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Abstract

The K�server problem is the problem of planning the motion of
K mobile servers in a metric space� We give an on�line algorithm
for the ��server problem in any metric space� The total cost of this
algorithm on any sequence of requests is bounded by �� times the
cost of the optimal o��line algorithm on that sequence� The rule is
a modi�ed version of the balance algorithm	 it sends the server that
minimizes the quantity
 �total distance traversed so far by that server
� twice the distance of that that server to the next request
� This is
the �rst provably competitive rule that can be evaluated in a constant
number of arithmetic operations per request with only one variable�
This contrasts with the ��competitive ��server algorithm in �MMS�
which requires maintaining O�t
 memory locations and O�t
 time to
decide which server to send� where t is the minimum of the number
of points in the metric space of the metric space and the number of
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requests� Our rule naturally generalizes to more than two servers� and
we conjecture that it is also competitive in this case�

� Introduction

TheK�server problem� �rst introduced in �MMS�� is the problem of managing
the motion of K mobile servers on a metric space and is de�ned as follows�
There are K servers that are placed initially on K points in a metric space�
They are free to move around from point to point	 however� the cost of
moving a server from one point to another is the distance between the two
points� Denote the cost of moving a server from point i to j as cij � The costs
satisfy the triangle inequality� cij � cik
ckj for all nodes i�k�j� In this paper�
we assume that the distance between two points is symmetric� �i�e� for all
i� j� cij � cji�
 A request sequence for the K�server problem is a sequence of
node names� The algorithm must send one of the servers to every node in
the sequence in order� The object of the algorithm is to minimize the total
cost incurred by the servers�

An algorithm is on�line if it determines which server to send to satisfy
a particular request without any knowledge of the future requests� An al�
gorithm is o��line if it bases its choices on the entire sequence of requests�
Chrobak et al�have an O�kn�
 method for �nding the optimal way to service
a sequence when the entire sequence is available ahead of time� We call this
best strategy the optimal algorithm� The performance of an on�line algo�
rithm is evaluated in comparison to the optimal strategy� This idea was �rst
introduced in �ST� in order to evaluate on�line algorithms for updating lists�
Let CA��
 denote the cost that algorithm A incurs in servicing the sequence
� of requests� Let COPT ��
 denote the cost of the optimal algorithm on ��
We assume both algorithms start from the same con�guration� Algorithm A
is called ��competitive on a class of graphs C� if for any graph in C there is
some constant � such that for every �nite sequence of requests� ��

CA��
 � � � COPT ��
 
 ��

Note that � may depend on the initial con�guration of the servers but not
on �� The competitive ratio for an algorithm A is the smallest � such that A
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is ��competitive� An algorithm is strongly competitive if it achieves the best
possible competitive ratio�

�MMS� exhibit a lower bound of K for the competitive ratio of any on�
line algorithm for the K�server problem on any metric space with at least
K 
 � points� They conjecture that there is an on�line algorithm that is
K�competitive for the K�server problem in any metric space� In the case
where K � �� �MMS� present an on�line strategy which is ��competitive�
However� their strategy requires O�t
 arithmetic operations to decide which
server to send� and it requires that O�t
 variables be saved in memory where
t � min fj�j�number of points in the metric spaceg� If the K�server prob�
lem is viewed strictly as an information theoretic problem� then their algo�
rithm solves the problem for K � �� However� the performance of on�line
algorithms with restricted computational resources is also of fundamental
importance for the K�server problem and for on�line algorithms in general�
One paper where this issue has been addressed is �RS�� where they examine
on�line algorithms with restricted space�

In this paper� we present an algorithm for the general two server problem
that requires a constant number of arithmetic operations per request� and
one variable� This is the �rst provably competitive server rule with this prop�
erty� The algorithm is shown to be ���competitive� Recently� Chrobak and
Larmore have exhibited that our algorithm is no better than ��competitive
�CL��� They also have exhibited a ��competitive algorithm that requires
constant space and a constant decision time per request� It is not obvious�
however� how to generalize their rule for more than � servers� Our rule has
a natural formulation for more than two servers and we conjecture that this
algorithm is O�K
�competitive when there are K servers�

The rule is a modi�ed version of the balance algorithm� The balance
algorithm sends the server that minimizes the quantity	 �total cost incurred
so far by that server 
 the cost of moving that server to the next request
�
The balance algorithm has been shown to have an unbounded competitive
ratio �MMS�� The algorithm that sends the closest server to service a request�
and the algorithm that sends the server that has incurred the smallest total
cost so far both have unbounded competitive ratios as well� The new rule�
which we call BALANCE�� sends the server that minimizes the quantity	
�total cost incurred so far by that server 
 twice the cost of moving that
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server to the next request
� Surprisingly this rule� which is very similar to
the other rules� is ���competitive�

Until very recently� it was unknown whether there was an on�line algo�
rithm for the K�server problem that is f�K
�competitive� where the function
f is only a function of K in any metric space� This question was answered
by Fiat� Rabani� and Ravid who give an algorithm for the K�server problem
whose competitive ratio is a function only of K �FRR�� It is conjectured in
�MMS� that there is an algorithm that is K�competitive in any metric space�
Raghavan and Snir have investigated memoryless algorithms� which are al�
gorithms for the K�server problem that maintain no state information �RS��
They give tight bounds for the competitive ratio for a randomized memory�
less on�line algorithm for both the paging problem and the related weighted
cache problem� They also exhibit a randomized memoryless algorithm for
the K�server problem that has a competitive ratio of � and �n� �
� for the
cases where the number of servers are � and n � � respectively� � n is the
number of points in the metric space�
 Chrobak and Larmore have a ��
competitive ��server algorithm that requires O�t
 arithmetic operations and
O�t
 variables� where t � min fn� j�jg �CL��� Although the algorithm has
the same competitive ratio and time and space requirements of the original
�MMS� ��server algorithm� their result demonstrates a new approach to the
server problem�

� Notation and the ��Server Rule

We discuss the performance of the BALANCE� and the optimal algorithm
�also denoted OPT 
 with respect to an arbitrary �xed sequence of requests
in a �xed metric space� The optimal algorithm knows the entire sequence in
advance� On the other hand� BALANCE� is an on�line algorithm� and must
decide which server to move to the current request without any information
about future requests� including the number of future requests�

The cost that BALANCE� incurs in servicing requests i through j �in�
clusive
 is denoted CBAL��i� j�� COPT �i� j� denotes the cost of the optimal al�
gorithm on requests i through j� BALANCE��s � servers are named a and
b and OPT �s servers are named x and y� We use superscripts to distinguish
the distance travelled by a particular server� for example� Ca�i� j� denotes the
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total cost incurred by BALANCE��s server a in servicing requests i through
j� Thus� CBAL��i� j� � Ca�i� j� 
 Cb�i� j� and COPT �i� j� � Cx�i� j� 
 Cy�i� j��

BALANCE� decides which server to send to service the i 
 �st request
in the sequence as follows� Let da denote the distance after the ith request
between a and request i
 �� and db denote the distance after the ith request
between b and request i
 �� The algorithm compares the two quantities	

CaBAL���� i� 
 �da CbBAL���� i� 
 �db

If the former is smaller� BALANCE� sends server a to service request i 

�� If the latter is smaller� BALANCE� sends server b� If they are equal�
BALANCE� makes an arbitrary choice� BALANCE� just has to maintain
one variable with the value CaBAL���� i�� CbBAL���� i��

� The Main Theorem

The following theorem bounds the cost of the algorithm BALANCE� with
respect to the optimal algorithm�

Theorem � CBAL����m� � �� � COPT ���m�� for any sequence of m re�

quests�

Proof�

To prove the theorem we introduce the following de�nitions	

After the ith request is serviced� both BALANCE� and the optimal
algorithm have a server at the location of the ith request� The distance
between the other two servers� �the servers of BALANCE� and OPT that
did not service the ith request
 is called the con�guration distance and is
denoted ��i
� ��i
 is always nonnegative� By our assumption that the
initial con�gurations of BALANCE� and OPT are the same� ���
 � ��
The �gure below shows a sample snapshot of both algorithms after time i
and the corresponding con�guration distance� The point labeled ri is the
point of the ith request� Because of the triangle inequality� the con�guration
distance is the minimumdistance the servers of algorithmBALANCE� have
to move in order to be in the same position as the optimal algorithm�
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We say that server a is ahead of server b at time t if Ca��� t� � Cb��� t��
otherwise it is behind� a moves ahead of b at the instant that the total cost
incurred by a is more than that for b� this can occur when a is in the middle
of moving to service a request� Let C

a
�i� j� denote the cost incurred by a

from request i through request j while it is ahead� Similarly for C
b
�i� j�� Let

CBAL��i� j� be de�ned to be C
a
�i� j� 
 C

b
�i� j��

Lemma � CBAL���� j� � maxfCa��� j�� Cb��� j�g

Proof� By induction on the number of times a server moves ahead of
another� Suppose that after request j� server a is ahead� Let i be the
last request where b is ahead� By the inductive hypothesis� CBAL���� i� �
maxfCa��� i�� Cb��� i�g � Cb��� i�� a moves to service request i
� and after the
request is ahead of b� CBAL��i
�� i
�� � C

a
�i
�� i
�� since server a is the

only server moving to request i
�� And C
a
�i
�� i
�� � Ca��� i
���Cb��� i��

Putting it all together� we get that CBAL���� i
 �� � CBAL���� i� 
 CBAL��i

�� i 
 �� � Ca��� i 
 �� � maxfCa��� i�� Cb��� i�g� Since server a is ahead from
time i
� to time j� CBAL��i
 �� j� � Ca�i
 �� j�� So CBAL���� j� � Ca��� j� �
maxfCa��� j�� Cb��� j�g �

Corollary � CBAL���� j� � � � CBAL���� j�

We analyze the performance of BALANCE� by examining sequences
of consecutive requests� called epochs� that BALANCE� services with the
same server� Every time BALANCE� changes servers� a new epoch begins�
Formally� �i� j� is an epoch if BALANCE� uses the same server to service
requests i through j and uses a di�erent server to service requests i� � and
j 
 �� The servers that services requests i through j is the active server in
epoch �i� j�� We prove the following lemma	
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Lemma � Let �i� j� be an epoch� Then

CBAL��i� j� 
 ��j
� ��i� �
 � � � COPT �i� j��

Theorem � follows from lemma � because by letting t�� � � � ts be the �rst
request in each epoch� �ts�� � m
 �
� we have	

CBAL����m� � � � CBAL����m�

� � ����
� ��m
�


 �
sX

k��

h
�CBAL��tk� tk�� � ��� ��tk � �
 
 ��tk�� � �



i

� �
sX

k��

� � COPT �tk� tk�� � �� �by Lemma �


� �� � COPT ���m�

Proof of Lemma �	 We call the active server a� and the other server b�
Recall that OPT �s servers are named x and y� A snapshot of the servers
after request i� � is shown below� Without loss of generality� x services the
i� �st request for the optimal algorithm�

The proof of the lemma breaks down into cases�

Case I� The active server �server a
 is ahead at time j�

Since a is ahead at the end of the epoch� by lemma ��

CBAL��i� j� � CBAL���� j�� CBAL���� i� ��

� Ca��� j��maxfCa��� i� ��� Cb��� i� ��g�
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We prove the slightly stronger result that

Ca��� j��maxfCb��� i� ��� Ca��� i� ��g � ��i� �
 
 ��j
 � � � COPT �i� j�

There are three subcases for Case I�

Case Ia� OPT uses server y to services all the requests in epoch �i� j��

Servers b and x service request i� �� and a and y service all the ith through
jth requests� Then by the triangle inequality�

Ca�i� i� � Cy�i� i� 
 ��i� �
�

Because y and a move together for the rest of the epoch�

��j
 � � and Ca�i
 �� j� � Cy�i
 �� j��

Ca�i� j� � Ca�i� i� 
 Ca�i
 �� j�

� ��i� �
� ��j
 
 Cy�i� i� 
 Cy�i
 �� j�

� ��i� �
� ��j
 
 Cy�i� j�

� ��i� �
� ��j
 
 COPT �i� j�

So we have

COPT �i� j� � Ca�i� j�� ��i� �
 
 ��j


� �Ca��� j�� Ca��� i� ��
� ��i� �
 
 ��j


� Ca��� j��maxfCa��� i� ��� Cb��� i� ��g � ��i� �
 
 ��j


Case Ib� OPT uses server x to service request j� the last request in the
epoch�

Let l be the last time before j that OPT uses y to service a request� If the
optimal algorithm never uses y in the epoch� then we set l � i� �� For now
we assume that l � i� �� The case where l � i� � is slightly di�erent than
the case where l � i� �� We will not examine the case where l � i� �� but
the analysis is similar�

We divide the epoch into two parts	 �rst we analyze moves i through l
�
and then moves l 
 � through the end of the sequence�

Moves i through l 
 � 	 The position of the servers after request l and
after l 
 � are shown below�
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Since BALANCE� used server a instead of b to service the l 
 �st request�
Cb��� l� 
 �� � Ca��� l� 
 ��� Since b has not moved� Cb��� l� � Cb��� i� ��� and
�� � Ca��� l��Cb��� i� ��
 � ��� Because a moves a distance � to service the
l
�st request� Ca��� l�
� � Ca��� l
��� and �� � Ca��� l
���Cb��� i���
��
Adding a � to both sides gives� �� � Ca��� l
 ��� Cb��� i� �� 
 � 
 �� Since
x and b started out at time i together and b has not moved� we know that
� � Cx�i� l
 �� and thus �Cx�i� l
 �� � Ca��� l
��� Cb��� i� 
 �
 �� Finally�
since ��l 
 �
 � � 
 ��

� � Cx�i� l
 �� � Ca��� l 
 ��� Cb��� i� 
 ��l 
 �
 ��


Moves l
� through j 	 For the rest of the sequence x and a are moving
together� so Cx�l
 �� j� � Ca�l 
 �� j� and ��l
 �
 � ��j
� So

Cx�l
 �� j� 
 �Cx�i� l
 �� �

Ca�l
 �� j� 
 Ca��� l
 ��� Cb��� i� �� 
 ��l 
 �


And �nally� putting the whole sequence together�

� � Cx�i� j� � Ca��� j�� Cb��� i� �� 
 ��j


� Ca��� j��maxfCa��� i� ��� Cb��� i� ��g � ��i� �
 
 ��j


Case Ic� OPT uses server y to service request j and � h such that i � h � j
and OPT uses x to service request h�

Let h be the the last time in the epoch that OPT uses server x to service a
request� Then� OPT uses server y to service requests h 
 � through j� The
following picture shows the con�guration just after time h and after time
h
 ��
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The analysis for requests i through h of case Ib is the same as the analysis
for requests i through l
 � of case Ic� so from Equation ��

� � Cx�i� h� � Ca��� h�� Cb��� i� �� 
 � 
 �� ��


Since y and a are moving together for requests h
� through j� ��j
 � �� By
the triangle inequality� Ca�h
�� h
�� � �
Cy�h
�� h
�� and Ca�h
�� j� �
Cy�h
 �� j�� This yields that Ca�h
 �� j��� � Cy�h
 �� j�� Combining with
equation ��

� � COPT �i� j� � Ca��� j�� Cb��� i� �� 
 ��j


� Ca��� j��maxfCa��� i� ��� Cb��� i� ��g � ��i� �
 
 ��j


Case II The active server is behind at time j�

The active server in epoch �i� j� is behind during the entire epoch� Therefore�
CBAL��i� j� � �� We prove the following	

���i� �
 
 ��j
 � � � COPT �i� j�

There are three subcases for Case II�

Case IIa� OPT uses server y to service request j� the last request in the
epoch� Below are pictured the position of the servers before i and after j�

��j
 � Cx�i� j� since b is stationary throughout the epoch�
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Case IIb� OPT uses server x to services all the requests in epoch �i� j��

Below are pictured the position of the servers before i and after i�

��i
 is the distance between b and y� Thus by the triangle inequality�

��i
 � COPT �i� i� 
 CBAL��i� i� 
 ��i� �
 ��


Because algorithm BALANCE� chooses to move a instead of b to service
the ith request� we know that

Ca��� i� �� 
 � � CBAL��i� i� � Cb��� i� �� 
 � � Cx�i� i�

CBAL��i� i� � COPT �i� i� 
 �Cb��� i� ��� Ca��� i� ��
	� ��


Since x moved from b to a in the epoch �i� j�� for any point� the di�erence
between �the distance between that point and a
 and �the distance between
that point and b
 is bounded by Cx�i� j�� Algorithm BALANCE� decides to
send b to service the j 
 �st request� Let da be the distance from a to the
j 
 �st request and db the distance from b to the j 
 �st request� We have
Cb��� j� 
 � � db � Ca��� j� 
 � � da and

�Cb��� j�� Ca��� j�
	� � da � db � Cx�i� j�� ��


Since x and a move together on requests i 
 � through j� COPT �i 
 �� j� �
Cx�i
 �� j� � Ca�i
 �� j��

Ca��� j�� Ca��� i� �� � CBAL��i� j� � COPT �i
 �� j� 
 CBAL��i� i� ��


Since b does not move in the epoch� Cb��� i��� � Cb��� j�� and combining this
fact with Equation ��

Cb��� i� ���Ca��� i� �� � Cb��� j��Ca��� j� 
 COPT �i
 �� j� 
 CBAL��i� i� ��
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Combining Equations �� �� and ��

CBAL��i� i�	� � � � COPT �i� j� ��


and from Equations � and �� and the fact that ��i
 � ��j
�

��j
 ���i� �
 � � � COPT �i� j�

Case IIc� OPT uses server x to service request j and � h such that i � h � j
OPT uses y to service request h�

Let l be the the last time in the epoch that OPT uses server y� The position
of the servers before and after time l 
 � is pictured below�

Since OPT uses server x to service all the requests l 
 � through j� we can
use the analysis for requests i through j in case IIb� The di�erence� however�
is that before request l 
 �� y and a are in the same place �in case IIb� the
distance between the two is bounded by ��i � �

� Also� x and b do not
start out in the same place� but the distance between the two is bounded by
Cx�i� l�� Thus Equation � is replaced by

��j
 � COPT �i� l
 �� 
 CBAL��l
 �� l 
 �� ��


The rest of the analysis through Equation � holds� except the sequence starts
at request l 
 � instead of i� Thus Equation � is replaced by

CBAL��l
 �� l 
 ��	� � � � COPT �l 
 �� j� ���


Putting Equations � and �� together� and the fact that ��l 
 �
 � ��j
�

��j
 � � � COPT �i� j�

�

��



References

�BKT� Berman� P�� Karlo�� H�� Tardos� G�� �A Competitive Three Server
Algorithm�� to appear in Symposium on Discrete Algorithms �����

�CL�� Chrobak� M�� Larmore� L�� �On Fast Algorithms for Two Servers�� to
appear in Journal of Algorithms�

�CL�� Chrobak� M�� Larmore� L�� �A New Approach to the Server Problem��
to appear in SIAM Jounal on Discrete Algorithms�

�FRR� Fiat� A�� Rabani� Y�� Ravid� R�� �Competitive k�server Algorithms��
��st Annual Symposium on the Foundations of Computer Science� �����

�MMS� Manasse� M� S�� McGeoch� L� A� and Sleator� D� D�� �Competitive
algorithms for on�line problems�� In 	
th Symposium on the Theory of

Computing� pages �������� Chicago� �����

�RS� Raghavan� P�� Snir� M�� �Memory Versus Randomness in On�line Algo�
rithms�� IBM Research Report� revision of the paper in ICALP� �����

�ST� Sleator� D� D�� Tarjan� R� E�� �Amortized E�ciency of List Update and
Paging Rules�� CACM� ����
� �������� �����

��


