
I’ve Seen “Enough”: Incrementally Improving
Visualizations to Support Rapid Decision Making

Sajjadur Rahman1 Maryam Aliakbarpour2 Ha Kyung Kong1 Eric Blais3 Karrie Karahalios1,4

Aditya Parameswaran1 Ronitt Rubinfield2

1University of Illinois (UIUC) 4Adobe Research 2MIT 3University of Waterloo
{srahman7,hkong6,kkarahal,adityagp}@illinois.edu {maryama@,ronitt@csail}.mit.edu eblais@uwaterloo.ca

ABSTRACT
Data visualization is an effective mechanism for identifying trends,
insights, and anomalies in data. On large datasets, however, gen-
erating visualizations can take a long time, delaying the extraction
of insights, hampering decision making, and reducing exploration
time. One solution is to use online sampling-based schemes to
generate visualizations faster while improving the displayed esti-
mates incrementally, eventually converging to the exact visualiza-
tion computed on the entire data. However, the intermediate vi-
sualizations are approximate, and often fluctuate drastically, lead-
ing to potentially incorrect decisions. We propose sampling-based
incremental visualization algorithms that reveal the “salient” fea-
tures of the visualization quickly—with a 46× speedup relative to
baselines—while minimizing error, thus enabling rapid and error-
free decision making. We demonstrate that these algorithms are
optimal in terms of sample complexity, in that given the level of in-
teractivity, they generate approximations that take as few samples
as possible. We have developed the algorithms in the context of
an incremental visualization tool, titled INCVISAGE, for trendline
and heatmap visualizations. We evaluate the usability of INCVIS-
AGE via user studies and demonstrate that users are able to make
effective decisions with incrementally improving visualizations, es-
pecially compared to vanilla online-sampling based schemes.

1. INTRODUCTION
Visualization is emerging as the most common mechanism for

exploring and extracting value from datasets by novice and expert
analysts alike. This is evidenced by the huge popularity of data vi-
sualization tools such as Microsoft’s PowerBI and Tableau, both of
which have 100s of millions of dollars in revenue just this year [4,
2]. And yet data visualization on increasingly large datasets, re-
mains cumbersome: when datasets are large, generating visualiza-
tions can take hours, impeding interaction, preventing exploration,
and delaying the extraction of insights [38]. One approach to gen-
erating visualizations faster is to sample a small number of data-
points from the dataset online; by using sampling, we can view
visualizations that incrementally improve over time and eventually
converge to the visualization computed on the entire data. How-
ever, such intermediate visualizations are approximate, and often
fluctuate drastically, leading to incorrect insights and conclusions.
The key question we wish to address in this paper is the follow-
ing: can we develop a sampling-based incremental visualization
algorithm that reveals the features of the eventual visualization
quickly, but does so in a manner that is guaranteed to be correct?
Illustrative Example. We describe the goals of our sampling al-
gorithms via a pictorial example. In Figure 1, we depict, in the
first row, the variation of present sampling algorithms as time pro-
gresses and more samples are taken: at t1, t2, t4, t7, and when all
of the data has been sampled. This is, for example, what visu-
alizing the results of an online-aggregation-like [20] sampling al-

gorithm might provide. If a user sees the visualization at any of
the intermediate time points, they may make incorrect decisions.
For example, at time t1, the user may reach an incorrect conclu-
sion that the values at the start and the end are lower than most of
the trend, while in fact, the opposite is true—this anomaly is due
to the skewed samples that were drawn to reach t1. The visual-
ization continues to vary at t2, t4, and t7, with values fluctuating
randomly based on the samples that were drawn. Indeed, a user
may end up having to wait until the values stabilize, and even then
may not be able to fully trust the results. One approach to amelio-
rate this issue would be to use confidence intervals to guide users
in deciding when to draw conclusions—however, prior work has
demonstrated that users are not able to interpret confidence inter-
vals correctly [15]. At the same time, the users are subject to the
same vagaries of the samples that were drawn.

Figure 1: INCVISAGE example.
Another approach, titled INCVISAGE1, that we espouse in this

paper and depict in the second row is the following: at each time
point ti, reveal one additional segment for a i-segment trendline,
by splitting one of the segments for the trendline at ti−1, when the
tool is confident enough to do so. Thus, INCVISAGE is very con-
servative at t1 and just provides a mean value for the entire range,
then at t2, it splits the single segment into two segments, indicating
that the trend increases towards the end. Overall, by t7, the tool has
indicated many of the important features of the trend: it starts off
high, has a bump in the middle, and then increases towards the end.
This approach reveals features of the eventual visualization in the
order of prominence, allowing users to gain early insights and draw
conclusions early. This approach is reminiscent of interlaced pixel-
based image generation in browsers [40], where the image slowly
goes from being blurry to sharp over the course of the rendering,
displaying the most salient features of the visualization before the
less important features. Similar ideas have also been developed in
other domains such as signal processing [50] and geo maps [13].

So far, we’ve described trendlines; the INCVISAGE approach can
be applied to heatmap visualizations as well—depicted in row 4 for
1INCVISAGE is a portmanteau of “Inc”, i.e., short for incremental, and “Envisage”,
i.e., to visualize.

the corresponding online-aggregation-like approach shown in row
3—as is typical in heatmaps, the higher the value, the darker the
color. Here, there is no notion of confidence intervals, so row 3 is
our current best approach for depicting the approximate heatmap.
Once again row 3—the status quo—fluctuates tremendously, not
letting analysts draw meaningful insights early and confidently. On
the other hand, row 4—the INCVISAGE approach—repeatedly sub-
divides a block into four blocks when it is confident enough to do
so, emphasizing early, that the right hand top corner has a higher
value, while the values right below it are somewhat lower. In fact,
the intermediate visualizations may be preferable because users can
get the big picture view without being influenced by noise.
Open Questions. Naturally, developing INCVISAGE brings a whole
host of open questions, that span the spectrum from usability to al-
gorithmic process. First, it is not clear at what rate we should be
displaying the results of the incremental visualization algorithm.
When can we be sure that we know enough to show the ith incre-
ment, given that the (i − 1)th increment has been shown already?
How should the ith increment differ from the (i− 1)th increment?
How do we prioritize sampling to ensure that we get to the ith in-
crement as soon as possible, but with guarantees? Can we show
that our algorithm is in a sense ‘optimal’, in that it aims to take as
few samples as possible to display the ith increment with guaran-
tees? And at the same time, how do we ensure that our algorithm is
lightweight enough that computation doesn’t become a bottleneck?
How do we place the control in the user’s hands in order to control
the level of interactivity needed?

The other open questions involved are related to how users in-
terpret incremental visualizations. Can users understand and make
sense of the guarantees provided? Can they use these guarantees to
make well-informed decisions and terminate early without waiting
for the entire visualization to be generated?
Contributions. In this paper, we address all of these open ques-
tions. Our primary contribution in the paper is the notion of incre-
mentally improving visualizations that surface important features
as they are determined with high confidence — bringing a con-
cept that is commonly used in other settings, e.g., rasterization and
signal processing, to visualizations. Given a user specified inter-
activity threshold (described later), we develop incremental visual-
izations algorithms for INCVISAGE that minimizes error. We intro-
duce the concept of improvement potential to help us pick the right
improvement per increment. We find, somewhat surprisingly, that
a remarkably simple algorithm works best under a sub-Gaussian
assumption [45] about the data, which is reasonable to assume in
real-world datasets (as we show in this paper). We further demon-
strate that these algorithms are optimal in that they generate approx-
imations within some error bound given the interactivity threshold.
When users don’t provide their desired interactivity threshold, we
can pick appropriate parameters that help them best navigate the
tradeoff between error and latency. We additionally perform user
studies to evaluate the usability of an incremental visualization in-
terface, and evaluate whether users are able to make effective deci-
sions with incrementally improving visualizations. We found that
they are able to effectively determine when to stop the visualization
and make a decision, trading off latency and error, especially when
compared to traditional online sampling schemes.
Prior Work. Our work is complementary to other work in the
incremental visualization space. In particular, sampleAction [17]
and online aggregation [20] both perform online sampling to depict
aggregate values, along with confidence-interval style estimates to
depict the uncertainty in the current aggregates. Online aggrega-
tion presents these values as raw values, while sampleAction dis-
plays the corresponding bar chart. In both cases, however, these ap-
proaches prevent users from getting early insights since they need
to wait for the values to stabilize. As we will discuss later, our

approach can be used in tandem with online aggregation-based ap-
proaches. IFOCUS [32], PFunk-H [10], and ExploreSample [53]
are other approximate visualization algorithms targeted at gener-
ating visualizations rapidly while preserving perceptual insights.
IFOCUS emphasizes the preservation of pairwise ordering of bars
in a bar chart, as opposed to the actual values; PFunk-H uses per-
ceptual functions from graphical perception research to terminate
visualization generation early; ExploreSample approximates scat-
terplots, ensuring that overall distributions and outliers are pre-
served. Lastly, M4 [29] uses rasterization to reduce the dimension-
ality of a time series without impacting the resulting visualization.
None of these methods emphasize revealing features of visualiza-
tions incrementally.
Outline. The outline of the remainder of this paper is as follows:
in Section 2 we formally define the incremental visualization prob-
lem. Section 3 outlines our incremental visualization algorithm
while Section 4 details the system architecture of INCVISAGE. In
Section 5 we summarize the experimental results and the key take-
aways. Then we present the user study design and outcomes in
Section 6 (for usability) and 7 (for comparison to traditional online
sampling schemes). Section 8 describes other related work on data
visualization and analytics.

2. PROBLEM FORMULATION
In this section, we first describe the data model, and the visual-

ization types we focus on. We then formally define the problem.

2.1 Visualizations and Queries
Data and Query Setting. We operate on a dataset consisting of
a single large relational table R. Our approach also generalizes to
multiple tables obeying a star or a snowflake schemata but we fo-
cus on the single table case for ease of presentation. As in a tradi-
tional OLAP setting, we assume that there are dimension attributes
and measure attributes—dimension attributes are typically used as
group-by attributes in aggregate queries, while measure attributes
are the ones typically being aggregated. For example, in a prod-
uct sales scenario, day of the year would be a typical dimension
attribute, while the sales would be a typical measure attribute.

INCVISAGE supports two kinds of visualizations: trendlines and
heatmaps. These two types of visualizations can be translated to
aggregate queries QT and QH respectively:

QT = SELECT Xa, AVG(Y) FROM R

GROUP BY Xa ORDER BY Xa, and
QH = SELECT Xa, Xb, AVG(Y) FROM R

GROUP BY Xa, Xb ORDER BY Xa, Xb

Here, Xa and Xb are dimension attributes in R, while Y is a mea-
sure attribute being aggregated. The trendline and heatmap visu-
alizations are depicted in Figure 1. For trendlines (query QT),
the attribute Xa is depicted along the x-axis while the aggregate
AVG(Y) is depicted along the y-axis. On the other hand, for
heatmaps (query QH) the two attributes Xa and Xb are depicted
along the x-axis and y-axis, respectively. The aggregate AVG(Y)
is depicted by the color intensity for each block (i.e., each Xa, Xb
combination) of the heatmap. Give a continuous color scale, the
higher the value of AVG(Y), the higher the color intensity. The
complete set of queries (including WHERE clauses and other ag-
gregates) that are supported by INCVISAGE can be found in Sec-
tion 3.5—we focus on the simple setting for now.

Note that we are implicitly focusing onXa andXb that are ordi-
nal, i.e., have an order associated with them so that it makes sense
to visualize them as a trendline or a heatmap. As we will demon-
strate subsequently, this order is crucial in letting us approximate
portions of the visualization that share similar behavior. While our
techniques could also be applied to Xa, Xb that are not ordinal by

enforcing some order, e.g., a lexicographic order, the resulting vi-
sualizations are not as meaningful.
Sampling Engine. We assume that we have a sampling engine
that can efficiently retrieve random tuples fromR corresponding to
different values of the dimension attribute(s) Xa and/or Xb (along
with optional predicates from a WHERE). Focusing on QT for
now, given a certain value of Xa = ai, our engine provides us a
random tuple that satisfiesXa = ai. Then, by looking up the value
of Y corresponding to this tuple, we can get an estimate for the av-
erage of Y for Xa = ai. Our sampling engine is drawn from Kim
et al. [32] and maintains an in-memory bitmap on the dimension
attributes, allowing us to quickly identify tuples matching arbitrary
conditions [33]. Bitmaps are highly compressible and effective for
read-only workloads [34, 52, 51], and have been applied recently
to sampling for approximate generation of bar charts [32].

Thus, given our sampling engine, we can retrieve samples of Y
given Xa = ai (or Xa = ai ∧Xb = bi for heat maps). We call the
multiset of values of Y corresponding to Xa = ai across all tuples
to be a group. This allows us to say that we are sampling from a
group, where implicitly we mean we are sampling the correspond-
ing tuples and retrieving the Y value.
Next, we describe our problem of incrementally generating visual-
izations more formally. We focus on trendlines (i.e., QT); the cor-
responding definitions and techniques for heatmaps are described
in Appendix A.

2.2 Incremental Visualizations
From this point forward, we describe the concepts in the context

of our visualizations in row 2 of Figure 1.
Segments and k-Segment Approximations. We denote the cardi-
nality of our group-by dimension attribute Xa as m, i.e., |Xa| =
m. In Figure 1 this value is 36. At all time points over the course
of visualization generation, we display one value of AVG(Y) cor-
responding to each group xi ∈ Xa, i ∈ 1 . . .m—thus, the user
is always shown a complete trendline visualization. To approxi-
mate our trendlines, we use the notion of segments that encompass
multiple groups. We define a segment as follows:
Definition 1. A segment S corresponds to a pair (I, η), where η is
a value, while I is an interval I ⊆ [1,m] spanning a consecutive
sequence of groups xi ∈ Xa.
For example, the segment S ([2, 4], 0.7) corresponds to the interval
of xi corresponding to x2, x3, x4, and has a value of 0.7. Then, a
k-segment approximation of a visualization comprises k disjoint
segments that span the entire range of xi, i = 1 . . .m. Formally:
Definition 2. A k-segment approximation is a tupleLk =

(
S1, . . . , Sk

)
such that the segments S1, . . . , Sk partition the interval [1,m] into
k disjoint sub-intervals.
In Figure 1, at t2, we display a 2-segment approximation, with seg-
ments ([1, 30], 0.4) and ([31, 36], 0.8); and at t7, we display a 7-
segment approximation, comprising ([1, 3], 0.8), ([4, 14], 0.4), . . .,
and ([35, 36], 0.7). When the number of segments is unspecified,
we simply refer to this as a segment approximation.
Incrementally Improving Visualizations. We are now ready to
describe our notion of incrementally improving visualizations.
Definition 3. An incrementally improving visualization is defined
to be a sequence of m segment approximations, (L1, . . . , Lm),
where the ith item Li, i > 1 in the sequence is a i-segment approx-
imation, formed by selecting one of the segments in the (i − 1)-
segment approximation Li−1, and dividing that segment into two.

Thus, the segment approximations that comprise an incremen-
tally improving visualization have a very special relationship to
each other: each one is a refinement of the previous, revealing
one new feature of the visualization and is formed by dividing

one of the segments S in the i-segment approximation into two
new segments to give an (i + 1)-segment approximation: we call
this process splitting a segment. The group within S ∈ Li im-
mediately following which the split occurs is referred to as a split
group. Any group in the interval I ∈ S except for the last group
can be chosen as a split group. As an example, in Figure 1, the
entire second row corresponds to an incrementally improving visu-
alization, where the 2-segment approximation is generated by tak-
ing the segment in the 1-segment approximation corresponding to
([1, 36], 0.5), and splitting it at group 30 to give ([1, 30], 0.4) and
([31, 36], 0.8). Therefore, the split group is 30. The reason why
we enforce two neighboring segment approximations to be related
in this way is to ensure that there is continuity in the way the visu-
alization is generated, making it a smooth user experience. If, on
the other hand, each subsequent segment approximation had no re-
lationship to the previous one, it could be a very jarring experience
for the user with the visualizations varying drastically, making it
hard for them to be confident in their decision making. We show
in Section 5 that removing this restriction results in visualizations
that are not significantly better in terms of error, but are much more
costly to compute.
Underlying Data Model and Output Model. To characterize
the performance of an incrementally improving visualization, we
need a model for the underlying data. We represent the underly-
ing data as a sequence of m distributions D1, . . . , Dm with means
µ1, . . . , µm where, µi = AVG(Y) for xi ∈ Xa. To generate our
incrementally improving visualization and its constituent segment
approximations, we draw samples from distributions D1, . . . , Dm.
Our goal is to approximate the mean values (µ1, . . . , µm) while
taking as few samples as possible.

The output of a k-segment approximation Lk can be represented
alternately as a sequence of values (ν1, . . . , νm) such that νi is
equal to the value corresponding to the segment that encompasses
xi, i.e., ∀xi∈Sjνi = ηj , where Sj(I, ηj) ∈ Lk. By comparing
(ν1, . . . , νm) with (µ1, . . . , µm), we can evaluate the error corre-
sponding to a k-segment approximation, as we describe later.
Incrementally Improving Visualization Generation Algorithm.
Given our data model, an incrementally improving visualization
generation algorithm proceeds in iterations: at the ith iteration, this
algorithm takes some samples from the distributions D1, . . . , Dm,
and then at the end of the iteration, it outputs the i-segment approx-
imation Li. Thus, a certain number of samples are taken in each
iteration, and one segment approximation is output at the end of it.
We denote the number of samples taken in iteration i as Ni. When
Lm is output, the algorithm terminates.

2.3 Characterizing Performance
There are multiple ways to characterize the performance of in-

crementally improving visualization generation algorithms.
Sample Complexity, Interactivity and Wall-Clock Time. The
first and most straightforward way to evaluate performance is by
measuring the samples taken in each iteration k, Nk, i.e., the sam-
ple complexity. Since the time taken to acquire the samples is
proportional to the number of samples in our sampling engine (as
shown in [32]), this is a proxy for the time taken in each itera-
tion. Recent work has identified 500ms as a “rule of thumb” for
interactivity in exploratory visual data analysis [38], beyond which
analysts end up getting frustrated, and as a result explore fewer hy-
potheses. To enforce this rule of thumb, we can ensure that our
algorithms take only as many samples per iteration as is feasible
within 500ms — a time budget. We also introduce a new metric
called interactivity that quantifies the overall user experience:

λ =

∑m
k=1Nk × (m− k + 1)

k′

where Nk is the number of samples taken at iteration k and k′ is

the number of iterations where Nk > 0. The larger the λ, the
smaller the interactivity: this measure essentially captures the av-
erage waiting time across iterations where samples are taken. We
explore the measure in detail in Section 3.4 and 5.5. A more direct
way to evaluate performance is to measure the wall-clock time for
each iteration.
Error Per Iteration. Since our incrementally improving visual-
ization algorithms trade off taking fewer samples to return results
faster, it can also end up returning segment approximations that are
incorrect. We define the `2 squared error of a k-segment approxi-
mation Lk with output sequence (ν1, . . . , νm) for the distributions
D1, . . . , Dm with means µ1, . . . , µm as

err(Lk) =
1

m

m∑
i=1

(µi − νi)2 (1)

We note that there are several reasons a given k-segment ap-
proximation may be erroneous with respect to the underlying mean
values (µ1, . . . , µm): (1) We are representing the data using k-
segments as opposed to m-segments. (2) We use incremental re-
finement: each segment approximation builds on the previous, pos-
sibly erroneous estimates. (3) The estimates for each group and
each segment may be biased due to sampling.

These types of error are all unavoidable — the first two reasons
enable a visualization that incrementally improves over time, while
the last one occurs whenever we perform sampling: (1) While a
k-segment approximation does not capture the data exactly, it pro-
vides a good approximation preserving visual features, such as the
overall major trends and the regions with a large value. Moreover,
computing an accurate k-segment approximation requires fewer
samples and therefore faster than an accurate m-segment approx-
imation. (2) Incremental refinement allows users to have a fluid
experience, without the visualization changing completely between
neighboring approximations. At the same time, is not much worse
in error than visualizations that change completely between ap-
proximations, as we will see later. (3) And lastly, sampling is nec-
essary for us to return visualizations faster, but perhaps at the cost
of erroneous estimates.

