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Space-efficient Local Computation Algorithms

Noga Alon∗ Ronitt Rubinfeld† Shai Vardi‡ Ning Xie §

Abstract

Recently Rubinfeld et al. (ICS 2011, pp. 223–238) proposed anew model of sublinear algorithms
calledlocal computation algorithms. In this model, a computation problemF may have more than one
legal solution and each of them consists of many bits. The local computation algorithm forF should
answer in an online fashion, for any indexi, the ith bit of some legal solution ofF . Further, all the
answers given by the algorithm should be consistent with at least one solution ofF .

In this work, we continue the study of local computation algorithms. In particular, we develop
a technique which under certain conditions can be applied toconstruct local computation algorithms
that run not only in polylogarithmic time but also in polylogarithmic space. Moreover, these local
computation algorithms are easily parallelizable and can answer all parallel queries consistently. Our
main technical tools are pseudorandom numbers with boundedindependence and the theory of branching
processes.
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1 Introduction

The classical view of algorithmic analysis, in which the algorithm reads the entire input, performs a com-
putation and then writes out the entire output, is less applicable in the context of computations on massive
data sets. To address this difficulty, several alternative models of computation have been adopted, including
distributed computation as well as various sub-linear timeand space models.

Local computation algorithms (LCAs) were proposed in [24] to model the scenario in which inputs to
and outputs from the algorithms are large, such that writingout the entire output requires an amount of time
that is unacceptable. On the other hand, only small portionsof the output are required at any point in time
by any specific user. LCAs support queries to the output by theuser, such that after each query to a specified
locationi, the LCA outputs the value of the output at locationi. LCAs were inspired by and intended as a
generalization of several models that appear in the literature, including local algorithms, locally decodable
codes and local reconstruction algorithms. LCAs whose timecomplexity is efficient in terms of the amount
of solution requested by the user have been given for variouscombinatorial and coding theoretic problems.

One difficulty is that for many computations, more than one output is considered to be valid, yet the
values returned by the LCA over time must be consistent. Often, the straightforward solutions ask that the
LCA store intermediate values of the computations in order to maintain consistency for later computations.
Though standard techniques can be useful for recomputing the values of random coin tosses in a straightfor-
ward manner, some algorithms (e.g., many greedy algorithms) choose very different solutions based on the
order of input queries. Thus, though the time requirements of the LCA may be efficient for each query, it
is not always clear how tobound the storage requirements of the LCA by a function that is sublinear in the
size of the query history. It is this issue that we focus on in this paper.

1.1 Our main results

Before stating our main results, we mention two additional desirable properties of LCAs. Both of these
properties are achieved in our constructions of LCAs with small storage requirements. The first is that an
LCA should bequery oblivious, that is the outputs ofA should not depend on the order of the queries but
only on the input and the random bits generated on the random tape ofA. The second is that the LCA should
beparallelizable, i.e., that it is able to answer multiple queries simultaneously in a consistent manner.

All the LCAs given in [25] suffer from one or more of the following drawbacks: the worst case space
complexity is linear, the LCA is not query oblivious, and theLCA is not parallelizable. We give new
techniques to construct LCAs for the problems studied in [25] which run in polylogarithmic time as well as
polylogarithmic space. Moreover, all of the LCAs are query oblivious and easily parallelizable.

Theorem 1.1(Main Theorem1 (informal)). There is an LCA for Hypergraph Coloringthat runs in poly-
logarithmic time and space. Moreover, the LCA is query oblivious and parallelizable.

Theorem 1.2(Main Theorem2 (informal)). There is an LCA for Maximal Independent Setthat runs in
polylogarithmic time and space. Moreover, the LCA is query oblivious and parallelizable.

We remark that following [25], analogous techniques can be applied to construct LCAs with all of the
desirable properties for the radio network problem andk-CNF problems.

1.2 Techniques

There are two main technical obstacle in making the LCAs constructed in [25] space efficient, query obliv-
ious and parallelizable. The first is that LCAs need to remember all the random bits used in computing
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previous queries. The second issue is more subtle – [25] giveLCAs based on algorithms which use very
little additional time resources per query as they simulategreedy algorithms. These LCAs output results
that depend directly on the orders in which queries are fed into the algorithms.

We address the randomness issue first. The space inefficient LCAs constructed in [25] for the problems
of concern to us are probabilistic by nature. Consistency among answers to the queries seems to demand
that the algorithm keeps track of all random bits used so far,which would incur linear space complexity.
A simple but very useful observation is that all the computations are local and thus involve a very small
number of random bits. Therefore we may replace the truly random bits with random variables of limited
independence. The construction of small sample spacek-wise independent random variables of Alon et
al. [3] allows us to reduce the space complexity from linear to polylogarithmic. This allows us to prove
our main theorem on the LCA for the maximal independent set problem. It is also an important ingredient
in constructing our LCA forHypergraph Coloring. We believe such a technique will be a standard tool in
future development of LCAs.

ForHypergraph Coloring, we need to also address the second issue raised above. The original LCA for
Hypergraph Coloring in [25] emulates Alon’s algorithm [2]. Alon’s algorithm runs in three phases. During
the first phase, it colorsall vertices in anarbitrary order. Such an algorithm looks “global” in nature and
it is therefore non-trivial to turn it into an LCA. In [25], they use the order of vertices being queried as the
order of coloring in Alon’s algorithm, hence the algorithm needs to store all answers to previous queries and
requires linear space in computation.

We take a different approach to overcome this difficulty. Observe that there is some “local” dependency
among the colors of vertices – namely, the color of any vertexdepends only on the colors of at most a
constant number, sayD, other vertices. The colors of these vertices in turn dependon the colors of their
neighboring vertices, and so on. We can model the hypergraphcoloring process by a query tree: Suppose
the color of vertexx is now queried. Then the root node of the query tree isx, the nodes on the first level are
the vertices whose colors the color ofx depends on. In general, the colors of nodes on leveli depends on1

the colors of nodes on leveli + 1. Note that the query tree has degree boundD and moreover, the size of
the query tree clearly depends on the order in which verticesare colored, since the color of a vertex depends
only on vertices that are colored before it. In particular, if x is thekth vertex to be colored, then the query
tree contains at mostk vertices.

An important fact to note is that Alon’s algorithm works forany order, in particular, it works for a
random order. Therefore we can apply the random order methodof Nguyen and Onak [20]: generate a
random numberr ∈ [0, 1], called therank, and use these ranks to prune the original query tree into a
random query tree T . Specifically,T is defined recursively: the root ofT is still x. A nodez is in T if its
parent nodey in the original query tree is inT andr(z) < r(y). Intuitively, a random query tree is small
and indeed it is surprisingly small [20]: the expected size of T is eD−1

D , a constant!
Therefore, if we color the vertices in the hypergraph in a random order, theexpected number of vertices

we need to color is only a constant. However, such an “averagecase” result is insufficient for our LCA
purpose: what we need is a “worst case” result which tells almost surely how large a random query tree will
be. In other words, we need a concentration result on the sizes of the random query trees. The previous
techniques in [20, 28] do not seem to work in this setting.

Consider the worst case in which the rank of the root nodex is 1. A key observation is, although there
areD child nodes ofx, only the nodes whose ranks are close to1 are important, as the child nodes with
smaller ranks will die out quickly. But in expectation therewill be very few important nodes! This inspires

1In fact, they may depend on the colors of some nodes on levels lower thani. However, as we care only about query complexity,
we will focus on the worst case that the query relations form atree.
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us to partition the random query tree intoD + 1 levels based on the ranks of the nodes, and analyze the
sizes of trees on each level using the theory of branching processes. In particular, we apply a quantitative
bound on the total number of off-springs of a Galton-Watson process [22] to show that, for anym > 0, with
probability at least1 − 1/m2 the size of a random query tree has at mostC(D) logD+1m vertices, where
C(D) is some constant depending only onD. We conjecture that the upper bound can be further reduced to
C(D) logm.

However, the random order approach raise another issue: howdo we store the ranks of all vertices? Ob-
serve that in constructing a random query tree, the actual values of the ranks are never used – only the relative
orders between vertices matter. This fact together with thefact that all computations are local enables us to
replace the rank function with some pseudorandom ordering among the vertices, see Section 4 for formal
definition and construction. The space complexity of the pseudorandom ordering is only polylogarithmic,
thus making the total space complexity of the LCA also polylogarithmic.

1.3 Other related work

Locally decodable codes [9] which given an encoding of a message, provide quick access to the requested
bits of the original message, can be viewed as LCAs. Known constructions of LDCs are efficient and use
small space [27]. LCAs generalize thereconstruction models described in [1, 6, 26, 7]. These models
describe scenarios where an input string that has a certain property, such as monotonicity, is assumed to be
corrupted at a relatively small number of locations. The reconstruction algorithm gives fast query access to
an uncorrupted version of the string that is close to the original input. Most of the works mentioned are also
efficient in terms of space.

In [24], it is noted that the model of LCAs is related tolocal algorithms, studied in the context of
distributed computing [19, 17, 12, 13, 14, 11, 10]. This is due to a reduction given by Parnas Ron [23]
which allows one to construct (sequential) LCAs based on constant round distributed algorithms. Note that
this relationship does not immediately yield space-efficient local algorithms, nor does it yield sub-linear
time LCAs when used with parallel or distributed algorithmswhose round complexity isO(log n).

Recent exciting developments in sublinear time algorithmsfor sparse graph and combinatorial optimiza-
tion problems have led to new constant time algorithms for approximating the size of a minimum vertex
cover, maximal matching, maximum matching, minimum dominating set, minimum set cover, packing and
covering problems (cf. [23, 16, 20, 28]). For example, forMaximal Independent Set, these algorithms con-
struct a constant-time oracle which for most, but not all, vertices outputs whether or not the vertex is part of
the independent set. For the above approximation algorithms, it is not necessary to get the correct answer
for each vertex, but for LCAs, which must work for any sequence of online inputs, the requirements are
more stringent, thus the techniques are not applicable without modification.

1.4 Organization

The rest of the paper is organized as follows. Some preliminaries and notations that we use throughout the
paper appear in Section 2. We then prove our main technical result, namely the bound on the sizes of random
query trees in Section 3. In Section 4 we construct pseudorandom orderings with small space. Finally we
apply the techniques developed in Section 3 and Section 4 to construct LCAs for the hypergraph coloring
problem and the maximal independent set problem in Section 5and Section 6, respectively.
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2 Preliminaries

Unless stated otherwise, all logarithms in this paper are tothe base2. Let n ≥ 1 be a natural number. We
use[n] to denote the set{1, . . . , n}.

All graphs in this paper are undirected graphs. LetG = (V,E) be a graph. Thedistance between two
verticesu andv in V (G), denoted bydG(u, v), is the length of a shortest path between the two vertices.
We writeNG(v) = {u ∈ V (G) : (u, v) ∈ E(G)} to denote the neighboring vertices ofv. Furthermore, let
N+

G (v) = N(v) ∪ {v}. Let dG(v) denote the degree of a vertexv.

2.1 Local computation algorithms

We present our model of local computation algorithms: LetF be a computational problem andx be an input
toF . LetF (x) = {y | y is a valid solution for input x}. Thesearch problem is to find anyy ∈ F (x).

Definition 2.1 ((t, s, δ)-local algorithms [25]). Let x andF (x) be defined as above. A(t(n), s(n), δ(n))-
local computation algorithm A is a (randomized) algorithm which implements query access to an arbitrary
y ∈ F (x) and satisfies the following:A gets a sequence of queriesi1, . . . , iq for any q > 0 and after
each queryij it must produce an outputyij satisfying that the outputsyi1 , . . . , yiq are substrings of some
y ∈ F (x). The probability of success over allq queries must be at least1 − δ(n). A has access to a
random tape and local computation memory on which it can perform current computations as well as store
and retrieve information from previous computations. We assume that the inputx, the local computation
tape and any random bits used are all presented in the RAM wordmodel, i.e.,A is given the ability to access
a word of any of these in one step. The running time ofA on any query is at mostt(n), which is sublinear in
n, and the size of the local computation memory ofA is at mosts(n). Unless stated otherwise, we always
assume that the error parameterδ(n) is at most some constant, say,1/3. We say thatA is astrongly local
computation algorithm if both t(n) ands(n) are upper bounded bylogc n for some constantc.

