
Robust Characterizations of k-wise Independence over Product
Spaces and Related Testing Results∗

Ronitt Rubinfeld†

MIT and Tel Aviv University
ronitt@csail.mit.edu

Ning Xie‡

MIT
ningxie@csail.mit.edu

Abstract

A discrete distribution D over Σ1 × · · · × Σn is called (non-uniform) k-wise independent if for any
subset of k indices {i1, . . . , ik} and for any z1 ∈ Σi1 , . . . , zk ∈ Σik , PrX∼D[Xi1 · · ·Xik = z1 · · · zk] =
PrX∼D[Xi1 = z1] · · ·PrX∼D[Xik = zk]. We study the problem of testing (non-uniform) k-wise
independent distributions over product spaces. For the uniform case we show an upper bound on the
distance between a distribution D from k-wise independent distributions in terms of the sum of Fourier
coefficients of D at vectors of weight at most k. Such a bound was previously known only when the
underlying domain is {0, 1}n. For the non-uniform case, we give a new characterization of distributions
being k-wise independent and further show that such a characterization is robust based on our results
for the uniform case. These results greatly generalize those of Alon et al. [STOC’07, pp. 496–505]
on uniform k-wise independence over the Boolean cubes to non-uniform k-wise independence over
product spaces. Our results yield natural testing algorithms for k-wise independence with time and
sample complexity sublinear in terms of the support size of the distribution when k is a constant. The
main technical tools employed include discrete Fourier transform and the theory of linear systems of
congruences.
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1 Introduction

Nowadays we are both blessed and cursed by the colossal amount of data available for processing. In many
situations, simply scanning the whole data set once can be a daunting task. It is then natural to ask what
we can do in sublinear time. For many computational questions (for example, determining if a given graph
is 3-colorable or bipartite, determining if an input Boolean function f : {0, 1}n → {0, 1} is a low-degree
polynomial, determining if a given list of integers is in monotone order, etc), if instead of asking the decision
version of the problems, one can relax the questions and consider the analogous property testing problems,
then sublinear algorithms are often possible. See the survey articles [18, 35, 27, 13].

Property testing algorithms [36, 19] are usually based on robust characterizations of the objects being
tested. For instance, the linearity test introduced in [11] is based on the characterization that a function is
linear if and only if the linearity test (for uniformly and randomly chosen x and y, check if f(x) + f(y) =
f(x + y)) has acceptance probability 1. Moreover, the characterization is robust in the sense that if the
linearity test accepts a function with probability close to 1, then the function must be also close to some
linear function. Property testing often leads to a new understanding of well-studied problems and sheds
insight on related problems.

In this work, we show robust characterizations of k-wise independent distributions over discrete prod-
uct spaces and give sublinear-time testing algorithms based on these robust characterizations. Note that
distributions over product spaces are in general not product distributions, which by definition are n-wise
independent distributions (see below for definition).

The k-wise Independent Distributions. For a finite set Σ, a discrete probability distribution D over Σn

is (non-uniform) k-wise independent if for any set of k indices {i1, . . . , ik} and for all z1, . . . , zk ∈ Σ,
PrX∼D[Xi1 · · ·Xik = z1 · · · zk] = PrX∼D[Xi1 = z1] · · ·PrX∼D[Xik = zk]. That is, restricting D to
any k coordinates gives rise to a fully independent distribution. For the special case when PrX∼D[Xi =
z] = 1

|Σ| for every index i and every letter z in the alphabet, we refer to the distribution as uniform k-
wise independent1. A distribution is almost k-wise independent if its restriction to any k coordinates is
very close to some independent distribution. k-wise independent distributions look independent “locally”
to any observer of only k coordinates, even though they may be far from the fully independent distributions
“globally”. Furthermore, k-wise independent distributions can be constructed with exponentially smaller
support sizes than fully independent distributions. Because of these useful properties, k-wise independent
distributions have many applications in both probability theory and computational complexity theory [23,
25, 28, 31].

Given samples drawn from a distribution, it is natural to ask, how many samples are required to tell
whether the distribution is k-wise independent or far from k-wise independent, where by “far from k-wise
independent” we mean that the distribution has a large statistical distance from any k-wise independent
distribution. Usually the time and query complexity of distribution testing algorithms are measured against
the domain sizes of the distributions. For example, algorithms that test distributions over {0, 1}n with time
complexity o(2n) are said to be sublinear-time testing algorithms.

Alon, Goldreich and Mansour [4] implicitly gave the first robust characterization of k-wise independence.
Alon et al. [1] improved the bounds in [4] and also gave efficient testing algorithms. All of these results
consider only uniform distributions over GF(2). Our work generalizes previous results in two ways: to
distributions over arbitrary finite product spaces and to non-uniform k-wise independent distributions.

1In literature the term “k-wise independence” usually refers to uniform k-wise independence.
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Generic Algorithm for Testing Uniform k-wise Independence

1. Sample D independently M times

2. Use these samples to estimate all the Fourier coefficients of weight at most k

3. Accept if the magnitudes of all the estimated Fourier coefficients are at most δ

Figure 1: A Generic Algorithm for testing uniform k-wise independence.

