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Abstract

For inputz, let F(x) denote the set of outputs that are the “legal” answers forrapetational
problemF. Supposer and members of'(x) are so large that there is not time to read them in their
entirety. We propose a modelloical computation algorithmhich for a given input:, support queries
by a user to values of specified locatignsn a legal outpuy € F'(x). When more than one legal output
y exists for a giverr, the local computation algorithm should output in a way ikatonsistent with at
least one suchy. Local computation algorithms are intended to distill theenenon features of several
concepts that have appeared in various algorithmic subfigidluding local distributed computation,
local algorithms, locally decodable codes, and local retroiation.

We develop a technique, based on known constructions of samaple spaces @fwise independent
random variables and Beck’s analysis in his algorithmicragph to the Lovasz Local Lemma, which
under certain conditions can be applied to construct looalputation algorithms that run olyloga-
rithmic time and space. We apply this technique to maximal indeperss computations, scheduling
radio network broadcasts, hypergraph coloring and satigf-SAT formulas.
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1 Introduction

Classical models of algorithmic analysis assume that thperi#thm reads an input, performs a computation
and writes the answer to an output tape. On massive datageltlsgcomputations may not be feasible, as both
the input and output may be too large for a single processprrawess. Approaches to such situations range
from proposing alternative models of computation, sucheaalfel and distributed computation, to requiring
that the computations achieve only approximate answersher eveaker guarantees, as in sublinear time
and space algorithms.

In this work, we consider the scenario in which only specifictp of the outpuy = (y1,...,y.,) are
needed at any point in time. For exampleyifs a description of a maximal independent set (MIS) of a
graph such thay; = 1if ¢ is in the MIS andy; = 0 otherwise, then it may be sufficient to determine
Yi1»- -+ Yi, TOr a small number of vertices. To this end, we defind@cal computation algorithmwhich
supports queries of the formy;' =" such that after each query by the user to a specified locatite local
computation algorithm is able to quickly outpuis For problems that allow for more than one possible
output for an inputr, as is often the case in combinatorial search problemspta tomputation algorithm
must answer in such a way that its current answer to the qaamrisistent with any past or future answers
(in particular, there must always be at least one allowabtpud that is consistent with the answers of the
local computation algorithm ). For a given problem, the higpinat the complexity of a local computation
algorithm is proportional to the amount of the solution tisatequested by the user. Local computation
algorithms are especially adapted to computations of gohdisns of combinatorial search problems (cf.
[36,[30,35)).

Local computation algorithms are a formalization that déss concepts that are ubiquitous in the lit-
erature, and arise in various algorithmic subfields, incigdiocal distributed computation, local algorithms,
locally decodable codes and local reconstruction models.sMdsequently describe the relation between
these models in more detail, but for now, it suffices it to st the aforementioned models are diverse in
the computations that they apply to (for example, whethey #pply to function computations, search prob-
lems or approximation problems), the access to data thdibised (for example, distributed computation
models and other local algorithms models often specify timatinput is a graph in adjacency list format),
and the required running time bounds (whether the comjputditne is required to be independent of the
problem size, or whether it is allowed to have computatiometithat depends on the problem size but has
sublinear complexity). The model of local computation aiifpons described here attempts to distill the
essential common features of the aforementioned conadpts unified paradigm.

After formalizing our model, we develop a technique thatpedfically suitable for constructing poly-
logarithmic time local computation algorithms. This tejue is based on Beck’s analysis in his algorithmic
approach to the Lovasz Local Lemma (LLL) [11], and uses thaedging locality of the problem to con-
struct a solution. All of our constructions must processdht somewhat so that Beck’s analysis applies,
and we use two main methods of performing this processing.

For maximal independent set computations and scheduliig network broadcasts, we use a reduction
of Parnas and Rom [36], which shows that, given a distribatgvork in which the underlying graph has
degree bounded by a constdintand a distributed algorithm (which may be randomized agguaranteed
to output an approximate answer) using at niasiunds, the output of any specified node of the distributed
network can be simulated by a single processor with quergsacto the input witlD (D!*+!) queries. For
our first phase, we apply this reduction to a constant numberumds of Luby’s maximal independent set
distributed algorithm[[29] in order to find a partial solutioAfter a large independent set is found, in the
second phase, we use the techniques of Bedk [11] to show



For hypergraph coloring andtSAT, we show that Alon’s parallel algorithm, which is guateed to find
solutions by the Lovasz Local Lemmia [2], can be modified to irupolylogarithmic sequential time to
answer queries regarding the coloring of a given node, osétiing of a given variable. For most of the
queries, this is done by simulating the work of a processdritsmeighbors within a small constant radius.
For the remainder of the queries, we use Beck’s analysisaw it the queries can be solved via the brute
force algorithm on very small subproblems.

Note that paralleD(log n) time algorithms do not directly yield local algorithms undlee reduction of
Parnas and Ron [36]. Thus, we do not know how to apply our igaks to all problems with fast parallel
algorithms, including certain problems in the work of Alomese solutions are guaranteed by the Lovasz
Local Lemma and which have fast parallel algorithihs [2]. &ely Moser and Tardos [32, B3] gave, under
some slight restrictions, parallel algorithms which fintlsons of all problems for which the existence of
a solution is guaranteed by the Lovasz Local Lemim&l[11, 2ja#t not yet been resolved whether one can
construct local computation algorithms based on these pmserful algorithms.

1.1 Related work

Our focus on local computation algorithms is inspired by ynexisting works, which explicitly or implicitly
construct such procedures. These results occur in a nurhbarned settings, including distributed systems,
coding theory, and sublinear time algorithms.

Local computation algorithms are a generalizatiotootl algorithms which for graph theoretic prob-
lems represented in adjacency list format, produce a sollly adaptively examining only a constant sized
portion of the input graph near a specified vertex. Such #lgos have received much attention in the dis-
tributed computing literature under a somewhat differeatlel, in which the number of rounds is bounded
to constant time, but the computation is performed by ahefdrocessors in the distributed netwadrki [34, 31].
Naor and Stockmeyer [34] and Mayer, Naor and Stockmeyerif8&kstigate the question of what can be
computed under these constraints, and show that there airéad problems with such algorithms. Several
more recent works investigate local algorithms for variptablems, including coloring, maximal indepen-
dent set, dominating set (some examples are in [25, 26, 223222/ 39| 9, 10, 40]). Although all of these
algorithms are distributed algorithms, those that useteohsounds yield (sequential) local computation
algorithms via the previously mentioned reduction of Paigwad Ron

There has been much recent interest among the sublineaaliyjmdgthms community in devising local
algorithms for problems on constant degree graphs and sg@se optimization problems. The goals of
these algorithms have been to approximate quantities sutieaoptimal vertex cover, maximal matching,
maximum matching, dominating set, sparse set cover, spacdéng and cover problems [36,/26) 35,
[18,[42]. One feature of these algorithms is that they show tmwonstruct an oracle which for each
vertex returns whether it part of the solution whose sizeeisidp approximated — for example, whether it
is in the vertex cover or maximal matching. Their resultsvstibat this oracle can be implemented in
time independent of the size of the graph (depending onhjhemiaximum degree and the approximation
parameter). However, because their goal is only to comput@pgroximation of their quantity, they can
afford to err on a small fraction of their local computatiofi$us, their oracle implementations give local
computation algorithms for finding relaxed solutions tottie optimization problems that they are designed
for. For example, constructing a local computation al¢ponitusing the oracle designed for estimating the
size of a maximal independent set in[30] yields a large iedéepnt set, but not necessarily a maximal

INote that the parallel algorithms of Luby [29], Aldrl [2] andoiser and Tardo§[33] do not automatically yield local algwris
via this transformation since their parallel running tinaest = Q(logn).



independent set. Constructing a local computation algoritising the oracle designed for estimating the
size of the vertex cover [36, 30,135] yields a vertex cover sehsize is guaranteed to be only slightly larger
than what is given by th2-approximate algorithm being emulated — namely, by a midapve factor of at
most2 + ¢ (for anyo > 0).

