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Abstract

For input x, let F'(z) denote the set of outputs that are the “legal” answers for a computational
problem F'. Suppose x and members of F'(z) are so large that there is not time to read them in their
entirety. We propose a model of local computation algorithms which for a given input x, support queries
by a user to values of specified locations y; in a legal output y € F'(z). When more than one legal output
y exists for a given z, the local computation algorithm should output in a way that is consistent with at
least one such y. Local computation algorithms are intended to distill the common features of several
concepts that have appeared in various algorithmic subfields, including local distributed computation,
local algorithms, locally decodable codes, and local reconstruction.

We develop a technique, based on known constructions of small sample spaces of k-wise independent
random variables and Beck’s analysis in his algorithmic approach to the Lovdsz Local Lemma, which
under certain conditions can be applied to construct local computation algorithms that run in polyloga-
rithmic time and space. We apply this technique to maximal independent set computations, scheduling
radio network broadcasts, hypergraph coloring and satisfying k-SAT formulas.
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1 Introduction

Classical models of algorithmic analysis assume that the algorithm reads an input, performs a computation
and writes the answer to an output tape. On massive data sets, such computations may not be feasible, as both
the input and output may be too large for a single processor to process. Approaches to such situations range
from proposing alternative models of computation, such as parallel and distributed computation, to requiring
that the computations achieve only approximate answers or other weaker guarantees, as in sublinear time
and space algorithms.

In this work, we consider the scenario in which only specific parts of the output y = (y1,...,¥m) are
needed at any point in time. For example, if y is a description of a maximal independent set (MIS) of a
graph such that y; = 1 if 7 is in the MIS and y; = 0 otherwise, then it may be sufficient to determine
Yiys - - - > Yi, for a small number of £ vertices. To this end, we define a local computation algorithm, which
supports queries of the form “y; =7 such that after each query by the user to a specified location ¢, the local
computation algorithm is able to quickly outputs y;. For problems that allow for more than one possible
output for an input z, as is often the case in combinatorial search problems, the local computation algorithm
must answer in such a way that its current answer to the query is consistent with any past or future answers
(in particular, there must always be at least one allowable output that is consistent with the answers of the
local computation algorithm ). For a given problem, the hope is that the complexity of a local computation
algorithm is proportional to the amount of the solution that is requested by the user. Local computation
algorithms are especially adapted to computations of good solutions of combinatorial search problems (cf.
(36,130, 135])).

Local computation algorithms are a formalization that describes concepts that are ubiquitous in the lit-
erature, and arise in various algorithmic subfields, including local distributed computation, local algorithms,
locally decodable codes and local reconstruction models. We subsequently describe the relation between
these models in more detail, but for now, it suffices it to say that the aforementioned models are diverse in
the computations that they apply to (for example, whether they apply to function computations, search prob-
lems or approximation problems), the access to data that is allowed (for example, distributed computation
models and other local algorithms models often specify that the input is a graph in adjacency list format),
and the required running time bounds (whether the computation time is required to be independent of the
problem size, or whether it is allowed to have computation time that depends on the problem size but has
sublinear complexity). The model of local computation algorithms described here attempts to distill the
essential common features of the aforementioned concepts into a unified paradigm.

After formalizing our model, we develop a technique that is specifically suitable for constructing poly-
logarithmic time local computation algorithms. This technique is based on Beck’s analysis in his algorithmic
approach to the Lovdsz Local Lemma (LLL) [11]], and uses the underlying locality of the problem to con-
struct a solution. All of our constructions must process the data somewhat so that Beck’s analysis applies,
and we use two main methods of performing this processing.

For maximal independent set computations and scheduling radio network broadcasts, we use a reduction
of Parnas and Ron [36], which shows that, given a distributed network in which the underlying graph has
degree bounded by a constant D, and a distributed algorithm (which may be randomized and only guaranteed
to output an approximate answer) using at most ¢ rounds, the output of any specified node of the distributed
network can be simulated by a single processor with query access to the input with O(D!*!) queries. For
our first phase, we apply this reduction to a constant number of rounds of Luby’s maximal independent
set distributed algorithm [29] in order to find a partial solution. After a large independent set is found, in
the second phase, we use the techniques of Beck [11] to show that the remainder of the solution can be



determined via a brute force algorithm on very small subproblems.

For hypergraph coloring and k-SAT, we show that Alon’s parallel algorithm, which is guaranteed to find
solutions by the Lovasz Local Lemma [2]], can be modified to run in polylogarithmic sequential time to
answer queries regarding the coloring of a given node, or the setting of a given variable. For most of the
queries, this is done by simulating the work of a processor and its neighbors within a small constant radius.
For the remainder of the queries, we use Beck’s analysis to show that the queries can be solved via the brute
force algorithm on very small subproblems.

Note that parallel O(logn) time algorithms do not directly yield local algorithms under the reduction of
Parnas and Ron [36]. Thus, we do not know how to apply our techniques to all problems with fast parallel
algorithms, including certain problems in the work of Alon whose solutions are guaranteed by the Lovész
Local Lemma and which have fast parallel algorithms [2]. Recently Moser and Tardos [32} 33]] gave, under
some slight restrictions, parallel algorithms which find solutions of all problems for which the existence of
a solution is guaranteed by the Lovasz Local Lemma [[11} [2]. It has not yet been resolved whether one can
construct local computation algorithms based on these more powerful algorithms.

1.1 Related work

Our focus on local computation algorithms is inspired by many existing works, which explicitly or implicitly
construct such procedures. These results occur in a number of varied settings, including distributed systems,
coding theory, and sublinear time algorithms.

Local computation algorithms are a generalization of local algorithms, which for graph theoretic prob-
lems represented in adjacency list format, produce a solution by adaptively examining only a constant sized
portion of the input graph near a specified vertex. Such algorithms have received much attention in the dis-
tributed computing literature under a somewhat different model, in which the number of rounds is bounded
to constant time, but the computation is performed by all of the processors in the distributed network [34}(31]].
Naor and Stockmeyer [34] and Mayer, Naor and Stockmeyer [31]] investigate the question of what can be
computed under these constraints, and show that there are nontrivial problems with such algorithms. Several
more recent works investigate local algorithms for various problems, including coloring, maximal indepen-
dent set, dominating set (some examples are in [25 26} 24} 27 23] 1221 39,19, 10, 40[]). Although all of these
algorithms are distributed algorithms, those that use constant rounds yield (sequential) local computation
algorithms via the previously mentioned reduction of Parnas and Ron [36]E]

There has been much recent interest among the sublinear time algorithms community in devising local
algorithms for problems on constant degree graphs and other sparse optimization problems. The goals of
these algorithms have been to approximate quantities such as the optimal vertex cover, maximal matching,
maximum matching, dominating set, sparse set cover, sparse packing and cover problems [36, 26 [30} 35|
18, 142]]. One feature of these algorithms is that they show how to construct an oracle which for each
vertex returns whether it part of the solution whose size is being approximated — for example, whether it
is in the vertex cover or maximal matching. Their results show that this oracle can be implemented in
time independent of the size of the graph (depending only on the maximum degree and the approximation
parameter). However, because their goal is only to compute an approximation of their quantity, they can
afford to err on a small fraction of their local computations. Thus, their oracle implementations give local
computation algorithms for finding relaxed solutions to the the optimization problems that they are designed
for. For example, constructing a local computation algorithm using the oracle designed for estimating the

"Note that the parallel algorithms of Luby [29], Alon [2] and Moser and Tardos [33] do not automatically yield local algorithms
via this transformation since their parallel running times are ¢ = Q(log n).



size of a maximal independent set in [30] yields a large independent set, but not necessarily a maximal
independent set. Constructing a local computation algorithm using the oracle designed for estimating the
size of the vertex cover [36} 30, 135]] yields a vertex cover whose size is guaranteed to be only slightly larger
than what is given by the 2-approximate algorithm being emulated — namely, by a multiplicative factor of at
most 2 4 ¢ (for any § > 0).

