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Abstract

The K-server problem is the problem of planning the motion of
K mobile servers in a metric space. We give an on-line algorithm
for the 2-server problem in any metric space. The total cost of this
algorithm on any sequence of requests is bounded by 10 times the
cost of the optimal off-line algorithm on that sequence. The rule is
a modified version of the balance algorithm; it sends the server that
minimizes the quantity: (total distance traversed so far by that server
+ twice the distance of that that server to the next request). This is
the first provably competitive rule that can be evaluated in a constant
number of arithmetic operations per request with only one variable.
This contrasts with the 2-competitive 2-server algorithm in [MMS]
which requires maintaining O(¢) memory locations and O(¢) time to
decide which server to send, where t is the minimum of the number
of points in the metric space of the metric space and the number of
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requests. Our rule naturally generalizes to more than two servers, and
we conjecture that it is also competitive in this case.

1 Introduction

The K-server problem, first introduced in [MMS], is the problem of managing
the motion of K mobile servers on a metric space and is defined as follows.
There are K servers that are placed initially on K points in a metric space.
They are free to move around from point to point: however, the cost of
moving a server from one point to another is the distance between the two
points. Denote the cost of moving a server from point ¢ to j as ¢;;. The costs
satisfy the triangle inequality, ¢;; < ¢, + ¢ for all nodes ¢,k,7. In this paper,
we assume that the distance between two points is symmetric. (i.e. for all
i,7, ¢ij = ¢ji.) A request sequence for the K-server problem is a sequence of
node names. The algorithm must send one of the servers to every node in
the sequence in order. The object of the algorithm is to minimize the total
cost incurred by the servers.

An algorithm is on-line if it determines which server to send to satisfy
a particular request without any knowledge of the future requests. An al-
gorithm is off-line if it bases its choices on the entire sequence of requests.
Chrobak et alhave an O(kn?) method for finding the optimal way to service
a sequence when the entire sequence is available ahead of time. We call this
best strategy the optimal algorithm. The performance of an on-line algo-
rithm is evaluated in comparison to the optimal strategy. This idea was first
introduced in [ST] in order to evaluate on-line algorithms for updating lists.
Let C4(0) denote the cost that algorithm A incurs in servicing the sequence
o of requests. Let Copr(o) denote the cost of the optimal algorithm on o.
We assume both algorithms start from the same configuration. Algorithm A
is called a-competitive on a class of graphs C, if for any graph in C there is
some constant (# such that for every finite sequence of requests, o,

Calo) < a-Copr(o) + 0.

Note that s may depend on the initial configuration of the servers but not
on o. The competitive ratio for an algorithm A is the smallest « such that A



is a-competitive. An algorithm is strongly competitive if it achieves the best
possible competitive ratio.

[MMS] exhibit a lower bound of K for the competitive ratio of any on-
line algorithm for the K-server problem on any metric space with at least
K + 1 points. They conjecture that there is an on-line algorithm that is
K-competitive for the K-server problem in any metric space. In the case
where K = 2, [MMS] present an on-line strategy which is 2-competitive.
However, their strategy requires O(t) arithmetic operations to decide which
server to send, and it requires that O(t) variables be saved in memory where
t = min {|o|,number of points in the metric space}. If the K-server prob-
lem is viewed strictly as an information theoretic problem, then their algo-
rithm solves the problem for K = 2. However, the performance of on-line
algorithms with restricted computational resources is also of fundamental
importance for the K-server problem and for on-line algorithms in general.
One paper where this issue has been addressed is [RS], where they examine
on-line algorithms with restricted space.

In this paper, we present an algorithm for the general two server problem
that requires a constant number of arithmetic operations per request, and
one variable. This is the first provably competitive server rule with this prop-
erty. The algorithm is shown to be 10-competitive. Recently, Chrobak and
Larmore have exhibited that our algorithm is no better than 6-competitive
[CL1]. They also have exhibited a 4-competitive algorithm that requires
constant space and a constant decision time per request. It is not obvious,
however, how to generalize their rule for more than 2 servers. Our rule has
a natural formulation for more than two servers and we conjecture that this
algorithm is O(K')-competitive when there are K servers.