Recently, local algorithms have been demonstrated to bieaple for computations on the web graph.
In [19,[12,38/ 8/ 7], local algorithms are given which, foriaem vertexv in the web graph, computes an
approximation ta’s personalized PageRank vector and computes the vertiaesantribute significantly
to v's PageRank. In these algorithms, evaluations are madetontlye nearby neighborhood of so
that the running time depends on the accuracy parameteus tmphe algorithm, but there is no running
time dependence on the size of the web-graph. Local grapiiquaing algorithms have been presented in
[41],[8] which find subsets of vertices whose internal corinastare significantly richer than their external
connections. The running time of these algorithms depends®size of the cluster that is output, which
can be much smaller than the size of the entire graph.

Though most of the previous examples are for sparse grapdtber problems which have some sort of
sparsity, local computation algorithms have also beenigealfor problems on dense graphs. The property
testing algorithms of [17] use a small sample of the vertigeype of a core-set) to define a good graph
coloring or partition of a dense graph. This approach yikldal computation algorithms for finding a large
partition of the graph and a coloring of the vertices which reatively few edge violations.

The applicability of local computation algorithms is nostricted to combinatorial problems. One
algebraic paradigm that has local computation algorittsribat oflocally decodable codg®1], described
by the following scenario: Suppose is a string with encoding = E(m). On inputz, which is close in
Hamming distance tg, the goal of locally decodable coding algorithms is to pdeviuick access to the
requested bits ofn. More generally, theeconstructionmodels described in[L, 13,137] describe scenarios
where a string that has a certain property, such as mondtongassumed to be corrupted at a relatively
small number of locations. L&® be the set of strings that have the property. The recongiruatgorithm
gets as input a string which is close (inL; norm), to some string in P. For various types of properties
P, the above works construct algorithms which give fast qaegess to locations in

1.2 Followup work

In a recently work, Alon et al[]6] further show that the localmputation algorithms in this work can be
modified to not only run in polylogarithmic time but also inlglogarithmic space. Basically, they show
that all the problems studied in this paper can be solved iifeed local algorithmic framework as follows:
first the algorithm generates some random bits on a readrantjom tape of size at most polylogarithmic
in the input, which may be thought as the “core” of a solutioa F'(x); then each bit of the solution can

be computedieterministicallyby first querying a few bits on the random tape and then peif@reome
fast computations on these random bits. The main techrocés tised in[[6] are pseudorandomness, the
random ordering idea of [35] and the theory of branching esses.

1.3 Organization

The rest of the paper is organized as follows. In Se¢fion 2resgmt our computation model. Some prelim-
inaries and notations that we use throughout the paper app8actior 8. We then give local computation
algorithms for the maximal independent set problem and dd@rnetwork broadcast scheduling problem
in Sectiorf# and Sectidn 5, respectively. In Sedilon 6 we dhmwto use the parallel algorithmic version of



the Lovasz Local Lemma to give local computation algoritHfordinding the coloring of nodes in a hyper-
graph. Finally, in Sectionl 7, we show how to find settings afalales according to a satisfying assignment
of a k-CNF formula.

2 Local Computation Algorithms: the model

We present our model dbcal computation algorithms$or sequential computations of search problems,
although computations of arbitrary functions and optiriazafunctions also fall within our framework.

2.1 Model Definition
We writen = |z| to denote the length of the input.

Definition 2.1. For input z, let F(z) = {y | v is a valid solution for input 2}. Thesearch problenis to
find anyy € F(x).

In this paper, the description of bothandy are assumed to be very large.

Definition 2.2 ((¢, s, 0)-local algorithms) Letxz and F'(z) be defined as above. &(n), s(n),d(n))-local
computation algorithm4 is a (randomized) algorithm which implements query accesstarbitrary y €
F(x) and satisfies the following4 gets a sequence of querigs. . . , i, for anyq > 0 and after each query
i; it must produce an outpuy;; satisfying that the outputg;,, . .., y;, are substrings of somg € F(x).
The probability of success over ajllqueries must be at least— §(n). A has access to a random tape
and local computation memory on which it can perform cur@mnputations as well as store and retrieve
information from previous computations. We assume thainjeat =, the local computation tape and any
random bits used are all presented in the RAM word mode),.dlas given the ability to access a word of
any of these in one step. The running timelasn any query is at mostn ), which is sublinear im, and the
size of the local computation memory.4fis at mosts(n). Unless stated otherwise, we always assume that
the error parameter(n) is at most some constant, say3. We say thatd is a strongly local computation
algorithmif both ¢(n) and s(n) are upper bounded bipg n for some constant.

Definition 2.3. Let SLC be the class of problems that have strongly local computaigorithms.

Note that whenF'(x)| > 1, they according to which4 outputs may depend on the previous querieslto
as well as any random bits available Ao Also, we implicitly assume that the size of the outpus upper-
bounded by some polynomial jm|. The definition of local-computation algorithms rules e possibility
that the algorithms accomplish their computation by firshpating the entire output. Analogous definitions
can be made for a bit model. In principle, the model appliegeieral computations, including function
computations, search problems and optimization probldrasytype of object, and in particular, the input
is not required by the model to be in a specific input format.

The model presented here is intended be more general, asdliffers from other local computation
models in the following ways. First, queries and processimg have the same cost. Second, the focus
is on problems with slightly looser running time bound reguients — polylogarithmic dependence on the
length of the input is desirable, but sublinear time in thegtd of the input is often nontrivial and can be
acceptable. Third, the model places no restriction on tiiyedf the algorithm to access the input, as is the
case in the distributed setting where the algorithm may qury nodes in its neighborhood (although such
restrictions may be implied by the representation of theiippAs such, the model may be less appropriate
for certain distributed algorithms applications.



Definition 2.4 (Query oblivious) We say an LCA4 is query order obliviougquery obliviousfor short) if
the outputs ofd do not depend on the order of the queries but depend only dnplaéand the random bits
generated by the random tape.df

Definition 2.5 (Parallelizable) We say an LCA is parallelizablef .4 supports parallel queries.

We remark that not all local algorithms in this paper are gudalivious or easily parallelizable. How-
ever, this is remedied in|6].

2.2 Relationship with other distributed and parallel models

A question that immediately arises is to characterize tbblpms to which the local-computation algorithm
model applies. In this subsection, we note the relationskipreen problems solvable with local computa-
tion algorithms and those solvable with fast parallel otrdiated algorithms.

From the work of([[36] it follows that problems computable bgff distributed algorithms also have local
computation algorithms.

Fact 2.6([36]). If F'is computable irt(n) rounds on a distributed network in which the processor taar
nection graph has bounded degréehenF has ad!(™-local computation algorithm.