2.4 Problem Statement
The goal of our incrementally improving visualization genera-

tion algorithm is, at each iteration k, generate a k-segment approx-
imation that is not just “close” to the best possible refinement at that
point, but also takes the least number of samples to generate such
an approximation. Further, since the decisions made by our algo-
rithm can vary depending on the samples retrieved, we allow the
user to specify a failure probability δ, which we expect to be close
to zero, such that the algorithm satisfies the “closeness” guarantee
with probability at least 1− δ.
Problem 1. Given a query QT , and the parameters δ, ε, design an
incrementally improving visualization generation algorithm that, at
each iteration k, returns a k-segment approximation while taking
as few samples as possible, such that with probability 1− δ, the er-
ror of the k-segment approximation Lk returned at iteration k does
not exceed the error of the best k-segment approximation formed
by splitting a segment of Lk−1 by no more than ε.

3. VISUALIZATION ALGORITHMS
In this section, we gradually build up our solution to Problem 1.

We start with the ideal case when we know the means of all of
the distributions up-front, and then work towards deriving an error
guarantee for a single iteration of an incrementally improving visu-
alization algorithm. Then, we propose our incrementally improving
visualization generation algorithm ISplit assuming the same guar-
antee across all iterations. We further discuss how we can tune the
guarantee across iterations in Section 3.4. We consider extensions

to other query classes in Section 3.5. We can derive similar algo-
rithms and guarantees for heatmaps in Appendix A.

3.1 Case 1: The Ideal Scenario
We first consider the ideal case where the means µ1, . . . , µm of

the distributionsD1, . . . , Dm are known. Then, our goal reduces to
obtaining the best k segment approximation of the distributions at
iteration k, while respecting the refinement restriction. Say the in-
crementally improving visualization generation algorithm has ob-
tained a k-segment approximation Lk at the end of iteration k.
Then, at iteration (k+1), the task is to identify a segment Si ∈ Lk
such that splitting Si into two new segments T andU minimizes the
error of the corresponding (k + 1)-segment approximation Lk+1.
We describe the approach, followed by its justification.
Approach. At each iteration, we split the segment Si ∈ Lk into
T and U that maximizes the quantity |T |·|U||Si|·m

(µT − µU)2. Intu-
itively, this quantity—defined below as the improvement potential
of a refinement—picks segments that are large, and within them,
splits where we get roughly equal sized T and U , with large differ-
ences between µT and µU .
Justification. The `2 squared error of a segment Si (Ii, ηi), where
Ii = [p, q] and 1 ≤ p ≤ q ≤ m, for the distributions Dp, . . . , Dq
with means µp, . . . , µq is

err(Si) =
1

(q − p+ 1)

q∑
j=p

(µj − ηi)2 =
1

|Si|
∑
j∈Si

(µj − ηi)2

Here, |Si| is the number of groups (distributions) encompassed
by segment Si. When the means of the distributions are known,
err(Si) will be minimized if we represent the value of segment Si
as the mean of the groups encompassed by Si, i.e., setting ηi =
µSi =

∑
j∈Si µj/|Si| minimizes err(Si). Therefore, in the ideal

scenario, the error of the segment Si is

err(Si) =
1

|Si|
∑
j∈Si

(µj − ηi)2 =
1

|Si|
∑
j∈Si

µ2
j − µ2

Si
(2)

Then, using Equation 1, we can express the `2 squared error of the
k-segment approximation Lk as follows:

err(Lk) =
1

m

m∑
i=1

(µi − νi)2 =
k∑
i=1

|Si|
m

err(Si)

Now, Lk+1 is obtained by splitting a segment Si ∈ Lk into two
segments T and U . Then, the error of Lk+1 is:

err(Lk+1) = err(Lk)−
|Si|
m

err(Si) +
|T |
m

err(T) +
|U |
m

err(U)

= err(Lk) +
|Si|
m

µ 2
Si
−
|T |
m
µ 2
T −

|U |
m
µ 2
U

= err(Lk)−
|T | · |U |
|Si| ·m

(µT − µU)2.

where the second equality is due to Equation 5 and the fact that
the
∑
j µ

2
j is fixed no matter the segment approximation that is

used, while last equality comes from the fact that |T |+ |U | = |Si|
and µSi = (|T |µT + |U |µU)/|Si|. We use the above expression
to define the notion of improvement potential. The improvement
potential of a segment Si ∈ Lk is the minimization of the error of
Lk+1 obtained by splitting Si into T andU . Thus, the improvement
potential of segment Si relative to T and U is

∆(Si, T, U) =
|T | · |U |
|Si| ·m

(µT − µU)2 (3)

For any segment Si = (Ii, ηi), every group in the interval Ii except
the last one can be chosen to be the split group (see Section 2.2).
Therefore, there are |Si| − 1 possible ways to choose T,U ⊆ Si
such that T ∪ U = S. The split group maximizing the improve-
ment potential of Si, minimizes the error of Lk+1. The maximum

improvement potential of a segment is expressed as follows:

∆?(Si) = max
T,U⊆Si

∆(Si, T, U) = max
T,U⊆Si

|T | · |U |
|Si| ·m

(µT − µU)2

Lastly, we denote the improvement potential of a given Lk+1 by
φ(Lk+1, Si, T, U), where φ(Lk+1, Si, T, U) = ∆(Si, T, U). There-
fore, the maximum improvement potential of Lk+1, φ?(Lk+1) =
maxSi⊆Lk ∆?(Si). When the means of the distributions are known,
at iteration (k+1), the optimal algorithm simply selects the refine-
ment corresponding to φ?(Lk+1), which is the segment approxi-
mation with the maximum improvement potential.

3.2 Case 2: The Online-Sampling Scenario
We now consider the case where the means µ1, . . . , µm are un-

known and we estimate each mean by drawing samples. Similar
to the previous case, we want to identify a segment Si ∈ Lk such
that splitting Si into T and U results in the maximum improvement
potential. We will first describe our approach for a given iteration
assuming samples have been taken, then we will describe our ap-
proach for selecting samples, following which, we will establish a
lower-bound.

3.2.1 Selecting the Refinement Given Samples
We first describe our approach, and then the justification.

Approach. As in the previous setting, our goal is to identify the
refinement with the maximum improvement potential. Unfortu-
nately, since the means are unknown, we cannot measure the ex-
act improvement potential, so we minimize the empirical improve-
ment potential based on samples seen so far. Analogous to the
previous section, we simply pick the refinement that maximizes
|T |·|U|
|Si|·m

(µ̃T − µ̃U)2, where the µ̃s are the empirical estimates of the
means.
Justification. At iteration (k + 1), we first draw samples from the
distributionsD1, . . . , Dm to obtain the estimated means µ̃1, . . . , µ̃m.
For each Si ∈ Lk, we set its value to ηi = µ̃Si =

∑
j∈Si µ̃j/|Si|,

which we call the estimated mean of Si. For any refinement Lk+1

of Lk, we then let the estimated improvement potential of Lk+1 be

φ̃(Lk+1, Si, T, U) =
|T |
m
µ̃

2
T +
|U |
m
µ̃

2
U −
|S|
m
µ̃

2
Si

=
|T | · |U |
|Si| ·m

(µ̃T − µ̃U)
2

For simplicity we denote φ(Lk+1, Si, T, U) and φ̃(Lk+1, Si, T, U)

as φ(Lk+1) and φ̃(Lk+1), respectively.
Our goal is to get a guarantee for err(Lk+1) is relative to err(Lk).

Instead of a guarantee on the actual error err, for which we would
need to know the means of the distributions, our guarantee is in-
stead on a new quantity, err′, which we define to be the empirical
error. Given Si = (Ii, ηi) and Equation 5, err′ is defined as fol-
lows: err′(Si) = 1

|Si|
∑
j∈Si µ

2
j − η2

i . Although err′(Si) is not
equal to err(Si) when ηi 6= µS , err′(Si) converges to err(Si)
as ηi gets closer to µS (i.e., as more samples are taken). Simi-
larly, the error of k-segment approximation err′(Lk) converges to
err(Lk). We show experimentally (see Section 5) that optimizing
for err′(Lk+1) gives us a good solution of err(Lk+1) itself.

To derive our guarantee on err′, we need one more piece of ter-
minology. At iteration (k+1), we define T (I, η), where I = [p, q]
and 1 ≤ p ≤ q ≤ m to be a boundary segment if either p or q is
a split group in Lk. In other words, at the iteration (k + 1), all the
segments in Lk and all the segments that may appear in Lk+1 after
splitting a segment are called boundary segments. Next, we show
that if we estimate the boundary segments accurately, then we can
find a split which is very close to the best possible split.
Theorem 1. If for every boundary segment T of the k-segment ap-
proximation Lk, we obtain an estimate µ̃T of the mean µT that sat-
isfies

∣∣µ̃ 2
T − µ 2

T

∣∣ ≤ εm
6|T | , then the refinementL†k+1 ofLk that max-

imizes the estimated value φ̃(L†k+1) will have error that exceeds the

error of the best refinement L∗k+1 of Lk by at most err′(L†k+1) −
err′(L∗k+1) ≤ ε.

Proof. The estimated improvement potential of the refinementLk+1

satisfies
|φ̃(Lk+1)− φ(Lk+1)|

≤
∣∣∣∣ |S|m (µ̃ 2

S − µ 2
S)

∣∣∣∣+

∣∣∣∣ |T |m (µ̃ 2
T − µ 2

T)

∣∣∣∣+

∣∣∣∣ |U |m (µ̃ 2
U − µ 2

U)

∣∣∣∣
≤ ε

2
.

Together this inequality, the identity err(Lk+1) = err(Lk)−φ(Lk+1),
and the inequality φ(Lk+1) ≤ φ(L†k+1) imply that

err′(L†k+1)− err′(L∗k+1)

= φ(L∗k+1)− φ(L†k+1)

= φ(L∗k+1)− φ̃(L∗k+1) + φ̃(L∗k+1)− φ(L†k+1)

≤ φ(L∗k+1)− φ̃(L∗k+1) + φ̃(L†k+1)− φ(L†k+1)

≤ ε.

3.2.2 Determining the Sample Complexity
To achieve the guarantee for Theorem 1, we need to retrieve a

certain number of samples from each of the distributionsD1, . . . , Dm.
We now describe our approach for drawing samples.
Approach. Perhaps somewhat surprisingly, we find that we need
to draw a constant C =

⌈
288 a σ2

ε2m
ln
(

4m
δ

)⌉
from each distribu-

tion Di to satisfy the requirements of Theorem 1. (We will de-
fine these parameters subsequently.) Thus, our sampling approach
is remarkably simple—and is essentially uniform sampling—plus,
as we show in the next subsection, other approaches cannot pro-
vide significantly better guarantees. What is not simple, however,
is showing that taking C samples allows us to satisfy the require-
ments for Theorem 1. Another benefit of uniform sampling is that
we can switch between showing our segment approximations or
showing the actual running estimates of each of the groups (as in
online aggregation [20])—for the latter purpose, uniform sampling
is trivially optimal.
Justification. To justify our choice, we assume that the data is gen-
erated from a sub-Gaussian distribution [45]. Sub-Gaussian distri-
butions form a general class of distributions with a strong tail decay
property, with its tails decaying at least as rapidly as the tails of a
Gaussian distribution. This class encompasses Gaussian distribu-
tions as well as distributions where extreme outliers are rare—this
is certainly true when the values derive from real observations that
are bounded. We validate this in our experiments. In particular, any
Gaussian distribution with variance σ2 is sub-Gaussian with pa-
rameter σ2. Therefore, we represent the distributions D1, . . . , Dm
by m sub-Gaussian distributions with mean µi and sub-Gaussian
parameter σ.

Given this generative assumption, we can determine the number
of samples required to obtain an estimate with a desired accuracy
using Hoeffding’s inequality [21]. Given m independent random
samples x1, . . . , xm with sub-Gaussian parameter σ2

i and mean µi

Pr

[
|
m∑
i=1

(xi − µi)| > t

]
≤ 2 exp

(
− t2

2
∑m
i=1 σ

2
i

)
.

Given Hoeffding’s inequality along with the union bound, we can
derive an upper bound on the number of samples we need to esti-
mate the mean µi of each xi.
Lemma 1. For a fixed δ > 0 and a k-segment approximation of the
distributions D1, . . . , Dm represented by m independent random
samples x1, . . . , xm with sub-Gaussian parameter σ2 and mean

µi ∈ [0, a] if we draw C =
⌈

288 a σ2

ε2m
ln
(

4m
δ

)⌉
samples uniformly

from each xi, then with probability at least 1 − δ,
∣∣µ̃ 2
T − µ 2

T

∣∣ ≤
εm
6|T | for every boundary segment T of Lk.

Proof. Fix any boundary segment T contained in the segment S ∈
Lk. Then, we draw samples xi,1xi,2, . . . , xi,C uniformly from
xi ∈ T , then

µ̃T − µT =
1

C|T |
∑
i∈T

C∑
j=1

xi,j − 1

|T |
∑
i∈T

µi

=
1

C|T |
∑
i∈T

C∑
j=1

(xi,j − µi).

xi’s are sub-Gaussian random variables with parameter σ2. There-
fore,

Pr
[
|µ̃2
T − µ2

T | > εm
6 |T |

]
= Pr

[
|µ̃T − µT | (µ̃T + µT) > εm

6 |T |

]
≤ Pr

[
|µ̃T − µT | > εm

12 a |T |

]
= Pr

[
| ∑
i∈T

C∑
j=1

(xi,j − µi)| > C εm
12 a

]

≤ 2 exp
(
− C ε2m2

288a2 |T |σ2

)
≤ δ

2m

By the union bound, the probability that one of the 2m boundary
segments has an inaccurate estimate is at most δ.

3.2.3 Deriving a Lower bound
We can derive a lower bound for the sample complexity of any

algorithm for Problem 1:

Theorem 2. Say we have a dataset D of m groups with means
(µ1, µ2, . . . , µm). Assume there exists an algorithm A that finds a
k-segment approximation which is ε-close to the optimal k-segment
approximation with probability 2/3. For sufficiently small ε, A
draws Ω(

√
k/ε2) samples.

The theorem states that any algorithm that outputs a k-segment
approximation of which is ε-close to a dataset has to drawO(

√
k/ε2)

samples from the dataset. To show this, at a high level, we pick a
dataset as the “hard case” and show that any algorithm that draws
o(
√
k/ε2) samples cannot estimate the means of the many of the

segments accurately. Therefore, the output has error more than ε.

Proof. Assume for contradiction that A uses o(kε2) samples. We
build a datasets randomly on m groups, namely D, and show that
A cannot find ε-close k-segment approximations for D with high
probability, which contradicts our assumption.

Let ε′ be equal to 217ε. For sufficiently small ε, we can assume
ε′ is at most 1/4. Without loss of generality, assume k is even and
m is a multiple of 3k/2. Otherwise, increase k and m by adding
dummy groups and this does not affect our calculation by more than
constant factors. We build D via the following process: First, we
partition the m groups into k/2 segments. Each of the segments
contains 2m/k groups and we define t to be a third of that i.e.
t := (2m)/(3k). In each segment, all the samples from the first t
groups have a fixed value 1/2− ε′. All the samples from the last t
groups have a fixed value 1/2+ε′. To decide about the value of the
samples from the middle groups, we randomly choose the mean p
to be either 1/2 − ε′ or 1/2 + ε′ each with probability a half. In
particular, a sample from the middle t groups is a Bernoulli random
variable which is one (or zero) with probability p (or 1− p). More

formally, we define the distribution Di over the group i as below

D(i) =

Fixed dist. with value 1/2− ε′ if di/te = 1 (mod 3).

Bernoulli dist. with mean pd2i/ke if di/te = 2 (mod 3).

Fixed dist. with value 1/2 + ε′ if di/te = 0 (mod 3).

where p1, p2, . . . , pk/2 are k/2 random variables that are picked
from {1/2 − ε′, 1/2 + ε′} each with probability a half. It is not
hard to see that any D is a k-flat segment approximation, so the
error of the optimal k-segment approximation is zero. Therefore,
A outputs a segment approximation, namely Lo, which is ε-close
to the D with probability 2/3. For the segment j, we define pj
(respectively p̂j) to be the average mean of the middle t groups
of the j-th segment that D (respectively Lo) assigns to them. In
other words, pj =

∑t
i=1 D(3 (j − 1) t + t + i)/t (respectively

p̂j =
∑t
i=1 Lo(3 (j − 1) t + t + i)/t). With probability 2/3, we

have

ε ≥ err(D,Lo) =
1

m

m∑
i=1

(D(i)− Lo(i))2

≥ 1

m

k/2∑
j=1

t∑
i=1

(D (3 (j − 1) t+ t+ i)− Lo (3 (j − 1) t+ t+ i))2

=
t

m

k/2∑
j=1

(pj − p̂j)2 ≥ 2

3k2

(
k/2∑
j=1

|pj − p̂j |
)2

using the Cauchy-Schwarz inequality.
To reach a contradiction, we show that we cannot estimate many

of the pj’s accurately. Since we assumed that A draws o(k/ε2)
samples, there are at least k/4 segments that o(1/ε2) samples are
drawn from. In the following lemma, we show that we cannot esti-
mate p̂j’s in these segments with high probability.

Lemma 2. Assume Algorithm B draws o(1/ε′2) samples from a
distribution over {0, 1} with an unknown bias p which is 1/2 + ε′

or 1/2− ε′. B outputs p̂ as an estimation of p. With probability at
least 1/3,

|p̂− p| ≥ ε′.

Proof. We reduce the problem of estimating p, to the problem of
distinguishing two distributionsD1 andD2 over {0, 1}which have
average value of 1/2 + ε′ and 1/2− ε′ respectively. The reduction
goes as follows: Algorithm B′, runsB to find p̂. If p̂ is greater than
1/2, then B′ outputs D1. Otherwise, it outputs D2. It is clear that
B′ is correct if and only if |p̂− p| ≥ ε′.

In Theorem 4.7, Chapter 4 of Yossef et al. [12], it has been shown
that any hypothesis tester that distinguishes between D1 and D2

with probability 2/3 must use at least Ω(1/h2(D1, D2)) samples
where h(D1, D2) is the Hellinger distance between D1 and D2.
The Hellinger distance between D1 and D2 over a finite set X (in
our case X = {0, 1}) is defined by Cam et al. [14] as follows:

h(D1, D2) :=

√
1
2

∑
x∈X

(√
D1(x)−

√
D2(x)

)2

=
√

1− ∑
x∈X

√
D1(x)D2(x)

=
√

1− 2
√

1/4− ε′2 =
√

1−
√

1− 4ε′2

=

√
4ε′2

1 +
√

1− 4ε′2
≥
√

2ε′

Since B′ draws o(1/ε′2) samples, it cannot output the correct an-
swer with probability at least 2/3. Therefore, with probability at
least 1/3, the error of p̂ is at least ε′.

Let r be the number of segments j such that we draw o(1/ε2)
samples from them but |p̂j − pj | is less than ε . Using the lemma
above, E[r] is at least k/6. By the Chernoff bound,

Pr

[
r <

k

12

]
≤ Pr

[
r <

(
1− 1

2

)
· E[r]

]
≤ e−k/48 ≤ 1

6

where the last inequality true for sufficiently large k. Thus, with
probability 5/6 more than k/12 has error of at least ε′. This implies
that err(D,L0) ≥ ε′/216 > ε which contradicts our assumption.

3.3 The ISplit Algorithm
We now present our incrementally improving visualization gen-

eration algorithm ISplit. Given the parameters ε and δ, ISplit main-
tains the same guarantee of error (ε) in generating the segment ap-
proximations in each iteration. Theorem 1 and Lemma 1 suffice
to show that the ISplit algorithm is a greedy approximator, that, at
each iteration identifies a segment approximation that is at least ε
close to the best segment approximation for that iteration.