The rule is a modified version of the balance algorithm. The balance
algorithm sends the server that minimizes the quantity: (total cost incurred
so far by that server + the cost of moving that server to the next request).
The balance algorithm has been shown to have an unbounded competitive
ratio [MMS]. The algorithm that sends the closest server to service a request,
and the algorithm that sends the server that has incurred the smallest total
cost so far both have unbounded competitive ratios as well. The new rule,
which we call BALANCE2, sends the server that minimizes the quantity:
(total cost incurred so far by that server + twice the cost of moving that



server to the next request). Surprisingly this rule, which is very similar to
the other rules, is 10-competitive.

Until very recently, it was unknown whether there was an on-line algo-
rithm for the K-server problem that is f( K )-competitive, where the function
f is only a function of K in any metric space. This question was answered
by Fiat, Rabani, and Ravid who give an algorithm for the K-server problem
whose competitive ratio is a function only of K [FRR]. It is conjectured in
[MMS] that there is an algorithm that is K-competitive in any metric space.
Raghavan and Snir have investigated memoryless algorithms, which are al-
gorithms for the K-server problem that maintain no state information [RS].
They give tight bounds for the competitive ratio for a randomized memory-
less on-line algorithm for both the paging problem and the related weighted
cache problem. They also exhibit a randomized memoryless algorithm for
the K-server problem that has a competitive ratio of 2 and (n — 1)? for the
cases where the number of servers are 2 and n — 1 respectively. ( n is the
number of points in the metric space.) Chrobak and Larmore have a 2-
competitive 2-server algorithm that requires O(t) arithmetic operations and
O(t) variables, where t = min {n,|o|} [CL2]. Although the algorithm has
the same competitive ratio and time and space requirements of the original
[MMS] 2-server algorithm, their result demonstrates a new approach to the
server problem.

2 Notation and the 2-Server Rule

We discuss the performance of the BALANC E2 and the optimal algorithm
(also denoted OPT) with respect to an arbitrary fixed sequence of requests
in a fixed metric space. The optimal algorithm knows the entire sequence in
advance. On the other hand, BALANC FE2is an on-line algorithm, and must
decide which server to move to the current request without any information
about future requests, including the number of future requests.

The cost that BALANC E2 incurs in servicing requests ¢ through j (in-
clusive) is denoted Cparas[i, j]. Coprli, j] denotes the cost of the optimal al-
gorithm on requests ¢ through 5. BALANCFE2’s 2 servers are named a and
b and OPT’s servers are named x and y. We use superscripts to distinguish
the distance travelled by a particular server; for example, C*[7, j] denotes the
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total cost incurred by BALANC E2’s server a in servicing requests ¢ through
j. Thus, CBALQ[i,j] == Ca[i,j] + Cb[l,j] and COPT[iaj] == Cw[l,j] + Cy[l,j]
BALANCE?2 decides which server to send to service the i + 1% request
in the sequence as follows. Let d, denote the distance after the 7" request
between a and request ¢ + 1, and d; denote the distance after the i*" request
between b and request ¢ + 1. The algorithm compares the two quantities:

Charoll,t] + 2d, Charoll. 1] + 2d,

It the former is smaller, BALANC E2 sends server a to service request ¢ +
1. If the latter is smaller, BALANC E2 sends server b. If they are equal,
BALANCE?2 makes an arbitrary choice. BALANC E?2 just has to maintain

one variable with the value C% 4;,[1,1] — Ch 470[1,1].

3 The Main Theorem

The following theorem bounds the cost of the algorithm BALANC E2 with

respect to the optimal algorithm.

Theorem 1 Cgarz[l,m] < 10 - Copr[l,m], for any sequence of m re-
quests.

Proof:
To prove the theorem we introduce the following definitions:

After the ¥ request is serviced, both BALANCE?2 and the optimal
algorithm have a server at the location of the i"* request. The distance
between the other two servers, (the servers of BALANCE2 and OPT that
did not service the '" request) is called the configuration distance and is
denoted ®(7). P(¢) is always nonnegative. By our assumption that the
initial configurations of BALANCE?2 and OPT are the same, ®(0) = 0.
The figure below shows a sample snapshot of both algorithms after time ¢
and the corresponding configuration distance. The point labeled r; is the
point of the ¢ request. Because of the triangle inequality, the configuration
distance is the minimum distance the servers of algorithm BALANC E2 have
to move in order to be in the same position as the optimal algorithm.



We say that server a is ahead of server b at time ¢ if C*[1,t] > C°[1,¢],
otherwise it is behind. a moves ahead of b at the instant that the total cost
incurred by a is more than that for b; this can occur when «a is in the middle
of moving to service a request. Let C'[7,j] denote the cost incurred by a

from request 2 through request j while it is ahead. Similarly for éb[z,j] Let
Cparali,j] be defined to be C'[i, j] + éb[z,]]

Lemma 2 Cgaza|l, j] = max{C*[1, j],C’[1, j]}

Proof: By induction on the number of times a server moves ahead of
another. Suppose that after request j, server a is ahead. Let ¢ be the
last request where b is ahead. By the inductive hypothesis, Cpars[l,7] =
max{C*[1,17],C%1,1]} = C*[1,1]. @ moves to service request 7 + 1 and after the
request is ahead of b. zBALQ[i +1,:41) = c" [t 41,7+ 1] since server a is the
only server moving to request i +1. And C'[i41,i+1] = C*[1,i4+1] —C[1,4].
Putting it all together, we get that Cgara[l,7 4+ 1] = Cpars[l,7] + Cparalt +
1,i+ 1] = C*[1,i + 1] = max{C?[1,4],C*[1,7]}. Since server a is ahead from
time 2 + 1 to time j, 5BAL2[Z' + 1,]] == Ca[i + 1,]] SO 5BAL2[1,]'] == Ca[l,j] ==
max{C*[1, 11,C°[1,7]} O

Corollary 3 Cgars|l, ] <2-Crarsll,J]

We analyze the performance of BALANCE2 by examining sequences
of consecutive requests, called epochs, that BALANC E2 services with the
same server. Fvery time BALANC E2 changes servers, a new epoch begins.
Formally, [z, 7] is an epoch if BALANC E2 uses the same server to service
requests ¢ through j and uses a different server to service requests ¢ — 1 and
J + 1. The servers that services requests ¢ through j is the active server in
epoch [z, j]. We prove the following lemma:



Lemma 4 Let [z, 5] be an epoch. Then
Coarali, j] + ®(j) — (i — 1) < 5 Coprli., j]-

Theorem 1 follows from lemma 4 because by letting ¢1,...%; be the first
request in each epoch, (1501 = m + 1), we have:

Cpara[l,m] < 2-Cpgaral,m]

— 2[0(0) — ®(m)]
+ 2 ZS: [(zBALQ[tkatk-H — 1] =Pt — 1) + P(tp1 — 1))]
S 2 ZS: 5 - COPT[tka tk-l—l — 1] (by Lemma 4)

< 10- COPT[L m]

Proof of Lemma 4: We call the active server @, and the other server b.
Recall that OPT’s servers are named = and y. A snapshot of the servers
after request ¢ — 1 is shown below. Without loss of generality, = services the
i — 1°" request for the optimal algorithm.

The proof of the lemma breaks down into cases.

Case I: The active server (server a) is ahead at time j.

Since a is ahead at the end of the epoch, by lemma 2,
Cparali,j] = Cparall, j] — Cparz[l,i — 1]

= C"[1,5] — max{C*[1,i —1],C°[1,i — 1]}.