Two important properties of LCAs are as follows:

Definition 2.2 (Query oblivious[25]). We say an LCAA is query order oblivious (query oblivious for short)
if the outputs ofA do not depend on the order of the queries but depend only on theinput and the random
bits generated on the random tape ofA.

Definition 2.3 (Parallelizable[25]). We say an LCAA is parallelizable if A supports parallel queries, that
is the LCA is able to answer multiple queries simultaneouslyso that all the answers are consistent.

2.2 k-wise independent random variables

Let 1 ≤ k ≤ n be an integer. A distributionD : {0, 1}n → R
≥0 is k-wise independent if restrictingD

to any index subsetS ⊂ [n] of size at mostk gives rise to a uniform distribution. A random variable is
said to bek-wise independent if its distribution function isk-wise independent. Recall that the support of
a distributionD, denotedsupp(D), is the set of points at whichD(x) > 0. We say a discrete distribution
D is symmetric if D(x) = 1/|supp(D)| for everyx ∈ supp(D). If a distributionD : {0, 1}n → R

≥0 is
symmetric with|supp(D)| ≤ 2m for somem ≤ n, then we may index the elements in the support ofD
by {0, 1}m and callm the seed length of the random variable whose distribution isD. We will need the
following construction ofk-wise independent random variables over{0, 1}n with small symmetric sample
space.
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Theorem 2.4([3]). For every 1 ≤ k ≤ n, there exists a symmetric distribution D : {0, 1}n → R
≥0 of

support size at most n⌊k
2
⌋ and is k-wise independent. That is, there is a k-wise independent random variable

x = (x1, . . . , xn) whose seed length is at most O(k log n). Moreover, for any 1 ≤ i ≤ n, xi can be
computed in space O(k log n).

3 Bounding the size of a random query tree

3.1 The problem and our main result

Consider the following scenario which was first studied by [20] in the context of constant-time approxi-
mation algorithms for maximal matching and some other problems. We are given a graphG = (V,E) of
bounded degreeD. A real numberr(v) ∈ [0, 1] is assigned independently and uniformly at random to every
vertexv in the graph. We call this random number therank of v. Each vertex in the graphG holds an input
x(v) ∈ R, where the rangeR is some finite set. A randomized Boolean functionF is defined inductively on
the vertices in the graph such thatF (v) is a function of the inputx(v) at v as well as the values ofF at the
neighborsw of v for which r(w) < r(v). The main question is, in order to computeF (v0) for any vertex
v0 in G, how many queries to the inputs of the vertices in the graph are needed?

Here, for the purpose of upper bounding the query complexity, we may assume for simplicity that the
graphG is D-regular and furthermore,G is an infiniteD-regular tree rooted atv0. It is easy to see that
making such modifications toG can never decrease the query complexity of computingF (v0).

Consider the following question. We are given an infiniteD-regular treeT rooted atv0. Each nodew in
T is assigned independently and uniformly at random a real numberr(w) ∈ [0, 1]. For every nodew other
thanv0 in T , letparent(w) denote the parent node ofw. We grow a (possibly infinite) subtreeT of T rooted
atv as follows: a nodew is in the subtreeT if and only if parent(w) is in T andr(w) < r(parent(w)) (for
simplicity we assume all the ranks are distinct real numbers). That is, we start from the rootv, add all the
children ofv whose ranks are smaller than that ofv to T . We keep growingT in this manner where a node
w′ ∈ T is a leaf node inT if the ranks of itsD children are all larger thanr(w′). We call the random treeT
constructed in this way aquery tree and we denote by|T | the random variable that corresponds to the size
of T . We would like to know what are the typical values of|T |.

Following [20, 21], we have that, for any nodew that is at distancet from the rootv0, Pr[w ∈
T ]=1/(t+1)! as such an event happens if and only if the ranks of the t + 1 nodes along the shortest path
from v0 to w is in monotone decreasing order. It follows from linearity of expectation that the expected
value of|T | is given by the elegant formula [21]

E[|T |] =
∞
∑

t=0

Dt

(t+ 1)!
=

eD − 1

D
,

which is a constant depending only on the degree boundD.
Our main result in this section can be regarded as showing that in fact |T | is highly concentrated around

its mean:

Theorem 3.1. For any degree bound D ≥ 2, there is a constant C(D) which depends on D only such that
for all large enough N ,

Pr[|T | > C(D) logD+1 N ] < 1/N2.
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3.2 Breaking the query tree into levels

A key idea in the proof is to break the query tree into levels and then upper bound the sizes of the subtrees
on each level separately. First partition the interval[0, 1] intoD+1 sub-intervals:Ii := (1− i

D+1 , 1−
i−1
D+1 ]

for i = 1, 2, . . . ,D andID+1 = [0, 1
D+1 ]. We then decompose the query treeT into D + 1 levels such that

a nodev ∈ T is said to be on leveli if r(v) ∈ Ii. For ease of exposition, in the following we consider the

worst case thatr(v0) ∈ I1. Then the vertices ofT on level1 form a tree which we callT1 = T
(1)
1 rooted at

v0. The vertices ofT on level2 will in general form a set of trees{T (1)
2 , . . . , T

(m2)
2 }, where the total number

of such treesm2 is at mostD times the number of nodes inT1 (we have only inequality here because some
of the child nodes inT of the nodes inT1 may fall into levels2, 3, etc). Finally the nodes on levelD + 1

form a forest{T (1)
D+1, . . . , T

(mD+1)
D+1 }. Note that all these trees{T (j)

i } are generated by the same stochastic
process, as the ranks of all nodes inT are i.i.d. random variables. The next lemma shows that each of the
subtrees on any level is of sizeO(logN) with probability at least1− 1/N3,

Lemma 3.2. For any 1 ≤ i ≤ D + 1 and any 1 ≤ j ≤ mi, with probability at least 1 − 1/N3, |T (j)
i | =

O(logN).

One can see that Theorem 3.1 follows directly from Lemma 3.2:Once again we consider the worst case
thatr(v0) ∈ I1. By Lemma 3.2, the size ofT1 is at mostO(logN) with probability at least1 − 1/N3. In
what follows, we always condition our argument upon that this event happens. Notice that the root of any
tree on level2 must have some node inT1 as its parent node; it follows thatm2, the number of trees on level
2, is at mostD times the size ofT1, hencem2 = O(logN). Now applying Lemma 3.2 to each of them2

trees on level2 and assume that the high probability event claimed in Lemma 3.2 happens in each of the
subtree cases, we get that the total number of nodes at level2 is at mostO(log2N). Once again, any tree
on level3 must have some node in either level1 or level2 as its parent node, so the total number of trees
on level3 is also at mostD(O(logN) + O(log2 N)) = O(log2N). Applying this argument inductively,
we get thatmi = O(logi−1 N) for i = 2, 3, . . . ,D + 1. Consequently, the total number of nodes at all
D + 1 levels is at mostO(logN) +O(log2 N) + · · ·+O(logD+1 N) = O(logD+1N), assuming the high
probability event in Lemma 3.2 holds for all the subtrees in all the levels. By the union bound, this happens
with probability at least1−O(logD+1N)/N3 > 1− 1/N2, thus proving Theorem 3.1.

The proof of Lemma 3.2 requires results in branching processes, in particular the Galton-Watson pro-
cesses.

3.3 Galton-Watson processes

Consider a Galton-Watson process defined by the probabilityfunction p := {pk; k = 0, 1, 2, . . .}, with
pk ≥ 0 and

∑

k pk = 1. Let f(s) =
∑∞

k=0 pks
k be the generating function ofp. For i = 0, 1, . . . , let Zi

be the number of off-springs in theith generation. ClearlyZ0 = 1 and{Zi : i = 0, 1, . . .} form a Markov
chain. Letm := E[Z1] =

∑

k kpk be the expected number of children of any individual. The classical result
of the Galton-Watson processes is that thesurvival probability (namelylimn→∞Pr[Zn > 0]) is zero if and
only if m ≤ 1. LetZ = Z0 +Z1 + · · · be the sum of all off-springs in all generations of the Galton-Watson
process. The following result of Otter is useful in boundingthe probability thatZ is large.

Theorem 3.3([22]). Suppose p0 > 0 and that there is a point a > 0 within the circle of convergence of
f for which af ′(a) = f(a). Let α = a/f(a). Let t = gcd{r : pr > 0}, where gcd stands for greatest
common divisor. Then
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Pr[Z = n] =







t
(

a
2παf ′′(a)

)1/2
α−nn−3/2 +O(α−nn−5/2), if n ≡ 1 (mod t);

0, if n 6≡ 1 (mod t).
(1)

In particular, if the process isnon-arithmetic, i.e. gcd{r : pr > 0} = 1, and a
αf ′′(a) is finite, then

Pr[Z = n] = O(α−nn−3/2),

and consequentlyPr[Z ≥ n] = O(α−n).

3.4 Proof of Lemma 3.2

To simplify exposition, we prove Lemma 3.2 for the case of treeT1. Recall thatT1 is constructed recursively
as follows: for every child nodev of v0 in T , we addv to T1 if r(v) < r(v0) andr(v) ∈ I1. Then for every
child nodev of v0 in T1, we add the child nodew of v in T to T1 if r(w) < r(v) andr(w) ∈ I1. We repeat
this process until there is no node that can be added toT1.

Once again, we work with the worst case thatr(v0) = 1. To upper bound the size ofT1, we consider a
related random process which also grows a subtree ofT rooted atv0, and denote it byT ′

1. The process that
growsT ′

1 is the same as that ofT1 except for the following difference: ifv ∈ T ′
1 andw is a child node ofv

in T , then we addw to T ′
1 as long asr(w) ∈ I1, but give up the requirement thatr(w) < r(v). Clearly, we

always haveT1 ⊆ T ′
1 and hence|T ′

1| ≥ |T1|.
Note that the random process that generatesT ′

1 is in fact a Galton-Watson process, as the rank of each
node inT is independently and uniformly distributed in[0, 1]. Since|I1| = 1/(D + 1), the probability
function is

p = {(1 − q)D,

(

D

1

)

q(1− q)D−1,

(

D

2

)

q2(1− q)D−2, . . . , qD},

whereq := 1/(D + 1) is the probability that a child node inT appears inT ′
1 when its parent node is inT ′

1.
Note that the expected number of children of a node inT ′

1 isDq = D/(D+1) < 1, so the treeT ′
1 is a finite

tree with probability one.
The generating function ofp is

f(s) = (1− q + qs)D,

as the probability function{pk} obeys the binomial distributionpk = b(k,D, q). In addition, the conver-
gence radius off is ρ = ∞ since{pk} has only a finite number of non-zero terms.

Solving the equationaf ′(a) = f(a) yieldsa = 1−q
q(D−1) =

D
D−1 . It follows that (sinceD ≥ 2)

f ′′(a) = q2D(D − 1)

(

1− q +
1− q

D − 1

)D−2

> 0,

hence the coefficient in(1) is non-singular.
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Let α(D) := a/f(a) = 1/f ′(a), then

1/α(D) = f ′(a) =
D

D + 1
(

D2

D2 − 1
)D−1

= (1 +
1

D2 − 1
)(D

2−1)/(D+1) D

D + 1

< e1/(D+1) D

D + 1

<

(

(1 +
1

D
)D+1

)1/(D+1) D

D + 1

= 1,

where in the third and the fourth steps we use the inequality (see e.g. [18]) that(1 + 1
t )

t < e < (1 + 1
t )

t+1

for any positive integert. This shows thatα(D) is a constant greater than1.
Now applying Theorem 3.3 to the Galton-Watson process whichgeneratesT ′

1 (note thatt = 1 in our
case) gives that, for all large enoughn, Pr[|T ′

1| = n] ≤ 2−cn for some constantc. It follows thatPr[|T ′
1| ≥

n] ≤
∑∞

i=n 2
−ci ≤ 2−Ω(n) for all large enoughn. Hence for all large enoughN , with probability at least

1− 1/N3, |T1| ≤ |T ′
1| = O(logN). This completes the proof of Lemma 3.2.