Recently, local algorithms have been demonstrated to be applicable for computations on the web graph.
In [19} 12} 38} 18, [7]], local algorithms are given which, for a given vertex v in the web graph, computes an
approximation to v’s personalized PageRank vector and computes the vertices that contribute significantly
to v’s PageRank. In these algorithms, evaluations are made only to the nearby neighborhood of v, so
that the running time depends on the accuracy parameters input to the algorithm, but there is no running
time dependence on the size of the web-graph. Local graph partitioning algorithms have been presented in
[41, 8] which find subsets of vertices whose internal connections are significantly richer than their external
connections. The running time of these algorithms depends on the size of the cluster that is output, which
can be much smaller than the size of the entire graph.

Though most of the previous examples are for sparse graphs or other problems which have some sort of
sparsity, local computation algorithms have also been provided for problems on dense graphs. The property
testing algorithms of [[17] use a small sample of the vertices (a type of a core-set) to define a good graph
coloring or partition of a dense graph. This approach yields local computation algorithms for finding a large
partition of the graph and a coloring of the vertices which has relatively few edge violations.

The applicability of local computation algorithms is not restricted to combinatorial problems. One
algebraic paradigm that has local computation algorithms is that of locally decodable codes [21]], described
by the following scenario: Suppose m is a string with encoding y = E(m). On input z, which is close in
Hamming distance to y, the goal of locally decodable coding algorithms is to provide quick access to the
requested bits of m. More generally, the reconstruction models described in [[1} |13} [37]] describe scenarios
where a string that has a certain property, such as monotonicity, is assumed to be corrupted at a relatively
small number of locations. Let P be the set of strings that have the property. The reconstruction algorithm
gets as input a string x which is close (in L; norm), to some string y in P. For various types of properties
P, the above works construct algorithms which give fast query access to locations in y.

1.2 Followup work

In a recently work, Alon et al. [6]] further show that the local computation algorithms in this work can be
modified to not only run in polylogarithmic time but also in polylogarithmic space. Basically, they show
that all the problems studied in this paper can be solved in a unified local algorithmic framework as follows:
first the algorithm generates some random bits on a read-only random tape of size at most polylogarithmic
in the input, which may be thought as the “core” of a solution y € F'(z); then each bit of the solution y can
be computed deterministically by first querying a few bits on the random tape and then performing some
fast computations on these random bits. The main technical tools used in [6] are pseudorandomness, the
random ordering idea of [35]] and the theory of branching processes.

1.3 Organization

The rest of the paper is organized as follows. In Section 2] we present our computation model. Some prelim-
inaries and notations that we use throughout the paper appear in Section[3] We then give local computation
algorithms for the maximal independent set problem and the radio network broadcast scheduling problem
in Section[d and Section 5] respectively. In Section[6] we show how to use the parallel algorithmic version of



the Lovész Local Lemma to give local computation algorithms for finding the coloring of nodes in a hyper-
graph. Finally, in Section [/, we show how to find settings of variables according to a satisfying assignment
of a k-CNF formula.

2 Local Computation Algorithms: the model

We present our model of local computation algorithms for sequential computations of search problems,
although computations of arbitrary functions and optimization functions also fall within our framework.

2.1 Model Definition
We write n = |z| to denote the length of the input.

Definition 2.1. For input x, let F(x) = {y | y is a valid solution for input x}. The search problem is to
find any y € F(x).

In this paper, the description of both = and y are assumed to be very large.

Definition 2.2 ((¢, s, §)-local algorithms). Let x and F(x) be defined as above. A (t(n), s(n),d(n))-local
computation algorithm A is a (randomized) algorithm which implements query access to an arbitrary y €
F(x) and satisfies the following: A gets a sequence of queries i1, . . ., iq for any ¢ > 0 and after each query
ij it must produce an output y;; satisfying that the outputs y;,, .. .,Yyi, are substrings of some y € F ().
The probability of success over all q queries must be at least 1 — §(n). A has access to a random tape
and local computation memory on which it can perform current computations as well as store and retrieve
information from previous computations. We assume that the input x, the local computation tape and any
random bits used are all presented in the RAM word model, i.e., A is given the ability to access a word of
any of these in one step. The running time of A on any query is at most t(n), which is sublinear in n, and the
size of the local computation memory of A is at most s(n). Unless stated otherwise, we always assume that
the error parameter §(n) is at most some constant, say, 1/3. We say that A is a strongly local computation
algorithm if both t(n) and s(n) are upper bounded by log® n for some constant c.

Definition 2.3. Let SLC be the class of problems that have strongly local computation algorithms.

Note that when |F'(z)| > 1, the y according to which A outputs may depend on the previous queries to .4
as well as any random bits available to .A. Also, we implicitly assume that the size of the output y is upper-
bounded by some polynomial in |x|. The definition of local-computation algorithms rules out the possibility
that the algorithms accomplish their computation by first computing the entire output. Analogous definitions
can be made for a bit model. In principle, the model applies to general computations, including function
computations, search problems and optimization problems of any type of object, and in particular, the input
is not required by the model to be in a specific input format.

The model presented here is intended be more general, and thus differs from other local computation
models in the following ways. First, queries and processing time have the same cost. Second, the focus
is on problems with slightly looser running time bound requirements — polylogarithmic dependence on the
length of the input is desirable, but sublinear time in the length of the input is often nontrivial and can be
acceptable. Third, the model places no restriction on the ability of the algorithm to access the input, as is the
case in the distributed setting where the algorithm may only query nodes in its neighborhood (although such
restrictions may be implied by the representation of the input). As such, the model may be less appropriate
for certain distributed algorithms applications.



Definition 2.4 (Query oblivious). We say an LCA A is query order oblivious (query oblivious for short) if
the outputs of A do not depend on the order of the queries but depend only on the input and the random bits
generated by the random tape of A.

Definition 2.5 (Parallelizable). We say an LCA A is parallelizable if A supports parallel queries.

We remark that not all local algorithms in this paper are query oblivious or easily parallelizable. How-
ever, this is remedied in [6]].

2.2 Relationship with other distributed and parallel models

A question that immediately arises is to characterize the problems to which the local-computation algorithm
model applies. In this subsection, we note the relationship between problems solvable with local computa-
tion algorithms and those solvable with fast parallel or distributed algorithms.

From the work of [36] it follows that problems computable by fast distributed algorithms also have local
computation algorithms.

Fact 2.6 ([36]). If F is computable in t(n) rounds on a distributed network in which the processor intercon-
nection graph has bounded degree d, then F has a d'™ -local computation algorithm.

Parnas and Ron [36] show this fact by observing that for any vertex v, if we run a distributed algorithm
A on the subgraph Gy, ,, (the vertices of distance at most £ from v), then it makes the same decision about
vertex v as it would if we would run D for &k rounds on the whole graph GG. They then give a reduction from
randomized distributed algorithms to sublinear algorithms based on this observation.

Similar relationships hold in other distributed and parallel models, in particular, for problems com-
putable by low depth bounded fan-in circuits.

Fact 2.7. If F is computable by a circuit family of depth t(n) and fan-in bounded by d(n), then F has a
d(n)"™-local computation algorithm.

Corollary 2.8. NC° C SLC.

In this paper we show solutions to several problems NC'? via local computation algorithms. However,
this is not possible in general as:

Proposition 2.9. NC!' ¢ SLC.

Proof. Consider the problem n-XOR, the X OR of n inputs. This problem is in NC'. However, no sublinear
time algorithm can solve n-XOR because it is necessary to read all n inputs. O

In this paper, we give techniques which allow one to construct local computation algorithms based on
algorithms for finding certain combinatorial structures whose existence is guaranteed by constructive proofs
of the LLL in [[L1} 2]. It seems that our techniques do not extend to all such problems. An example of such a
problem is Even cycles in a balanced digraph: find an even cycle in a digraph whose maximum in-degree is
not much greater that the minimum out-degree. Alon [2] shows that, under certain restriction on the input
parameters, the problem is in NC!. The local analogue of this question is to determine whether a given
edge (or vertex) is part of an even cycle in such a graph. It is not known how to solve this quickly.



2.3 Locality-preserving reductions

In order to understand better which problems can be solved locally, we define locality-preserving reductions,
which capture the idea that if problem B is locally computable, and problem A has a locality-preserving
reduction to B then A is also locally computable.

Definition 2.10. We say that A is (t'(n), s'(n))-locality-preserving reducible to B via reduction H : ¥* —
T*, where 3. and T" are the alphabets of A and B respectively, if H satisfies:

l. € A < H(x)€B.