We prove the slightly stronger result that
Ca[lvj] - ma:z;{Cb[l,i - 1]7Ca[17i - 1]} - (I)(Z - 1) + (I)(]) <3 COPT[ivj]

There are three subcases for Case 1.
Case Ia: OPT uses server y to services all the requests in epoch [i, j].

Servers b and z service request ¢ — 1, and a and y service all the :'* through
7% requests. Then by the triangle inequality,

Coli 1) < CV[i, 1]+ ®(i — 1).
Because y and a move together for the rest of the epoch,
®(j) =0 and C[i + 1,j] = C¥[i + 1, /].
Cli,j] = CUiil+C%li+1,))
(i — 1) — O(j) + C¥[3,4] + C¥[i + 1, ]
O(t— 1) — ®(j) +C¥[z, ]
®(z —1) — @(j) + Coprli, ]

IA

IA

So we have

Y

Cli. gl — @i — 1) + @(j)
= (Ca[lvj] - Ca[lvi - 1]) - (I)(Z - 1) + (I)(])
> C[1,4] — max{C*[1,i —1],C°[1,i — 1]} — ®(i — 1) + ®(j)

Corrli, j]

Case Ib: OPT uses server x to service request j, the last request in the
epoch.

Let [ be the last time before j that OPT uses y to service a request. If the
optimal algorithm never uses y in the epoch, then we set | = ¢ — 1. For now
we assume that [ > ¢ — 1. The case where [ = ¢ — 1 is slightly different than
the case where [ > ¢ — 1. We will not examine the case where [ = ¢ — 1, but
the analysis is similar.

We divide the epoch into two parts: first we analyze moves ¢ through [+ 1
and then moves [ 4+ 2 through the end of the sequence.

Moves ¢ through [+ 1:  The position of the servers after request [ and
after [ + 1 are shown below.



Since BALANC E2 used server a instead of b to service the [ + 1% request,
C’[1, 1)+ 28 > C*[1,1] + 2a. Since b has not moved, C*[1,] = C*[1,7 — 1], and
23 > C[1,1] = C*[1,i — 1] + 2 - a. Because a moves a distance « to service the
[+ 1% request, C*[1,]]+ o = C*[1,1+1],and 23 > C*[1,[+1]-C"[1,i — 1] +«a.
Adding a 3 to both sides gives, 33 > C*[1,{+ 1] — C*[1,7 — 1] + B + . Since
x and b started out at time ¢ together and b has not moved, we know that
B < C%[i, 1+ 1] and thus 3C%[¢, 1+ 1] > C*[1,1 + 1] — C*[1,7] + o + 3. Finally,
since ®(1+ 1) <+ a,

3-C7li, 1 +1]>C 1,14 1] = C°[1,i] + ®(1 + 1) (1)
Moves [+ 2 through j: For the rest of the sequence x and a are moving
together, so C*[I + 2,j] = C*[l + 2,j5] and ®(I+ 1) = ®(5). So

Coll+2,j]+3C7[1, [+ 1] >

C U4 2,7] +C 1,1 +1] =C[L,i — 1]+ (I + 1)

And finally, putting the whole sequence together,
3-C711,4] = C[1,] = C'[1,i — 1] + ()
Z Ca[lvj] - max{ca[LZ’ - 1]766[17Z - 1]} - (I)(Z - 1) + (I)(])

Case Ic: OPT uses server y to service request j and 3 h such that : < h <y
and OPT uses z to service request h.

Let h be the the last time in the epoch that O PT uses server x to service a
request. Then, OPT uses server y to service requests h + 1 through j. The
following picture shows the configuration just after time h and after time

h+1.