4 Construction of almostk-wise independent random orderings

An important observation that enables us to make some of our local algorithms run in polylogarithmic space
is the following. In the construction of a random query treeT , we do not need to generate a random real
numberr(v) ∈ [0, 1] independently for each vertexv ∈ T ; instead only therelative orderings among the
vertices inT matter. Indeed, when generating a random query tree, we onlycompare the ranks between
a child nodew and its parent nodev to see ifr(w) < r(v); the absolute values ofr(w) and r(v) are
irrelevant and are used only to facilitate our analysis in Section 3. Moreover, since (almost surely) all our
computations in the local algorithms involve only a very small number of, say at mostk, vertices, so instead
of requiring a random source that generates total independent random ordering among all nodes in the graph,
any pseudorandom generator that producesk-wise independent random ordering suffices for our purpose.
We now give the formal definition of such orderings.

Let m ≥ 1 be an integer. LetD be any set withm elements. For simplicity and without loss of
generality, we may assume thatD = [m]. LetR be a totally ordered set. Anordering of [m] is an injective
functionr : [m] → R. Note that we canproject r to an element in the symmetric permutation groupSm in
a natural way: arrange the elements{r(1), . . . , r(m)} in R in the monotone increasing order and call the
permutation of[m] corresponding to this ordering theprojection of r ontoSm and denote it byPSmr. In
general the projectionPSm is not injective. Letr = {ri}i∈I be any family of orderings indexed byI. The
random ordering Dr of [m] is a distribution over a family of orderingsr. For any integer2 ≤ k ≤ m, we
say a random orderingDr is k-wise independent if for any subsetS ⊆ [m] of sizek, the restriction of the
projection ontoSm of Dr overS is uniform over all thek! possible orderings among thek elements inS. A
random orderingDr is said toǫ-almost k-wise independent if the statistical distance betweenDr is at most
ǫ from somek-wise independent random ordering. Note that our definitions ofk-wise independent random
ordering and almostk-wise independent random ordering are different from that of k-wise independent
permutation and almostk-wise independent permutation (see e.g. [8]), where the latter requires that the
function to be apermutation (i.e., the domain and the range of the function are the same set). In this
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section we give a construction of1
m2 -almostk-wise independent random ordering whose seed length is

O(k log2 m). In our later applicationsk = polylogm so the seed length of the almostk-wise independent
random ordering is also polylogarithmic.

Theorem 4.1. Let m ≥ 2 be an integer and let 2 ≤ k ≤ m. Then there is a construction of 1
m2 -almost

k-wise independent random ordering over [m] whose seed length is O(k log2m).

Proof. For simplicity we assume thatm is a power of2. Lets = 4 logm. We generates independent copies
of k-wise independent random variablesZ1, . . . , Zs with eachZℓ, 1 ≤ ℓ ≤ s, in {0, 1}m. By Theorem 2.4,
the seed length of each random variableZℓ isO(k logm) and therefore the total space needed to store these
random seeds isO(k log2 m). Let thesek-wise independentm-bit random variables be

Z1 = z1,1, . . . , z1,m;

Z2 = z2,1, . . . , z2,m;

. . . . . .

Zs = zs,1, . . . , zs,m.

Now for every1 ≤ i ≤ m, we view eachr(i)
def
= z1,iz2,i · · · zs,i as an integer in{0, 1, . . . , 2s−1} written

in thes-bit binary representation and user : [m] → {0, 1, . . . , 2s − 1} as the ranking function to order the
m elements in the set. We next show that, with probability at least1− 1/m2, r(1), . . . , r(m) are distinctm
integers.

Let 1 ≤ i < j ≤ m be any two distinct indices. For every1 ≤ ℓ ≤ s, sincezℓ,1, . . . , zℓ,m arek-wise
independent and thus also pair-wise independent, it follows thatPr[zℓ,i = zℓ,j] = 1/2. Moreover, as all
Z1, . . . , Zs are independent, we therefore have

Pr[r(i) = r(j)] = Pr[zℓ,i = zℓ,j for every1 ≤ ℓ ≤ s]

=

s
∏

ℓ=1

Pr[zℓ,i = zℓ,j ]

= (1/2)s

= 1/m4.

Applying a union bound argument over all
(

m
2

)

distinct pairs of indices gives that with probability at least
1− 1/m2, all thesem numbers are distinct.

Since eachZℓ, 1 ≤ ℓ ≤ s, is ak-wise independent random variable in{0, 1}m, therefore for any subset
{i1, . . . , ik} of k indices, (r(i1), . . . , r(ik)) is distributed uniformly over all2ks tuples. By symmetry,
conditioned on thatr(i1), . . . , r(ik) are all distinct, the restriction of the ordering induced bythe ranking
function r to {i1, . . . , ik} is completely independent. Finally, since the probabilitythat r(1), . . . , r(m)
are not distinct is at most1/m2, it follows that the random ordering induced byr is 1

m2 -almostk-wise
independent.

5 LCA for Hypergraph Coloring

We now apply the technical tools developed in Section 3 and Section 4 to the design and analysis of LCAs.
Recall that ahypergraph H is a pairH = (V,E) whereV is a finite set whose elements are called

nodes or vertices, andE is a family of non-empty subsets ofV , calledhyperedges. A hypergraph is called
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k-uniform if each of its hyperedges contains preciselyk vertices. Atwo-coloring of a hypergraphH is a
mappingc : V → {red, blue} such that no hyperedge inE is monochromatic. If such a coloring exists,
then we sayH is two-colorable. In this paper we assume that each hyperedge inH intersects at mostd
other hyperedges. LetN be the number of hyperedges inH. Here and after we think ofk andd as fixed
constants and all asymptotic forms are with respect toN . By the Lovász Local Lemma (see, e.g. [4]) when
e(d+ 1) ≤ 2k−1, the hypergraphH is two-colorable.

Following [25], we letm be the total number of vertices inH. Note thatm ≤ kN , som = O(N).
For any vertexx ∈ V , we useE(x) to denote the set of hyperedgesx belongs to. For any hypergraph
H = (V,E), we define avertex-hyperedge incidence matrix M ∈ {0, 1}m×N so that, for every vertexx
and every hyperedgee, Mx,e = 1 if and only if e ∈ E(x). Because we assume bothk andd are constants,
the incidence matrixM is necessarily very sparse. Therefore, we further assume that the matrixM is
implemented via linked lists for each row (that is, vertexx) and each column (that is, hyperedgee).

Let G be thedependency graph of the hyperedges inH. That is, the vertices of the undirected graphG
are theN hyperedges ofH and a hyperedgeEi is connected to another hyperedgeEj in G if Ei ∩ Ej 6= ∅.
It is easy to see that if the input hypergraph is given in the above described representation, then we can find
all the neighbors of any hyperedgeEi in the dependency graphG (there are at mostd of them) inO(logN)
time.

5.1 Overview of Alon’s algorithm

We now give a sketch of Alon’s algorithm [2]; for a detailed description of the algorithm in the context of
LCA see [25].

The algorithm runs in three phases. In the first phase, we go over all the vertices in the hypergraph in
any order and color them in{red,blue} uniformly at random. During this process, if any hyperedge has too
many vertices (above some threshold) in it are colored in onecolor and no vertex is colored in the other color,
then this hyperedge is said to becomedangerous. All the uncolored vertices in the dangerous hyperedges are
then frozen and will be skipped during Phase 1 coloring. A hyperedge is calledsurvived if it does not have
vertices in both colors at the end of Phase 1. The basic lemma,based on the breakthrough result of Beck [5],
claims that after Phase 1, almost surely all connected components of the dependency graphH of survived
hyperedges are of sizes at mostO(logN). We then proceed to the second phase of the algorithm which
repeats the same coloring process (with some different threshold parameter) for each connected component
and gives rise to connected components of sizeO(log logN). Finally in the third phase we perform a brute-
force search for a valid coloring whose existence is guaranteed by the Lovász local lemma. As each of the
connected components in Phase 3 has at mostO(log logN) vertices, the running time of each brute force
search is thus bounded bypolylogN .

To turn Alon’s algorithm into an LCA, Rubinfeld et al. [25] note that one may take the order that vertices
are queried as the order to color the vertices and then in Phase 2 and Phase 3 focus only on the connected
components in which the queried vertex lie. This leads to an LCA with polylogarithmic running time but
the space complexity can be linear in the worst case (as the algorithm needs to remember the colors of
all previously queried or colored vertices). In addition, the LCA is not query oblivious and not easily
parallelizable.

5.2 New LCA for Hypergraph Coloring

To remedy these, we add several new ingredients to the LCA in [25] and achieve an LCA with both time and
space complexity are polylogarithmic. In addition, the LCAis query oblivious and easily parallelizable.
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1st ingredient: bounded-degree dependency.We first make use of the following simple fact: the color of
any fixed vertex in the hypergraph depends only on the colors of a very small number of vertices. Specif-
ically, if vertexx lies in hyperedgesE1, . . . , Ed′ , then the color ofx depends only on the colors of all the
vertices inE1, . . . , Ed′ . As every hyperedge isk-uniform and each hyperedge intersects at mostd other
hyperedges, the color of any vertex depends on at most the colors ofD = k(d+ 1) other vertices.

2nd ingredient: random permutation. Note that in the first phase of Alon’s coloring algorithm,any order
of the vertices will work. Therefore, we may apply the idea ofrandom ordering in [20]. Specifically, suppose
we are given a random number generatorr : [m] → [0, 1] which assign a random number uniformly and
independently to every vertex in the hypergraph. Suppose the queried vertex isx. Then we build a (random)
query treeT rooted atx using BFS as follows: there are at mostD other vertices such that the color ofx
depends on the colors of these vertices. Lety be any of such vertex. Ifr(y) < r(x), i.e. the random number
assigned toy is smaller than that ofx, then we addy as a child node ofx in T . We build the query tree this
way recursively until there is no child node can be added toT . By Theorem 3.1, with probability at least
1 − 1/m2, the total number of nodes inT is at mostpolylogm and is thus also at mostpolylogN . This
implies that, if we color the vertices inT in the order from bottom to top (that is, we color the leaf nodes
first, then the parent nodes of the leaf nodes and so on, and color the root nodex last), then for any vertex
x, with probability at least1− 1/m2 we can follow Alon’s algorithm and color at mostpolylogN vertices
(and ignore all other vertices in the hypergraph) before coloring x. Therefore the running time of the first
phase of our new LCA is (almost surely) at mostpolylogN .

3rd ingredient: k-wise independent random ordering.The random permutation method requires linear
space to store all the random numbers that have been revealedin previous queries in order to make the
answers consistent. However, two useful observations enable us to reduce the space complexity of random
ordering from linear to polylogarithmic. First, only the relative orderings among vertices matter: in building
the query treeT we only check ifr(y) < r(x) but the absolute value ofr(x) andr(y) are irrelevant. There-
fore we can replace the random number generatorr with an equivalent random ordering functionr ∈ Sm,
whereSm is the symmetric group onm elements. Second, as the query tree size is at most polylogarith-
mic almost surely, the random ordering functionr need not be totally random but a polylogarithmic-wise
independent permutation suffices2. Therefore we can use the construction in Theorem 4.1 of1

m2 -almost
k-wise independent random ordering of all the vertices in thehypergraph withk = polylogN . The space
complexity of such a random ordering, or the seed length, isO(k log2m) = polylogN .

