: atrouble-2 vertexx ∈ V
Output: a color in {red, blue}
1. Start fromE(x) to exploreG in order to find the connected

component of all thesurviving-2 hyperedges aroundx
2. Go over all possible colorings of the connected component

and color it using a feasible coloring.
3. Return the colorc of x in this coloring.

Figure 6: Phase3 coloring algorithm

Running time analysis.Combining the analysis above with an argument similar to therunning time analysis
of Phase1 coloring gives

Claim 6.3. Phase2 coloring takes at mostpolylogN time.

6.5 Phase 3 coloring

In Phase3, given a vertexx (which is necessarilytrouble-2), we grow a connected component which includes
x as in Phase2, but ofsurviving-2 hyperedges. Denote this connected component ofsurviving-2 hyperedges
by C2(x). By our Phase2 coloring, the size ofC2(x) is no greater thanc2 log logN . We then color the
vertices in this connected component by exhaustive search.The existence of such a coloring is guaranteed
by the Lovász Local Lemma (Lemma 3.1).

Claim 6.4. The time complexity of Phase3 coloring is at mostpolylogN .

Proof. Using the same analysis as for Phase2, in timeO(log logN) we can explore the dependency graph to
grow our connected component ofsurviving-2 hyperedges. Exhaustive search of a valid two-coloring of all
the vertices inC2(x) takes time at most2O(|C2(x)|) = 2O(log logN) = polylogN , as|C2(x)| ≤ c2 log logN
and each hyperedge containsk vertices.

Finally, we remark that using the same techniques as those in[2], we can make our local computation
algorithm run in parallel and find anℓ-coloring of a hypergraph for anyℓ ≥ 2 (anℓ-coloring of a hypergraph
is to color each vertex in one of theℓ colors such that each color appears in every hyperedge).

7 k-CNF

As another example, we show our hypergraph coloring algorithm can be easily modified to compute a
satisfying assignment of ak-CNF formula, provided that the latter satisfies some specific properties.

Let H be ak-CNF formula onm Boolean variablesx1, . . . , xm. SupposeH hasN clausesH =
A1 ∧ · · · ∧ AN and each clause consists of exactlyk distinct literals.7 We say two clausesAi andAj

intersectwith each other if they share some variable (or the negation of that variable). As in the case for
hypergraph coloring,k andd are fixed constants and all asymptotics are with respect to the number of
clausesN (and hencem, sincem ≤ kN ). Our main result is the following.

7 Our algorithm works for the case that each clause has at leastk literals; for simplicity, we assume that all clauses have uniform
size.
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Theorem 7.1. Let H be ak-CNF formula withk ≥ 2. If each clause intersects no more thand other
clauses and furthermorek andd are such that there exist three positive integersk1, k2 andk3 satisfying the
followings relations:

k1 + k2 + k3 = k,

8d(d− 1)3(d+ 1) < 2k1 ,

8d(d− 1)3(d+ 1) < 2k2 ,

e(d+ 1) < 2k3 ,

then there exists a local computation algorithm that, givenany sequence of queries to the truth assignments
of variables(x1, x2, . . . , xs), with probability at least1 − 1/N , returns a consistent truth assignment for
all xi’s which agrees with some satisfying assignment of thek-CNF formulaH. Moreover, the algorithm
answers each single query inO((logN)c) time, wherec is some constant (depending only onk andd).

Proof [Sketch]: We follow a similar algorithm to that of hypergraph two-coloring as presented in Section 6.
Every clause will be in eitherinitial , safe, unsafe-1, unsafe-2, dangerous-1 or dangerous-2 state. Every
variable will be in eitherunassigned, true-1, false-1, trouble-1 or trouble-2 state. Initially every clause is in
initial state and every variable is inunassignedstate. Suppose we are asked about the value of a variable
xi. If xi is in initial state, we randomly choose from{true, false} with equal probabilities and assign it to
xi. Then we update all the clauses that contain eitherxi or x̄i accordingly: If the clause is already evaluated
to true by this assignment ofxi, then we mark the literal assafe; if the clause is ininitial state and is
not safeyet andxi is thekth

1 literal in the clause that has been assigned values, then theclause is marked
asdangerous-1 and all the remaining unassigned variables in that clause are now in trouble-1 state. We
perform similar operations for clauses in other states as wedo for the hypergraph coloring algorithm. The
only difference is now we havePr[Ai becomesdangerous-1] = 2−k1 , instead of21−k1 as in the hypergraph
coloring case. Following the same analysis, almost surely,all connected components in the dependency
graph ofunsafe-1 clauses are of size at mostO(logN) and almost surely all connected components in the
dependency graph ofunsafe-2 clauses are of size at mostO(log logN), which enables us to do exhaustive
search to find a satisfying assignment.

8 Concluding Remarks and Open Problems

In this paper we propose a model of local computation algorithms and give some techniques which can
be applied to construct local computation algorithms with polylogarithmic time and space complexities. It
would be interesting to understand the scope of problems which can be solved with such algorithms and to
develop other techniques that would apply in this setting.
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