Parnas and Ron [36] show this fact by observing that for antexe, if we run a distributed algorithm
A on the subgrapli-;, ,, (the vertices of distance at madsfrom v), then it makes the same decision about
vertexwv as it would if we would runD for k£ rounds on the whole graph. They then give a reduction from
randomized distributed algorithms to sublinear algorghrased on this observation.

Similar relationships hold in other distributed and paathodels, in particular, for problems com-
putable by low depth bounded fan-in circuits.

Fact 2.7. If F'is computable by a circuit family of deptlin) and fan-in bounded by(n), then F' has a
d(n)"™-local computation algorithm.

Corollary 2.8. NCY C SLC.

In this paper we show solutions to several probles! via local computation algorithms. However,
this is not possible in general as:

Proposition 2.9. NC! ¢ SLC.

Proof. Consider the problem-XOR the XOR of n inputs. This problem is i?vC''. However, no sublinear
time algorithm can solva-XORbecause it is necessary to readraihputs. O

In this paper, we give techniques which allow one to constiaal computation algorithms based on
algorithms for finding certain combinatorial structuresosé existence is guaranteed by constructive proofs
of the LLL in [11,(2]. It seems that our techniques do not edtemall such problems. An example of such a
problem isEven cycles in a balanced digrapfind an even cycle in a digraph whose maximum in-degree is
not much greater that the minimum out-degree. Aloh [2] shihwas under certain restriction on the input
parameters, the problem is iMC'. The local analogue of this question is to determine whethgiven
edge (or vertex) is part of an even cycle in such a graph. kbti&known how to solve this quickly.



2.3 Locality-preserving reductions

In order to understand better which problems can be sohadlyowe defindocality-preserving reductions
which capture the idea that if problem is locally computable, and probles has a locality-preserving
reduction toB then A is also locally computable.

Definition 2.10. We say thatd is (¢'(n), s'(n))-locality-preserving reducible B via reductionH : ¥* —
I, whereX andI" are the alphabets oft and B respectively, ifd satisfies:

l.x€A < H(z) € B.

2. His (t'(n), s'(n),0)-locally computable; that is, every word &f(x) can be computed by querying
at mostt(n) words ofz.

Theorem 2.11. If A is (¢'(n), s'(n),0)-locality-preserving reducible td3 and B is (t(n), s(n),d(n))-
locally computable, ther is (t(n) - t'(n), s(n) + s'(n), d(n))-locally computable.

Proof. As A is (' (n), s'(n), 0)-locality-preserving reducible t®, to determine whether € A, it suffices
to determine ifH (x) € B. Each word ofH (z) can be computed in timé(n) and using space (n), and
we need to access at mash) such words to determine whethfi(x) € B. Note that we can reuse the
space for computingf (x). O

3 Preliminaries

Unless stated otherwise, all logarithms in this paper athadase. LetN = {0, 1, ...} denote the set of
natural numbers. Let > 1 be a natural number. We ugg to denote the sdfl, ..., n}.

Unless stated otherwise, all graphs are undirected.GLet (V, E') be a graph. Theistancebetween
two verticesu andv in V(G), denoted byl (u, v), is the length of a shortest path between the two vertices.
We write Ng(v) = {u € V(G) : (u,v) € E(G)} to denote the neighboring verticeswofFurthermore, let
NZ (v) = N(v) U {v}. Letds(v) denote the degree of a vertexWhenever there is no risk of confusion,
we omit the subscript from dg (u, v), dg(v) and Ng(v).

The celebrated Lovasz Local Lemma plays an important roleuinresults. We will use the simple
symmetric version of the lemma.

Lemma 3.1(Lovasz Local Lemmé&[15])Let A;, Ao, ..., A, be events in an arbitrary probability space.
Suppose that the probability of each of thessvents is at mosgt, and suppose that each evehtis mutually
independent of all but at mogtof other eventsl;. If ep(d + 1) < 1, then with positive probability none of
the events4; holds, i.e.,

Pr[N}_, A4;] > 0.

Several of our proofs use the following graph theoreticcitme:

Definition 3.2 ([11]). LetG = (V, E) be an undirected graph. Defii®@ C V(G) to be a3-treeif the
pairwise distances of all vertices iy are each at least and the graphG* = (W, E*) is connected, where
E* is the set of edges between each pair of vertices whose déstauiexacthys in G.



4 Maximal Independent Set

An independent set (IS) of a graph is a subset of vertices such that no two vertices are adjacemt
independent set is calledraaximal independent s@¥1S) if it is not properly contained in any other IS.
It is well-known that a sequential greedy algorithm finds alsM in linear time: Order the vertices i@
asl1,2,---,n and initialize S to the empty set; foi = 1 to n, if vertexi is not adjacent to any vertex in
S, addi to S. The MIS obtained by this algorithm is call thexicographically first maximal independent
set(LFMIS). Cook [14] showed that deciding if vertexis in the LFMIS is P-complete with respect to
logspace reducibility. On the other hand, fast randomiza@lfel algorithms for MIS were discovered in
1980's [20] 29| B]. The best known distributed algorithmNt6 runs inO(log* n) rounds with a word-size
of O(log n) [16]. By Fac{Z.8, this implies d°(log” logn) |gocal computation algorithm. In this section, we
give a query oblivious and parallelizable local computatidgorithm for MIS based on Luby’s algorithm
as well as the techniques of Be€k[11], and runs in td{e®(@1°e9) . Jog n).

Our local computation algorithm is partly inspired by therwof Marko and Ron[[30]. There they
simulate the distributed algorithm for MIS of Luby [29] indar toapproximatethe minimum number of
edges one need to remove to make the input graph free of soatediiaph/ . In addition, they show that
similar algorithm can also approximate the size of a mininuariex cover. We simulate Luby’s algorithm
to find anexact and consisteribcal solution for the MIS problem. Moreover, the ingredieh applying
Beck’s idea to run a second stage greedy algorithm on disobed subgraphs seems to be new.

4.1 Overview of the algorithm

Let G be an undirected graph envertices and with maximum degrée On input a vertex, our algorithm
decides whether is in a maximal independent set using two phases. In Phage simulate Luby’s parallel
algorithm for MIS [29] via the reduction of [36]. That is, imeh roundy tries to put itself into the IS with
some small probability. It succeeds if none of its neighltadss tries to do the same. We run our Phase
algorithm forO(dlog d) rounds. As it turns out, after Phasemost vertices have been either added to the
IS or removed from the graph due to one (or more) of their i@gh being in the IS. Our key observation is
that — following a variant of the argument of Beck [11] — alinsusrely, all the connected components of the
surviving vertices after Phadehave size at mos?(log n). This enables us to perform the greedy algorithm
for the connected componenties in.

Our main result in this section is the following.

Theorem 4.1. Let G be an undirected graph with vertices and maximum degrek Then there is a
(O(d®@1ed) . 1ogn), O(n), 1/n)-local computation algorithm which, on input a vertexdecides ifv is in
a maximal independent set. Moreover, the algorithm wilegivwconsistent MIS for every vertexah

4.2 Phase 1: simulating Luby’s parallel algorithm

Figurell illustrates Phadeof our local computation algorithm for Maximal Independ&et. Our algorithm
simulates Luby’s algorithm for = O(d log d) rounds. Every vertex will be in one of three possible states:

e “selected” —wv is in the MIS;
e “deleted” — one ofv’s neighbors is selected ands deleted from the graph; and

e “1”— wisnotin either of the previous states.



Initially, every vertex is in state I'”. Once a vertex becomes “selected” or “deleted” in some douin
remains in that state in all the subsequent rounds.

The subroutindVIIS(v, ) returns the state of a vertexin round:. In each round, if vertex is still in
state “L”, it “chooses” itself to be in the MIS with probability/2d. At the same time, all its neighboring
vertices also flip random coins to decide if they should “dwicthemselvel. If v is the only vertex in
NT(v) that is chosen in that round, we addo the MIS (“select’v) and “delete” all the neighbors af.
However, the state aof in round: is determined not only by the random coin tosses of vertices T (v)
but also by these vertices’ states in round 1. Therefore, to comput®IS(v, i), we need to recursively
call MIS(u,: — 1) for everyu € N+(v).|§ By induction, the total running time of simulatingrounds is
dO(r) _ dO(dlogd)_

If after Phasel all vertices are either “selected” or “deleted” and no vemEmains in “L” state, then
the resulting independent set is a maximal independentrstetct, one of the main results in [29] is that this
indeed is the case if we run Phalstor expected) (log n) rounds. Our main observation is, after simulating
Luby’s algorithm for onlyO(dlog d) (a constant independent of the sizerounds we are already not far
from a maximal independent set. Specifically, if vertereturns “L” after Phasd of the algorithm, we call
it a survivingvertex. Now consider the subgraph induced on the survivergoes. Following a variant of
Beck’s argument [11], we show that, almost surely, no cotetecomponent of surviving vertices is larger
thanpoly(d) - log n.

Let A, be the event that vertexis a surviving vertex. Note that evert, depends on the random coin
tossesv andv’s neighborhood of radius made during the first rounds, where: = O(dlogd). To get
rid of the complication caused by this dependency, we censidother set of events generated by a related
random process.

Consider a variant of our algorithivIIS, which we callMISg as shown in Fi§l2. IMMIIS g, every
vertexv has two possible states: “picked” and™ Initially, every vertex is in state ”. Once a vertex
becomes “picked” in some round, it remains in the “pickeditetin all the subsequent roundellS z and
MIS are identical except that, IMIS 3, if in some round a vertex is the only vertex inN*(v) that is
chosen in that round, the statewbecomes “picked”, but we do not change the statesheighboring
vertices. In the following rounds; keeps flipping coins and tries to choose itself. Moreoveragsume
that, for any vertex and in every round, the randomness useVifiS andMIS g are identical as long as
v has not been “selected” or “deleted” MIS. If v is “selected” or “deleted” ifMIS, then we flip some
additional coins fow in the subsequent rounds to riviIS 3. We let B, be the event that is in state “L”
after runningMIS  for r rounds (that isy is never get picked during atirounds ofMISg).

Claim 4.2. A, C B, for every vertex;ﬂ

Proof. This follows from the facts that a necessary condition4grto happen i never get “selected” in
any of ther rounds and deleting the neighborsudirom the graph can never decrease the probabilitydhat
gets “selected” in any round. Specifically, we will show tiiat C A,,.

Note thatB, = Ul_, B, whereB'" is the event that is picked for the first time in roundin MIS

v may get picked again in some subsequent rounds). Similagly= U"_ Z(i), whereA" is the event
( y getp g q Y= Uiz 4, v

2\We store all the randomness generated by each vertex in eanll 5o that our answers will be consistent. However, we
generate the random bits only when the state of correspgmnairiex in that round is requested.

3A subtle point in the subroutinBIIS (v, 7) is that when we calMIS(v, ), we only check if vertex is “selected” or not in
rounds. If v is “deleted” in roundi, we will not detect this until we calMIS(v, i + 1), which checks if some neighboring vertex
of v is selected in round However, such “delayed” decisions will not affect our a:s& of the algorithm.

“Strictly speaking, the probability spaces in whi¢h and B, live are different. Here the claim holds for any fixed outceroé
all the additional random coirfsIIS 5 flips.



MAXIMAL INDEPENDENTSET: PHASE 1
Input: a graphG and a vertew € V
Output: {"true”, “false”, “ 1"}
Forifrom1tor = 20dlogd
(@) If MIS(v,i) = “selected”
return “true”
(b) Else ifM1IS(v, i) = “deleted”
return “false”
(c) Else
return “L”

MIS(v, 1)
Input: a vertexo € V' and a round number
Output: {"selected”, “deleted”, 1.}
1. If vis marked “selected” or “deleted”
return “selected” or “deleted”, respectively
2. Foreveryuin N(v)
If MIS(u,i— 1) = “selected”
markv as “ deleted” and return “deleted”
3. v chooses itself independently with probabilﬁy
If v chooses itself
(i) For everyu in N(v)
If uis marked “L", u chooses itself independently with probabili}y
(ii) If v has a chosen neighbor
return “L”
(iii) Else
markv as “selected” and return “selected”
Else
return “L”

Figure 1: Local Computation Algorithm for MIS: Phase

MISB(’U, ’L)
Input: a vertexo € V' and a round number
Output: {“picked”, “L"}
1. If vis marked “picked”
return “picked”
2. v chooses itself independently with probabili}y
If v chooses itself
(i) For everyu in N(v)
u chooses itself independently with probabilﬁy
(i) If v has a chosen neighbor
return “L”
(iii) Else
markv as “picked” and return “picked”
Else
return “L”

Figure 2: AlgorithmMIS




thatv is selected or deleted in rouridn MIS. Hence, we can write, for every fo) = Selgf) U Delgi),
whereSelgf) andDelgf) are the events that, INIS, v gets selected in roundandwv get deleted in round,
respectively.

We prove by induction omthatu§:1§f,j) C Ué.:lfo). This is clearly true for = 1 asﬁgl) = SellV,
Assume it holds for all smaller values of Consider any fixed random coin tosses of all the verticekan t
graph before roundsuch thaw is not “selected” or “deleted” before rourdThen by induction hypothesis,
v is not picked inMIS 5 before round either. LetN (*)(v) be the set of neighboring nodeswofhat are in
state “L” in round i in algorithmMIS z. Clearly, N (v) C N (v).

Now for the random coins tossed in roundve have

R(f) = {v chooses itself in round} N,,c () {w does not chooses itself in rounyl
C {v chooses itself in rouné} N, v (,) {w does not chooses itself in rouny

— Sel(V.
Therefore,R(f) - Sel&i) C Zf)i). This finishes the inductive step and thus completes thef mbthe
claim. O
As a simple corollary, we immediately have
Corollary 4.3. For any vertex setV C V(G), Pr[Nyew Ay] < Pr[Nyew By

A graph H on the verticed/(G) is called adependency grapfor { B, },cy (¢ if for all v the eventB,
is mutually independent of alB, such thatu,v) ¢ H.

Claim 4.4. The dependency grapti has maximum degre€.

Proof. Since for every vertex, B, depends only on the coin tossesuadnd vertices inV(v) in each of the
r rounds, the evenB, is independent of all,, such thatly (u,v) > 3. The claim follows as there are at
mostd? vertices at distancé or 2 from v. O

Claim 4.5. For everyv € V, the probability thatB, occurs is at most /8d>.