4th ingredient: k-wise independent random coloring.Finally, the space complexity for storing all the
random colors assigned to vertices is also linear in worst case. Once again we exploit the fact that all
computations in LCAs are local to reduce the space complexity. Specifically, the proof of the basic lemma of
Alon’s algorithm (see e.g. [4, Claim 5.7.2]) is valid as longas the random coloring of the vertices isc logN -
wise independent, wherec is some absolute constant. Therefore we can replace the truly random numbers
in {0, 1}m used for coloring with ac logN -wise independent random numbers in{0, 1}m constructed in
Theorem 2.4 thus reducing the space complexity of storing random colors toO(log2 N).

5.3 Pseudocode of the LCA and main result

To put everything together, we have the following LCA forHypergraph Coloring as illustrated in Fig. 1,
Fig. 2 and Fig. 3. In the preprocessing stage, the algorithm generatesO( logN

log logN ) copies of pseudo-random

2 Since the full query tree has degree boundD, so the total number of nodes queried in building the random query treeT is at
mostD|T |, which is also at most polylogarithmic.
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LCA for Hypergraph Coloring
Preprocessing:

1. generateO( logN

log logN
) copies ofc logN -wise independent random variables in{0, 1}m

2. generate a1
m2 -almostpolylogN -wise independent random ordering over[m]

Input: a vertexx ∈ V
Output: a color in {red, blue}
1. Use BFS to grow a random query treeT rooted atx
2. Color the vertices inT bottom up
3. If x is coloredred or blue, return the color

Else runPhase2 Coloring(x)

Figure 1: Local computation algorithm forHypergraph Coloring

colors for every vertex in the hypergraph and a pseudorandomordering of all the vertices. To answer each
query, the LCA runs in three phases. Suppose the color of vertex x is queried. During the first phase,
the algorithm uses BFS to build a random query tree rooted atx and then follows Alon’s algorithm to
color all the vertices in the query tree. Ifx gets colored in Phase1, the algorithm simply returns that
color; if x is frozen in Phase1, then Phase2 coloring is invoked. In the second phase, the algorithm first
explores the connected components aroundx of survived hyperedges. Then Alon’s algorithm is performed
again, but this time only on the vertices in the connected component. For some technical reason, the random
coloring process is repeatedO( logN

log logN ) times3, until a good coloring is found which makes all the surviving
connected components after Phase2 very small. Ifx gets colored in the good coloring, then that color is
returned; otherwise the algorithm runs the last phase, in which a brute-force search is performed to find the
color ofx.

The time and space complexity as well as the error bound of theLCA are easy to analyze and we have
the following main result of LCA forHypergraph Coloring:

Theorem 5.1. Let d and k be such that there exist three positive integers k1, k2 and k3 such that the follow-
ings hold:

k1 + k2 + k3 = k,

16d(d − 1)3(d+ 1) < 2k1 ,

16d(d − 1)3(d+ 1) < 2k2 ,

2e(d + 1) < 2k3 .

Then there exists a (polylogN,polylogN, 1/N)-local computation algorithm which, given a hypergraph H
and any sequence of queries to the colors of vertices (x1, x2, . . . , xs), returns a consistent coloring for all
xi’s which agrees with some 2-coloring of H .

6 LCA for Maximal Independent Set

Recall that an independent set (IS) of a graphG is a subset of vertices such that no two vertices in the set
are adjacent. An independent set is called amaximal independent set (MIS) if it is not properly contained in
any other IS.

3This is why the algorithm generates many copies of independent pseudorandom colorings at the beginning of the LCA.
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Phase2 Coloring(x)
Input: a vertexx ∈ V
Output: a color in {red, blue} or FAIL
1. Start fromE(x) to exploreG in order to find the connected

componentC1(x) of survived hyperedges aroundx
2. If the size of the component is larger thanc2 logN

Abort and returnFAIL
3. Repeat the followingO( logN

log logN
) times and stop if agood coloring is founda

(a) Color all the vertices inC1(x) uniformly at random
(b) Explore the dependency graph ofG|S1(x)

(c) Check if the coloring isgood
4. If x is colored in the good coloring, return that color

Else runPhase3 Coloring(x)

a Following [25], letS1(x) be the set of surviving hyperedges inC1(x) after all vertices inC1(x)
are either colored or are frozen. Now we explore the dependency graph ofS1(x) to find out all the
connected components. We say a Phase2 coloring isgood if all connected components inG|S1

(x)
have sizes at mostc3 log logN , wherec3 is some absolute constant.

Figure 2: Local computation algorithm forHypergraph Coloring: Phase2

Phase3 Coloring(x)
Input: a vertexx ∈ V
Output: a color in {red, blue}
1. Start fromE(x) to exploreG in order to find the connected

component of all thesurvived hyperedges aroundx
2. Go over all possible colorings of the connected component

and color it using a feasible coloring.
3. Return the colorc of x in this coloring.

Figure 3: Local computation algorithm forHypergraph Coloring: Phase3

13



In [24, 25], a two-phase LCA is presented for MIS. For completeness, we present the pseudocode of the
LCA in Appendix A. LetG be a graph with maximum degreed and suppose the queried vertex isv. In
the first phase, the LCA simulates Luby’s algorithm for MIS [15]. However, instead of running the parallel
algorithm forO(log n) rounds as the original Luby’s algorithm, the LCA simulates the parallel algorithm
for only O(d log d) rounds. Following an argument of Parnas and Ron [23], the sequential running time for
simulating the parallel algorithm to determine whether a given node is in the MIS isdO(log d). If v or any of
v’s neighbors is put into the independent set during the first phase, then the algorithm return “Yes” or “No”,
respectively. If, on the other hand,v lies in some connected component of “surviving” vertices after running
the first phase, then the algorithm proceeds to the second phase algorithm, in which a simple linear-time
greedy search for an MIS of the component is performed. A key result proved in [24, 25] is that, after the
first phase of the algorithm, almost surely all connected components have sizes at mostO(poly(d) log n).
Therefore the running time4 of the second phase isdO(log d) log n.

To implement such a two-phase LCA and ensure that all answersare consistent, we need to maintain a
random tape that keeps a record of all the generated random bits during previous runs, which implies the
space complexity of the LCA is linear in the worst case. To seethis, suppose two verticesu andv are
connected inG andu is queried first. Suppose further that the LCA runs onu and finds out during the first
phase thatu is in the IS. If vertexv is queried at some time later, we need to ensure that, when simulating
Luby’s algorithmu is put in the IS in some round (hencev is deleted in the round after that). This in turn
requires that we retrieve the random bits used during the runof LCA on u.