Data: Xa, Y, δ, ε
1 Start with the 1-segment approximator L = (L1).
2 for k = 2, . . . ,m do
3 Lk−1 = (S1, . . . , Sk−1).
4 for each Si ∈ Lk−1 do
5 for each group q ∈ Sp do
6 Draw C samples uniformly. Compute mean µ̃q

end
7 Compute µ̃Si = 1

|Si|
∑
q∈Si

µ̃q

end
8 Find (T, U) = argmaxi;T,U⊆Si

|T |·|U|
|Si|·m

(µ̃T − µ̃U)2.
9 Update Lk+1 = S1, . . . , Si−1, T, U, Si+1, . . . , Sk .

end
Algorithm 1: ISplit

The parameter ε is often difficult for end-users to specify. There-
fore, in INCVISAGE, we allow users to instead explicitly specify an
expected time budget per iteration, B—as explained in Section 2.3,
the number of samples taken determines the time taken per itera-
tion, so we can reverse engineer the number of samples from B.
So, given the sampling rate f of the sampling engine (see Sec-
tion 2.1) and B, the sample complexity per iteration per group is
simply C = B × f/m. Using Lemma 1, we can compute the cor-
responding ε. Another way of setting B is to use standard rules of
thumb for interactivity (see Section 2.3).

3.4 Tuning ε Across Iterations
So far, we have considered only the case where the algorithm

takes the same number of samples C per group across iterations
and does not reuse the samples across different iterations. For any
given iteration, this provides us with an ε-guarantee for the error
relative to the best segment approximation. If we instead reuse
the samples drawn in previous iterations, the error at iteration k is
ε2k = 288 a σ2

mkC
ln
(

4m
δ

)
, where k C is the total number of samples

drawn so far. Therefore, the decrease in the error up to iteration k,
εk, from the error up to iteration (k − 1), εk−1, is

√
(k − 1)/k,

where εk =
√

(k − 1)/k εk−1. This has the following effect: later
iterations both take the same amount of time as previous ones, and
produce only minor updates of the visualization.
Sampling Approaches. This observation indicates that we can ob-
tain higher interactivity with only a small effect on the accuracy
of the approximations by considering variants of the algorithm that
decrease the number of samples across iterations instead of draw-
ing the same number of samples in each iteration. We consider
three natural approaches for determining the number of samples
we draw at each iteration: linear decrease (i.e., reduce the number
of samples by β at each iteration), geometric decrease (i.e., divide

the number of samples by α at each iteration), and all-upfront (i.e.,
non-interactive) sampling. To compare these different approaches
to the constant (uniform) sampling approach and amongst each
other, we first compute the total sample complexity, interactivity,
and error guarantees of each of them as a function of their other
parameters. Letting Tk denote the total number of samples drawn
in the first k iterations, the interactivity of a sampling approach de-
fined in Section 2.3 can be written as: λ =

∑m
k=1 Tk
k′ , where k′

is the number of iterations we take non-zero samples. The error
guarantees we consider are, as above, the average error over all
iterations. This error guarantee is

err =
m∑
i=1

ε2k
m

=
m∑
i=1

288 a σ2

m2Tk
ln
(

4m
δ

)
= 288 a σ2

m2 ln
(

4m
δ

) m∑
i=1

1
Tk

We provide evidence that the estimated err and λ are similar to err
and λ on real datasets in Section 5.5.2. We are now ready to derive
the expressions for both error and interactivity for the sampling
approaches mentioned earlier.

3.4.1 Expressions for Error and Interactivity
In this section we derive the analytical expressions of both in-

teractivity and error for all of these four approaches (see Table 1).
In particular, for succinctness, we have left the formulae for Error
for geometric and linear decrease as is without simplification; on
substituting Tk into the expression for Error, we obtain fairly com-
plicated formulae with dozens of terms, including multiple uses of
the q-digamma function Ψ [25]—for the geometric decrease case,
the Euler-Mascheroni constant [47]—for the linear decrease case,
and the Harmonic number Hm—for the constant sampling case.
Constant sampling. The constant sampling approach is the one
described above where we draw N1 samples in the first iteration
and in all subsequent iterations as well. We denote this approach
by UN1 . With this approach, the total number of samples drawn

in the first k iterations is T
(UN1

)

k = kN1 and the error guarantee
satisfies

err(UN1
) =

288 a σ2

m2
ln

(
4m

δ

) m∑
i=1

1

kN1
=

288 a σ2Hm
m2N1

ln

(
4m

δ

)
,

where Hm is the m-th Harmonic number. Finally, the interactivity
of the constant sampling approach is

λ(UN1
) =

∑m
k=1 kN1

k′
=
N1 (m+ 1)

2
.

Linear decrease. In the linear decrease approach, we draw N1

samples in the first iteration, and draw Nk = Nk−1 − β sam-
ples for some fixed parameter β ≥ 0 in each subsequent itera-
tions. We denote this sampling approach by LN1,β . The total num-
ber of samples drawn in the first k iterations of this approach is
T

(LN1,β
)

k =
∑k
i=1 Ni = N1k − k (k−1) β

2
. The guarantee on the

average error per iteration for this approach is

err(LN1,β
) =

∑m
i=1

288 a σ2

m2Tk
ln
(

4m
δ

)
=

288 a σ2 (α−1)(−Ψ(0)(m−2N1/β)Ψ(0)(−2N1/β)+Ψ(0)(m+1)+γ)
m2 (N1+β/2)

ln
(

4m
δ

)
.

where the Ψ(n)(x) is the nth derivative of the digamma function [25]
and γ is the Euler-Mascheroni constant [47]. The interactivity of
the linear decrease approach is

λ(LN1,β
) =

∑k′

k=1
Nk (m−k+1)

k′ =
∑k′

k=1
(N1−β(k−1))·(m−k+1)

k′

= N1

(
m− k′−1

2

)
+ β

6

[
2k′2 − 3k′ + 1− 3mk′ + 3m

]
.
.

Geometric decrease. In the geometric decrease approach, we
draw N1 samples in the first iteration and draw Nk = Nk−1/α
samples for some fixed parameter α > 1 in each subsequent it-
erations. We denote this sampling approach by GN1,α. This ap-

Approach decrease parameter Tk Error Interactivity

Linear Decrease β N1k − k (k−1) β
2 A

∑m
k=1

1
Tk

N1

(
m− k′−1

2
N1
m

)
+ β

6

[
2k′2 − 3k′ + 1− 3mk′ + 3m

]
Geometric Decrease α N1

αk−1

αk−1(α−1)
A
∑m
k=1

1
Tk

N1
m

[
m (α−1)αm+αm−1

(α−1)2 αm−1

]
Constant Sampling α = 1, or β = 0 kN1

A·Hm
N1

N1 (m+1)
2

All-upfront — Tk=1 = N1 and Tk>1 = 0 A·m
N1

mN1

Table 1: Expressions for error and interactivity for different sampling approaches. Here, A = 288 a σ2

m2 ln
(

4m
δ

)
proach draws Nk = N1

αk−1 samples at iteration k, for a total of

T
(GN1,α

)

k =
∑k
i=1 Ni = N1

αk−1
αk−1(α−1)

samples in the first k iter-
ations. The error guarantee of this approach is

err(GN1,α
) =

m∑
i=1

288 a σ2αk−1(α−1)

m2N1αk−1
ln
(

4m
δ

)
=

288 a σ2 (α− 1)
(

Ψ
(0)
α (m+ 1)−Ψ

(0)
α (1)

)
m2 N1 α lnα

ln
(

4m
δ

)
where Ψ

(n)
α (x) is the q-digamma function. The interactivity of the

geometric decrease approach is

λ(GN1,α
) =

k′∑
k=1

Nk (m−k+1)
k′

= N1(m+1)
k′

k′∑
k=1

1
αk−1 − N1

k′

k′∑
k=1

k
αk−1

= N1(m+1)
k′

αk
′
−1

αk
′−1(α−1)

− N1
k′

αk
′+1−α(k′+1)+k′

αk
′−1(α−1)2

.

For the case where k′ = m, then

λ(GN1,α
) =

N1

m

[
m (α− 1)αm − αm + 1

(α− 1)2 αm−1

]
.

All-upfront. Finally, the (non-interactive) all-upfront sampling
approach is the one where we draw N1 samples in the first itera-
tion and no samples thereafter. Let (AUN1) denote this sampling
approach. For any k ≥ 1, the total sample complexity of this ap-
proach is T

(AUN1
)

k = N1. The error guarantee of this approach
is

err(AUN1
) = 288 a σ2

m2 ln
(

4m
δ

) m∑
i=1

1
N1

= 288 a σ2

mN1
ln
(

4m
δ

)
,

and its interactivity is

λ(AUN1
) =

∑m
k=1 N1

k′ = mN1.

3.4.2 Comparing the Sampling Approaches
We now compare different sampling approaches based on the ex-

pressions of error and interactivity obtained in Section 3.4.1. We
show that among the four sampling approaches, geometric decrease
is the most desirable approach in order to optimize for both error
and interactivity. To do so, we first discount the all-upfront sam-
pling approach by showing that this approach has a strictly worse
error guarantee than constant sampling—the sampling approach
proposed in Section 3.2.2. We then obtain the optimal values in
terms of interactivity for the decrease parameter of the geometric
(α) and linear (β) decrease approaches. Furthermore, we show that
given the initial number of samples, the interactivity of geometric
decrease approach with the optimal decrease parameter is strictly
better than the interactivity of the linear decrease and constant sam-
pling approaches. Finally, we suggest a theoretically optimal range
of the geometric decrease parameter that leads to a pareto frontier
along which users can optimize for either error or interactivity.
All-upfront VS Constant Sampling. Clearly, if we compare
all-upfront sampling with the constant sampling approach with the
same number of initial samples N1, then the constant sampling ap-
proach has smaller error. In fact, more is true: even if we allow the
all-upfront to take more samples in the initial iteration so that it has

the same interactivity measure as the constant sampling approach,
it still has a strictly worse error guarantee.
Theorem 3. If for a setting of parameters, a constant sampling
approach and an all-upfront sampling approach have the same in-
teractivity, then the error of constant sampling is strictly less than
the error of all-upfront sampling.

Proof. Assume that we have two sampling approaches AUN1 and
UN′1

with the same interactivity. Thus, we have the following rela-
tionship between N1 and N ′1.

mN1 = λ(AUN1
) = λ

(UN′1
)

=
N ′1 (m+ 1)

2
≤ mN ′1.

Given the equation, we have

err(AUN1
) = 288 a σ2

mN1
ln
(

4m
δ

)
≥ 288 a σ2

mN′1
ln
(

4m
δ

)
≥ m

Hm
· err

(UN′1
)
.

Note thatHm = O(logn). Hence, given the same interactivity, the
non-incremental sampling has a large error compare to the uniform
sampling.

Optimal interactivity and decrease parameters. We now show
that for both linear and geometric decrease approaches, the optimal
interactivity is obtained for an explicit choice of decrease parameter
that depends only on the initial number of samples and the total
number of iterations. To do so, we prove the following two lemmas
(lemma 3 and 4).
Lemma 3. In geometric sampling with a fixed N1, α∗ = (N1 −
1)1/(m−1) has the optimal interactivity and it has smaller error
than all of the geometric sampling approaches with α > α∗.

Proof. If α > α∗, it is clear that we do not draw any sample at the
last iteration, and therefore, k′ < m. However, when α ≤ α∗, then
k′ = m. Hence,

λ(GN1,α
) =

N1

m

[
m (α− 1)αm − αm + 1

(α− 1)2 αm−1

]
.

Then,
∂λ

(GN1,α
)

∂α
=

α−m((m+1)αm−(m−1)αm+1+m−1−α(1+m))
(α−1)3

= α−m(αm(2−(m−1)(α−1)))−(α−1)(m+1)−2)

(α−1)3

.

By writing the binomial approximation for αm = (1− (1−α))m.
It is not hard to see that the derivative is negative for α ≥ 1 for suf-
ficiently largem. Therefore, λ(GN1,α

)(α∗) is the minimum among
all α’s in (1, α∗].

For α > α∗, we stop sampling after k′ = logN1
logα

iterations. By
replacing k′ in the interactivity formula we can obtain an expres-
sion for λ(GN1,α

). On examining the derivative we find out that
λ(GN1,α

) is again an increasing function of α. Therefore, α∗ has
the optimal interactivity.

Now, we show that GN1,α∗ has smaller error compared to GN1,α

for α > α∗. Suppose α > α∗. It is clear that

N
(GN1,α

)

k =
N1

(α)k−1
≤ N1

(α∗)k−1
= N

(GN1,α
∗)

k .

Thus, for any k ∈ [m], T
(GN1,α

)

k ≤ T (GN1,α
∗)

k . Therefore, we can
see that the error of the GN1,α∗ is smaller than GN1,α.

err(GN1,α
∗) =

∑m
i=1

288 a σ2

m2T
(GN1,α

∗)
k

ln
(

4m
δ

)
≤∑m

i=1
288 a σ2

m2T
(GN1,α

)

k

ln
(

4m
δ

)
= err(GN1,α

).

Thus, the proof is complete.

Lemma 4. In linear sampling with a fixed N1, β∗ = (N1 −
1)/(m− 1) has the optimal interactivity and it has strictly smaller
error than all of the linear sampling approaches with β > β∗.

Proof. To compute the interactivity of the linear decrease approach,
first we need to find k′ based on β. If the sampling lasts for m it-
erations, we draw at least one sample in the last iteration. In other
words, N1 − (m − 1)β is at least one. Therefore, β ≤ β∗ =
(N1 − 1)/(m − 1) the number of iterations, k′, is m. Then, the
interactivity is

λ(LN1,β
) = N1

(
m+ 1

2

)
− β

6

(
m2 − 1

)
.

For sufficiently large m, λ(LN1,β
) is decreasing with respect to β.

Therefore, β∗ has the optimal interactivity among β’s in [0, β∗].
For β > β∗, we stop sampling after k′ = N1

β
iterations. By

replacing k′ in the interactivity formula, we have

λ(LN1,β
) =

N1(m+ 1)

2
− N2

1

6β
+

(3m+ 1)β

6

It is not hard to see that ∂λ
(LN1,β

)

∂β
is positive and this function is

increasing with respect to β. Therefore, β∗ has the optimal interac-
tivity among β’s in [β∗, β]. Hence β∗ has the optimal interactivity.

Now, we show that LN1,β∗ has smaller error compared to LN1,β

for β > β∗. Suppose β > β∗. It is clear that

N
(LN1,β

)

k = N1 − (k − 1)β ≤ N1 − (k − 1)β∗ = N
(LN1,β

∗)

k .

Thus, for any k ∈ [m], T
(LN1,β

)

k ≤ T
(LN1,β

∗)

k . Therefore, we can
easily see error of the LN1,β∗ is smaller than LN1,β .

err(LN1,β
∗) =

∑m
i=1

288 a σ2

m2T
(LN1,β

∗)
k

ln
(

4m
δ

)
≤∑m

i=1
288 a σ2

m2T
(LN1,β

)

k

ln
(

4m
δ

)
= err(LN1,β

).

Thus, the proof is complete.

Next, we show that given the initial samples N1, geometric de-
crease has the optimal interactivity among the three interactive ap-
proaches (linear decrease and constant sampling being the other
two).

Optimal Interactivity Given N1. Our experimental results in
Section 5.5 suggests that the geometric decrease approach with the
optimal choice of parameter α∗ has better error than not only the
all-upfront approach but the linear decrease and constant sampling
approaches as well. This remains an open question, but when we
fix the initial sample complexity N1 (which is proportional to the
bound on the maximum time taken per iteration as provided by the
user), we can show that geometric decrease with the right choice
of parameter α does have the optimal interactivity among the three
interactive approaches.
Theorem 4. GivenN1, the interactivity of geometric decrease with
parameter α∗ = (N1 − 1)1/(m−1) is strictly better than the inter-
activity of any linear decrease approach and constant sampling.

Proof. By Lemma 4, for a fixed N1, the interactivity of LN1,β is
minimum at β∗ = (N1 − 1)/(m − 1). In addition, the uniform
sampling approach is a special case of linear decrease sampling ap-
proach when β is zero, and therefore has worse interactivity com-
pared to LN1,β∗ . Thus, it suffices to compare the interactivity of
LN1,β∗ and GN1,α∗ to conclude the theorem.

First, we prove thatN
(LN1,β

∗)

k is at leastN
(GN1,α

∗)

k . N
(GN1,α

∗)

k =

N1/(α
∗)k−1 is a upward convex function with respect to k. Thus,

the line segment between any two points of this function lies above
it. This sampling approach takes N1 samples in the first itera-

tion and one sample in iteration m. Thus, N
(GN1,α

∗)

k is below
the segment that connects (1, N1) and (m, 1). On the other hand

N
(LN1,β

∗)

k = N1 − (k − 1)β∗ is a linear function of k. Also,
LN1,β∗ takes N1 samples in the first iteration and one sample in it-

eration m. Thus, N
(LN1,β

∗)

k is on the segment (1, N1) and (m, 1).

Therefore, N
(LN1,β

∗)

k is at least N
(GN1,α

∗)

k and the equality hap-
pens only at k = 1 and k = m. Using the interactivity formula it
is not hard to see

λ(GN1,α
∗) =

m∑
i=1

N
(GN1,α

∗)
k

(m−k+1)

m

<
m∑
i=1

N
(LN1,β

∗)
k

(m−k+1)

m
= λ(LN1,β

∗)

Therefore, the geometric decrease sampling approach, GN1,α∗ , has
better interactivity than the interactivity of any linear decrease sam-
pling method.

In lemma 3, we prove that for fixedN1 λ
(GN1,α

)(α∗) is the min-
imum among all α’s in (1, α∗]. Now, constant sampling is a spe-
cial case of geometric decrease with parameter α = 1. Therefore,
given N1, the geometric decrease sampling approach, GN1,α∗ , has
better interactivity than the interactivity of the constant sampling
approach. This completes our proof.

Next, we discuss how the optimal decrease parameter α∗ con-
tributes to a knee shaped error-interactivity trade-off curve.

Optimal α and Knee Region. As shown in Lemma 3, given
N1, we can compute the optimal decrease parameter α∗, such that
any value of α > α∗ results in higher error and lesser interactiv-
ity (higher λ). This behavior results into the emergence of a knee
region in the error-interactivity curve which is confirmed in our
experimental results (see Section 5.5). Essentially, starting from
α = 1 any value α ≤ α∗ has smaller error than any value α > α∗.
Therefore, for any given N1 there is an optimal region [1, α∗]. For
example, for N1 = 5000, 25000, 5000, and 10000, the optimal
range of α is [1, 1.024], [1, 1.028], [1, 1.03], and [1, 1.032], re-
spectively. By varying α along the optimal region one can either
optimize for error or interactivity. For example, starting with α = 1
as α→ α∗ we trade accuracy for interactivity.

3.5 Extensions
The incrementally improving visualization generation algorithm

described previously for simple queries with the AVG aggrega-
tion function can also be extended to support aggregations such as
COUNT and SUM, as well as additional predicates (via a WHERE
clause).

3.5.1 The COUNT Aggregate Function
Given that we know the total number of tuples in the database,

estimating the COUNT aggregate function essentially corresponds
to the problem of estimating the fraction of tuples τi that belong
to each group i. Formally, τi = ni∑m

j=1 nj
when nj is the num-

ber of tuples in group j. We focus on the setting below when we
only use our bitmap index. We note that approximation techniques

for COUNT queries have also been studied previously [7, 24, 26],
for the case when no indexes are available. As we see below, we
will also use the COUNT estimation as a subroutine for incremen-
tally improving approximations to the SUM function in the setting
where we don’t know the group sizes.
Approach. Using our sampling engine, we can estimate the frac-
tions τi by scanning the bitmap index for each group. When we
retrieve another sample from group i, we can also estimate the num-
ber of tuples we needed to skip over to reach the tuple that belongs
to group i—the indices allow us to estimate this information di-
rectly, providing us an estimate for τi, i.e., τ̃i.

Theorem 5. With an expected total number of samples Ccount =
m + dγ−2 ln(2m/δ)/2e, the τ̃i, ∀i can be estimated to within a
factor γ, i.e., |τ̃i − τi| ≤ γ holds with probability at least 1− δ.

Essentially, the algorithm takes as many samples from each group
until the index of the sample is ≥ dγ−2 ln(2m/δ)/2e. We show
that overall, the expected number of samples is bounded above by
Ccount. Since this number is small, we don’t even need to incre-
mentally estimate or visualize COUNT.