Proof. The probability that vertex is chosen in round is 2—1d. The probability that none of its neighbors is
chosen in this round il — 5;)%*) > (1 — 55)¢ > 1/2. Since the coin tosses ofand vertices inV(v) are

independent, the probability thatis selected in roundis at Ieastﬁ . % = 4—1d. We get that the probability

that B, happens is at mogi — 4_1d)20dlogd < 8%_ -
Now we are ready to prove the main lemma for our local comjmtatlgorithm for MIS.

Lemma 4.6. After Phasel, with probability at leastl — 1/n, all connected components of the surviving
vertices are of size at moSk(poly(d) - logn).

Proof. Note that we may upper bound the probability that all vegticell” are surviving vertices by the
probability that all the event§B, },cyw happen simultaneously:

Pr[all vertices inl¥ are surviving verticgs
= Pr[mvewAv]
< Pr[mveva]-
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The rest of the proof is similar to that of Beck [11]. We bouhd humber oB-trees inH (the dependency
graph for eventg B, }) of 3-trees of sizev as follows.

Let 43 denote the “distancg graph of H, that is, vertices, andv are connected i/ if their distance
in H is exactly3. We claim that, for any integer > 0, the total number o8-trees of sizew in H? is at
mostn(4d®)*. To see this, first note that the number of non-isomorphiest@w vertices is at most®
(see e.gl]28]). Now fix one such tree and denote if by.abel the vertices df’ by vy, vs,. .., v, in away
such that for anyj > 1, vertexv; is adjacent to some; with 7 < j in 7. How many ways are there to
choosevy, v, . .., v, from V(H) so that they can be the set of vertices/id There arex choices forv;.
As H? has maximum degreP = d(d — 1)? < d3, therefore there are at maBt possible choices for,.
and by induction there are at mosD”~! < nd*" possible vertex combinations f@t. Since there can be
at mosu" different7s, it follows that there are at most(4d®)® possible3-trees inG.

Since all vertices iV are at leass-apart, all the eventsB, } .1 are mutually independent. Therefore
we may upper bound the probability that all vertice$linare surviving vertices as

Pr[mUEWBv]

= [ Pr(B.]

veW
(LY
— \ 83 ’

where the last inequality follows from Claim 4.5.
Now the expected number Bftrees of sizev is at most

for w = ¢1 log n, wherec; is some constant. By Markov’s inequality, with probabilityieastl — 1/n, there
is no 3-tree of size larger than, logn. By a simple variant of the-tree Lemma in[[11] (that is, instead
of the “4-tree lemma”, we need a-“tree lemma” here), we see that a connected component of gizé&l
contains &-tree of size at least/d. Therefore, with probability at least— 1/n, there is no connected
surviving vertices of size at leaSt(poly(d) - logn) at the end of Phaskof our algorithm. O

4.3 Phase 2: Greedy search in the connected component

If vis a surviving vertex after Phade we need to perform Phageof the algorithm. In this phase, we
first explorev’s connected component;(v), in the graph induced o by all the vertices in statel"”. If
the size ofC(v) is larger tharc, log n for some constant, which depends only od, we abort and output
“Fail”. Otherwise, we perform the simple greedy algorithesdribed at the beginning of this section to find
the MIS inC(v). To check if any single vertex is in state", we simply run our Phasg algorithm on this
vertex and the running time i&”(41°¢9) for each vertex irC'(v). Therefore the running time for Phagés
at mostO(|C (v)]) - dO@loed) < O(dO(41ogd) . Jog n). As this dominates the running time of Phasét is
also the total running time of our local computation alduoritfor MIS.

Finally, as we only need to store the random bits generateddly vertex during Phasef the algorithm
and bookkeep the vertices in the connected component dathiage (which uses at mos? (log n) space),
the space complexity of the local computation algorithmheréforeO(n).
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5 Radio Networks

For the purposes of this sectionyadio networkis an undirected graptyd’ = (V, E)) with one processor

at each vertex. The processors communicate with each ojhatsmitting messages in a synchronous
fashion to their neighbors. In each round, a proce$soan either receive a message, send messages to all
of its neighbors, or do nothing. We will focus on the radiowak that is referred to asBype |l networtd

in [2]. P receives a message from its neightif P is silent, andy is the only neighbor of that transmits

in that round. Our goal is to check whether there is a two-w@ynection between each pair of adjacent
vertices. To reach this goal, we would like to find a schedutdhghat each vertex i& broadcasts in one of
the K rounds and¥ is as small as possible.

Definition 5.1 (Broadcast function)Let G = (V, E) be an undirected graph. We s& : V' — [K]is a
broadcast functiofor the networkG if the following holds:

1. Every vertex broadcasts once and only once in rouAidv) to all its neighboring vertices;
2. No vertex receives broadcast messages from more thanedgigbor in any round;
3. For every edgéu, v) € G, v andv broadcast in distinct rounds.

Let A be the maximum degree 6f. Alon et. al. [4[5] show that the minimum number of rounids
satisfiesK' = ©(Alog A). Furthermore, Alon[[2] gives aiv(C algorithm that computes the broadcast
function F,. with K = O(Alog A). Here we give a local computation algorithm for this problée given
a degree-bounded gragh = (V, E) in the adjacency list form and a vertexe V', we output the round
number in whichv broadcasts in logarithmic time. Our solutioncgnsistentn the sense that all answers
our algorithm outputs to the variousc V' agree with some broadcast scheduling funcfion

Let G2 be the “square graph” af; that is,u andv are connected itv'-2 if and only if their distance in
G is either one or two. Our algorithm is based on findingratependent set coverf G2 which simulates
Luby’s Maximal Independent Set algorithin [29]. Note thaw# denote the maximum degree@t? by d,
thend < A2,

Definition 5.2 (Independent Set Cover)et H = (V, E) be an undirected graph. A collection of vertex
subsetq Sy, ..., S;} is anindependent set covéiSC) for H if these vertex sets are pairwise disjoint, each
S; is an independent set i and their union equal¥’. We callt thesizeof ISC{S1,...,S;}.

Fact5.3.1f {S1,...,S;}is an ISC forG'2, then the function defined Wdy.(v) = i iff v € S; is a broadcast
function.

Proof. First note that, since the union ¢b,} equalsV, F, (v) is well-defined for every € G. That is,
everyv broadcasts in some round [if}, hence both directions of every edge are covered in somelrd\s
v can only be in ond S, it only broadcasts once. Second, for any two verticendv, if d(u,v) > 3,
then N(u) N N(v) = 0. It follows that, if in each round all the vertices that broast are at least-apart
from each other, no vertex will receive more than one messagay round. Clearly the vertices in an
independent set @i!»? have the property that all the pairwise distances are atJeas O

The following is a simple fact about ISCs.

The other model, Type | radio network, is more restrictivepricessotP receives a message from its neighlipin a given
round only if P is silent,@ transmits and® chooses to receive fro in that round.
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Fact 5.4. For every undirected grapli/ onn vertices with maximum degreg there is an ISC of size at
mostd. Moreover, such an ISC can be found by a greedy algorithnmie &t most(dn).

Proof. We repeatedly apply the greedy algorithm that finds an MIS-deioto find an ISC. Recall that the
greedy algorithm repeats the following until the graph hasinmarked vertex: pick an unmarked vertex
add it to the IS and mark off all the vertices M(v). Clearly each IS found by the greedy algorithm has
size at least;};. To partition the vertex set into an ISC, we run this greedyathm to find an IS which
we call S1, and delete all the vertices iy from the graph. Then we run the greedy algorithm on the new
graph again to gefs, and so on. After running at mogtrounds (since each round reduces the maximum
degree of the graph by at least one), we partition all thacestinto an ISC of size at mogtand the total
running time is at mosP(dn). O

Our main result in this section is a local computation aldoni that computes an ISC of sizd log d)
for any graph of maximum degrele On input a vertex, our algorithm outputs the inde>of a vertex subset
S; to whichv belongs, in an ISC aoff. We will call  theround numbenf v in the ISC. By Fadt 513, applying
this algorithm to graplé:'? gives a local computation algorithm that computes a bragtdoaction forG.

5.1 Alocal computation algorithm for ISC

Our main result for computing an ISC is summarized in theofelhg theorem.

Theorem 5.5.Let H be an undirected graph amvertices with maximum degrée Then there is &poly(d)-
logn, O(n), 1/n)-local computation algorithm which, on input a vertexcomputes the round numberwof
in an ISC of size at mos?(d log d). Moreover, the algorithm will give a consistent ISC for eveertex in
H.

On input a vertexv, our algorithm computes the round numberwoin two phases. In Phase 1 we
simulate Luby’s algorithm for MIS[[29] foO(d log d) rounds. At each round; tries to put itself in the
independent set generated in that round. That ishooses itself with probability /2d and if none of its
neighbors choose themselves, theis selected in that round and we output that round numbeo.fagks
we show shortly, after Phase 1, most vertices will be asdign®und number. We saysurvivesif it is not
assigned a round number. We consider the connected contpmgainingv after one deletes all vertices
that do not survive from the graph. Following an argumentilainto that of Beck[[11], almost surely, all
such connected components of surviving vertices afterd*h&sve size at mos?(log n). This enables us,
in Phase 2, to perform the greedy algorithmwconnected component to deterministically compute the
round number of in time O(log n).

5.1.1 Phase 1 algorithm

Phase 1 of our local computation algorithm for computing@@ Is shown in FigurEIﬁ

For everyv € V, let A, be the event that vertexreturns “L”, i.e. v is not selected after rounds. We
call such av asurvivingvertex. After deleting alb that do not survive from the graph, we are interested in
bounding the size of the largest remaining connected coemgoiClearly eventd,, depends on the random
coin tosses of andv’s neighboring vertices in all therounds. A grapt on the vertice$”(H) (the indices

8In 2(b), we flip random coins for. even ifu is selected in a previous round. We do this for the techniza$on that we want
to rid the dependency af on nodes that are not neighbors to simplify our analysis.sTdur analysis is overly pessimistic since if
selected neighbors stop choosing themselves, it onlyaserethe chance ofbeing selected.
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INDEPENDENTSET COVER: PHASE 1
Input: a graph and a vertex € V
Output: the round number afin the ISC or “L”
1. Initialize all vertices inV*(v) to state “L”
2. Fori=1tor = 20dlogd
(a) Ifvis labeled "L"
v chooses itself independently with probabili};y
(b) If v chooses itself
(i) For everyu € N(v)
(even ifu is labeled “selected in round
for somej < ¢, we still flip random coins for it)
u chooses itself independently with probabilgy
(ii) If v has a chosen neighbor,
v unchooses itself
(iii) Else
v is labeled “selected in round
return:

3. return“L”

Figure 3: Algorithm for finding an Independent Set Cover: $gha.

for the A,) is called adependency grapfor { A, },cy (#) if for all v the eventd,, is mutually independent
of all A, with (u,v) ¢ H.

The following two claims are identical to Claim 4.4 and CI{
omit the proofs.

in Sectiol ¥ respectively, we therefore

Claim 5.6. The dependency grapti has maximum degre€.
Claim 5.7. For everyv € V, the probability thatA, occurs is at most /8d>.
The following observation is crucial in our local compudatialgorithm.

Lemma 5.8. After Phase 1, with probability at least— 1/n, all connected components of the surviving
vertices are of size at moSk(poly(d) - logn).

Proof. The proof is almost identical to that of Leminal4.6 but is ornifger: we can directly upper bound
the probability
Pr[all vertices inl¥ are surviving verticgs= Pr[N,cw Ay

by way of Beck[11] without resorting to any other random @& We omit the proof. O

5.1.2 Phase 2 algorithm

If v is a surviving vertex after Phase 1, we perform Phase 2 oflfugithm. In this phase, we first explore
the connected componeid(v), that the surviving vertex lies in. If the size ofC(v) is larger thare, log n

for some constant,(d) depending only or, we abort and output “Fail”. Otherwise, we perform the sienpl
greedy algorithm described in F&ctl5.4 to partiti@fv) into at mostl subsets deterministically. The running
time for Phase 2 is at mogbly(d) - logn. Since any independent set of a connected component can be
combined with independent sets of other connected comp®t@form an IS for the surviving vertices, we
conclude that the total size of ISC we findd$d log d) + d = O(dlogd).
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5.2 Discussions

Now a simple application of Theoreln b.5 "2 gives a local computation algorithm for the broadcast
function.

Theorem 5.9. Given a graphz = (V, E) with n vertices and maximum degréeand a vertex € V, there
exists a(poly(A) - logn, O(n), 1/n)-local computation algorithm that computes a broadcastfiam with
at mostO(A2log A) rounds. Furthermore, the broadcast function it outputsdasistent for all queries to
the vertices of the graph.

We note our round number bound is quadratically larger thahdf Alon’s parallel algorithm[2]. We
do not know how to turn his algorithm into a local computatagorithm.

6 Hypergraph two-coloring

A hypergraphH is a pairH = (V, E') whereV is a finite set whose elements are caliexdiesor vertices
and E is a family of non-empty subsets &f, called hyperedges A hypergraph is called-uniform if
each of its hyperedges contains precisklyertices. Atwo-coloring of a hypergraphH is a mapping
c: V — {red, blug such that no hyperedge iti is monochromatic. If such a coloring exists, then we say
H is two-colorable We assume that each hyperedgéinntersects at most other hyperedges. LeY be
the number of hyperedges i. Here we think oft andd as fixed constants and all asymptotic forms are
with respect taV. By the Lovasz Local Lemma, wheiid +1) < 25—, the hypergrapli is two-colorable.
Let m be the total number of vertices #. Note thatn < kN, som = O(N). For any vertex: € V,
we usef () to denote the set of hyperedgebelongs to. For convenience, for any hypergrépk= (V, E),
we define arm-by-N vertex-hyperedge incidence matih such that, for any vertex and hyperedge,
M. =1if e € £(x) and M, . = 0 otherwise. A natural representation of the input hypergtépis this
vertex-hyperedge incidence matfiX. Moreover, since we assume bdthndd are constants, the incidence
matrix M is necessarily very sparse. Therefore, we further assuatdht matrixM is implemented via
linked lists for each row (that is, verte® and each column (that is, hyperedge
Let G be thedependency grapbf the hyperedges if/. That is, the vertices of the undirected gragh
are theN hyperedges off and a hyperedg#); is connected to another hyperedgigin G if E; N E; # 0.
It is easy to see that if the input hypergraph is given in thevaeldlescribed representation, then we can find
all the neighbors of any hyperedd in the dependency gragh (there are at most of them) inO(log N)
time.