2. His (t'(n), s (n),0)-locally computable; that is, every word of H(x) can be computed by querying
at most t(n) words of x.

Theorem 2.11. If A is (t'(n), s'(n),0)-locality-preserving reducible to B and B is (t(n),s(n),d(n))-
locally computable, then A is (t(n) - t'(n), s(n) + s'(n), d(n))-locally computable.

Proof. As Ais (t'(n), s'(n),0)-locality-preserving reducible to B, to determine whether x € A, it suffices
to determine if H(z) € B. Each word of H(x) can be computed in time ¢(n) and using space s'(n), and
we need to access at most ¢(n) such words to determine whether H(x) € B. Note that we can reuse the
space for computing H (). O

3 Preliminaries

Unless stated otherwise, all logarithms in this paper are to the base 2. Let N = {0, 1, ...} denote the set of
natural numbers. Let n > 1 be a natural number. We use [n] to denote the set {1,...,n}.

Unless stated otherwise, all graphs are undirected. Let G = (V, E)) be a graph. The distance between
two vertices v and v in V' (G), denoted by d¢ (u, v), is the length of a shortest path between the two vertices.
We write Ng(v) = {u € V(G) : (u,v) € E(G)} to denote the neighboring vertices of v. Furthermore, let
NZ (v) = N(v) U {v}. Let di(v) denote the degree of a vertex v. Whenever there is no risk of confusion,
we omit the subscript G from dg(u, v), dg(v) and Ng(v).

The celebrated Lovdsz Local Lemma plays an important role in our results. We will use the simple
symmetric version of the lemma.

Lemma 3.1 (Lovasz Local Lemma [15]). Let A1, Ao, ..., Ay, be events in an arbitrary probability space.
Suppose that the probability of each of these n events is at most p, and suppose that each event A; is mutually
independent of all but at most d of other events Aj;. If ep(d + 1) < 1, then with positive probability none of
the events A; holds, i.e.,

Pr[n, A;] > 0.

Several of our proofs use the following graph theoretic structure:

Definition 3.2 ([11]). Let G = (V, E) be an undirected graph. Define W C V(G) to be a 3-tree if the
pairwise distances of all vertices in W are each at least 3 and the graph G* = (W, E*) is connected, where
E* is the set of edges between each pair of vertices whose distance is exactly 3 in G.



4 Maximal Independent Set

An independent set (IS) of a graph G is a subset of vertices such that no two vertices are adjacent. An
independent set is called a maximal independent set (MIS) if it is not properly contained in any other IS.
It is well-known that a sequential greedy algorithm finds an MIS S in linear time: Order the vertices in G
as 1,2,--- ,n and initialize S to the empty set; for ¢ = 1 to n, if vertex ¢ is not adjacent to any vertex in
S, add i to S. The MIS obtained by this algorithm is call the lexicographically first maximal independent
set (LFMIS). Cook [14] showed that deciding if vertex n is in the LFMIS is P-complete with respect to
logspace reducibility. On the other hand, fast randomized parallel algorithms for MIS were discovered in
1980°s [20, 29, [3]]. The best known distributed algorithm for MIS runs in O(log™* n) rounds with a word-size
of O(logn) [16]. By Fact this implies a d©(1°8" 7’1087) Jocal computation algorithm. In this section, we
give a query oblivious and parallelizable local computation algorithm for MIS based on Luby’s algorithm
as well as the techniques of Beck [[I1]], and runs in time O(d®(?°89) . log n).

Our local computation algorithm is partly inspired by the work of Marko and Ron [30]. There they
simulate the distributed algorithm for MIS of Luby [29] in order to approximate the minimum number of
edges one need to remove to make the input graph free of some fixed graph H. In addition, they show that
similar algorithm can also approximate the size of a minimum vertex cover. We simulate Luby’s algorithm
to find an exact and consistent local solution for the MIS problem. Moreover, the ingredient of applying
Beck’s idea to run a second stage greedy algorithm on disconnected subgraphs seems to be new.

4.1 Overview of the algorithm

Let G be an undirected graph on n vertices and with maximum degree d. On input a vertex v, our algorithm
decides whether v is in a maximal independent set using two phases. In Phase 1, we simulate Luby’s parallel
algorithm for MIS [29]] via the reduction of [36]. That is, in each round, v tries to put itself into the IS with
some small probability. It succeeds if none of its neighbors also tries to do the same. We run our Phase 1
algorithm for O(dlog d) rounds. As it turns out, after Phase 1, most vertices have been either added to the
IS or removed from the graph due to one (or more) of their neighbors being in the IS. Our key observation is
that — following a variant of the argument of Beck [[11] — almost surely, all the connected components of the
surviving vertices after Phase 1 have size at most O(logn). This enables us to perform the greedy algorithm
for the connected component v lies in.
Our main result in this section is the following.

Theorem 4.1. Let G be an undirected graph with n vertices and maximum degree d. Then there is a
(O(d®4ed) 1ogn), O(n), 1/n)-local computation algorithm which, on input a vertex v, decides if v is in
a maximal independent set. Moreover, the algorithm will give a consistent MIS for every vertex in G.

4.2 Phase 1: simulating Luby’s parallel algorithm

Figure|[T]illustrates Phase 1 of our local computation algorithm for Maximal Independent Set. Our algorithm
simulates Luby’s algorithm for » = O(d log d) rounds. Every vertex v will be in one of three possible states:

e “selected” — v is in the MIS;
e “deleted” — one of v’s neighbors is selected and v is deleted from the graph; and

e “1” —wisnotin either of the previous states.



Initially, every vertex is in state “1”. Once a vertex becomes “selected” or “deleted” in some round, it
remains in that state in all the subsequent rounds.

The subroutine MIS(v, i) returns the state of a vertex v in round 7. In each round, if vertex v is still in
state “ 17, it “chooses” itself to be in the MIS with probability 1/2d. At the same time, all its neighboring
vertices also flip random coins to decide if they should “choose” themselvesE] If v is the only vertex in
N (v) that is chosen in that round, we add v to the MIS (“select” v) and “delete” all the neighbors of v.
However, the state of v in round i is determined not only by the random coin tosses of vertices in N (v)
but also by these vertices’ states in round ¢ — 1. Therefore, to compute MIS(v, ), we need to recursively
call MIS(u,i — 1) for every u € N T (v). E] By induction, the total running time of simulating  rounds is
dO(r) — (O(dlogd)

If after Phase 1 all vertices are either “selected” or “deleted” and no vertex remains in “L1” state, then
the resulting independent set is a maximal independent set. In fact, one of the main results in [29] is that this
indeed is the case if we run Phase 1 for expected O(log n) rounds. Our main observation is, after simulating
Luby’s algorithm for only O(dlog d) (a constant independent of the size n) rounds we are already not far
from a maximal independent set. Specifically, if vertex v returns “_L” after Phase 1 of the algorithm, we call
it a surviving vertex. Now consider the subgraph induced on the surviving vertices. Following a variant of
Beck’s argument [[11]], we show that, almost surely, no connected component of surviving vertices is larger
than poly(d) - log n.

Let A, be the event that vertex v is a surviving vertex. Note that event A, depends on the random coin
tosses v and v’s neighborhood of radius » made during the first r rounds, where r = O(dlogd). To get
rid of the complication caused by this dependency, we consider another set of events generated by a related
random process.

Consider a variant of our algorithm MIS, which we call MISp as shown in Fig[2l In MISp, every
vertex v has two possible states: “picked” and “L”. Initially, every vertex is in state “1”. Once a vertex
becomes “picked” in some round, it remains in the “picked” state in all the subsequent rounds. MISp and
MIS are identical except that, in MISp, if in some round a vertex v is the only vertex in N (v) that is
chosen in that round, the state of v becomes “picked”, but we do not change the states of v’s neighboring
vertices. In the following rounds, v keeps flipping coins and tries to choose itself. Moreover, we assume
that, for any vertex v and in every round, the randomness used in MIS and MISp are identical as long as
v has not been “selected” or “deleted” in MIS. If v is “selected” or “deleted” in MIS, then we flip some
additional coins for v in the subsequent rounds to run MISp. We let B, be the event that v is in state “1”
after running MIS g for r rounds (that is, v is never get picked during all  rounds of MISp).