Proof. To show this, we use repeated applications of Hoeffding’s
inequality and union bound, along with the analysis of a Bernoulli
trial. Let θi,j be the index of the j-th sample from group i. An-
other way of interpreting θi,j is that among the first θi,j items in
the dataset, j of them were from group i. This is equivalent to
drawing θi,j samples in the bitmap where only j of them are from
the group i. Thus, j/θi,j is an unbiased estimate for τi. Using the
Hoeffding’s inequality, we have that

Pr

[∣∣∣∣ jθi,j − τi
∣∣∣∣ > γ

]
≤ 2e−2γ2θi,j ≤ δ

m

whenever θi,j is greater than or equal to θ0 = dγ−2 ln(2m/δ)/2e.
Therefore, if the θi,j’s are big enough, we can assume we have a
good estimation of τi’s with probability 1− δ.

In this approach, we do not query the dataset. However, we query
the bitmap index. To reach θi,j that is greater than θ0, we query the
bitmap index to obtain θi,1, θi,2, . . . , θi,j until we see θi,j which is
at least θ0. Here, we compute the expected value of the number of
queries where each query is a Bernoulli trial. We define a Bernoulli
trial as follows: we draw an item from the dataset if the item be-
longs to group i then it is a success. Otherwise, it is a failure. We
know that among the first θi,j−1, j − 1 of them were successful.
Thus, we have
E[j] = E[j − 1] + 1 ≤ E[#success in θ0 trials] + 1 = τiθ0 + 1.

Therefore, for m groups, the expected number of queries to the
bitmap index, Ccount = θ0 +m = m+ dγ−2 ln(2m/δ)/2e.

3.5.2 The SUM Aggregate Function
The problem of obtaining the segment approximations for SUM

is similar to the AVG case—at each iteration (k + 1), a segment
is split into two new segments to obtain the k + 1-segment ap-
proximation Lk+1 such that the estimated improvement potential
is maximized. For the SUM problem, we define the estimated im-
provement potential as φ̃+. In the online sampling scenario, we
again obtain a guarantee for the empirical error of the k-segment
approximation for SUM, err′+. There are two settings we con-
sider for the SUM aggregate function: when the group sizes (i.e.,
the number of tuples in each group) are known, and when they are
unknown. For both cases we show that if we estimate the boundary
segments accurately, then we can find a split which is very close
to the best possible split. At iteration (k + 1), we define T (I, η),
where I = [p, q] and 1 ≤ p ≤ q ≤ m to be a boundary segment if
either p or q is a split group in Lk (see Section 3.2).

Known Group Sizes. A simple variant of Algorithm 1 can also
be used to approximate SUM in this case. Let ni be the size of
group i and κ = maxj nj . As in the original setting, the algorithm
computes the estimate µ̃i of the average of the group. Then s̃i =
ni µ̃i is an estimate on the sum of each group i, namely si, that is
used in place of the average in the rest of the algorithm. We have:

Theorem 6. Assume we have Ci = d 288a2σ2mn2
i

ε2κ2 ln 4m
δ
e samples

from group i. Then, the refinement L†k+1 of Lk that maximizes the
estimated improvement potential φ̃+(L†k+1) will have error that
exceeds the error of the best refinement L∗k+1 of Lk by at most
err′+(L†k+1)− err′+(L∗k+1) ≤ εκ2.

Proof. Fix any boundary segment T in Lk. Then, we draw xi,1,
xi,2, . . . , xi,Ci from the groups i ∈ T . It is not hard to see

s̃T − sT = 1
|T |
∑
i∈T

s̃i − si = 1
|T |
∑
i∈T

(
Ci∑
j=1

ni xi,j
Ci

)
− niµi

= 1
|T |
∑
i∈T

(
Ci∑
j=1

ni xi,j
Ci
− ni µi

Ci

)
If xi,j is a sub-Gaussian random variable with parameter σ2, then
ni xi,j/Ci is a sub-Gaussian random variable with parameter (ni σ/Ci)

2.
Using the Hoeffding bound for sub-Gaussian random variables,

Pr
[
|s̃2
T − s2

T | > εκ2m
6|T |

]
= Pr

[
|s̃T − sT |(s̃T + sT) > εκ2m

6|T |

]
≤ Pr

[
| ∑
i∈T

Ci∑
j=1

ni
Ci

(xi,j − µi)| > εκ2m
12a

∑
i∈T

ni

]

≤ 2 exp

− ε2κ4m2

288a2σ2

(∑
i∈T

ni

)2(∑
i∈T

n2
i /Ci

)

≤ 2 exp

− ε2κ2m2

288a2σ2|T |2
(∑
i∈T

n2
i /Ci

)

≤ δ
4m
.

where the last inequality is true because

Ci
n2
i

=
288a2σ2m

ε2κ2
ln

4m

δ
≥ 288a2σ2|T |3

ε2κ2m2
ln

4m

δ
.

Therefore, for every boundary segment T of the k-segment ap-
proximation Lk, we obtain an estimate s̃T of the mean sT that
satisfies

∣∣s̃2
T − s2

T

∣∣ ≤ εκ2m
6|T | .

By replacing C with Cq in line 6 of Algorithm 1 and substitut-
ing the calculations for mean of groups and boundary segments to
their respective sums, we obtain our incrementally improving vi-
sualization generation algorithm for SUM with known group sizes
case. Note that here we have εκ2 instead of ε: while at first glance
this may seem like an amplification of the error, it is not so: first,
the scales are different—and visualizing the SUM is like visualiz-
ing AVG multiplied by κ—an error by one “pixel” for the former
would equal κ times the error by one “pixel” for the latter but are
visually equivalent; second, our error function uses a squared `2-
like distance, explaining the κ2.
Unknown Group Sizes. For this case, we simply employ the
known group size case, once the COUNT estimation is used to
first approximate the τi with γ = ε/24a. The task of approximat-
ing the SUM aggregate function when we do not know the size of
each group can be completed by combining the algorithmic tools

described in earlier sections. Specifically, we can use the approach
described in the COUNT section to first approximate the size of
each group. We can then modify the Algorithm 1 for approximat-
ing the AVG function to show the fractional sum. Since we have
s̃i = τ̃iµ̃iκt, where κt denotes the total number of items:

∑m
i=1 ni

, it suffices to run our Algorithm 1 for visualizing the τiµi and mul-
tiply all of them by κ2

t . Therefore, we state the following theorem:

Theorem 7. Assume we have Ci = d 1152 a2σ2τ̃2i
ε2m

ln 4m
δ
e samples

from group i. Then, the refinement L†k+1 of Lk that maximizes the
estimated φ̃+(L†k+1) will have error that exceeds the error of the
best refinement L∗k+1 of Lk by at most err′ + (L†k+1) − err′ +

(L∗k+1) ≤ εκ2
t .

Proof. Fix any boundary interval T in Lk. Then, we draw xi,1,
xi,2, . . . , xi,C from the groups i ∈ T . It is not hard to see

|s̃T − sT | = 1
|T |

∣∣∣∣∑
i∈T

s̃i − si
∣∣∣∣ = κt

|T |

∣∣∣∣∑
i∈T

τ̃iµ̃i − τiµi
∣∣∣∣

= κt
|T |

∣∣∣∣∑
i∈T

τ̃iµ̃i − τ̃iµi + τ̃iµi − τiµi
∣∣∣∣

= κt
|T |

∣∣∣∣∑
i∈T

τ̃i(µ̃i − µi)
∣∣∣∣+ κt

|T |

∣∣∣∣∑
i∈T

µi(τ̃i − τi)
∣∣∣∣

≤ κt
|T |

∣∣∣∣∣∑i∈T
Ci∑
j=1

(
τ̃i xi,j
Ci

)
− τ̃iµi

∣∣∣∣∣+ κt
|T |

∣∣∣∣∑
i∈T

µi(τ̃i − τi)
∣∣∣∣

= κt
|T |

∣∣∣∣∣∑i∈T
Ci∑
j=1

(
τ̃i xi,j
Ci
− τ̃i µi

Ci

)∣∣∣∣∣+ κt
|T |

∣∣∣∣∑
i∈T

µi(τ̃i − τi)
∣∣∣∣ .

Now, we show that each of the term above are less than εmκt/(24a|T |).
If xi,j is a sub-Gaussian random variable with parameter σ2, then
τ̃i xi,j/Ci is a sub-Gaussian random variable with parameter (τ̃i σ/Ci)

2.
Using the Hoeffding bound for sub-Gaussian random variables,

Pr

[∣∣∣∣∣∑i∈T
Ci∑
j=1

(
τ̃i xi,j
Ci
− τ̃i µi

Ci

)∣∣∣∣∣ > εm
24a

]
≤ 2 exp

(
− ε2m2

1152 a2 σ2
∑
i∈T τ̃

2
i /Ci

)
≤ δ

4m
.

Thus, the above expression is true for all T with probability 1−δ/2.
Then, the first term in the previous equation is at most εmκt/(24a|T |).
Let γ = ε/(24a). Using the algorithm explained for estimating τi
in the COUNT section, with the right set of parameter, one can
assume with probability 1− δ/2, |τ̃i − τi| is at most γ. Thus, with
probability 1− δ, s̃T − sT is at most εκt/(12a). Thus, we have

|s̃2
T − s2

T | = |s̃T − sT |(s̃T + sT) ≤ εκt
12a
· 2κta =

εκ2
t

6|T |
Therefore, for every boundary segment T of the k-segment ap-

proximation Lk, we obtain an estimate s̃T of the mean sT that
satisfies

∣∣s̃2
T − s2

T

∣∣ ≤ εκ2
t

6|T | .

Similar to the known group sizes case, by replacingC withCq in
line 6 of Algorithm 1 and substituting the calculations for mean of
groups and boundary segments to their respective sums, we obtain
our incrementally improving visualization generation algorithm for
SUM with unknown group sizes case.

3.5.3 Selection Attributes
Consider the following query:

QT = SELECT Xa, AVG(Y) FROM R GROUP

BY Xa ORDER BY Xa WHERE Pred

Here, we may have additional predicates on Xa or some other
attributes. For instance, we may want to view the average delay

of all flights landing in ORD airport on December 22nd. Our al-
gorithms still work even if we have selection predicates on one or
more attributes, as long as we have an index on the group-by at-
tribute. The sampling engine’s bitmap indexes allow us to retrieve,
on demand, tuples that are from any specific group i that satisfy the
selection conditions specified, by using appropriate AND and OR
operators [33].

4. INCVISAGE SYSTEM ARCHITECTURE
Figure 2 depicts the overall architecture of INCVISAGE. The IN-

CVISAGE client is a web-based front-end that captures user input
and renders visualizations produced by the INCVISAGE back-end.
The INCVISAGE back-end is composed of three components: (A) a
query parser, which is responsible for parsing the input query QT
or QH (see Section 2.1), (B) a view processor, which executes IS-
plit (see Section 3), and (C) a sampling engine which returns the
samples requested by the view processor at each iteration. As dis-
cussed in Section 2.1, INCVISAGE uses a bitmap-based sampling
engine to retrieve a random sample of records matching a set of ad-
hoc conditions. The sampling engine is the same as the sampling
engine used in IFOCUS [32]. At the end of each iteration, the view
processor sends the visualizations generated to the front-end en-
coded in json. To reduce the amount of json data transferred, only
the changes in the visualization (i.e., the refinements) are commu-
nicated to the front-end. The front-end then parses the data and
generates the visualization.

Figure 2: INCVISAGE Architecture
The front-end is responsible for capturing user input and ren-

dering visualizations generated by the INCVISAGE back-end. The
visualizations (i.e., the segment approximations) generated by the
back-end incrementally improve over time, but the users can pause
and replay the visualizations on demand. Figure 3 depicts the
web front-end for INCVISAGE comprising four parts: (A) a query
builder used to formulate queries based on user input; (B) a visual-
ization display pane; (C) a play bar to interact with the incremen-
tally improving visualization being generated by allowing users to
pause the visualization generation or rewind to older iterations (i.e.,
previous segment approximations), and (D) a snapshot pane for
saving the image of the current iteration or segment approxima-
tion being viewed in case the user wants to compare the current
visualization with future ones and identify the differences. There is
an additional color legend (E) for heatmaps to allow users to inter-
pret the values of the different heatmap blocks. For the user study
described in Section 6, we additionally added a question-answer
module (F) to the front-end for submitting answers to the user study
questions and also for displaying the points (i.e. the score) obtained
by the user.

5. PERFORMANCE EVALUATION
We evaluate our algorithms on three primary metrics: the error

of the visualizations, the degree of correlation with the “best” al-
gorithm in choosing the split groups, and the runtime performance.

Figure 3: Front End

We also discuss how the choice of the initial samples N1 and sam-
pling factor α impacts the error and interactivity.

5.1 Experimental Setup
Algorithms Tested. Each of the incrementally improving visual-
ization generation algorithms that we evaluate performs uniform
sampling, and take either B (time budget) and f (sampling rate of
the sampling engine) as input, or ε (desired error threshold) and δ
(the probability of correctness) as input, and in either case com-
putes the required N1 and α. The algorithms are as follows:
ISplit: At each iteration k, the algorithm draws Nk

m
samples uni-

formly from each group, where Nk is the total number of samples
requested at iteration k and m is the total number of groups. ISplit
uses the concept of improvement potential (see Section 3) to split
an existing segment into two new segments.
RSplit: At each iteration k, the algorithm takes the same samples as
ISplit but then selects a segment, and a split group within that, all at
random to split. Our goal in including this algorithm is to evaluate
whether the improvement potential based approach can generate
visualizations with lower error compared to the random choices.
ISplit-Best: The algorithm simulates the ideal case where the mean
of all the groups are known upfront (see Section 3.1). The visual-
izations generated have the lowest possible error at any given itera-
tion (i.e. for any k-segment approximation) among approaches that
perform refinement of previous approximation. We include this al-
gorithm to measure how close the error of ISplit is to the lowest
possible error when the iterative refinement constraint is respected.
DPSplit: At a high level, at each iteration k, this algorithm takes
the same samples as ISplit, but instead of performing refinement,
DPSplit recomputes the best possible k-segment approximation us-
ing dynamic programming. We include this algorithm to measure
the impact of the iterative refinement constraint. There are two rea-
sons why this algorithm is not preferred: the visualizations change
drastically in each iteration, and the dynamic programming com-
putation can be extremely costly online.
DPSplit-Best: This algorithm simulates the case where the means
of all the groups are known upfront, and the same approach for
producing k-segment approximations used by DPSplit is used. The
visualizations generated have the lowest possible error among the
algorithms mentioned above since they have advance knowledge of
the means, and do not need to obey iterative refinement.

Name Description #Rows Size (GB) E U

Sensor Intel Sensor dataset
Berkeley Research lab [1]. 2.2M 0.73 X

FL US Flight dataset [5] . 74M 7.2 X X

T11 2011 NYC taxi trip data
for 2011 [3] 170M 6.3 X

T12 2012 NYC taxi trip data
for 2012 [3] 166M 4.5 X

T13 2013 NYC taxi trip data
for 2013 [3] 166M 4.3 X

WG Weather data of US
cities from 1987–2015 [6] 415M 27 X

Table 2: Datasets Used for the Experiments and User Studies.
E = Experiments and U = User Studies (Section 6 and 7).

Datasets and Queries. The datasets used in the performance eval-
uation experiments and the user studies (Section 6 and Section 7)
are shown in Table 2 and are marked by ticks (X) to indicate where
they were used. For the US flight dataset we show the results for
the attribute Arrival Delay (FLA) and Departure Delay (FLD). For
all three years of the NYC taxi data, we present the results for the
attribute Trip Time. For the weather dataset, we show results for
the attribute Temperature. For all the datasets, we remove the out-
liers. To verify our sub-Gaussian assumption, we generated a Q-Q
plot [49] for each of the selected attributes to compare the distri-
butions with Gaussian distributions. The FL, T11, T12, and T13
datasets all exhibit right-skewed Gaussian distributions while WG
exhibits a truncated Gaussian distribution We also performed his-
togram analysis of the datasets to further confirm the observations
obtained from Q-Q plot analysis. The results can be found in Ap-
pendix 4. Unless stated explicitly, we use the same query in all the
experiments—calculate the average of an attribute at each day of
the year. Here, the number of groups (days), m = 366.
Metrics. We use the following metrics to evaluate the algorithms:
Error: We measure the error of the visualizations generated at each
iteration k via err(Lk) (see Section 2.3). The average error across
iterations is computed as: ẽrr(Lk) = 1

m

∑m
k=1 err(Lk).

Time: We also evaluate the wall-clock execution time.
Correlation: We use Spearman’s ranked correlation coefficient to
measure the degree of correlation between two algorithms in choos-
ing the order of groups as split groups. We use the order in which
the groups were selected as split groups by an algorithm to compute
a ranked list for the purpose of applying Spearman’s correlation
coefficient. Spearman’s ranked correlation coefficient captures the
correlation between two ranked lists. If we consider the iteration at
which a group was chosen as a split group as the rank of that group,
we can get a ranked list of the groups for each of the algorithms.
Then, we can compute the correlation between any two ranked lists.
Let e1, · · · , em and f1, · · · , fm are the two ranked lists where ei
and fi are the ranks of group i assigned by algorithm E and F ,
respectively. The Spearman’s ranked correlation coefficient (r) is
defined as follows:

r(E,F) = 1− 6
∑m
i=1(ei − fi)2

m(m2 − 1)

A value close to 1 (-1) for the Spearman’s coefficient indicates posi-
tive (negative) correlation between the two lists, while a value close
to 0 indicates no correlation.
Interactivity: We use a new metric called interactivity (defined in
Section 2.3) to select appropriate parameters for ISplit. Interactivity
is essentially the average waiting time for generating the segment
approximations. We explore the measure in Section 5.5.
Implementation Setup. We evaluate the runtime performance of
all our algorithms on a bitmap-based sampling engine [33]. In ad-
dition, we implement a SCAN algorithm which performs a sequen-
tial scan of the entire dataset. This is the approach a traditional
database system would use. Since both ISplit and SCAN are im-
plemented on the same engine, we can make direct comparisons of
execution times between the two algorithms. All our experiments
are single threaded and are conducted on a HP-Z230-SFF worksta-
tion with an Intel Xeon E3-1240 CPU and 16GB memory running
Ubuntu 12.04 LTS. We set the disk read block size to 256KB. To
avoid any speedups resulting from the file buffer cache, we perform
all the I/O operations using Direct I/O. Unless explicitly stated we
assume the time budget B = 500ms and use the parameter val-
ues of N1 = 25000, α = 1.02 (with a geometric decrease), and
δ = 0.05. The choice of the parameters is further explored in Sec-
tion 5.5. All experiments were averaged over 30 trials.

5.2 Comparing Execution Time

In this section, we compare the Wall Clock time of ISplit, DPSplit
and SCAN for the datasets mentioned in Table 2.
Summary: ISplit is several orders of magnitude faster than SCAN in
revealing incremental visualizations. The completion time of DPSplit
exceeds the completion time of even SCAN. Moreover, when generat-
ing the early segment approximations, DPSplit always exhibits higher
latency compared to ISplit.

We depict the wall-clock time in Figure 4 for three different
datasets for ISplit and DPSplit at iteration 10, 50, and 100, and at
completion, and for SCAN. First note that as the size of the dataset
increases, the time for SCAN drastically increases since the amount
of data that needs to be scanned increases. On the other hand, the
time for completion for ISplit stays stable, and much smaller than
SCAN for all datasets: on the largest dataset, the completion time
is almost 1

6

th that of SCAN. When considering earlier iterations,
ISplit performs even better, revealing the first 10, 50, and 100 seg-
ment approximations within≈ 5 seconds,≈ 13 seconds, and≈ 22
seconds, respectively, for all datasets, allowing users to get insights
early by taking a small number of samples—beyond iteration 50
the refinements are minor, and as a result, users can terminate the
visualization early if need be. Compared to SCAN, the speed-up
in revealing the first 10 features of the visualization is ≈ 12X ,
≈ 22X , and ≈ 46X for the FL, T11 and WG datasets. Lastly we
note that ISplit reveals each increment within the 500ms bound for
interactivity, as required.

When comparing ISplit to DPSplit, we first note that DPSplit
is taking the same samples as ISplit, so its differences in execu-
tion time are primarily due to computation time. We see some
strange behavior in that while DPSplit is worse than ISplit for the
early iterations, for completion it is much worse, and in fact worse
than SCAN. The dynamic programming computation complexity
depends on the number of segments. Therefore, the computation
starts occupying a larger fraction of the overall wall-clock time for
the latter iterations, rendering DPSplit impractical for latter itera-
tions. These observations are confirmed in Figure 5—for DPSplit,
the CPU time accounts for the major portion of the wall clock time.
As the number of iterations increases, the CPU time increases dras-
tically. By the time DPSplit completes, the CPU time exceeds the
wall clock time of SCAN. Even for earlier iterations, DPSplit is
worse than ISplit, revealing the first 10, 50, and 100 features within
≈ 7 seconds, ≈ 27 seconds, and ≈ 75 seconds, respectively, as
opposed to 5, 13, and 22 for ISplit. Thus, at the same time as ISplit
has completed 100 iterations, DPSplit has only completed 50.As
we will see later, this additional time does not come with a com-
mensurate decrease in error, making DPSplit much less desirable
than ISplit as an incrementally improving visualization generation
algorithm.

5.3 Incremental Improvement Evaluation
We now compare the error for ISplit with RSplit and ISplit-Best.

Summary: (a) The error of ISplit, RSplit, and ISplit-Best reduce across
iterations. At each iteration, ISplit exhibits lower error in generating
visualizations than RSplit. (b) ISplit exhibits higher correlation with
ISplit-Best in the choice of split groups, with ≥ 0.9 for any N1 greater
than 25000. RSplit has near-zero correlation overall.

Figure 6 depicts the iterations on the x-axis and the `2-error on the
y axis of the corresponding segment approximations for each of
the algorithms for two datasets (others are similar). For example,
in Figure 6, at the first iteration, all three algorithms obtain the 1-
segment approximation with roughly similar error; and as the num-
ber of iterations increase, the error continues to decrease. The error
for ISplit is lower than RSplit throughout, for all datasets, justifying
our choice of improvement potential as a good metric to guide split-
ting criteria. ISplit-Best has lower error than the other two, this is
because ISplit-Best has access to the means for each group before-
hand. For the WG dataset, ISplit-Best and ISplit perform roughly

similarly; this is because there is less skew in that dataset amongst
the samples taken; and the errors are low because the trendline ends
up having a single prominent feature—a bell-shape.

5.4 Releasing the Refinement Restriction
Next, we compare ISplit with DPSplit and DPSplit-Best.

Summary: Given the same set of parameters, DPSplit and ISplit have
roughly similar error; as expected DPSplit-Best has much lower error
than both ISplit and DPSplit.

Figure 7 depicts the error across iterations for ISplit (our best on-
line sampling algorithm from the previous section), DPSplit, and
DPSplit-Best for all the datasets—we aim to evaluate the impact
of the refinement restriction, and whether it leads to substantially
lower error. From Figure 7, at each iteration DPSplit-Best has the
lowest error, while ISplit and DPSplit have very similar error. Thus,
in order to reduce the drastic variation of the segment approxima-
tions, while not having a significant impact on error, ISplit is a bet-
ter choice than DPSplit. Furthermore from Section 5.2, we found
that ISplit’s execution time is much more reasonable than DPSplit.
Once again, for WG, the errors are all very similar due to the single
prominent feature in the visualization. Note also that we noticed
cases, especially whenN1 is small, where DPSplit is outperformed
by ISplit in the earlier iterations, since it may “overfit” based on a
few skewed samples.

5.5 Optimizing for Error and Interactivity
The goal of an incrementally improving visualization generation

algorithm is to provide an approximation of the original visualiza-
tion at interactive speed. On the other hand, generating highly inac-
curate approximations is also not desirable. Hence, the algorithms
need to optimize for both accuracy (error) and interactivity. So far,
we have kept the sampling parameters fixed across algorithms; here
we study the impact of these parameters. Specifically, we evaluate
the impact of the initial sample (N1) and sampling factor (α) on
the error-interactivity trade-off. We also show that our simulations
resulting from theoretical claims in Section 3.4 match the experi-
mental results.
Summary: We find: (a) Geometrically decreasing the sample complex-
ity per iteration leads to higher interactivity. (b) Given the time budget
(B), only a small set of sampling factors (α) improves interactivity. (c)
The theoretical and experimental error-interactivity trade-off curves be-
have essentially the same, producing similarly shaped knee regions.

5.5.1 Parameter Selection
We now empirically evaluate the trade-off between error and in-

teractivity. We focus on “decreasing” sampling factors, i.e., those
that result in the sample complexity decreasing across iterations—
we have found that “increasing” sampling factors lead to signifi-
cantly worse λ (i.e., interactivity), while error is not reduced by
much. We consider both geometric and linear decrease, as well as
upfront sampling (Section 3.4). Figure 8 captures the trade-off be-
tween average error (across iterations) on the y axis and logarithm
of interactivity, i.e., log λ on the x axis for the Flight (FLA), T11
and WG dataset (other datasets are similar)—focus on the circles
and triangles for now. Each line in the chart corresponds a certain
number of initial samples N1, and either geometric decrease (de-
noted with a “/”), or a linear one (denoted with a “-”). Each point
in each line corresponds to a specific value of α. For all lines, we
find a similar behavior or shape as α increases, which we explain
for N1 = 25000 for geometric and linear decrease, depicted again
in Figure 8d with α annotated. If we follow the geometric decrease
points (circles) Figure 8b, we start at I ≈ 6.75 at the point corre-
sponding to α = 1 for geometric decrease and 0 for linear decrease,
and then as α is increased the points move to the left—indicating
that the interactivity improves, while error increases slightly. Then,
we have a knee in the curve—for any α > 1.028, the trails start

FL (70m) T11 (170m) WG (415m)
Datasets

0

50

100

150

200

250

300

350

400

W
al

lC
lo

ck
Ti

m
e

(s
ec

)
SCAN
Completion-DPSplit
Iteration = 100-DPSplit

Iteration = 50-DPSplit
Iteration = 10-DPSplit
Completion-ISplit

Iteration = 100-ISplit
Iteration = 50-ISplit
Iteration = 10-ISplit

Figure 4: Comparison of Wall Clock Time.

FL (70m) T11 (170m) T12 (166m) T13 (166m) WG (415m)
Datasets

0

50

100

150

200

250

300

350

400

C
P

U
Ti

m
e

(s
ec

)

SCAN
Completion-DPSplit
Iteration = 100-DPSplit

Iteration = 50-DPSplit
Iteration = 10-DPSplit
Completion-ISplit

Iteration = 100-ISplit
Iteration = 50-ISplit
Iteration = 10-ISplit

Figure 5: Comparison of CPU Time.

moving back to the right (lower interactivity) but also see a si-
multaneous increase in error. A similar knee is seen if we trace
the linear decrease points (triangles)—note that α = 1 is shared
between the linear and geometric decrease—here, the sampling is
constant across iterations. For other values of α depicted for the

linear decrease points, this indicates the reduction in the number of
samples per round, e.g., 50, 500, 1000. This behavior of a knee
in the curve is seen for all N1 values. We also find that for the
same N1, the linear decrease has worse interactivity compared to
geometric decrease. Finally, on examining the upfront sampling

0 50 100 150 200 250 300 350 400

Iteration
a. FLA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
er
r(
L
k
)

0 50 100 150 200 250 300 350 400

Iteration
b. FLD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
r(
L
k
)

0 50 100 150 200 250 300 350 400

Iteration
c. T11

0

1

2

3

4

5

6

7

er
r(
L
k
)

×10−1

ISplit RSplit ISplit-Best

0 50 100 150 200 250 300 350 400

Iteration
d. T12

0

1

2

3

4

5

6

7

8

er
r(
L
k
)

×10−1

0 50 100 150 200 250 300 350 400

Iteration
e. T13

0

1

2

3

4

5

6

7

er
r(
L
k
)

×10−1

0 50 100 150 200 250 300 350 400

Iteration
f. WG

0.0

0.5

1.0

1.5

2.0

2.5

er
r(
L
k
)

×102

Figure 6: Comparison of the `2 squared error of ISplit, Rsplit, and ISplit-Best.

0 50 100 150 200 250 300 350 400

Iteration
a. FLA

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

er
r(
L
k
)

×101

0 50 100 150 200 250 300 350 400

Iteration
b. FLD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

er
r(
L
k
)

×101

0 50 100 150 200 250 300 350 400

Iteration
c. T11

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

er
r(
L
k
)

×101

ISplit DPSplit DPSplit-Best

0 50 100 150 200 250 300 350 400

Iteration
d. T12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

er
r(
L
k
)

×101

0 50 100 150 200 250 300 350 400

Iteration
e. T13

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

er
r(
L
k
)

×101

0 50 100 150 200 250 300 350 400

Iteration
f. WG

0.0

0.5

1.0

1.5

2.0

2.5

3.0

er
r(
L
k
)

×102

Figure 7: Comparing the `2 squared error of the ISplit, DPSplit and DPSplit-Best

scheme (squares), we find that both geometric decrease and linear
decrease have much better interactivity and lower error.

Overall, when selecting parameters, we would like to identify
parameters that result in the favorable knee region of the curve. We
find that α ∈ [1.0, 1.028], with N1 relatively small helps us stay

in this region empirically. We select α = 1.02 to balance between
error and interactivity if we set the maximum allowable delay per
iteration B = 500ms [38]. Based on our sampling rate, fetching
25000 samples takes around 500ms; thus we set N1 = 25000.
From our theoretical results in Section 3.4, the range of α for this

5.0 5.5 6.0 6.5 7.0 7.5

log (λ)
a. FLA

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

ẽr
r(
L
k
)

×102

5000 (/)
5000 (-)

5000 (u)
25000 (/)

25000 (-)
25000 (u)

50000 (/)
50000 (-)

50000 (u)
100000 (/)

100000 (-)
100000 (u)

5.0 5.5 6.0 6.5 7.0 7.5 8.0

log (λ)
b. T11

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ẽr
r(
L
k
)

×101

5.0 5.5 6.0 6.5 7.0 7.5 8.0

log (λ)
c. WG

0

1

2

3

4

5

6

7

ẽr
r(
L
k
)

×101

5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2

log (λ)
d. Initial Samples = 25000 (FLA)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ẽr
r(
L
k
)

×101

1 (/), 0 (-)1.02

1.028

1.2

2.0

5.0

50

500

1000

5000

Upnfront (u)

5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2

log (λ)
e. Initial Samples = 25000 (T11)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ẽr
r(
L
k
)

×101

5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2

log (λ)
f. Initial Samples = 25000 (WG)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ẽr
r(
L
k
)

×101

Figure 8: Error-interactivity trade off curve. (/) = Geometric decrease, (-) = Linear decrease, (u) = Upfront Sampling.

N1 was [1, 1.028], so our experiments agree with the theory. Next,
we simulate the error-interactivity trade-off curve for the sampling
approaches using the expressions of error and interactivity obtained
in Section 3.4.

5.5.2 Simulations vs. Empirical Observations
Figure 10 captures the trade-off between the upper bound of the

error averaged (across iterations) on the y axis and logarithm of
interactivity, i.e., log λ on the x axis for the Flight (FLA), T11 and
WG dataset.

Each line in the chart corresponds a certain number of initial
samples N1, and either geometric decrease (denoted with a “/” and
represented by circles), or a linear one (denoted with a “-” and rep-
resented by triangles). Furthermore, for each N1, we also plot the
Error and interactivity pair for upfront sampling (denoted by “u”
and represented by squares). For geometric decrease, for all lines,
we find a similar behavior as our empirical results—a knee shape
emerges as α increases starting from 1. The theoretical value for
the optimal decrease factor α∗ is annotated for each initial sample
N1. Furthermore, for each N1 the optimal α∗ is highlighted by a
red arc and is the point with the best interactivity in each line—
same as the empirical observation. For the linear decrease, given
the same decrease factors β used in the experiments, the simulation
results match the experimental results. Similar to the empirical re-
sults, upfront sampling has the worst error and interactivity than all
the other approaches. Therefore, we can clearly see that the simu-
lation results mimic the empirical results obtained in Section 3.4.

5.5.3 Error vs. Sample Complexity
Figure 9 captures the correlation between ISplit-Best and both of

ISplit, and RSplit in terms of the choice of split groups. We run
several simulations of both ISplit, and RSplit with different initial
samples (N1) while setting α = 1.02. Therefore, as N1 increases,
the overall sample complexity of the simulation also increases. The
x-axis represents the initial samples of the simulations while the
y-axis represents the Spearman’s coefficient (r(E,F)) of the cor-

responding simulation. For a fixed α, higher the number of initial
samples, higher the overall sample complexity of the algorithm.
Figure 9 confirms that as the sampling complexity increases, ISplit
starts to exhibit higher correlation with ISplit-Best while choosing
the split groups. Beyond a certain sampling complexity r(E,F)
starts to taper-off—indicating that further increasing the sampling
complexity will not improve the correlation. RSplit on the other
hand, is completely uncorrelated to ISplit-Best. For small sampling
complexity (N1 = 500, the first green circle in the plots) even IS-
plit does not exhibit any correlation with ISplit-Best. Due to insuf-
ficient sampling, the choice of split groups are so erroneous that it
seems as if ISplit is choosing split groups randomly rather than in-
telligently. For our choice of initial samples N1 = 25000 (the cir-
cle highlighted in red), ISPlit exhibits high correlation (r(E,F) >
0.78) to ISplit-Best for all three datasets.

6. EVALUATION: INTERPRETABILITY
We now present an evaluation of the usability of INCVISAGE,

and more broadly evaluate how users interpret and use incremen-
tally improving visualizations. We aim to address the following
questions: 1) Are users willing to use approximate visualizations
if it saves them time? 2) How confident are users when interpret-
ing visualizations? 3) Of the two types of visualizations, do users
prefer the heatmap or the trendline visualization?

6.1 Study Design and Participants
The study consisted of five phases: (a) an introduction phase that

explained the essential components of INCVISAGE, (b) an explo-
ration phase that allowed the participants to familiarize themselves
with the interface by exploring a sensor dataset (see Section 5.1),
(c) a quiz phase where the participants used the same interface to
answer targeted questions on the flight dataset, (d) an interview to
collect qualitative data during the quiz phase, and (e) a closing sur-
vey to obtain feedback on INCVISAGE. We describe the quiz phase
in Section 6.2. The interview and survey phases are presented in
Section 6.3. All of the studies were conducted by in the same lab

0.0 0.5 1.0 1.5 2.0

Initial Samples
a. FLA

×105

0.0

0.2

0.4

0.6

0.8

1.0

r(
E
,F

)

25000

0.0 0.5 1.0 1.5 2.0

Initial Samples
b. FLD

×105

0.0

0.2

0.4

0.6

0.8

1.0

r(
E
,F

)

25000

0.0 0.5 1.0 1.5 2.0

Initial Samples
c. T11

×105

0.0

0.2

0.4

0.6

0.8

1.0

r(
E
,F

)

25000

RSplit ISplit

0.0 0.5 1.0 1.5 2.0

Initial Samples
d. T12

×105

0.0

0.2

0.4

0.6

0.8

1.0

r(
E
,F

)

25000

0.0 0.5 1.0 1.5 2.0

Initial Samples
e. T13

×105

0.0

0.2

0.4

0.6

0.8

1.0

r(
E
,F

)
25000

0.0 0.5 1.0 1.5 2.0

Initial Samples
f. WG

×105

0.0

0.2

0.4

0.6

0.8

1.0

r(
E
,F

)

25000

Figure 9: Spearman’s Ranked Correlation Coefficient with varying sample complexity. E = {ISplit, RSplit} and F = ISplit-Best.

5.0 5.5 6.0 6.5 7.0 7.5

log (λ)
a. FL

−0.5

0.0

0.5

1.0

1.5

2.0

E
rr

or

×101

1.024 1.028 1.03 1.032

5.0 5.5 6.0 6.5 7.0 7.5

log (λ)
b. T11

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

E
rr

or

1.024 1.028 1.03 1.032

5.0 5.5 6.0 6.5 7.0 7.5

log (λ)
c. WG

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
E

rr
or

×101

1.024 1.028 1.03 1.032

Figure 10: Simulation of the error-interactivity trade off curve.

setting with the same two researchers. The first researcher led the
introduction and exploration phases; the second led the quiz, in-
terview, and survey phases. Our study was conducted prior to the

development of ISplit, and was meant to assess the utility of incre-
mental visualizations—nevertheless, we ensured that the interac-
tivity criteria of 500ms per iteration was met [38].

We recruited 20 participants (11 male, 9 female) via flyers across
a university and via a university email newsletter. Our participants
included 11 graduate students (8 in computer science), one business
undergraduate student, two researchers, and six university employ-
ees. All of the participants had experience with data analysis tools
such as R, Matlab, and/or Excel. The median age of the participants
was 28 (µ = 32.06; σ = 11.9). Out of the 20 participants, 7 re-
ported that they analyzed or worked with data “Daily”, 7 answered
“Monthly”, while the remaining participants answered “Weekly”.
The duration of the sessions ranged from approximately 60 to 90
minutes. Each participant received $10 per hour at the end of their
session.

6.2 The Quiz
We now explain the design of and findings from the quiz phase.

6.2.1 The Quiz Phase Design
The purpose of the quiz phase was to evaluate whether partici-

pants were willing to compromise accuracy to make rapid decisions
when posed various types of questions. One way to capture such
behavior is via a point based system where early submissions are
rewarded while late submissions are penalized. With this incentive,
participants would be encouraged to submit their answers quickly.
We describe the scoring function we used in our point based system
later in this section. We first categorize the questions used during
the quiz phase.

We used two types of quiz questions: extrema-based (E1-7), and
range-based (R1-7). These questions are listed in Table 3. The
extrema-based questions asked a participant to find the highest or
lowest values in a visualization. The range-based questions asked
a participant to estimate the average value over a time range (e.g.,
months, days of the week). The purpose of such a categorization
is to evaluate the accuracy and confidence of participants in finding
both specific points of interest (extrema) and patterns over a range
(range) when given INCVISAGE. The extrema based questions
were free form questions; the range based questions were multi-
ple choice questions. Two of the range based questions were for-
matted as free form questions but, operationally, were multiple-
choice questions with seven possible options (e.g., the day of the
week). To prevent order effects, ten participants started the quiz
with heatmaps; the other ten started with trendlines. Addition-
ally, we randomized the order of the questions for each participant.
Next, we define the scoring function used in assessing quiz perfor-
mances.
The Scoring Function. The scoring function relied on two vari-
ables: the iteration number at which the participant submitted an
answer—the higher the iteration the lower the score, and whether
or not that answer was accurate—the higher the accuracy the higher
the score. The participants were informed prior to the quiz phase
that the score was based on these two variables, but the exact func-
tion was not provided. The maximum attainable score for each
answer was 100 points.The score was computed as a product S =
P · A, where P was based on the iteration, and A on the accu-
racy. If a participant submitted an answer at iteration k, we set
P = m−k

m
, i.e., the fraction of the remaining number of iterations

over the total number of iterations, m. Thus, based on the defini-
tion of P , any answer submission at the last iteration receives zero
points, irrespective of question type. To compute A, let c be the
correct answer to a question, and let u be the answer submitted by
the participant. The accuracy A of a multiple choice question is 0
if u = c and 1 otherwise. The accuracy A of a free-form ques-
tion is 1− |u−c||c| , measuring how far the answer is from the correct
one. For the free form questions, submitting an incorrect answer
that is close to the actual answer could result in a high score. Since
the free form questions were range based, participants could sub-

mit an approximate answer early to gain more points. On the other
hand, for the multiple choice questions, a correct answer submitted
at later iterations would yield lower scores.
Interface Issues. Analyzing the quiz results proved more diffi-
cult than expected. Out of 280 total submissions, 10 submissions
had interface issues—4 of those occurred due to ambiguity in the
questions (R1, R4, R7 in Table 3), while others were due to mis-
takes made by the participants in selecting the visualization to be
generated.For example, for one question (R1), dealing with depar-
ture delay two participants selected the “departure airport” attribute
as opposed to “origin airport”. A similar issue arose with ques-
tions R4 and R7. The ambiguity arose from attribute names in
the original dataset—to maintain consistency, instead of renaming
these attributes on-the-fly to fix the ambiguity, we did not make any
changes. We explicitly separate out interface issues when analyz-
ing the results.