6.1 Our main result

A natural question to ask is: Given a two-colorable hypgygrd and a vertexw € V(H), can we quickly
compute the coloring af? Here we would like the coloring to lmensistentmeaning all the answers we pro-
vide must come from theamevalid two-coloring. Our main result in this section is, givea two-colorable
hypergraphH whose two-coloring scheme is guaranteed by the Lovasz llasama (with slightly weaker
parameters), we give a local computation algorithm whicéwaars queries of the coloring of any single
vertex inpolylog N time, whereN is the number of the hyperedges i The coloring returned by our
oracle will agree with some two-coloring of the hypergrapthvprobability at least — 1/N.
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Theorem 6.1. Letd andk be such that there exist three positive integersks and k3 such that the follow-
ings hold:

ki + ko + ks =k,
16d(d — 1)3(d + 1) < 2k,
16d(d — 1)3(d + 1) < 2k2,

2e(d +1) < 2%,

Then there exists @olylogNV, O(N), 1/N)-local computation algorithm which, given a hypergrafihand
any sequence of queries to the colors of verticaszo, . . ., ), returns a consistent coloring for a#l;’s
which agrees with som&coloring of 4.

6.2 Overview of the coloring algorithm

Our local computation algorithm imitates the parallel civlg algorithm of Alon [2]. Recall that Alon’s
algorithm runs in three phases. In the first phase, we randoohbr each vertex in the hypergraph following
some arbitrary ordering of the vertices. If some hyperedg:hvertices in one color and no vertices in the
other color, we call it alangerousedge and mark all the remaining vertices in that hyperedgeakled
Theseroubledvertices will not be colored in the first phase. If the quenedex becomes taoubledvertex
from the coloring process of some previously queried vettigsn we run the Phasecoloring algorithm.
There we first delete all hyperedges which have been assiibaolors and call the remaining hyperedges
surviving edges. Then we repeat the same process again fosuttviving hyperedges, but this time a
hyperedge becomes dangerouift- k, vertices are colored the same color and no vertices areetblyr
the other color. Finally, in the third phase, we do a brutedasearch for a coloring in each of the connected
components of the surviving vertices as they are of 8ileg log V) almost surely.

A useful observation is, in the first phase of Alon’s algamthwe can color the vertices @rbitrary
order. In particular, this order can be taken to be the ofu#rqueries to the local computation algorithm
are made in. If the coloring of a vertex can not be determined in the first phase, then we explore the
dependency graph around the hyperedges containingd find the connected component of guviving
hyperedges to perform the second phase coloring. To ersatr@ltthe connected componentssafrviving
hyperedgesesulting from the second phase coloring are of small sizesepeat the second phase colorings
independently many times until the connected componergs sire small enough. If that still can not decide
the coloring ofz, then we run the third (and final) phase of coloring, in whiokl exhaustively search for
a two-coloring for vertices in some very small (i.e., of satemostO(log log N)) connected component in
G as guaranteed by our second phase coloring. Following slamalysis, we show that with probability at
leastl — 1/N, the total running time of all these three phases for anyexert H is polylogN.

During the execution of the algorithm, each hyperedge wlirbeitherinitial, safe unsafet, unsafe2,
dangeroust or dangerous? state. Vertices will be in eithemncolored red, blue trouble-l or trouble2
state. The meanings of all these states should be clear fieilmriames. Initially every hyperedge is in
initial state and every vertex is imcoloredstate.

6.3 Phase 1 coloring

If = is already colored (that ig; is in eitherred or blue state), then we simply return that color. afis
in the trouble-l state, we invoke Phaskcoloring for vertexz. If x is in thetrouble2 state, we invoke
Phase3 coloring for vertexz. If = is uncolored then we flip a fair coin to colox red or blue with equal
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Phasel Coloring(z)

Input: a vertext € V/

Output: a colorin fed, bluet

1. If 2 is already colored
Return the color of:

2. If z isintrouble-l state
ReturnPhase2 Coloring(x)

3. If zisintrouble2 state
ReturnPhase3 Coloring(x)

4. If z is inuncoloredstate
(a) Uniformly at random choose a colofor x from {red, blug
(b) Update the states of all hyperedge€ )
(c) Return colok

Figure 4: Phaseé coloring algorithm

probability (that is, vertex:’s state becomered or blug respectively). After that, we update the status of
all the hyperedges iéi(z). Specifically, if somer; € £(x) hask; vertices in one color and no vertices in
the other color, then we chandg from initial into dangeroust state. Furthermore, all uncolored vertices
in E; will be changed tdrouble-1 states. On the other hand, if both colors appear among thieasof
E;, we update the state @, from initial to safe If none of the vertices in a hyperedgeuscoloredand
the hyperedge is still initial state (that is, it is neithesafeor dangeroust), then we change its state to
unsafei. Note that if a hyperedge imsafet then all of its vertices are either colored ortiauble-1 state,
and the colored vertices are monochromatic.

Running time analysis. The running time of Phaskcoloring for anuncoloredvertexx is O(kd) = O(1)
(recall that we assume bothandd are constants). This is because vertezan belong to at most + 1
hyperedges, hence there are at nkddtt- 1) vertices that need to be updated during PHadkz is already a
coloredvertex, the running time is clearty(1). Finally, the running time of Phadecoloring for atrouble-1

or trouble-2 vertex isO(1) plus the running time of Phagecoloring orO(1) plus the running time of Phase
3 coloring, respectively.

6.4 Phase 2 coloring

During the second phase of coloring, given an input vertéwhich is necessarily &ouble-1), we first
explore the dependency grapghof the hypergraphd by keep coloring some other vertices whose colors
may have some correlation with the coloringrofin doing so, we grow a connected componerswiiving-

1 hyperedges containing in G. Here, a hyperedge is calledirviving- if it is either dangeroust or
unsafei. We denote this connected componenswiviving1 hyperedges surrounding vertexy C ().
Growing the connected componentSpecifically, in order to find ouf’; (z), we maintain a set of hyper-
edgesf; and a set of verticek;. Throughout the process of exploridg V; is the set olincoloredvertices
that are contained in some hyperedg&in Initially & = £(z). Then we independently color each vertex
in 11 red or blue uniformly at random. After coloring each vertex, we updéte $tate of every hyperedge
that contains the vertex. That is, if any hyperedgec V; becomesafe then we removéd; from V; and
delete all the vertices that aomly contained in&;. On the other hand, once a hyperedgé/jnbecomes
dangerous2 (it hasks vertices, all thauncoloredvertices in that hyperedge becorneuble2 and we skip
the coloring of all such vertices. After the coloring of a#irtices inVy, hyperedges iif; are surviving
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Phase2 Coloring(z)

Input: atrouble-1 vertexx € V

Output: a colorin fed, blug} or FAIL

1. Start from&(z) to exploreG in order to find the connected
components of all theurviving-l hyperedges around

2. Ifthe size of the component is larger thariog N
Abort and returrFAIL

3. Repeatthe foIIowing)(log’fongN) times and stop if goodcoloring is found
(a) Color all the vertices ity () uniformly at random
(b) Explore the dependency graph@fs, (.,
(c) Check if the coloring igjood

4. Return the color of: in the good coloring

Figure 5: Phase coloring algorithm

hyperedges. Then we check all the hyperedgés that are adjacent to the hyperedgegiinif any of these
hyperedges is not in treafestate, then we add it i§, and also add all itancoloredvertices tol;. Now we
repeat the coloring process described above for these reslglyduncoloredvertices. This exploration of
the dependency graph terminates if, either there is no marerbadge to color, or the numbersfrvivingd
hyperedges i, is greater thai, log N, wherec; is some absolute constant. The following Lemma shows
that, almost surely, the size 6f; (x) is at mostc; log N.