Claim 4.2. A, C B, for every vertex UEI

Proof. This follows from the facts that a necessary condition for A, to happen is v never get “selected” in
any of the r rounds and deleting the neighbors of v from the graph can never decrease the probability that v
gets “selected” in any round. Specifically, we will show that B, C A,.

Note that B, = U’{:lﬁq(f), where B”

»  1s the event that v is picked for the first time in round ¢ in MISpg

(v may get picked again in some subsequent rounds). Similarly, A, = ;?:125,“, where Zg) is the event

2We store all the randomness generated by each vertex in each round so that our answers will be consistent. However, we
generate the random bits only when the state of corresponding vertex in that round is requested.

3 A subtle point in the subroutine MIS (v, 1) is that when we call MIS(v, 1), we only check if vertex v is “selected” or not in
round . If v is “deleted” in round ¢, we will not detect this until we call MIS(v, ¢ + 1), which checks if some neighboring vertex
of v is selected in round <. However, such “delayed” decisions will not affect our analysis of the algorithm.

4Strictly speaking, the probability spaces in which A, and B, live are different. Here the claim holds for any fixed outcomes of
all the additional random coins MIS g flips.



MAXIMAL INDEPENDENT SET: PHASE 1
Input: a graph G and a vertex v € V
Output: {“true”, “false”, “ 17}
For ¢ from 1 to r = 20d log d
(a) If MIS(v,4) = “selected”
return “true”
(b) Else if MIS(v,i) = “deleted”
return “false”
(c) Else
return “1”

MIS(v, 1)
Input: a vertex v € V' and a round number
Output: {“selected”, “deleted”, “ 1"}
1. If v is marked “selected” or “deleted”
return “selected” or “deleted”, respectively
2. Forevery uin N(v)
If MIS(u,i— 1) = “selected”
mark v as “ deleted” and return “deleted”
3. v chooses itself independently with probability ﬁ
If v chooses itself
(i) For every u in N (v)
If u is marked “_L”, u chooses itself independently with probability ﬁ
(i1) If v has a chosen neighbor
return “1”
(iii) Else
mark v as “selected” and return “selected”
Else
return “1”

Figure 1: Local Computation Algorithm for MIS: Phase 1

MISg(v,i)
Input: a vertex v € V and a round number ¢
Output: {“picked”, “L”}
1. If v is marked “picked”
return “picked”
2. v chooses itself independently with probability ﬁ
If v chooses itself
(i) For every uw in N (v)
u chooses itself independently with probability 2—1d
(ii) If v has a chosen neighbor
return “L”
(iii) Else
mark v as “picked” and return “picked”
Else
return “L”

Figure 2: Algorithm MISp




that v is selected or deleted in round ¢ in MIS. Hence, we can write, for every ¢, Zg) = Selgf) U Delg),

where Sell(,i) and Dels,i) are the events that, in MIS, v gets selected in round ¢ and v get deleted in round 4,

respectively.
We prove by induction on ¢ that U;-:lES)]) c u;l:lfo). This is clearly true for ¢ = 1 as ES) = Selq(,l).
Assume it holds for all smaller values of 7. Consider any fixed random coin tosses of all the vertices in the

graph before round ¢ such that v is not “selected” or “deleted” before round i. Then by induction hypothesis,
v is not picked in MIS g before round i either. Let N () (v) be the set of neighboring nodes of v that are in
state “ 1" in round 4 in algorithm MISp. Clearly, N (v) C N(v).

Now for the random coins tossed in round 7z, we have

Eff) = {v chooses itself in round i} Ny, () {w does not chooses itself in round i}

C {v chooses itself in round i} N, n i) () {w does not chooses itself in round i}

= Sell®.

Therefore, Pff) C Selz(,i) C Z(i). This finishes the inductive step and thus completes the proof of the

v
claim. O

As a simple corollary, we immediately have
Corollary 4.3. For any vertex set W C V(G), Pr[Nyew Ay] < Pr[Nyew By)-

A graph H on the vertices V/(G) is called a dependency graph for { B, },,cv () if for all v the event B,
is mutually independent of all B,, such that (u,v) ¢ H.

Claim 4.4. The dependency graph H has maximum degree d>.

Proof. Since for every vertex v, B, depends only on the coin tosses of v and vertices in N (v) in each of the
r rounds, the event B, is independent of all A, such that dg(u,v) > 3. The claim follows as there are at
most d? vertices at distance 1 or 2 from v. L]

Claim 4.5. For every v € V, the probability that B,, occurs is at most 1/8d°>.

Proof. The probability that vertex v is chosen in round i is ﬁ. The probability that none of its neighbors is
chosen in this round is (1 — Q—Id)d(”) > (1 — 55)? > 1/2. Since the coin tosses of v and vertices in N (v) are
independent, the probability that v is selected in round ¢ is at least 2—1d . % = 4—1d. We get that the probability
that B, happens is at most (1 — 4;)20¢l8d < %.

O]

Now we are ready to prove the main lemma for our local computation algorithm for MIS.

Lemma 4.6. After Phase 1, with probability at least 1 — 1/n, all connected components of the surviving
vertices are of size at most O(poly(d) - logn).

Proof. Note that we may upper bound the probability that all vertices in W are surviving vertices by the
probability that all the events { B, } ey happen simultaneously:

Prlall vertices in TV are surviving vertices]
= Pr[mvel/VAv]
< Pr[mveva]-

10



The rest of the proof is similar to that of Beck [11]]. We bound the number of 3-trees in H (the dependency
graph for events { B, }) of 3-trees of size w as follows.

Let H3 denote the “distance-3” graph of H, that is, vertices u and v are connected in H 3 if their distance
in H is exactly 3. We claim that, for any integer w > 0, the total number of 3-trees of size w in H? is at
most n(4d*)™. To see this, first note that the number of non-isomorphic trees on w vertices is at most 4%
(see e.g. [28]). Now fix one such tree and denote it by 7. Label the vertices of T' by vy, va, ..., v, in a way
such that for any j > 1, vertex v; is adjacent to some v; with ¢ < j in 7. How many ways are there to
choose vy, vo, ..., v, from V(H) so that they can be the set of vertices in 7'? There are n choices for v;.
As H? has maximum degree D = d(d — 1)? < d?, therefore there are at most D possible choices for vs.
and by induction there are at most DV~ < nd>® possible vertex combinations for T". Since there can be
at most 4% different T, it follows that there are at most n(4d®)™ possible 3-trees in G.

Since all vertices in W are at least 3-apart, all the events { B, },ew are mutually independent. Therefore
we may upper bound the probability that all vertices in W are surviving vertices as

Pr[myeva]

= [ Pr(B.]

veW
(LY
— \ 843 ’

where the last inequality follows from Claim[4.5]
Now the expected number of 3-trees of size w is at most

1 w
n(4d®)® <8d3> =n2"" < 1/n,

for w = ¢1 log n, where ¢ is some constant. By Markov’s inequality, with probability at least 1 — 1 /n, there
is no 3-tree of size larger than c; logn. By a simple variant of the 4-tree Lemma in [11] (that is, instead
of the “4-tree lemma”, we need a “3-tree lemma” here), we see that a connected component of size s in H
contains a 3-tree of size at least s/d. Therefore, with probability at least 1 — 1/n, there is no connected
surviving vertices of size at least O(poly(d) - log n) at the end of Phase 1 of our algorithm. O

4.3 Phase 2: Greedy search in the connected component

If v is a surviving vertex after Phase 1, we need to perform Phase 2 of the algorithm. In this phase, we
first explore v’s connected component, C(v), in the graph induced on G by all the vertices in state “L”. If
the size of C'(v) is larger than ¢y log n for some constant co which depends only on d, we abort and output
“Fail”. Otherwise, we perform the simple greedy algorithm described at the beginning of this section to find
the MIS in C'(v). To check if any single vertex is in state “_L”, we simply run our Phase 1 algorithm on this
vertex and the running time is d°(41°¢9) for each vertex in C'(v). Therefore the running time for Phase 2 is
at most O(|C(v)|) - d9ldloed) < O(dP(@1o8d) . Jog n). As this dominates the running time of Phase 1, it is
also the total running time of our local computation algorithm for MIS.

Finally, as we only need to store the random bits generated by each vertex during Phase 1 of the algorithm
and bookkeep the vertices in the connected component during Phase 2 (which uses at most O(log n) space),
the space complexity of the local computation algorithm is therefore O(n).
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5 Radio Networks

For the purposes of this section, a radio network is an undirected graph G = (V| E)) with one processor
at each vertex. The processors communicate with each other by transmitting messages in a synchronous
fashion to their neighbors. In each round, a processor P can either receive a message, send messages to all
of its neighbors, or do nothing. We will focus on the radio network that is referred to as a Type II networkﬂ
in [2]. P receives a message from its neighbor @ if P is silent, and () is the only neighbor of P that transmits
in that round. Our goal is to check whether there is a two-way connection between each pair of adjacent
vertices. To reach this goal, we would like to find a schedule such that each vertex in GG broadcasts in one of
the K rounds and K is as small as possible.

Definition 5.1 (Broadcast function). Let G = (V, E) be an undirected graph. We say F, : V — [K] is a
broadcast function for the network G if the following holds:

1. Every vertex v broadcasts once and only once in round F,(v) to all its neighboring vertices;
2. No vertex receives broadcast messages from more than one neighbor in any round;
3. For every edge (u,v) € G, u and v broadcast in distinct rounds.

Let A be the maximum degree of GG. Alon et. al. [4} 5] show that the minimum number of rounds K
satisfies K = ©(AlogA). Furthermore, Alon [2] gives an NC algorithm that computes the broadcast
function F,. with K = O(Alog A). Here we give a local computation algorithm for this problem, i.e. given
a degree-bounded graph G = (V, E) in the adjacency list form and a vertex v € V, we output the round
number in which v broadcasts in logarithmic time. Our solution is consistent in the sense that all answers
our algorithm outputs to the various v € V' agree with some broadcast scheduling function F;..

Let G2 be the “square graph” of ; that is, u and v are connected in G2 if and only if their distance in
@ is either one or two. Our algorithm is based on finding an independent set cover of G'*? which simulates
Luby’s Maximal Independent Set algorithm [29]]. Note that if we denote the maximum degree of G2 by d,
then d < A2,

Definition 5.2 (Independent Set Cover). Let H = (V, E) be an undirected graph. A collection of vertex
subsets {S1, ..., S} is an independent set cover (ISC) for H if these vertex sets are pairwise disjoint, each
S; is an independent set in H and their union equals V. We call t the size of ISC {S1, ..., S;}.

Fact 5.3. If {S1,..., S} is an ISC for G2, then the function defined by F,.(v) = i iff v € S; is a broadcast
function.

Proof. First note that, since the union of {S;} equals V, F,(v) is well-defined for every v € G. That is,
every v broadcasts in some round in [¢], hence both directions of every edge are covered in some round. As
v can only be in one I.S, it only broadcasts once. Second, for any two vertices u and v, if d(u,v) > 3,
then N(u) N N(v) = (. Tt follows that, if in each round all the vertices that broadcast are at least 3-apart
from each other, no vertex will receive more than one message in any round. Clearly the vertices in an
independent set of G have the property that all the pairwise distances are at least 3. O

The following is a simple fact about ISCs.

The other model, Type I radio network, is more restrictive: A processor P receives a message from its neighbor () in a given
round only if P is silent, ) transmits and P chooses to receive from () in that round.

12



Fact 5.4. For every undirected graph H on n vertices with maximum degree d, there is an ISC of size at
most d. Moreover, such an ISC can be found by a greedy algorithm in time at most O(dn).

Proof. We repeatedly apply the greedy algorithm that finds an MIS in order to find an ISC. Recall that the
greedy algorithm repeats the following until the graph has no unmarked vertex: pick an unmarked vertex v,
add it to the IS and mark off all the vertices in N (v). Clearly each IS found by the greedy algorithm has
size at least 7. To partition the vertex set into an ISC, we run this greedy algorithm to find an IS which
we call S1, and delete all the vertices in .S; from the graph. Then we run the greedy algorithm on the new
graph again to get So, and so on. After running at most d rounds (since each round reduces the maximum
degree of the graph by at least one), we partition all the vertices into an ISC of size at most d and the total
running time is at most O(dn). O

Our main result in this section is a local computation algorithm that computes an ISC of size O(d log d)
for any graph of maximum degree d. On input a vertex v, our algorithm outputs the index ¢ of a vertex subset
S; to which v belongs, in an ISC of H. We will call i the round number of v in the ISC. By Fact[5.3] applying
this algorithm to graph G2 gives a local computation algorithm that computes a broadcast function for G.

5.1 A local computation algorithm for ISC

Our main result for computing an ISC is summarized in the following theorem.

Theorem 5.5. Let H be an undirected graph on n vertices with maximum degree d. Then there is a (poly(d)-
logn, O(n), 1/n)-local computation algorithm which, on input a vertex v, computes the round number of v
in an ISC of size at most O(dlogd). Moreover, the algorithm will give a consistent ISC for every vertex in

H.

On input a vertex v, our algorithm computes the round number of v in two phases. In Phase 1 we
simulate Luby’s algorithm for MIS [29] for O(dlogd) rounds. At each round, v tries to put itself in the
independent set generated in that round. That is, v chooses itself with probability 1/2d and if none of its
neighbors choose themselves, then v is selected in that round and we output that round number for v. As
we show shortly, after Phase 1, most vertices will be assigned a round number. We say v survives if it is not
assigned a round number. We consider the connected component containing v after one deletes all vertices
that do not survive from the graph. Following an argument similar to that of Beck [11], almost surely, all
such connected components of surviving vertices after Phase 1 have size at most O(log n). This enables us,
in Phase 2, to perform the greedy algorithm on v’s connected component to deterministically compute the
round number of v in time O(logn).

5.1.1 Phase 1 algorithm

Phase 1 of our local computation algorithm for computing an ISC is shown in Figure E]

For every v € V, let A, be the event that vertex v returns “_1”, i.e. v is not selected after r rounds. We
call such a v a surviving vertex. After deleting all v that do not survive from the graph, we are interested in
bounding the size of the largest remaining connected component. Clearly event A, depends on the random
coin tosses of v and v’s neighboring vertices in all the  rounds. A graph H on the vertices V (H) (the indices

%In 2(b), we flip random coins for u even if u is selected in a previous round. We do this for the technical reason that we want
to rid the dependency of v on nodes that are not neighbors to simplify our analysis. Thus our analysis is overly pessimistic since if
selected neighbors stop choosing themselves, it only increases the chance of v being selected.
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INDEPENDENT SET COVER: PHASE 1
Input: a graph H and a vertex v € V
Output: the round number of v in the ISC or “_L”
1. Initialize all vertices in N (v) to state “1”
2. Fori=1tor = 20dlogd
(a) If v is labeled " L"
v chooses itself independently with probability 2%
(b) If v chooses itself
(i) For every u € N (v)
(even if u is labeled “selected in round 5
for some j < ¢, we still flip random coins for it)
u chooses itself independently with probability ﬁ
(i1) If v has a chosen neighbor,
v unchooses itself
(iii) Else
v is labeled “selected in round "
return ¢
3. return “L1”

Figure 3: Algorithm for finding an Independent Set Cover: Phase 1.

for the A,) is called a dependency graph for {Av}vev( g if for all v the event A, is mutually independent
of all A, with (u,v) ¢ H.

The following two claims are identical to Claim[4.4|and Claim[4.5]in Sectiond]respectively, we therefore
omit the proofs.

Claim 5.6. The dependency graph H has maximum degree d>.
Claim 5.7. For every v € V, the probability that A, occurs is at most 1/8d>.
The following observation is crucial in our local computation algorithm.

Lemma 5.8. After Phase 1, with probability at least 1 — 1/n, all connected components of the surviving
vertices are of size at most O(poly(d) - logn).

Proof. The proof is almost identical to that of Lemma4.6 but is only simpler: we can directly upper bound
the probability
Prl[all vertices in W are surviving vertices| = Pr[N,ew Ay

by way of Beck [[11] without resorting to any other random process. We omit the proof. O

5.1.2 Phase 2 algorithm

If v is a surviving vertex after Phase 1, we perform Phase 2 of the algorithm. In this phase, we first explore
the connected component, C'(v), that the surviving vertex v lies in. If the size of C(v) is larger than co logn
for some constant ¢z (d) depending only on d, we abort and output “Fail”. Otherwise, we perform the simple
greedy algorithm described in Factto partition C'(v) into at most d subsets deterministically. The running
time for Phase 2 is at most poly(d) - logn. Since any independent set of a connected component can be
combined with independent sets of other connected components to form an IS for the surviving vertices, we
conclude that the total size of ISC we find is O(d logd) + d = O(dlogd).
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5.2 Discussions

Now a simple application of Theorem to G2 gives a local computation algorithm for the broadcast
function.

Theorem 5.9. Given a graph G = (V, E) with n vertices and maximum degree A and a vertexv € V, there
exists a (poly(A) -logn, O(n), 1/n)-local computation algorithm that computes a broadcast function with
at most O(A%log A) rounds. Furthermore, the broadcast function it outputs is consistent for all queries to
the vertices of the graph.

We note our round number bound is quadratically larger than that of Alon’s parallel algorithm [2]]. We
do not know how to turn his algorithm into a local computation algorithm.

6 Hypergraph two-coloring

A hypergraph H is a pair H = (V, E') where V is a finite set whose elements are called nodes or vertices,
and E is a family of non-empty subsets of V, called hyperedges. A hypergraph is called k-uniform if
each of its hyperedges contains precisely k vertices. A two-coloring of a hypergraph H is a mapping
c: V — {red, blue} such that no hyperedge in E' is monochromatic. If such a coloring exists, then we say
H is two-colorable. We assume that each hyperedge in H intersects at most d other hyperedges. Let N be
the number of hyperedges in H. Here we think of k£ and d as fixed constants and all asymptotic forms are
with respect to N. By the Lovasz Local Lemma, when e(d+1) < 2¥~1, the hypergraph H is two-colorable.

Let m be the total number of vertices in H. Note that m < kN, so m = O(N). For any vertex x € V,
we use & () to denote the set of hyperedges = belongs to. For convenience, for any hypergraph H = (V, E),
we define an m-by-N vertex-hyperedge incidence matrix M such that, for any vertex = and hyperedge e,
Mg =1ife € £(x) and M, . = 0 otherwise. A natural representation of the input hypergraph H is this
vertex-hyperedge incidence matrix M. Moreover, since we assume both & and d are constants, the incidence
matrix M is necessarily very sparse. Therefore, we further assume that the matrix M is implemented via
linked lists for each row (that is, vertex x) and each column (that is, hyperedge e).

Let GG be the dependency graph of the hyperedges in H. That is, the vertices of the undirected graph GG
are the N hyperedges of H and a hyperedge E; is connected to another hyperedge E; in G if E; N E; # (.
It is easy to see that if the input hypergraph is given in the above described representation, then we can find
all the neighbors of any hyperedge F; in the dependency graph G (there are at most d of them) in O(log N)
time.

6.1 Our main result

A natural question to ask is: Given a two-colorable hypergraph H and a vertex v € V(H ), can we quickly
compute the coloring of v? Here we would like the coloring to be consistent, meaning all the answers we pro-
vide must come from the same valid two-coloring. Our main result in this section is, given a two-colorable
hypergraph H whose two-coloring scheme is guaranteed by the Lovédsz Local Lemma (with slightly weaker
parameters), we give a local computation algorithm which answers queries of the coloring of any single
vertex in polylogN time, where IV is the number of the hyperedges in H. The coloring returned by our
oracle will agree with some two-coloring of the hypergraph with probability at least 1 — 1/N.
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Theorem 6.1. Let d and k be such that there exist three positive integers k1, ko and ks such that the follow-
ings hold:

ki + ko + ks =k,
16d(d — 1)3(d + 1) < 2™,
16d(d — 1)3(d + 1) < 2F2,
2e(d +1) < 23,

Then there exists a (polylogN, O(N), 1/N)-local computation algorithm which, given a hypergraph H and
any sequence of queries to the colors of vertices (x1,xa,...,Ts), returns a consistent coloring for all z;’s
which agrees with some 2-coloring of H.

6.2 Overview of the coloring algorithm

Our local computation algorithm imitates the parallel coloring algorithm of Alon [2f]. Recall that Alon’s
algorithm runs in three phases. In the first phase, we randomly color each vertex in the hypergraph following
some arbitrary ordering of the vertices. If some hyperedge has k; vertices in one color and no vertices in the
other color, we call it a dangerous edge and mark all the remaining vertices in that hyperedge as troubled.
These troubled vertices will not be colored in the first phase. If the queried vertex becomes a troubled vertex
from the coloring process of some previously queried vertex, then we run the Phase 2 coloring algorithm.
There we first delete all hyperedges which have been assigned both colors and call the remaining hyperedges
surviving edges. Then we repeat the same process again for the surviving hyperedges, but this time a
hyperedge becomes dangerous if k; + ko vertices are colored the same color and no vertices are colored by
the other color. Finally, in the third phase, we do a brute-force search for a coloring in each of the connected
components of the surviving vertices as they are of size O(loglog V') almost surely.

A useful observation is, in the first phase of Alon’s algorithm, we can color the vertices in arbitrary
order. In particular, this order can be taken to be the order that queries to the local computation algorithm
are made in. If the coloring of a vertex x can not be determined in the first phase, then we explore the
dependency graph around the hyperedges containing x and find the connected component of the surviving
hyperedges to perform the second phase coloring. To ensure that all the connected components of surviving
hyperedges resulting from the second phase coloring are of small sizes, we repeat the second phase colorings
independently many times until the connected components sizes are small enough. If that still can not decide
the coloring of x, then we run the third (and final) phase of coloring, in which we exhaustively search for
a two-coloring for vertices in some very small (i.e., of size at most O(loglog N)) connected component in
(G as guaranteed by our second phase coloring. Following Alon’s analysis, we show that with probability at
least 1 — 1/N, the total running time of all these three phases for any vertex in H is polylogNV.

During the execution of the algorithm, each hyperedge will be in either initial, safe, unsafe-1, unsafe-2,
dangerous-1 or dangerous-2 state. Vertices will be in either uncolored, red, blue, trouble-1 or trouble-2
state. The meanings of all these states should be clear from their names. Initially every hyperedge is in
initial state and every vertex is in uncolored state.

6.3 Phase 1 coloring

If = is already colored (that is, x is in either red or blue state), then we simply return that color. If x is
in the trouble-1 state, we invoke Phase 2 coloring for vertex x. If x is in the trouble-2 state, we invoke
Phase 3 coloring for vertex x. If = is uncolored, then we flip a fair coin to color x red or blue with equal
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Phase 1 Coloring(x)

Input: a vertex x € V

Output: a color in {red, blue}

1. If x is already colored
Return the color of x

2. If xisin trouble-1 state
Return Phase 2 Coloring(z)

3. If x is in trouble-2 state
Return Phase 3 Coloring(z)

4. 1If x is in uncolored state
(a) Uniformly at random choose a color ¢ for x from {red, blue}
(b) Update the states of all hyperedges in &(x)
(c) Return color ¢

Figure 4: Phase 1 coloring algorithm

probability (that is, vertex z’s state becomes red or blue, respectively). After that, we update the status of
all the hyperedges in £(z). Specifically, if some E; € £(x) has k; vertices in one color and no vertices in
the other color, then we change F; from initial into dangerous-1 state. Furthermore, all uncolored vertices
in ; will be changed to frouble-1 states. On the other hand, if both colors appear among the vertices of
FE;, we update the state of E; from initial to safe. If none of the vertices in a hyperedge is uncolored and
the hyperedge is still in initial state (that is, it is neither safe or dangerous-1), then we change its state to
unsafe-1. Note that if a hyperedge is unsafe-1 then all of its vertices are either colored or in trouble-1 state,
and the colored vertices are monochromatic.

Running time analysis. The running time of Phase 1 coloring for an uncolored vertex x is O(kd) = O(1)
(recall that we assume both &k and d are constants). This is because vertex = can belong to at most d + 1
hyperedges, hence there are at most k(d+ 1) vertices that need to be updated during Phase 1. If z is already a
colored vertex, the running time is clearly O(1). Finally, the running time of Phase 1 coloring for a trouble-1
or trouble-2 vertex is O(1) plus the running time of Phase 2 coloring or O(1) plus the running time of Phase
3 coloring, respectively.

6.4 Phase 2 coloring

During the second phase of coloring, given an input vertex x (which is necessarily a trouble-1), we first
explore the dependency graph G of the hypergraph H by keep coloring some other vertices whose colors
may have some correlation with the coloring of x. In doing so, we grow a connected component of surviving-
1 hyperedges containing x in G. Here, a hyperedge is called surviving-1 if it is either dangerous-1 or
unsafe-1. We denote this connected component of surviving-1 hyperedges surrounding vertex = by C1 ().

Growing the connected component. Specifically, in order to find out C' (z), we maintain a set of hyper-
edges &; and a set of vertices V7. Throughout the process of exploring GG, V] is the set of uncolored vertices
that are contained in some hyperedge in &;. Initially & = £(z). Then we independently color each vertex
in V1 red or blue uniformly at random. After coloring each vertex, we update the state of every hyperedge
that contains the vertex. That is, if any hyperedge E; € V; becomes safe, then we remove E; from V; and
delete all the vertices that are only contained in E;. On the other hand, once a hyperedge in V; becomes
dangerous-2 (it has ko vertices, all the uncolored vertices in that hyperedge become trouble-2 and we skip
the coloring of all such vertices. After the coloring of all vertices in Vj, hyperedges in £ are surviving
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Phase 2 Coloring(x)

Input: a trouble-1 vertex x € V

Output: a color in {red, blue} or FAIL

1. Start from &(z) to explore G in order to find the connected
components of all the surviving-1 hyperedges around x

2. If the size of the component is larger than c; log N
Abort and return FAIL

3. Repeat the following O( 101,;5) JgV ) times and stop if a good coloring is found
(a) Color all the vertices in C (z) uniformly at random
(b) Explore the dependency graph of G|g, ()
(c) Check if the coloring is good

4. Return the color of z in the good coloring

Figure 5: Phase 2 coloring algorithm

hyperedges. Then we check all the hyperedges in G that are adjacent to the hyperedges in £;. If any of these
hyperedges is not in the safe state, then we add it to &1 and also add all its uncolored vertices to V;. Now we
repeat the coloring process described above for these newly added uncolored vertices. This exploration of
the dependency graph terminates if, either there is no more hyperedge to color, or the number of surviving-1
hyperedges in & is greater than c; log N, where ¢; is some absolute constant. The following Lemma shows
that, almost surely, the size of C' () is at most ¢; log N.

Lemma 6.2 ([2]). Let S C G be the set of surviving hyperedges after the first phase. Then with probability
at least 1 — ﬁ (over the choices of random coloring), all connected components C1(x) of G|s have sizes
at most ¢, log N.

Random coloring. Since C(z) is not connected to any surviving-1 hyperedges in H, we can color the
vertices in the connected component C () without considering any other hyperedges that are outside C ().
Now we follow a similar coloring process as in Phase 1 to color the vertices in C}(x) uniformly at random
and in an arbitrary ordering. The only difference is, we ignore all the vertices that are already colored red
or blue, and if ky + ko vertices in a hyperedge get colored monochromatically, and all the rest of vertices in
the hyperedge are in frouble-1 state, then this hyperedge will be in dangerous-2 state and all the uncolored
vertices in it will be in trouble-2 state. Analogously we define unsafe-2 hyperedges as hyperedges whose
vertices are either colored or in frouble-2 state and all the colored vertices are monochromatic. Finally, we
say a hyperedge is a surviving-2 edge if it is in either dangerous-2 state or unsafe-2 state.

Let Si(x) be the set of surviving hyperedges in C' () after all vertices in C () are either colored or in
trouble-2 state. Now we explore the dependency graph of S (x) to find out all the connected components.
Another application of Lemma to Gg, (z) shows that with probability at least 1 — O<log12 N) (over the
choices of random coloring), all connected components in G| s (=) have sizes at most ¢z log log N, where ¢,
is some constant. We say a Phase 2 coloring is good if this condition is satisfied. Now if a random coloring
is not good, then we erase all the coloring performed during Phase 2 and repeat the above coloring and
exploring dependency graph process. We keep doing this until we find a good coloring. Therefore, after
recoloring at most O(log’ﬁ) fgv ) times (and therefore with at most polylog/N' running time), we can, with
probability at least 1 — 1/2N?2, color C; () such that each connected component in G| S (=) has size at most
¢ loglog N. By the union bound, with probability at least 1 —1/2 N, the Phase 2 colorings for all connected
components find some good colorings.
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Phase 3 Coloring(x)

Input: a trouble-2 vertex x € V

Output: a color in {red, blue}

1. Start from £(z) to explore G in order to find the connected
component of all the surviving-2 hyperedges around z

2. Go over all possible colorings of the connected component
and color it using a feasible coloring.

3. Return the color ¢ of z in this coloring.

Figure 6: Phase 3 coloring algorithm

Running time analysis. Combining the analysis above with an argument similar to the running time analysis
of Phase 1 coloring gives

Claim 6.3. Phase 2 coloring takes at most polylogN time.

6.5 Phase 3 coloring

In Phase 3, given a vertex x (which is necessarily frouble-2), we grow a connected component which includes
z as in Phase 2, but of surviving-2 hyperedges. Denote this connected component of surviving-2 hyperedges
by Cy(z). By our Phase 2 coloring, the size of Ca(x) is no greater than ¢y loglog N. We then color the
vertices in this connected component by exhaustive search. The existence of such a coloring is guaranteed
by the Lovdsz Local Lemma (Lemma [3.1).

Claim 6.4. The time complexity of Phase 3 coloring is at most polylogN.

Proof. Using the same analysis as for Phase 2, in time O(log log N') we can explore the dependency graph to
grow our connected component of surviving-2 hyperedges. Exhaustive search of a valid two-coloring of all
the vertices in Cy () takes time at most 20(¢2(2))) = 90(oglogN) — polylogN, as |Cy(z)| < cologlog N
and each hyperedge contains k vertices. O

Finally, we remark that using the same techniques as those in [2]], we can make our local computation
algorithm run in parallel and find an ¢-coloring of a hypergraph for any ¢ > 2 (an ¢-coloring of a hypergraph
is to color each vertex in one of the ¢ colors such that each color appears in every hyperedge).

7 k-CNF

As another example, we show our hypergraph coloring algorithm can be easily modified to compute a
satisfying assignment of a k-CNF formula, provided that the latter satisfies some specific properties.

Let H be a k-CNF formula on m Boolean variables z1,...,z,,. Suppose H has N clauses H =
Ay A -+ AN Ay and each clause consists of exactly k& distinct literalsE] We say two clauses A; and A;
intersect with each other if they share some variable (or the negation of that variable). As in the case for
hypergraph coloring, k£ and d are fixed constants and all asymptotics are with respect to the number of
clauses NV (and hence m, since m < kN). Our main result is the following.

7 Our algorithm works for the case that each clause has at least k literals; for simplicity, we assume that all clauses have uniform
size.
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Theorem 7.1. Let H be a k-CNF formula with k > 2. If each clause intersects no more than d other
clauses and furthermore k and d are such that there exist three positive integers ki, ko and ks satisfying the
followings relations:

k1 + ko + ks = k,
8d(d —1)3(d +1) < 2M,
8d(d —1)3(d + 1) < 272,

e(d+1) < 2k,

then there exists a local computation algorithm that, given any sequence of queries to the truth assignments
of variables (x1,x2,...,xs), with probability at least 1 — 1/N, returns a consistent truth assignment for
all x;’s which agrees with some satisfying assignment of the k-CNF formula H. Moreover, the algorithm
answers each single query in O((log N)¢) time, where c is some constant (depending only on k and d).