6.2.2 Quantitative Analysis
In discussing the participants’ quiz performance, we first investi-

gate their answer submission trends. Finally, we report the progress
of each participant. As the participants interacted with the tool, we
recorded their responses to each question, the iterations at which
a participant submitted an answer, the time taken to submit an an-
swer after starting the visualization, and the points obtained based
on the scoring function.
Summary: The majority of the submissions for both trendlines (75%)
and heatmaps (77.5%) were within the first 25% of the total number of
iterations. Even though the participants chose to trade accuracy for time
in both cases, they did so with reasonably high accuracy.

Trading accuracy for time. First, we analyze how the participants
traded accuracy for time. Figure 11 shows a dot graph analysis
of the participants’ submission trends as a function of iteration.
For both the trendline and heatmap visualizations, we separated
the statistics for the correct and incorrect submissions (Figure 11a
and 11b). Correct submissions are represented by green circles. In-
correct submissions are either represented by blue circles (interface
issue) or red circles. The x-axis represents at what fraction of the
total number of iterations an answer was submitted.

For trendlines, the majority of the submissions (75%) were made
at around 25% of the total iterations, except for question E4 (Fig-
ure 11a). Question E4 asks for a day of the year that shows the
highest departure delay across all years. During the study, we dis-
covered that the departure delays for December 22 and December
23 were very similar. Due to the proximity of the values, these
dates were not split into separate groups until a later iteration. One
participant even waited until iteration 237 (out of 366 iterations)
to submit their answer. Figure 11b shows the trends for heatmaps.
Similar to trendlines, the majority of the participants (77.5%) chose
to submit answers earlier (within 25% of the iterations) except for
questions R5 and R7, where once again there were two days of
the week with very similar delays, leading to the relevant heatmap
block being split in a later iteration.

The submission trends indicate that participants opted for a higher
reward and submitted their answers as early as possible, when the
visualizations became stable or when obvious extrema emerged,
trading accuracy for time. This observation is confirmed in Sec-
tion 6.3. Figure 12 plots the accuracy of all the submissions ac-
cording to the scoring functions described in Section 6.2.1. The
x-axis represents at what fraction of the total number of iterations
an answer was submitted; accuracy appears on the y-axis. For both
the trendline (Figure 12a) and heatmap (Figure 12b) visualizations,
the accuracy of the majority of the submissions is reasonably high.
Submission trends. Here we show at what fraction of the itera-
tions (% iteration) the participants typically opted to submit their
answers. We also analyze the submission trends for the different

Type Extrema-based questions Range-based questions

Trendline

E1. In the state of NY (destination), which day of the year
suffers most from the delay caused by the
National Aviation System (NAS delay)?

R1. Choose the correct option based on the day of the year. Anyone traveling from
LGA airport (origin) during has to suffer from the highest
Departure Delay. A) Early January B) Summer C) Late December

E2. Find the busiest day of the year in the ORD (origin)
airport. The higher the Taxi Out time, the busier the airport.

R2. Choose the correct option based on the day of the year. UA (carrier) aircrafts
have the worst Aircraft Delay statistics on:
A) Jan 01- Jan 10 B) Jun 10- Jun 20 C) Dec 01- Dec 10

E3. Find the Month that has the day (of month) with the
shortest Arrival Delay. R3. Choose the correct option. Overall, the Arrival Delay is the worst in:

A) First half of January B) Mid July C) Last half of DecemberE4. Which Day of the year has the highest Departure Delay?

Heatmap

E5. For the Week of Year Vs.Year heatmap, which week
of the year had the highest Departure Delay?

R4. Choose the correct option. Which of the following months has the most
Days of Month with a low Arrival Delay? A) Feb B) Jul C) Oct

E6. Find the (day of month, month) pair that had the
highest Aircraft Delay in DEN (destination) airport.

R5. Over the course of months, which Day of Week exhibits a higher Carrier Delay
for AA (Carrier)?

E7. Find the (day of month, month) pair in the year 2013,
that had the highest Weather Delay.

R6. Choose the correct option. For the ATL (destination) airport, which of the
following months exhibited a higher Arrival Delay for the majority of the years?
A) Jan B) Jul C) Nov
R7. Over the Years, which Day of Week had the highest Arrival Delay in the
city of Atlanta- GA (departure city)?

Table 3: Categorization of the user study questions.

0 10 20 30 40 50 60 70 80
% iteration
a. Trendline

E1-C
E1-I

R1-C
R1-I

R2-C
R2-I

E2-C
E2-I

R3-C
R3-I

E4-C
E4-I

E3-C
E3-I

Q
ue

st
io

ns

0 20 40 60 80 100
% iteration
b. Heatmap

E5-C
E5-I

R4-C
R4-I

R5-C
R5-I

R6-C
R6-I

R7-C
R7-I

E6-C
E6-I

E7-C
E7-I

Q
ue

st
io

ns

Correct Incorrect Interface

Figure 11: Per-question statistics for the iterations at which
participants submitted answers for trendlines (l) and heatmaps
(r).

−10 0 10 20 30 40 50 60 70
%Iteration

a. Trendline

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

−20 0 20 40 60 80 100 120
%Iteration

b. Heatmap

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Range Based Extrema Based

Figure 12: Accuracy vs Submission (% iteration) statistics for
(a) trendline and (b) heatmap visualizations.

question types in each visualization. Figure 13 presents the box and
whisker plot of the answer submission trends. For trendlines (Fig-
ure 13a), the range-based questions were submitted earlier (75% of
the submissions at % iteration ≈ 15%) compared to the extrema-
based questions (75% of the submissions at %iteration ≈ 28%).
This difference in submission trends across types may be due to
the fact that the range based questions asked participants to find
more coarse grained information (e.g., the delay statistics in a spe-
cific range) which may be easier than finding peaks and valleys.
Also the range-based questions were multiple choice—the hints
provided by the multiple choice options may have provided guid-
ance to the participants. We see the opposite trend for heatmaps

(Figure 13b); the extrema-based questions were submitted earlier
compared to the range-based questions. Comparison of the sub-
mission trends of the extrema-based questions for trendlines and
heatmaps shows that heatmap submissions occurred much earlier.
This may be due to the fact that the color dimension of the heatmap
helped users compare contrasting blocks, while the continuous gen-
eration of peaks and valleys in the trendline led to abrupt changes
in the visualization that were difficult to interpret. Hence, partici-
pants waited a bit longer for the trendline visualization to stabilize,
whereas for the heatmap, the changes in color were not as abrupt
and the participants were more confident when they spotted an ex-
tremum.

R-C R-I E-C E-I
Questions

a. Trendline

0

20

40

60

80

100

%
Ite

ra
tio

ns

R-C R-I E-C E-I
Questions

b. Heatmap

0

20

40

60

80

100

%
Ite

ra
tio

ns

Figure 13: Per category statistics of iterations at which par-
ticipants submitted answers for (a) trendline and (b) heatmap.
Extrema = E, Range = R, Correct = C, Incorrect = I.

Analyzing the Participants. In this section, we analyze the
progress of each participant individually. Figure 14 shows a pivot
table with graphical marks that depict the progress of the partic-
ipants during the quiz phase. Each row in the table corresponds
to one participant. Each cell in a row, with the exception of the
last two, corresponds to the questions that participant answered.
Although all participants answered the same set of questions, the
order varied due to randomization. The last two columns show
the average points obtained by the participant and the average of
the percentage of iterations at the point the participant to submit-
ted their answer. Both quantities are represented by circles. The
higher the number of points, the larger the radius of the circle –
while the lower the iteration percentage, the larger the radius of the
circle. For ease of analysis, we divide both the points and the it-
eration percentages into five ranges. The point ranges are: ≤ 55,
56-65,66-75,76-85 and > 85 while the iteration percentage ranges
are: ≤ 10%, 11-15%, 16-20%, 21-25% and >25%. All points
falling into the same range are represented by a circle with the same
radius. Similarly, all the iteration percentages falling in the same
ranges have the same radius. The participants whose last two cells

contain larger circles performed better during the study.
The first 12 rows are participants with a computer science (CS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 P I

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

P
a
rt

ic
ip

a
n
t

N
o
.

Correct Incorrect Interface Avg .Point Avg. Iteration

Figure 14: Analyzing the participants.
background, while the remaining participants did not have a CS
background. Aside from observing that many participants answered
their final three to four questions correctly, participants exhibited
no patterns during the quiz. The median average point and average
iteration percentage were 70.73 and 14.77%, respectively. Only
one participant, P18 answered all of the questions correctly with
an average iteration percentage of 13.37% and with the highest
point average (86.62). P6 submitted their answers faster than all
other participants with a 7.06 iteration percentage, while attaining
the second highest point average (84.73). P16 suffered most from
interface related issues obtained the lowest point average (38.97).

6.3 Interview and Survey Phase
We now present a qualitative analysis of the participants’ percep-

tions based on their interview and survey responses.
Summary: Participants were highly confident (confidence = 8.5 out of
10) when they submitted answers for both visualization types. Some
participants, however, suggested providing explicit guarantees to further
boost their confidence. Both trendline and heatmap visualizations were
highly interpretable.

Interview. We conducted semi-structured interviews to gauge our
participants’ motivations for stopping the visualization at a certain
iteration, and their confidence of their answers. The main motiva-
tions for terminating a visualization were the emergence of obvi-
ous extrema (N = 5), gaining sufficient confidence in an answer
(N = 10), or both (N = 5). When asked to rate their confidence at
the time of submission on a scale of 1 to 10 (10 being the most con-
fident), most participants rated their confidence very high (µ = 8.5
and σ = 1.03 out of 10). However, some participants (N = 4) indi-
cated that they would have continued until the final iteration if they
were freely exploring the data (and not in an assessment setting). If
they were pressed for time or the dataset was very large, they would
choose to stop before the final visualization iteration, but likely at
a later iteration than the iteration they stopped at in our quiz phase.
One of those participants (P8) mentioned that providing an explicit
guarantee along with the visualizations would further increase the
confidence level when making decisions.
Survey. The survey consisted of seven Likert scale questions to
measure the interpretability of the visualizations and the usability
of INCVISAGE. Also, there were three free-form questions to col-
lect the participants’ feedback on INCVISAGE. The heatmap and
trendline visualizations received similar average ratings (out of 5)
for interpretability (heatmap: µ = 4.45; σ = 0.51; trendline: µ =
4.50; σ = 0.83) and satisfaction levels (heatmap: µ = 4.55; σ =
0.60; trendline: µ = 4.50; σ = 0.83).

This was not because all participants liked the heatmap and the
trendline equally, but rather because the number of participants who
preferred each visualization was evenly divided: seven participants
preferred the heatmap, six preferred the trendline, and seven rated
both visualizations equally. While some participants found each
visualization useful for different purposes, some were more enthu-
siastic about their preference for one type of visualization over the
other. Two participants even indicated that their confidence level
varied based on the type of visualization; both rated their confi-
dence for heatmap answers higher than for trendline answers. The
advantages and disadvantages of each visualization became more
evident through the interview and the survey. For example, the
heatmap was useful in finding global patterns quickly but interpret-
ing values via hue and brightness had split views. In general, partic-
ipants found the trendline visualization familiar and could observe
the extrema more easily. Next we present the participants’ prefer-
ence for trendline and heatmap visualizations.

6.3.1 Research Q3: Heatmap vs. Trendline
Participants who preferred the heatmap over the trendline visual-

ization appreciated the extra color dimension of heatmaps. Partici-
pants generally found the colorful visualization aesthetically pleas-
ing. P17 commented that the heatmap is “really interesting to watch
over time. Especially, at first when things were one or two blocks
of color and then to sort of watch the data emerge and to then watch
the different boxes become something . . . I actually caught myself
watching for a long time.” However, the ease of interpreting the
colors was debatable; some participants (N=7) stated that colors
helped them distinguish the values of the competing groups while
others (N=4) found comparing and averaging colors burdensome
and not intuitive. It was especially difficult to perceive color dif-
ferences when the difference of values was small or when the com-
pared blocks were distant on the screen.

Another emerging theme centered about the emergence of eas-
ily noticeable color patterns in the early iterations. One participant
(P12) commented that the heatmap isolated the interesting patterns
faster than the trendline. Although the quick emergence of color
patterns is advantageous in making faster decisions, one partici-
pant (P8) accurately pointed out the danger of making the decision
too soon as it could lead to confirmation bias if the later iterations
diverge from the initial color pattern.

The familiarity of the trendline visualization attracted partici-
pants with its intuitively interpretable values and easily noticeable
changes for consecutive values. Participants also found differen-
tiating high and low points that were distant on a line graph much
easier than comparing different the shades of a color in the heatmap
visualization. However, the numerous peaks and valleys disturbed
some participants as the focal point of the visualization became un-
certain. Hovering over a specific point was harder on the trendline
to determine exact values since the selection was made solely based
on the x-coordinate of the mouse and even a small perturbation to
the right would result in a different selection and value.

All but one participant, P16, believed both the heatmap and trend-
line visualizations were easily interpretable. In the survey, the av-
erage usability of INCVISAGE was rated 4.25 out of 5 (σ = .64).
Participants also noted easy learning curve for INCVISAGE; all of
them felt comfortable with the tool after an hour of use.

6.4 Limitations and Future Work
We identified some limitations and possible future directions.

Our approach to approximate visualizations relies heavily on the
smoothness of the data; noise and outliers in the dataset impede
generating a useful approximation quickly. As highlighted in Sec-
tion 7.2, when the value of the point of interest and its neighbor(s)
is very close, INCVISAGE might choose to reveal that point at later
iterations. As a result, any user looking to find quick insights may

Approach
Trendline Heatmap

Extrema Based Questions Range Based Questions Extrema Based Questions Range Based Questions
Accuracy Time (sec) Accuracy Time (sec) Accuracy Time (sec) Accuracy Time (sec)

INCVISAGE 94.55% 25.0638 62.50% 22.0822 83.47% 31.6012 97.50% 34.7992
OLA 45.83% 26.4022 52.50% 27.3125 79.13% 31.3846 95% 25.4782

Table 4: Overall Accuracy and Submission Time Statistics Per Question Category

select an incorrect sub-optimal point. INCVISAGE currently does
not offer any explicit guarantee of an answer, which was pointed
out as a limitation of the tool by one of the participants (P8). In
the next version, we could incorporate a measure of confidence in
the tool by noting the variation of values from one iteration to the
next. As the groups converge towards the actual value, the segment
approximations begin to stabilize, reducing the variation between
successive segment approximation.

We discussed the interface issues in Section 6.2. The limita-
tions of the user study fall into three categories—the ambiguity in
three quiz questions, interface control, and participant demograph-
ics. The ambiguity of the three questions (R1, R4, and R7) in the
quiz phase led to unintended interface issues (4 issues out of 280
submissions). The result is that participants incorrectly answered
questions due to incorrect queries rather than because incorrect in-
terpretation of the visualizations. This highlights the limitations of
INCVISAGE with prepared attributes, i.e., if someone downloads a
dataset as is and tries to use it with our system, similar ambiguities
may occur. From the interface perspective, two participants (P4 and
P8) suggested adding axes to the snapshots, which would help them
compare values across iterations and in turn, ensure that the ap-
proximation is approaching actual values. Participants also desired
more control as they explored the data set. One participant (P8)
suggested including a command-line interface to allow for more
specific queries, while others suggested adding more options, and
even different visualization styles. Other interface suggestions that
arose included the ability to zoom in and out and to select a specific
area from which to sample more. Participants also offered archival
suggestions. Two (P10 and P15) participants suggested adding an
option to download the final visualization, snapshots, and the data
summary. This archival feature would help users explore larger
data sets over a longer period of time. Finally, our participant pool
demographics do not match the demographics of the general audi-
ence intended for this tool. Future studies will reach a larger, more
diverse audience.

7. EVALUATION: DECISION MAKING
Previously, we evaluated the interpretability of INCVISAGE, com-

pared trendlines to heatmaps, and qualitatively studied how users
felt about the inherent uncertainty. We now compare INCVISAGE
with traditional online-aggregation-like [20] approaches (OLA) that
depict approximations of visualizations as samples are taken (as in
the first and third row of Figure 1). Specifically, does INCVISAGE
lead to faster and/or more accurate decision making?

7.1 Study Design and Participants
Our study design was similar to our previous study, with four

phases, an introduction, a quiz phase, an interview for qualitative
data, and finally a closing survey. We introduced the INCVISAGE
approach as the “grouped value” approach, and the OLA approach
as the “single value” approach.

We recruited 20 participants (11 male, 9 female) via a university
email newsletter. Our participants included 12 graduate students
(4 in computer science), 5 undergraduate students, one researcher,
and two university employees. All of the participants had experi-
ence with data analysis tools. The median age of the participants
was 25 (µ = 26.06; σ = 6.84). Out of the 20 participants, 2 re-
ported that they analyzed or worked with data “Daily”, 10 answered
“Monthly”, 5 “Weekly” while the remaining participants worked
rarely. The duration of the sessions ranged from approximately 60
to 75 minutes. Each participant received $10 per hour at the end
of their session. All of the studies were conducted in the same lab

setting with the same two researchers.
Quiz Phase Design. In designing the quiz phase, we used the
flight dataset (details in Section 5), with 20 questions in total—
10 on trendlines and 10 on heatmaps. In each case, five questions
were reserved for INCVISAGE, and five for OLA. We used the same
categorizations of questions as in our first study—range-based and
extrema-based. These questions are listed in Table 5. As before, we
randomized the order of the tools, and the order of the questions.
The Scoring Function. As in Section 6, a score was provided to
the user as they answered questions. The score was computed as a
product S = P ·A, where P corresponded to how quickly the user
made a decision, and A to the accuracy. The formulae for A were
similar to the previous study. Instead of setting P to be proportional
to the number of remaining iterations, here, in order to allow the
scores to be comparable between OLA and INCVISAGE, we set P
to be T−t

T
, where T is the time taken to compute the visualization

by scanning the entire dataset, while t is the time taken by the user.

7.2 Quantitative Analysis of the Quiz Phase
In discussing the participants’ quiz performance, we investigate

both their accuracy (using A above) as well as answer submission
time for both INCVISAGE and OLA.
Summary: For trendlines, INCVISAGE exhibits a 62.52% higher accu-
racy than OLA for both question types, while also reducing the submis-
sion time by 10.83%. For heatmaps, INCVISAGE exhibits 4.05% higher
accuracy than OLA for both question types. The submission time for
range-based questions with INCVISAGE is higher than OLA.

Accuracy and Submission Time Statistics. Table 4 summarizes
the overall accuracy and the submission times for both INCVISAGE
and OLA. For trendlines, INCVISAGE outperformed OLA in terms
of both accuracy and submission times. For extrema based ques-
tions, the overall accuracy of INCVISAGE was almost double than
that of OLA. The submission times were also lower for INCVISAGE
for both types of questions. Overall, users are able to make faster
and more accurate decisions using INCVISAGE than OLA. There is
a dip in the overall accuracy for the range based questions for both
approaches. Since the accuracy of the range based questions was
either 0 or 1, any incorrect submission incurred a higher penalty,
thereby reducing overall accuracy.