Lemma 6.2([2]). LetS C G be the set of surviving hyperedges after the first phase. Witbrprobability
at leastl — ﬁ (over the choices of random coloring), all connected conepte (x) of G|s have sizes
at mostc; log N.

Random coloring. SinceC’(x) is not connected to angurviving-l hyperedges i/, we can color the
vertices in the connected componéhtx) without considering any other hyperedges that are outside).
Now we follow a similar coloring process as in Phas® color the vertices i, () uniformly at random
and in an arbitrary ordering. The only difference is, we ignall the vertices that are already colored

or blue and ifk; + k5 vertices in a hyperedge get colored monochromatically,adritie rest of vertices in
the hyperedge are imouble-1 state, then this hyperedge will bediangerous2 state and all the uncolored
vertices in it will be introuble2 state. Analogously we definmsafe2 hyperedges as hyperedges whose
vertices are either colored or tfrouble2 state and all the colored vertices are monochromatic. lyjnaé
say a hyperedge issurviving2 edge if it is in eithedangerous? state orunsafe2 state.

Let S;(z) be the set of surviving hyperedges@h(x) after all vertices irC' (=) are either colored or in
trouble2 state. Now we explore the dependency graplydf:) to find out all the connected components.
Another application of Lemmia 8.2 G|, () shows that with probability at least— O(log+N) (over the
choices of random coloring), all connected components|i .y have sizes at mosg log log IV, wherec,
is some constant. We say a Phasmloring isgoodif this condition is satisfied. Now if a random coloring
is not good, then we erase all the coloring performed durihgsB2 and repeat the above coloring and
exploring dependency graph process. We keep doing thiswatfind a good coloring. Therefore, after
recoloring at mosO(log’i]gVN) times (and therefore with at mogblylog N running time), we can, with
probability at least — 1/2N?, color Cy(z) such that each connected componert|g, ., has size at most
c2 log log N. By the union bound, with probability at leaist- 1 /2N, the Phase colorings for all connected

components find some good colorings.
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Phase3 Coloring(x)

Input: atrouble2 vertexx € V

Output: a color in fed, blue

1. Start from&(z) to exploreG in order to find the connected
component of all thsurviving2 hyperedges around

2. Go over all possible colorings of the connected component
and color it using a feasible coloring.

3. Return the coloe of x in this coloring.

Figure 6: Phasa coloring algorithm

Running time analysis. Combining the analysis above with an argument similar toiheing time analysis
of Phasel coloring gives

Claim 6.3. Phase2 coloring takes at mostolylog N time.

6.5 Phase 3 coloring

In Phases, given a vertex: (which is necessarilirouble-2), we grow a connected component which includes
x as in Phase, but ofsurviving2 hyperedges. Denote this connected componestinfiving2 hyperedges
by Cs(x). By our Phase coloring, the size of’y(x) is no greater thams loglog N. We then color the
vertices in this connected component by exhaustive seditwh.existence of such a coloring is guaranteed
by the Lovasz Local Lemma (Lemnia_B.1).

Claim 6.4. The time complexity of Phagecoloring is at mospolylog N.

Proof. Using the same analysis as for Phasi time O(log log V') we can explore the dependency graph to
grow our connected componentsafrviving2 hyperedges. Exhaustive search of a valid two-coloring lof al
the vertices irCy(z) takes time at mosz©(I¢2(z))) = 90(oglog N) — olylogN, as|Cy(z)| < ¢z loglog N
and each hyperedge containsertices. O

Finally, we remark that using the same techniques as thoa, iwe can make our local computation
algorithm run in parallel and find afcoloring of a hypergraph for arfy> 2 (an/-coloring of a hypergraph
is to color each vertex in one of tifecolors such that each color appears in every hyperedge).

7 k-CNF

As another example, we show our hypergraph coloring algorican be easily modified to compute a
satisfying assignment off/2aCNF formula, provided that the latter satisfies some smepifbperties.

Let H be ak-CNF formula onm Boolean variables:y, ..., z,,. SupposeH hasN clausesH =
Ay N -+ N Any and each clause consists of exadthgistinct Iiteralsﬂ We say two clausesl; and A;
intersectwith each other if they share some variable (or the negatidhat variable). As in the case for
hypergraph coloringk and d are fixed constants and all asymptotics are with respectemtimber of
clausesV (and hencen, sincem < kN). Our main result is the following.

 Our algorithm works for the case that each clause has atidistals; for simplicity, we assume that all clauses haviéonm
size.
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Theorem 7.1. Let H be ak-CNF formula withk > 2. If each clause intersects no more thdrother
clauses and furthermork andd are such that there exist three positive integersko, and k3 satisfying the
followings relations:

ki + ke + ks =k,
8d(d —1)3(d +1) < 2F1,
8d(d —1)3(d + 1) < 2*2,

e(d+1) < 2ks,

then there exists a local computation algorithm that, gimey sequence of queries to the truth assignments
of variables(zy, xo, ..., xzs), with probability at leastl — 1/N, returns a consistent truth assignment for
all z;'s which agrees with some satisfying assignment oftH@NF formula . Moreover, the algorithm
answers each single query @((log N)¢) time, where is some constant (depending only/oand d).

Proof [Sketch]: We follow a similar algorithm to that of hypergraph two-cohgy as presented in Sectibh 6.
Every clause will be in eithemitial, safe unsafei, unsafe2, dangeroust or dangerous? state. Every
variable will be in eitheunassignegdtrue-1, falsed, trouble-l or trouble2 state. Initially every clause is in
initial state and every variable is umassignedstate. Suppose we are asked about the value of a variable
x;. If z; is ininitial state, we randomly choose frofirue, false} with equal probabilities and assign it to
x;. Then we update all the clauses that contain either z; accordingly: If the clause is already evaluated
to true by this assignment af;, then we mark the literal asafe if the clause is innitial state and is
not safeyet andx; is the k:tlh literal in the clause that has been assigned values, theclabse is marked
asdangeroust and all the remaining unassigned variables in that clausenaw introuble-1 state. We
perform similar operations for clauses in other states adavier the hypergraph coloring algorithm. The
only difference is now we havr|[A; becomesiangeroust] = 2~*1, instead oR!~*1 as in the hypergraph
coloring case. Following the same analysis, almost suadlyconnected components in the dependency
graph ofunsafet clauses are of size at maS{log N) and almost surely all connected components in the
dependency graph aefnsafe2 clauses are of size at ma3{log log V), which enables us to do exhaustive
search to find a satisfying assignmentd

8 Concluding Remarks and Open Problems

In this paper we propose a model of local computation algorst and give some techniques which can
be applied to construct local computation algorithms withylmgarithmic time and space complexities. It
would be interesting to understand the scope of problemshwddn be solved with such algorithms and to
develop other techniques that would apply in this setting.
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