Proof [Sketch]: We follow a similar algorithm to that of hypergraph two-coloring as presented in Section|[6]
Every clause will be in either initial, safe, unsafe-1, unsafe-2, dangerous-1 or dangerous-2 state. Every
variable will be in either unassigned, true-1, false-1, trouble-1 or trouble-2 state. Initially every clause is in
initial state and every variable is in unassigned state. Suppose we are asked about the value of a variable
x;. If ; is in initial state, we randomly choose from {true, false} with equal probabilities and assign it to
x;. Then we update all the clauses that contain either x; or Z; accordingly: If the clause is already evaluated
to true by this assignment of x;, then we mark the literal as safe; if the clause is in initial state and is
not safe yet and x; is the kih literal in the clause that has been assigned values, then the clause is marked
as dangerous-1 and all the remaining unassigned variables in that clause are now in trouble-1 state. We
perform similar operations for clauses in other states as we do for the hypergraph coloring algorithm. The
only difference is now we have Pr[A; becomes dangerous-1] = 27%1, instead of 2! =1 as in the hypergraph
coloring case. Following the same analysis, almost surely, all connected components in the dependency
graph of unsafe-1 clauses are of size at most O(log V) and almost surely all connected components in the
dependency graph of unsafe-2 clauses are of size at most O(loglog V'), which enables us to do exhaustive
search to find a satisfying assignment. [

8 Concluding Remarks and Open Problems

In this paper we propose a model of local computation algorithms and give some techniques which can
be applied to construct local computation algorithms with polylogarithmic time and space complexities. It
would be interesting to understand the scope of problems which can be solved with such algorithms and to
develop other techniques that would apply in this setting.

Acknowledgments

We would like to thank Ran Canetti, Tali Kaufman, Krzysztof Onak and the anonymous referees for useful
discussions and suggestions. We thank Johannes Schneider for his help with the references.

20



References

[1] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Property-preserving data reconstruction. Algorith-
mica, 51(2):160-182, 2008.

[2] N. Alon. A parallel algorithmic version of the Local Lemma. Random Structures and Algorithms,
2:367-378, 1991.

[3] N. Alon, L. Babai, and A. Itai. A fast and simple randomized algorithm for the maximal independent
set problem. Journal of Algorithms, 7:567-583, 1986.

[4] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. On the complexity of radio communication. In Proc.
21st Annual ACM Symposium on the Theory of Computing, pages 274-285, 1989.

[5] N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. Single round simulation on radio networks. Journal of
Algorithms, 13:188-210, 1992.

[6] N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Small-space local computation algorithms. Manuscript
in preparation, 2011.

[7] R. Andersen, C. Borgs, J. Chayes, J. Hopcroft, V. Mirrokni, and S. Teng. Local computation of
pagerank contributions. Internet Mathematics, 5(1-2):23-45, 2008.

[8] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank vectors. In Proc. 47th
Annual IEEE Symposium on Foundations of Computer Science, pages 475486, 2006.

[9] L. Barenboim and M. Elkin. Distributed (A + 1)-coloring in linear (in A) time. In Proc. 41st Annual
ACM Symposium on the Theory of Computing, pages 111-120, 2009.

[10] L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylogarithmic time. In
Proc. 29th ACM Symposium on Principles of Distributed Computing, pages 410—419, 2010.

[11] J. Beck. An algorithmic approach to the Lovéasz Local Lemma. Random Structures and Algorithms,
2:343-365, 1991.

[12] P.Berkhin. Bookmark-coloring algorithm for personalized pagerank computing. Internet Mathematics,
3(1):41-62, 2006.

[13] B. Chazelle and C. Seshadhri. Online geometric reconstruction. In SoCG, pages 386 — 394, 2006.

[14] S. Cook. A taxonomy of problem with fast parallel algorithms. Information and Control, 64(1-3):2—
22, 1985.

[15] P. Erdos and L. Lovasz. Problems and results on 3-chromatic hypergraphs and some related questions.
In A. Hajnal et. al., editor, “Infinite and Finite Sets”, Collog. Math. Soc. J. Bolyai, volume 11, pages
609-627. North-Holland, 1975.

[16] A. V. Goldberg, S. A. Plotkin, and G. Shannon. Parallel symmetry-breaking in sparse graphs. SIAM
Journal on Discrete Mathematics, 1(4):434-446, 1988.

[17] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approx-
imation. Journal of the ACM, 45:653-750, 1998.

21



[18] A. Hasidim, J. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions for approximation and
testing. In Proc. 50th Annual IEEE Symposium on Foundations of Computer Science, pages 22-31,
2009.

[19] G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of the 12th International
Conference on World Wide Web, pages 271-279, 2003.

[20] R. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem. Journal
of the ACM, 32(4):762-773, 1985.

[21] J. Katz and L. Trevisan. On the efficiency of local decoding procedures for error-correcting codes. In
Proc. 32nd Annual ACM Symposium on the Theory of Computing, pages 80-86, 2000.

[22] F. Kuhn. Local multicoloring algorithms: Computing a nearly-optimal tdma schedule in constant time.
In STACS, pages 613-624, 2009.

[23] F. Kuhn and T. Moscibroda. Distributed approximation of capacitated dominating sets. In SPAA, pages
161-170, 2007.

[24] F. Kuhn, T. Moscibroda, T. Nieberg, and R. Wattenhofer. Fast deterministic distributed maximal inde-
pendent set computation on growth-bounded graphs. In DISC, pages 273-287, 2005.

[25] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed locally! In Proc. 23rd ACM
Symposium on Principles of Distributed Computing, pages 300-309, 2004.

[26] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In Proc. 17th ACM-SIAM
Symposium on Discrete Algorithms, pages 980-989, 2006.

[27] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In Proc. 25th ACM
Symposium on Principles of Distributed Computing, pages 7-15, 2006.

[28] L. Lovasz. Combinatorial Problems and Exercises. Elsevier B.V., Amsterdam, The Netherlands,
second edition, 1993.

[29] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on
Computing, 15(4):1036-1053, 1986. Earlier version in STOC’85.

[30] S. Marko and D. Ron. Distance approximation in bounded-degree and general sparse graphs. In
APPROX-RANDOM’06, pages 475486, 2006.

[31] A.Mayer, S. Naor, and L. Stockmeyer. Local computations on static and dynamic graphs. In Proceed-
ings of the 3rd Israel Symposium on Theory and Computing Systems (ISTCS), 1995.

[32] R. Moser. A constructive proof of the general Lovasz local lemma. In Proc. 41st Annual ACM Sym-
posium on the Theory of Computing, pages 343350, 2009.

[33] R. Moser and G. Tardos. A constructive proof of the general Lovasz local lemma. Journal of the ACM,
57(2):Article No. 11, 2010.

[34] M. Naor and L. Stockmeyer. What can be computed locally?  SIAM Journal on Computing,
24(6):1259-12717, 1995.

22



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local improvements. In Proc.
49th Annual IEEE Symposium on Foundations of Computer Science, pages 327-336, 2008.

M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear time and a connection
to distributed algorithms. Theoretical Computer Science, 381(1-3):183-196, 2007.

M. E. Saks and C. Seshadhri. Local monotonicity reconstruction. SIAM Journal on Computing,
39(7):2897-2926, 2010.

T. Sarlos, A. Benczur, K. Csalogany, D. Fogaras, and B. Racz. To randomize or not to randomize:
Space optimal summaries for hyperlink analysis. In Proceedings of the 15th International Conference
on World Wide Web, pages 297-306, 2006.

J. Schneider and R. Wattenhofer. A log-star distributed maximal independent set algorithm for growth-
bounded graphs. In Proc. 27th ACM Symposium on Principles of Distributed Computing, pages 35-44,
2008.

J. Schneider and R. Wattenhofer. A new technique for distributed symmetry breaking. In Proc. 29th
ACM Symposium on Principles of Distributed Computing, pages 257-266, 2010.

D. Spielman and S. Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proc. 36th Annual ACM Symposium on the Theory of Computing, pages
81-90, 2004.

Y. Yoshida, Y. Yamamoto, and H. Ito. An improved constant-time approximation algorithm for maxi-
mum matchings. In Proc. 41st Annual ACM Symposium on the Theory of Computing, pages 225-234,
2009.

23



	Introduction
	Related work
	Followup work
	Organization

	Local Computation Algorithms: the model
	Model Definition
	Relationship with other distributed and parallel models
	Locality-preserving reductions

	Preliminaries
	Maximal Independent Set
	Overview of the algorithm
	Phase 1: simulating Luby's parallel algorithm
	Phase 2: Greedy search in the connected component

	Radio Networks
	A local computation algorithm for ISC
	Phase 1 algorithm
	Phase 2 algorithm

	Discussions

	Hypergraph two-coloring
	Our main result
	Overview of the coloring algorithm
	Phase 1 coloring
	Phase 2 coloring
	Phase 3 coloring

	k-CNF
	Concluding Remarks and Open Problems