For heatmaps, INCVISAGE exhibited better accuracy than OLA—
in particular, an improvement of 4.05%. For extrema based ques-
tions, the submission times were almost equal. However, for range
based questions submissions with INCVISAGE took longer than
OLA. We found that when using INCVISAGE with heatmaps, par-
ticipants waited for the larger blocks to break up in order to com-
pute averages over ranges, thereby increasing submission times
but providing more accurate answers. As it turns out, the initial
(larger) blocks in INCVISAGE do provide average estimates across
ranges and could have been used to provide answers to the ques-
tions quickly. The unfamiliarity with incremental heatmap visu-
alizations, and heatmaps in general, contributed to this delay. In
hindsight, we could have educated the participants more about how
to draw conclusions from the INCVISAGE heatmaps and this may
have reduced submission times.
Per Question Statistics. Figure 15 shows the dot graph analy-
sis of accuracy for the extrema based questions for both visualiza-
tion types. The submissions using INCVISAGE and OLA are high-
lighted by “cyan” and “magenta” circles, respectively. The x-axis
represents the accuracy while the y-axis represents the questions.
For trendlines (Figure 15a), majority (99%) of the submissions
with INCVISAGE were in close proximity of the correct answer,

Questions Trendlines Heatmaps
1 Which day of the year enjoys the shortest Arrival Delay? Which Week of Year had the highest Departure Delay?
2 Find the day with the highest carrier delay for US airways. Among the following three months, which of month has the highest

number of Days (of Month) with a high Arrival Delay?A) FEB B) JUL C) OCT
3 Overall, the Arrival Delay is the worst/highest in- Which of the following Months exhibits a higher Arrival Delay

A) JAN 01-JAN 15 B) JUL 11- JUL 25 C) DEC 16 - DEC 31 for the majority of the Years?A) JAN B) JUL C) NOV
4 Which day of the year shows a higher Departure Delay Find the (Day of Month, Month) pair that had the

on average for the flights departing the LGA airport? highest Aircraft Delay.
5 Which of the following ranges contains the day with the highest Which Year contains the Day of Week with the

Aircraft Delay for the UA aircrafts- highest Departure Delay?
A) JAN 01- JAN 10 B) JUN 10- JUN 20 C) DEC 21- DEC 31

6 Which Day of the year has the highest Departure Delay? Find the (Day of Month, Month) pair in the year
2013, that had the highest Weather Delay.

7 In the city of Atlanta-GA, which Day of the year Which of the following Months exhibited a lower
has the highest NAS (National Aviation System) Delay? Departure Delay for the majority of the Years?A) FEB B) JUN C) SEP

8 In the city of Chicago-IL, bad weather forces longer Which of (Day of Month, Month) pair has the highest Arrival Delay?
weather delays on average in the following period-
A) Day 1-15 B) Day 190-205 C) Day 350-366

9 Which day of the year 2010 enjoys the shortest Arrival Delay? Which Week of Year contains the Day of Week with the highest Arrival Delay?
10 In the Year 2011, which of the following months have Which of the following Years contain

lower Security Delays? A) JAN B) JUL C) NOV the month with the highest Security Delay?
A) 2004 B) 2008 C) 2012 D) 2015

Table 5: User study questions.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

a. Trendline

I-1
O-1

I-2
O-2

I-4
O-4

I-6
O-6

I-7
O-7

I-9
O-9

Q
ue

st
io

ns

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

b. Heatmap

I-1
O-1

I-4
O-4

I-5
O-5

I-6
O-6

I-8
O-8

I-9
O-9

Q
ue

st
io

ns

Incvisage (I) OLA (O)

Figure 15: Accuracy statistics of extrema based questions for
(a) trendline and (b) heatmap visualizations.

whereas with OLA the accuracy drops quite a lot—only 55% of the
submissions were in close proximity with the correct answer. For
heatmaps (Figure 15b), again there are more submissions with IN-
CVISAGE (80%) that are in close proximity of the correct answer
compared to OLA (52%). Figure 16 shows the accuracy for the
range based questions for both visualization types. The y-axis rep-
resents the accuracy while the x-axis represents the questions. The
submissions using INCVISAGE and OLA are highlighted by “cyan”
and “magenta” bars, respectively. For trendlines (Figure 16a), none
of the submissions for Q5 was correct. For the rest of the questions,
submissions with INCVISAGE had higher accuracy than OLA. For
heatmaps (Figure 16b), accuracy of INCVISAGE is only slightly
better than OLA.
Submission Trends. Figure 17 plots the accuracy of all the
submissions according to the scoring functions described in Sec-
tion 7.1. The x-axis represents submission time in seconds; ac-
curacy appears on the y-axis. For both trendline (Figure 17a) and
heatmap (Figure 17b) visualizations, participants opted to submit
their answers as quickly as possible for both the approaches, i.e.,
the participants chose to trade accuracy for time.

7.3 Interview and Survey Phase
In this section, we present a qualitative analysis of the partici-

pants’ perceptions of both the approaches based on their interview

3 5 8 10
Question No.
a. Trendline

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

2 3 7 10
Question No.
b. Heatmap

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

IncVisage OLA

Figure 16: Accuracy statistics of extrema based questions for
(a) trendline and (b) heatmap visualizations.

0 20 40 60 80 100 120
Time (sec)
a. Trendline

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

0 20 40 60 80 100
Time (sec)
b. Heatmap

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

IncVisage OLA

Figure 17: Accuracy vs Submission Time statistics for (a)
trendline and (b) heatmap visualizations.

and survey responses.
Summary: Participants were reasonably confident when they submitted
answers for both visualization types using INCVISAGE. The trendline
visualization using OLA was unstable and had low interpretability that
resulted in participants submitting answers with low confidence. Ma-
jority of the participants preferred the INCVISAGE representations for
both visualizations.

Interview. We conducted semi-structured interviews to gauge our
participants’ motivations for stopping the visualization at a certain
iteration, and their confidence on their answers (for both INCVIS-
AGE and OLA). The main motivations for terminating a visualiza-
tion were the emergence of obvious extrema (N = 10), gaining
sufficient confidence in an answer (N = 6), or both (N = 4).
When asked to rate their confidence at the time of submission on
a scale of 1 to 10 (10 being the most confident), we had varied re-
sponses depending on the visualization types. For trendlines, par-
ticipants were reasonably confident (µ = 6.53, σ = 1.89) when

using INCVISAGE, but much less confident (µ = 4.44, σ = 1.27)
when using OLA. For heatmaps, participants were slightly more
confident when using OLA (µ = 7.15, σ = 0.86) than when using
INCVISAGE (µ = 6.76, σ = 1.97). Majority of the participants
(N = 3) who preferred OLA liked the fact that they were able to
see each individual data point at all times. INCVISAGE on the other
hand, hid information early on by approximating the visualizations
which was less desirable to them. Among 20 participants, majority
(N = 12) preferred the INCVISAGE representation over the OLA
(N = 6) representation of the visualizations while two participants
equally preferred the two approaches.

When using INCVISAGE. participants were able to interpret the
initial high level approximations to identify specific regions of in-
terest and eventually found the answer. On the other hand, they
thought OLA to be unstable and difficult to interpret. One of the
participants (P14) said the following—“For INCVISAGE, it was
easier to know when I wanted to stop because I had the overall idea
first. And then I was just waiting to get the precise answer because
I knew it was coming. So it was the difference. OLA, it was a shot
in the dark where I see a little bit where it is, I would wait to see
if it stays as the answer”. Another participant (P15) also expressed
similar observations—“With single values, there was just so much
going on I was like ‘OK, where am I trying to focus on. What
is either the highest or the lowest?’ versus the grouped values, it
started out really simple and then became more complex to be able
to show the differences”. The same participant also preferred the
aesthetics of INCVISAGE—“I preferred the grouped (one), because
it made it easier to kind of narrow down at least the range. So if
you didn’t know the exact date, you could at least be close. Versus
with the single value, it could, there could be two values that look
similar and if you picked the wrong one, you were very wrong,
potentially.”
Survey. The survey consisted of four Likert scale questions for
each visualization type to measure the interpretability and the us-
ability of the competing approaches: INCVISAGE and OLA. Also,
for each visualization type, there were two free-form questions ask-
ing the participants to list the positive and negative aspects of both
INCVISAGE and OLA. For trendlines, INCVISAGE received higher
average ratings (out of 5) for interpretability (INCVISAGE: µ =
3.93; σ = 0.92; OLA: µ = 2.67; σ = 1.29) and satisfaction levels
(INCVISAGE: µ = 3.93; σ = 0.88; OLA: µ = 2.67; σ = 0.82). On
the other hand, for heatmaps, OLA received slightly better average
ratings for interpretability (INCVISAGE: µ = 3.73; σ = 0.80; OLA:
µ = 4.00; σ = 0.76) and satisfaction levels (INCVISAGE: µ = 3.60;
σ = 0.99; OLA: µ = 3.87; σ = 0.64).
Limitations and Future Work. Similar to our first study, users
again mentioned uncertainty as an issue when submitting an an-
swer. For the heatmap representation of INCVISAGE the confi-
dence of the users could have further boosted if we had a mea-
sure of confidence for the visualizations represented which in turn
could have further improved the submission times. This could be
an interesting direction for future work. One possible approach is
to use both INCVISAGE and OLA representations side by side so
that users can gain further confidence by seeing individual blocks
alongside the larger blocks.

8. RELATED WORK
In this section, we review papers from multiple research areas

and explain how they relate to INCVISAGE.
Approximate Query Processing (AQP). AQP schemes can op-
erate online, i.e., select samples on the fly, and offline, i.e, select
samples prior to queries being issued. Among online schemes, cer-
tain approaches respect a predefined accuracy constraint for com-
puting certain fixed aggregates without indices [22, 23], and with
indexes [19, 36]. The objectives and techniques are quite different

from that of incrementally improving visualizations. Offline AQP
systems [9, 8, 11, 18] operate on precomputed samples. Garo-
falakis et al. [18] provides a detailed survey of the work in this
space. Unlike these approaches, INCVISAGE deals with ad-hoc vi-
sualizations.
Approximate Visualization Algorithms. We have already dis-
cussed IFOCUS [32], PFunkH [10] and ExploreSample [53] in
the introduction section. IFOCUS [32], PFunk-H [10], and Ex-
ploreSample [53] are online approximate visualization algorithms.
IFOCUS [32] generates bar charts preserving ordering guarantees
between bars quickly, but approximately. PFunk-H [10] uses per-
ceptual functions to provide approximate answers that differ from
the true answers by a perceptually indiscernible amount. Explore-
Sample [53] is also an online sampling algorithm that deals with
2d scatterplots coupled with heatmaps; approximating the visual-
ization while preserving the outliers and the overall distribution.
Unlike these one-shot approaches, we generate visualizations that
incrementally improve over time. Concurrent work has shown that
analysts are willing to use approximate visualizations in real data
exploration scenarios [39]. This work introduces an optimistic vi-
sualization system that allows users to explore approximate visu-
alizations and verify the results of any visualization they feel un-
certain about at a later time. The visualization to be verified is
computed in the background while user continues to explore the
data. INCVISAGE’s approach can be combined with this approach,
since verification of decisions made using approximate visualiza-
tions may be valuable (and thus the two directions provide orthog-
onal and complementary benefits).
Incremental Visualization. We have already discussed Online
aggregation [20] and sampleAction [17] in the introduction sec-
tion. Online aggregation [20] introduced the idea of incremen-
tal data analysis, while sampleAction [17] uses online aggrega-
tion for displaying incremental visualizations. Jermaine et al. [27,
28] further explored incremental database queries. Online aggre-
gation places the onus on the users to regulate the sampling of the
groups—instead INCVISAGE automates the sampling process, and
produces smooth refinements across iterations. Recent user stud-
ies by Zgraggen et al. [54] demonstrate that an OLA-style system
outperforms one-shot computation of the visualization in terms of
number of insights gained—they do not contribute any new algo-
rithms, however. In our work, we additionally demonstrate that
INCVISAGE reduces the number of user mistakes made in decision
making compared to OLA.

Bertolotto et al. [13] uses a multiresolution spatial maps con-
struction technique [41] to compute representations of spatial maps
at various resolutions offline to reduce time taken for storage and
therefore data transfer at each resolution, while preserving geo-
graphical features of interest including the size and interaction of
points, lines and shapes—this is therefore a offline data compres-
sion approach for a fixed spatial map. INCVISAGE, on the other
hand, uses sampling to compute the k-increments of visualizations
online and can support ad-hoc queries.
Visualization Tools. In recent years, several interactive visualiza-
tion tools have been introduced [44, 48, 31, 46, 42, 43]. The algo-
rithms provided in this paper can be incorporated in these tools so
that users can quickly identify key features of data.
Scalable Visualizations. A number of recent tools support scalable
visualization generation [37, 30, 35] by precomputing and stor-
ing aggregates—this can be prohibitive on datasets with many at-
tributes. M4 [29] uses rasterization parameters to reduce the dimen-
sionality of a trendline at query level—selects the groups that cor-
rectly represent the distributions. INCVISAGE on the other hand,
reveals features of visualizations in the order of prominence for ar-
bitrary queries.
Approximation of Distributions. Approximating a data distribu-

tion by histograms has also been studied previously [7, 24, 26].
These methods do not sample iteratively from groups—they op-
erate in a one-shot manner, and focus only on COUNT queries.
Donjerkovic et al. [16] maintains histograms over evolving data,
once again for COUNT queries.

9. CONCLUSIONS
We introduced the notion of incrementally improving visualiza-

tions and demonstrated that our incremental visualization tool, IN-
CVISAGE, helps users gain insights and make decisions quickly.
On very large datasets, INCVISAGE is able to achieve a 46× speedup
relative to SCAN in revealing the first 10 salient features of a visu-
alization with suitable error guarantees that are comparable to a
dynamic programming approach, but without a high computational
overhead. Our user studies demonstrate that users chose to trade
accuracy for time to make rapid decisions, that too at higher accu-
racy than traditional approaches. There are a number of interesting
future directions, such as modeling and displaying the degree of
uncertainty, along with a wider range of operations (e.g. pausing at
segment level or group level), and alternative views (e.g., overlay-
ing incremental visualizations and traditional approaches). Finally,
gaining a better understanding of the sorts of decisions for which
one-shot approaches and incremental visualization approaches are
appropriate is a promising future direction.

10. REFERENCES[1] Intel sensor dataset. http://db.csail.mit.edu/labdata/labdata.html.
[2] Microsoft’s power bi hits 5m subscribers, adds deeper excel integration.

http://www.pcworld.com/article/3047083/. Accessed: 05-22-2016.
[3] Nyc taxi dataset. http://publish.illinois.edu/dbwork/open-data/.
[4] Tableau q2 earnings: Impressive growth in customer base and revenues.

http://www.forbes.com/sites/greatspeculations/2015/07/31/tableau-q2-earnings-
impressive-growth-in-customer-base-and-revenues.

[5] Us flight dataset. http://stat-computing.org/dataexpo/2009/the-data.html.
[6] Wunderground weather dataset. https://www.wunderground.com/.
[7] J. Acharya et al. Fast and near-optimal algorithms for approximating

distributions by histograms. In PODS, pages 249–263. ACM, 2015.
[8] S. Acharya et al. The aqua approximate query answering system. In SIGMOD

Rec., volume 28, pages 574–576. ACM, 1999.
[9] S. Agarwal et al. Blinkdb: queries with bounded errors and bounded response

times on very large data. In EuroSys, pages 29–42. ACM, 2013.
[10] D. Alabi et al. Pfunk-h: Approximate query processing using perceptual

models. In HILDA Workshop, pages 10:1–10:6. ACM, 2016.
[11] B. Babcock et al. Dynamic sample selection for approximate query processing.

In SIGMOD Conf., pages 539–550. ACM, 2003.
[12] Z. Bar-Yossef. The Complexity of Massive Data Set Computations. PhD thesis,

Berkeley, CA, USA, 2002. AAI3183783.
[13] M. Bertolotto et al. Progressive vector transmission. In Proceedings of the 7th

ACM international symposium on Advances in geographic information systems,
pages 152–157. ACM, 1999.

[14] L. Cam and G. Yang. Asymptotics in Statistics: Some Basic Concepts. Springer
Series in Statistics. Springer New York, 2000.

[15] M. Correll et al. Error bars considered harmful: Exploring alternate encodings
for mean and error. IEEE TVCG, 20(12):2142–2151, 2014.

[16] D. Donjerkovic et al. Dynamic histograms: Capturing evolving data sets. In
ICDE’00, pages 86–86. IEEE Computer Society Press; 1998, 2000.

[17] D. Fisher et al. Trust me, i’m partially right: incremental visualization lets
analysts explore large datasets faster. In CHI’12, pages 1673–1682. ACM, 2012.

[18] M. N. Garofalakis. Approximate query processing: Taming the terabytes. In
VLDB, 2001.

[19] P. J. Haas et al. Selectivity and cost estimation for joins based on random
sampling. Journal of Computer and System Sciences, 52(3):550–569, 1996.

[20] J. M. Hellerstein et al. Online aggregation. SIGMOD Rec., 26(2), 1997.
[21] W. Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American statistical association, 58(301):13–30, 1963.
[22] W.-C. Hou et al. Statistical estimators for relational algebra expressions. In

PODS, pages 276–287. ACM, 1988.
[23] W.-C. Hou et al. Processing aggregate relational queries with hard time

constraints. In SIGMOD Rec., volume 18, pages 68–77. ACM, 1989.
[24] P. Indyk et al. Approximating and testing k-histogram distributions in sub-linear

time. In PODS, pages 15–22. ACM, 2012.
[25] F. Jackson. The basic gamma-function and the elliptic functions. Proceedings of

the Royal Society of London., 76(508):127–144, 1905.
[26] H. V. Jagadish et al. Optimal histograms with quality guarantees. In VLDB,

volume 98, pages 24–27, 1998.
[27] C. Jermaine et al. The sort-merge-shrink join. ACM Transactions on Database

Systems (TODS), 31(4):1382–1416, 2006.
[28] S. Joshi et al. Materialized sample views for database approximation. IEEE

TKDE, 20(3):337–351, 2008.
[29] U. Jugel et al. M4: a visualization-oriented time series data aggregation. VLDB

Endow., 7(10):797–808, 2014.
[30] S. Kandel et al. Profiler: Integrated statistical analysis and visualization for data

quality assessment. In AVI, pages 547–554. ACM, 2012.
[31] A. Key et al. Vizdeck: self-organizing dashboards for visual analytics. In

SIGMOD Conf., pages 681–684. ACM, 2012.
[32] A. Kim et al. Rapid sampling for visualizations with ordering guarantees.

VLDB, 8(5):521–532, 2015.
[33] A. Kim et al. Speedy browsing and sampling with needletail. Technical report,

2016. https://arxiv.org/abs/1611.04705.
[34] N. Koudas. Space efficient bitmap indexing. In CIKM, pages 194–201, 2000.
[35] L. Lins et al. Nanocubes for real-time exploration of spatiotemporal datasets.

IEEE TVCG, 19(12):2456–2465, 2013.
[36] R. J. Lipton et al. Efficient sampling strategies for relational database

operations. Theoretical Computer Science, 116(1):195–226, 1993.
[37] Z. Liu et al. immens: Real-time visual querying of big data. In Computer

Graphics Forum, volume 32, pages 421–430. Wiley Online Library, 2013.
[38] Z. Liu et al. The effects of interactive latency on exploratory visual analysis.

IEEE TVCG, 20(12):2122–2131, 2014.
[39] D. Moritz et al. Trust, but verify: Optimistic visualizations of approximate

queries for exploring big data. In CHI, 2017.
[40] S. G. Perlman. System and method for rendering graphics and video on a

display, June 26 2007. US Patent 7,236,204.
[41] E. Puppo et al. Towards a formal model for multiresolution spatial maps. In

Advances in Spatial Databases, pages 152–169. Springer, 1995.
[42] T. Siddiqui et al. Effortless data exploration with zenvisage: an expressive and

interactive visual analytics system. VLDB Endowment, 10(4):457–468, 2016.
[43] T. Siddiqui et al. Fast-forwarding to desired visualizations with zenvisage.

CIDR, 2017.
[44] C. Stolte et al. Polaris: A system for query, analysis, and visualization of

multidimensional relational databases. IEEE TVCG, 8(1):52–65, 2002.
[45] K. Stromberg. Probability for analysts. CRC Press, 1994.
[46] M. Vartak et al. Seedb: efficient data-driven visualization recommendations to

support visual analytics. VLDB Endow., 8(13):2182–2193, 2015.
[47] Weisstein, Eric W, Wolfram Research, Inc. Euler-mascheroni constant. 2002.
[48] R. Wesley et al. An analytic data engine for visualization in tableau. In

SIGMOD Conf., pages 1185–1194. ACM, 2011.
[49] M. B. Wilk et al. Probability plotting methods for the analysis for the analysis

of data. Biometrika, 55(1):1–17, 1968.
[50] A. P. Witkin. Scale-space filtering: A new approach to multi-scale description.