A simple but crucial observation which enables us to reduce the space complexity of the LCA for MIS
is, since all the computations are “local”, we may replace the truly random bits used in the algorithm with
random bits of limited independence constructed in Theorem2.4.

First we round the degree bound ofG to d̃ = 2⌈log d⌉. Note thatd ≤ d̃ < 2d. Now we can generate the
probability1/2d̃ used in Luby’s algorithm (c.f. Figure 4) by tossinglog d̃ = ⌈log d⌉ independent fair coins.

Since the second phase of the LCA is deterministic, we can therefore focus on the first phase only. The
running time of the first phase is shown to bedO(log d) [25]. Following the notation in [25], for a vertexv
in G, let Av be the event thatv is a surviving vertex at the end of Phase 1 and letBv be the event thatv is
in state “⊥” after runningMISB for O(d log d) rounds, whereMISB is a variant ofMIS, a subroutine of
the first phase algorithm. It was shown in [25] thatAv ⊆ Bv (Claim 4.2) and for any subset of verticesW ,

Pr[all vertices inW are surviving vertices]

= Pr[∩v∈WAv]

≤ Pr[∩v∈WBv].

Following the proof of Lemma 4.6 in [25], a graphH on the verticesV (G) is called adependency graph
for {Bv}v∈V (G) if for all v the eventBv is mutually independent of allBu such that(u, v) /∈ H. Let H3

denote the “distance-3” graph ofH, that is, verticesu andv are connected inH3 if their distance inH is
exactly3. Let W be a subset of vertices inH3. Then, since all vertices inW are at least3-apart, all the
events{Bv}v∈W are mutually independent, it follows that the probability that all vertices inW are surviving
vertices satisfies

Pr[∩v∈WBv] =
∏

v∈W

Pr[Bv].

Finally in the proof of Lemma 4.6 in [25], the size ofW is taken to bec1 log n for some constantc1 to

4Note that we need to run a BFS starting fromv to explore the connected component in whichv lies. Each step of the BFS
incurs a run on the explored node of the first phase LCA.
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show that, almost surely all connected components of surviving vertices after Phase 1 are of sizes at most
poly(d) log n.

Now we try to replace the true random bits used in the LCA in [25] with pseudorandom bits of limited
independence. Firstly, since the running time of the first phase isdO(log d), hence this is also the running time
of the algorithm if the subroutineMIS is replaced withMISB . It follows that each eventBv depends on at
mostdO(log d) · log d̃ = dO(log d) random bits. Secondly, the argument we sketched in the last paragraph is
still valid as long as the events{Bv}v∈H3 arec1 log n-wise independent. Such a condition is satisfied if the
random bits used in the algorithm arek-wise independent, wherek = dO(log d) · c1 log n = dO(log d) log n.
Note that the total number of random bits used during the firstphase for all vertices ism = dO(log d) · n.
Therefore all we need is ak-wise independent random variable in{0, 1}m. By Theorem 2.4, such random
variables can be constructed with seed lengthO(k logm) = dO(d log d) log2 n and each random bit can be
computed in timeO(k logm) = dO(d log d) log2 n.

To put everything together, we proved the following theoremregarding the LCA for MIS5:

Theorem 6.1. Let G be an undirected graph with n vertices and maximum degree d. Then there is a
dO(d log d) log3 n, dO(log d) log2 n, 1/n)-local computation algorithm which, on input a vertex v, decides if v
is in a maximal independent set. Moreover, the algorithm will give a consistent MIS for every vertex in G.
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MAXIMAL INDEPENDENTSET: PHASE 1
Input: a graphG and a vertexv ∈ V
Output: {“true”, “false”, “⊥”}

For i from 1 to r = 20d log d
(a) If MIS(v, i) = “selected”

return “true”
(b) Else ifMIS(v, i) = “deleted”

return “false”
(c) Else

return “⊥”

MIS(v, i)
Input: a vertexv ∈ V and a round numberi
Output: {“selected”, “deleted”, “⊥”}
1. If v is marked “selected” or “deleted”

return “selected” or “deleted”, respectively
2. For everyu in N(v)

If MIS(u, i− 1) = “selected”
markv as “ deleted” and return “deleted”

3. v chooses itself independently with probability12d
If v chooses itself

(i) For everyu in N(v)
If u is marked “⊥”, u chooses itself independently with probability12d

(ii) If v has a chosen neighbor
return “⊥”

(iii) Else
markv as “selected” and return “selected”

Else
return “⊥”

Figure 4: Local computation algorithm for MIS: Phase1
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A Pseudocode of the LCA forMaximal Independent Set

In this section we present the pseudocode of the LCA forMaximal Independent Set. This is taken from [25]
with slight modifications and we also refer interested readers to [25] for detailed description and analysis of
the algorithm.
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MISB(v, i)
Input: a vertexv ∈ V and a round numberi
Output: {“picked”, “⊥”}
1. If v is marked “picked”

return “picked”
2. v chooses itself independently with probability12d

If v chooses itself
(i) For everyu in N(v)

u chooses itself independently with probability12d
(ii) If v has a chosen neighbor

return “⊥”
(iii) Else

markv as “picked” and return “picked”
Else

return “⊥”

Figure 5: AlgorithmMISB

MAXIMAL INDEPENDENTSET: PHASE 2
Input: a graphG and a vertexv ∈ V
Output: {“true”, “false”}
1. Run BFS starting fromv to grow a connected component of surviving vertices

(If a vertexu is in the BFS tree andw ∈ N(u) in G, thenw is in the BFS tree
if and only if running the first phase LCA onw returns “⊥”)

2. (Run the greedy search algorithm on the connected component for an MIS)
SetS = ∅
Scan all the vertices in the connected component in order

If a vertexu is not deleted
addu to S
delete all the neighbors ofu

3. If v ∈ S
return “true”
else “false”

Figure 6: Local computation algorithm for MIS: Phase2
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