The analysis for requests ¢ through & of case Ibis the same as the analysis
for requests ¢ through [ 4 1 of case I¢, so from Equation 1,

3-C7[i,h] > C*[1,h] — C*[1,i — 1] + a + . (2)

Since y and a are moving together for requests h+1 through j, ®(5) = 5. By
the triangle inequality, C*[h+1,h+1] < a+CY[h+1,h+1] and C*[h+2, 5] =
CY[h + 2,7]. This yields that C*[h 4+ 1,7] —a < CY[h + 1, j]. Combining with
equation 2,

3-Coprli,j] = C*[1,5] = C*[1,i — 1] + @(j)
> C[1, 5] — maz{C*[1,i — 1],C°[1,i — 1]} — ®(i — 1) + ®(j)

Case II The active server is behind at time j.

The active server in epoch [z, j] is behind during the entire epoch. Therefore,
Cpara[t,j] = 0. We prove the following:

—®(i — 1)+ ®(j) < 5-Coprli,j]

There are three subcases for Case I1.

Case ITa: OPT uses server y to service request j, the last request in the
epoch. Below are pictured the position of the servers before ¢ and after j.

®(j) < C*[4, 7] since b is stationary throughout the epoch.
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Case ITb: OPT uses server x to services all the requests in epoch [i, j].

Below are pictured the position of the servers before ¢ and after 1.

®(¢) is the distance between b and y. Thus by the triangle inequality,
O(i) < Coprli, i) + Cparalt, i) + ®(z — 1) (3)

Because algorithm BALANCE?2 chooses to move «a instead of b to service
the " request, we know that

C[1,i — 1]+ 2-Crarali,i) <C[L,i — 1] +2-C*[i,1]

Coarali,i] < Coprliyi] + (C°[1,i — 1] = C*[1,7 — 1])/2 (4)

Since & moved from b to a in the epoch [z, j], for any point, the difference
between (the distance between that point and a) and (the distance between
that point and b) is bounded by C*[¢, j]. Algorithm BALANC E2 decides to
send b to service the j + 1% request. Let d, be the distance from « to the
J + 1% request and d;, the distance from b to the j + 1** request. We have
C'll,j]+2-dy <C1,5]+2-d, and

(C*[1,5] = C*[1,4])/2 < du — dy < C”[i, j]. (5)

Since  and a move together on requests 7 + 1 through j, Copr[t + 1,j] =
C'li+ Lyl =C"li+ 1]

C'[1,5] = C*[1,1 — 1] = Cpar2[t, 7] = Coprli + 1, 7] + CaL2]t, ] (6)

Since b does not move in the epoch, C°[1,2 — 1] = C*[1, 5], and combining this
fact with Equation 6,

C'll,i—1]—C*[l,i— 1] = C"[1,j] = C*[L, j] + Coprli + 1, j] + Cparali,i] (7)
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Combining Equations 4, 5, and 7,
Cparali,i]/2 < 2-Coprlt, j] (8)
and from Equations 3 and 8, and the fact that ®(i) = ®(j),

O(j) —0(i — 1) < 5-Coprli, J]

Case Ilc: OPT uses server x to service request j and 4 h such that: < h <y
OPT uses y to service request h.

Let [ be the the last time in the epoch that O PT uses server y. The position
of the servers before and after time [ 4 1 is pictured below.

Since OPT uses server x to service all the requests [ + 1 through j, we can
use the analysis for requests ¢ through j in case /1b. The difference, however,
is that before request [ 4+ 1, y and a are in the same place (in case [1b, the
distance between the two is bounded by ®(: — 1)). Also, # and b do not
start out in the same place, but the distance between the two is bounded by
C*[7,1]. Thus Equation 3 is replaced by

®(5) < Coprlt, [ + 1]+ Crar2ll + 1,1 + 1] (9)

The rest of the analysis through Equation 8 holds, except the sequence starts
at request [ 4+ 1 instead of :. Thus Equation 8 is replaced by

Cpara[l+1,1+1]/2 <2-Copr[l + 1, ] (10)

Putting Equations 9 and 10 together, and the fact that (I + 1) = ®(j),

®(j) <5-Coprlt,J]
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