In ICASSP, volume 9, pages 150–153. IEEE, 1984.
[51] K. Wu et al. Optimizing bitmap indices with efficient compression. ACM

Transactions on Database Systems (TODS), 31(1):1–38, 2006.
[52] K. Wu et al. Analyses of multi-level and multi-component compressed bitmap

indexes. ACM Transactions on Database Systems (TODS), 35(1):2, 2010.
[53] Y. Wu et al. Efficient evaluation of object-centric exploration queries for

visualization. VLDB, 8(12):1752–1763, 2015.
[54] E. Zgraggen et al. How progressive visualizations affect exploratory analysis.

IEEE TVCG, 2016.

APPENDIX
A. PROBLEM FORMULATION (HEATMAPS)

In this section, we describe the concepts in the context of our
visualizations in row 4 of Figure 1, i.e, incrementally improving
heatmap visualizations.
Blocks and bk-Block Approximations. We denote the cardinality
of our group-by dimension attributes Xa as m and Xb as n, i.e.,
|Xa| = m and |Xb| = n. In Figure 1, Xa = 10 and Xb =
11. Over the course of visualization generation, we display one
value of AVG(Y) corresponding to each combination of groups
xi ∈ Xa, i ∈ 1 . . .m and x′j ∈ Xb, j ∈ 1 . . . n—thus, the user is
always shown a complete heatmap visualization. We call the pair
(xi, x

′
j) as group combination and denote by xi,j . To approximate

our heatmaps, we use the notion of blocks that encompass one or
more group combinations. We define a block as follows:
Definition 4. A block β corresponds to a pair (I × J, η), where η
is a value, while I is an interval I ⊆ [1,m] spanning a consecu-
tive sequence of groups xi ∈ Xa and J is an interval J ⊆ [1, n]
spanning a consecutive sequence of groups x′j ∈ Xb. The block
encompasses the m × n group combinations xi,j where xi ∈ I
and xj ∈ J .
For example, the block β ([2, 4]× [1, 2], 0.7) has a value of 0.7 and
encompasses the group combinations x2,1, x2,2, x3,1, x3,2, x4,1,
x4,2. Then, a bk-block approximation of a visualization comprises
bk disjoint blocks that span the entire range of xi, i = 1 . . .m and
xj , j = 1 . . . n. We explain the value of bk later. Formally, a
bk-block approximation is defined as follows:
Definition 5. A bk−block approximation is a tupleMk =

(
β1, . . .,

βbk
)

such that the block β1, . . . , βk partition the interval [1,m]×
[1, n] into bk disjoint sub-intervals.
As an example from Figure 1, at t2, we are displaying a 4-block ap-
proximation, comprising four blocks ([1, 6]×[1, 9], 0.8), ([7, 10]×
[1, 9], 0.4),([1, 6] × [10, 11], 1.0), and ([7, 10] × [10, 11], 1.4).
When the number of blocks is unspecified, we simply refer to this
as a block approximation.
Incrementally Improving Visualizations. An incrementally im-
proving visualization is defined to be a sequence of block approx-
imations, m × n in total, (M1, . . . ,Mm×n), where the ith item
Mi in the sequence is a bi-block approximation, and is formed by
selecting one of the block in the bi−1-block approximation Mi−1

(the preceding one in the sequence), and dividing that block into
either two or four blocks.

Similar to trendlines each block approximation is a refinement
of the previous, revealing new features of the visualization and is
formed by dividing one of the block β in the bi-block approxi-
mation into either two or four new blocks to give an bi+1-block
approximation: we call this process splitting a block. The group
combination within β ∈Mi immediately following which the split
occurs is referred to as a split group combination. Any group com-
bination in the interval I × J ∈ β except for the last one can be
chosen as a split group combination. Since an existing block can
be split into either two or four blocks, then k ≤ bk ≤ (3k − 2)
where (bk − k)%2 = 0. As an example, in Figure 1, the entire
fourth row corresponds to an incrementally improving visualiza-
tion, where, for example, the 4-block approximation (k = 2 and
b2 = 4 where, 2 ≤ b2 ≤ 4 and (b2 − 2)%2 = 0) is gener-
ated by taking the block in the 1-block approximation correspond-
ing to ([1, 10]× [1, 11], 0.5), and splitting it at group combination
x6,9 to give ([1, 6] × [1, 9], 0.8), ([7, 10] × [1, 9], 0.4),([1, 6] ×
[10, 11], 1.0), and ([7, 10]×[10, 11],1.4). Therefore, the split group
combination is x6,9 consisting of the pair (6,9). The reasoning be-
hind imposing such restriction was discussed in Section 2.2.
Underlying Data Model and Output Model. We represent the
heatmap visualization as a sequence ofm×n distributionsD1,1, . . .,

Dm,n with means µ1,1, . . . , µm,n where, µi,j = AVG(Y) for xi ∈
Xa and xj ∈ Xb. To generate our incrementally improving visual-
ization and its constituent block approximations, we draw samples
from distributions D1,1, . . . , Dm,n. When drawing samples from
the distribution Di,j , our sampling engine retrieves a sample only
when it satisfies the condition Xa = xi ∧ Xb = x′j (see Section
2.1). Our goal is to approximate the mean values µ1,1, . . . , µm,n
where, µi,j while taking as few samples as possible.

The output of a bk-block approximation Mk can be represented
alternately as a sequence of values (ν1,1, . . . , νm,n) such that νi,j
is equal to the value corresponding to the block that encompasses
xi,j . By comparing (ν1,1, . . . , νm,n) with µ1,1, . . . , µm,n, we can
evaluate the error corresponding to a bk-block approximation, as
we describe next.
Error. We define the `2 squared error of a bk-block approxima-
tion Mk with output sequence (ν1,1, . . . , νm,n) for the distribu-
tions D1,1, . . . , Dm,n with means µ1,1, . . . , µm,n as

err(Mk) =
1

mn

m∑
i=1

n∑
j=1

(µi,j − νi,j)2 (4)

A.1 Problem Statement
Now we formally define the problem for heatmaps which is sim-

ilar to Problem 1:
Problem 2 (Heatmap). Given a query QH , and the parameters
δ, ε, design an incrementally improving visualization generation al-
gorithm that, at each iteration k, returns a bk-block approximation
while taking as few samples as possible, such that with probability
1−δ, the error of the bk-block approximationMk returned at itera-
tion k does not exceed the error of the best bk-block approximation
formed by splitting a block of Mk−1 by no more than ε.

B. ALGORITHM FOR HEATMAPS
In this section, we build up our solution to the incrementally

improving visualization generation algorithm for heatmaps, ISPlit-
Grid. We present the major ideas, concepts and proofs required to
explain ISPlit-Grid.

B.1 Case 1: The Ideal Scenario
We first consider the ideal scenario when the means of the dis-

tributions are known (see Section 3.1. In the context of heatmaps,
when the means of the distributions are known, the task reduces to
identifying the block βi, splitting which will minimize the bk+1-
block approximation Mk+1. We now dive straight into the def-
inition of the `2-squared error of a block. The `2 squared er-
ror of a block βi (Ii × Ji, ηi), where Ii = [p, q], Ji = [r, s]
(1 ≤ p ≤ q ≤ m and 1 ≤ r ≤ s ≤ n), approximating the
distributions Dp,r, . . . , Dq,s with means µp,r, . . . , µq,s is

err(βi) =
1

(q − p+ 1)× (q − p+ 1)

q∑
j=p

s∑
j′=r

(
µj,j′ − ηi

)2
=

1

|βIi | × |βJi |

∑
j∈βIi

∑
j′∈βJi

(
µj,j′ − ηi

)2
For the ideal scenario, we can rewrite the expression for err(βi)

as follows:

err(βi) =
1

|βIi | × |βJi |

∑
j∈βIi

∑
j′∈βJi

µ2
j,j′ − µ

2
βi

(5)

Then, using Equation 4, we can express the `2 squared error of the
bk-block approximation Mk as follows:

err(Mk) =

bk∑
i=1

|βIi | × |βJi |
mn

err(βi)

Now, let’s assume Mk+1 is obtained by splitting a block βi ∈ Mk

into four blocks T , U , V , and W . Then, the error of Mk+1 is:

err(Mk+1) = err(Mk)−
|βIi | × |βJi |

mn
err(βi)

+
|T I ||TJ |

m
err(T) +

|UI ||UJ |
mn

err(U)

+
|W I ||WJ |

mn
err(V) +

|V I ||V J |
mn

err(W)

= .err(Mk) +
|βIi | × |βJi |

mn
µ2
βi

−
|T I ||TJ |

m
µ2
T −

|UI ||UJ |
mn

µ2
U

−
|V I ||V J |
mn

µ2
V −

|W I ||WJ |
mn

µ2
W

We use the above expression to define the notion of improvement
potential for heatmaps. The improvement potential of a block βi ∈
Mk is the minimization of the error of Mk+1 obtained by splitting
βi into T ,U ,V and W . Thus, the improvement potential of block
βi relative to T ,U ,V and W is

∆(βi, T, U, V,W) =
|T I ||T J |
mn

µ2
T +
|UI ||UJ |
mn

µ2
U

|V I ||V J |
mn

µ2
V +

|W I ||W J |
mn

µ2
W−

|βIi | × |βJi |
mn

µ2
βi

Now, The split group combination maximizing the improvement
potential of βi, minimizes the error of Mk+1. Therefore, the max-
imum improvement potential of a block is expressed as follows:

∆?(βi) = max
T,U,V,W⊆βi

∆(βi, T, U, V,W)

Lastly, we denote the improvement potential of a given Mk+1 by
φ(Mk+1, βi, T, U, V,W), where φ(Mk+1, βi, T, U, V,W)
= ∆(βi, T, U, V,W). Therefore, the maximum improvement po-
tential ofMk+1, φ?(Mk+1) =maxβi⊆Mk ∆?(βi). When the means
of the distributions are known, at iteration (k + 1), the optimal al-
gorithm simply selects the refinement corresponding to φ?(Lk+1),
which is the block approximation with the maximum improvement
potential.

2.2 Case 2: The Online-Sampling Scenario
In the online sampling scenario, the means of the distributions

are unknown. Similar to trendlines, we describe our approach for
selecting a refinement at a single iteration assuming samples have
already been drawn from the distributions. Then, we describe our
approach for selecting samples.

2.2.1 Selecting the Refinement Given Samples
In the online sampling scenario, we define a new notion of er-

ror err′ and optimize for that error (see Section 3.2). Since, we
draw samples from the distributions, we can obtain the estimated
improvement potential as follows:

φ̃(Mk+1, βi, T, U, V,W) =
|T I ||T J |
mn

µ̃2
T +
|UI ||UJ |
mn

µ̃2
U

|V I ||V J |
mn

µ̃2
V +

|W I ||W J |
mn

µ2
W−

|βIi | × |βJi |
mn

µ2
βi

At iteration (k + 1), all the blocks in Mk and all the segments
that may appear inMk+1 after splitting a block are called boundary
blocks. In the following theorem, we show that if we estimate the
boundary blocks accurately, then we can find a split which is very

close to the best possible split. We can prove the following for
heatmaps:
Theorem 8. If for every boundary block T of the bk-block approxi-
mationMk, we obtain an estimate µ̃T of the mean µT that satisfies∣∣µ̃2

T − µ2
T

∣∣ ≤ εmn

10|T I ||T J | ,

then the refinement M†k+1 of Mk that minimizes the estimated er-
ror ẽrr(M†k+1) will have error that exceeds the error of the best
refinement M∗k+1 of Mk by at most

err(M†k+1)− err(M∗k+1) ≤ ε.

Proof. The estimated improvement potential of the refinementLk+1

satisfies
|φ̃(Mk+1)− φ(Mk+1)| ≤ ε

2
.

We can obtain this inequality by using the expression for φ̃(Mk+1)
and φ(Mk+1), and substituting the terms like

∣∣µ̃2
T − µ2

T

∣∣ with
εmn

10|T I ||TJ | . Together this inequality, the identity err(Mk+1) =

err(Mk) − φ(Mk+1), and the inequality φ(Mk+1) ≤ φ(M†k+1)
imply that

err′(M†k+1)− err′(M∗k+1)

= φ(M∗k+1)− φ(M†k+1)

= φ(M∗k+1)− φ̃(M∗k+1) + φ̃(M∗k+1)− φ(M†k+1)

≤ φ(M∗k+1)− φ̃(M∗k+1) + φ̃(M†k+1)− φ(M†k+1)

≤ ε.

2.2.2 Determining the Sample Complexity
To achieve the error guarantee for Theorem 8, we need to re-

trieve a certain number of samples from each of the distributions
D1,1, . . . , Dm,n. Similar to trendlines, we again assume that the
data is generated from a sub-gaussian distribution. Given the gener-
ative assumption, we can determine the number of samples required
to obtain an estimate with a desired accuracy using Hoeffding’s in-
equality [21] which leads us to the following Lemma:
Lemma 5. For a fixed δ > 0 and a bk-block approximation of the
distributions D1,1, . . . , Dm,n represented by m × n independent
random samples x1,1, . . . , xm,n with sub-Gaussian parameter σ2

and mean µi,j ∈ [0, a] if we draw C =
⌈

800 a σ2

ε2mn
ln
(

4mn
δ

)⌉
sam-

ples uniformly from each xi,j , then with probability at least 1− δ,∣∣µ̃ 2
T − µ 2

T

∣∣ ≤ εmn
10|T I ||TJ | for every boundary block T of Mk.

Proof. Fix any boundary block T contained in the block βi ∈ Lk.
Then, we draw samples xi,j,1, xi,j,,2, . . . , xi,j,,C uniformly from
xi,j such that xi ∈ T I and xj ∈ T J , then

µ̃T − µT =
1

C|T I ||TJ |
∑
i∈TI

∑
j∈TJ

C∑
g=1

xi,j,g −
1

|T I ||TJ |
∑
i∈TI

∑
j∈TJ

µi,j

=
1

C|T I ||TJ |
∑
i∈TI

∑
j∈TJ

C∑
g=1

(xi,j,g − µi,j).

xi,j’s are sub-Gaussian random variables with parameter σ2. There-
fore,
Pr
[
|µ̃2
T − µ

2
T | > εm

10 |T |

]
= Pr

[
|µ̃T − µT | (µ̃T + µT) >

εmn

10 |TI ||TJ |

]
≤ Pr

[
|µ̃T − µT | > εmn

20 a |TI ||TJ |

]
= Pr

[
|
∑
i∈TI

∑
j∈TJ

C∑
g=1

(xi,j,g − µi,j)| > C εmn
20 a

]

≤ 2 exp
(
− C ε2m2n2

800a2 |T | σ2

)
≤ δ

2mm

By the union bound, the probability that one of the 2mn boundary
segments has an inaccurate estimate is at most δ.

2.3 The ISPlit-Grid Algorithm
Given the claims in the previous sections, we now present our in-

crementally improving visualization generation algorithm for heatmaps
ISplit-Grid. Given the parameters ε and δ, ISplit-Grid maintains the
same guarantee of error (ε) in generating the segment approxima-
tions in each iteration. Theorem 8 and Lemma 5 suffice to show that
the ISplit-Grid algorithm is a greedy approximator, that, at each it-
eration identifies a segment approximation that is at least ε close to
the best segment approximation for that iteration.

Data: Xa, Xb, Y, δ, ε
1 Start with the 1-block approximatorM = (M1).
2 for k = 2, . . . ,m do
3 Mk−1 = (β1, . . . , βk−1).
4 for each βi ∈Mk−1 do
5 for each group combination xq,r ∈ βp do
6 Draw C samples uniformly. Compute mean µ̃q,r

end
7 Compute µ̃βi = 1

|βI
i
||βJ
i
|

∑
q∈βI

i

∑
r∈βJ

i

µ̃q,r

end

8 Find (T, U, V,W) = argmaxp∗;T,U,V,W⊆βp∗
|TI ||TJ |
mn µ2

T +

|UI ||UJ |
mn µ2

U+
|V I ||V J |
mn µ2

V +
|WI ||WJ |

mn µ2
W−

|βI
p∗ |×|β

J
p∗ |

mn µ2
βp∗

.

9 UpdateMk+1 = β1, . . . , βi−1, T, U, V,W, βi+1, . . . , βk .
end

Algorithm 2: ISplit-Grid

3. RELEASING THE REFINEMENT
RESTRICTION: DPSplit

In this section, we present an incremental visualization gener-
ation algorithm for trendlines, DPSplit. At each iteration k, DP-
Split generates the entire k-segment approximation—releasing the
refinement restriction. The algorithm works as follows: Given the
task of approximating the distributions D1, . . . , Dm, at each it-
eration k, DPSplit draws samples uniformly from each group (as
in ISplit) and then computes the `2-squared error of all possible
k-segment approximations that can be generated. DPSplit then
chooses the k-segment approximation that yields the least error to
be output. Therefore, instead of refining the (k − 1)-segment ap-
proximation, DPSplit computes the k-segment approximation based
on the improved estimates of the means µ1, . . . , µm of the distri-
butions obtained at iteration k. We use the same notion of error
of a segment err(Si) (Equation 5) as ISplit. We represent the
error of a segment approximation that approximate the distribu-
tions Dp, . . . , Dq with k-segments as err(L[p,q], k). For ISplit,
err(Lk) = err(L[1,m], k)

Data: Xa, Y, δ, ε
1 Start with the 1-segment approximation: ∀i∈[1,m]D(i, 1) = err(L[1,i], 1)

and P (i, 1) = −1. Set L = (L1)
2 for k = 2, . . . ,m do
3 for i = 1, . . . ,m do
4 for j = 2, . . . , k and j ≤ i do
5 D(i, j) =

argmaxp∗∈[1,i−1]D(p∗, j − 1) + err(S([p∗ + 1, i], η))

6 P (i, j) = p∗ such that D(i,j) is minimized
end

end
7 Recursively construct Lk by traversing P starting from P (m, k)
8 L = L ∪ Lk

end
Algorithm 3: DPSplit

DPSplit maintains a m × k Dynamic Programming (DP) table
D where each entry D(i, j) corresponds to the error, err(L[1,i], j)
of the j-segment approximation of the distributions D1, . . . , Di.
DPSplit also maintains another m × k table P , where each en-
try P (i, j) corresponds to the split group that minimizes the error
corresponding to D(i, j). Given m distributions, at each iteration
k, all the entries from D(1, 1) to D(m, k) are updated, i.e., the er-
ror of the segment approximation is recomputed based on the new
samples drawn from the distributions. In the final iteration k = m,
the entire table is updated. Therefore, the time complexity of DP-
Split isO(m×k2) even though the samples taken in each iteration
is the same as ISplit.

4. DATASET ANALYSIS
In this section, we present the Q-Q plot [49] analysis of the

datasets (Table 2) used in Section 5. We present the results for the
Arrival Delay attribute of the Flight dataset (FLA), the Trip Time
attribute of the NYC taxi dataset for the year 2011 (T11), and the
Temperature attribute of the weather dataset (WG). We also present
the corresponding histograms of the datasets. We exclude the re-
sults of the Departure Delay attribute of Flight dataset due to sim-
ilarity in distribution to the Arrival Delay attribute. For the same
reason, we also exclude the results for T12 and T13 (similarity to
T11 dataset).

Figure 18(a) and 18(b) shows the Q-Q plot of FLA and T11,
respectively. We plot the theoretical gaussian distribution in the x-
axis and the ordered values of the attributes of the dataset in the
y-axis. The shape of the plot determines the type of the distri-
bution. Both the datasets exhibit a right skewed gaussian distribu-
tion confirmed by their corresponding histograms (Figure 18(d) and
18(e))—in both case, the peak is off center and the the tail stretches
away from the center to the right side. On the other hand, the WG
(Figure 18(c)) dataset exhibits a truncated gaussian distribution that
is clipped on both sides (Figure 18(f)).

(a) FLA (b) T11 (c) WG

(d) FLA (e) T11 (f) WG

Figure 18: Q-Q plot of a) FLA, b) T11, and c) WG. Histogram of d) FLA, e) T11, and f) WG.