1.1 Our Results

Let Σ = {0, 1, . . . , q − 1} be the alphabet2 and let D : Σn → [0, 1] be the distribution to be tested. For
any vector a ∈ Σn, the Fourier coefficient of distribution D at a is D̂(a) =

∑
x∈Σn D(x)e

2πi
q

∑n
j=1 ajxj =

EX∼D

[
e

2πi
q

∑n
j=1 ajXj

]
. The weight of a is the number of non-zero entries in a. It is a folklore fact that a

distribution D is uniform k-wise independent if and only if for all non-zero vectors a of weight at most k,
D̂(a) = 0. A natural test for k-wise independence is thus the Generic Algorithm described in Fig. 1.

However, in order to prove that the Generic Algorithm works, one needs to show that the simple char-
acterization of k-wise independence is robust. Here, robustness means that for any distribution D if all its
Fourier coefficients at vectors of weight at most k are at most δ (in magnitude), then D is ε(δ)-close to some
uniform k-wise independent distribution, where the closeness parameter ε is in general a function of the er-
ror parameter δ, domain size and k. Consequently, the query and time complexity of the Generic Algorithm
will depend on the underlying distance upper bound between D and k-wise independence.

Our first main result is the following robust characterization of uniform k-wise independence.

Theorem 1.1 (First Main Theorem). Let Σ = {0, 1, . . . , q − 1} and D be a distribution over Σn. Let
∆(D,Dkwi) denote the distance between D and the set of (uniform) k-wise independent distributions over
Σn, then

∆(D,Dkwi) ≤
∑

0<wt(a)≤k

∣∣∣D̂(a)
∣∣∣ .

As it turns out, the sample complexity of our testing algorithm is Õ
(
n2k(q−1)2kq2

ε2

)
and the time com-

plexity is Õ
(
n3k(q−1)3kq2

ε2

)
, which are both sublinear when k = O(1) and q ≤ poly(n). We further

generalize this result to uniform k-wise independent distributions over product spaces, i.e., distributions
over Σ1 × · · · × Σn, where Σ1, . . . ,Σn are (different) finite sets.

Our second main result is a robust characterization of non-uniform k-wise independent distributions over
Σn.

Theorem 1.2 (Second Main Theorem). Let Σ = {0, 1, . . . , q − 1} and D be a distribution over Σn, then

∆(D,Dkwi) ≤ poly(n, q) max
a:0<wt(a)≤k

∣∣∣D̂non(a)
∣∣∣ ,

where the exponent in poly(n, q) is a function of k only and {D̂non(a)}a∈Σn are a set of non-uniform
Fourier coefficients to be defined later (see Section 5.1 for details).

2This is without loss of generality, since we are not assuming any field or ring structure of the underlying alphabet of the
distribution. All the properties about distributions considered in this paper are invariant under permutations of the symbols in the
alphabet.

2



As we show in Sections 5.4 and 5.5, if all the marginal probabilities PrX∼D[Xi = z], 1 ≤ i ≤ n and
z ∈ Σ, are bounded away from both zero and one, then Theorem 1.2 also implies a testing algorithm for
non-uniform k-wise independence whose sample and time complexity are polynomial in n and q when k is
a constant.

We remark that our result on non-uniform k-wise independent distributions also generalizes to distribu-
tions over product spaces.

To the best of our knowledge, there is no lower bound result for testing k-wise independence over general
domains except [1] which is for the binary field case. It will be interesting to get good lower bounds for
general domains as well.

Another related problem, namely testing almost k-wise independence over product spaces (see Section 6
for relevant definitions), admits a straightforward generalization of the testing algorithm given in [1], which
was only proved there for the (uniform) binary case. We include these results in Section 6.

Our results add a new understanding of the structures underlying (non-uniform) k-wise independent
distributions and it is hoped that one may find other applications of these robust characterizations.

As is often the case, commutative rings demonstrate different algebraic structures from those of prime
fields. For example, the recent improved construction [16] of 3-query locally decodable codes of Yekhanin [42]
relies crucially on the construction of set systems of superpolynomial size [21] such that the sizes of each
set as well as all the pairwise intersections satisfy certain congruence relations modulo composite numbers
(there is a polynomial upper bound when the moduli are primes). Generalizing results in the binary field (or
prime fields) to commutative rings often poses new technical challenges and requires additional new ideas.
We hope our results may find future applications in generalizing other results from the Boolean domains to
general domains.

1.2 Techniques

Previous Techniques. Given a distribution D over the binary field which is not k-wise independent, a
k-wise independent distribution was constructed in [4] by mixing3 D with a series of carefully chosen
distributions in order to zero-out all the Fourier coefficients over subsets of size at most k. The total weight
of the distributions used for mixing is an upper bound on the distance of D from k-wise independence. The
distributions used for mixing are indexed by subsets S ⊂ {1, 2, . . . , n} of size at most k. For a given such
subset S, the added distribution US is picked such that, on the one hand it corrects the Fourier coefficient
over S; on the other hand, US’s Fourier coefficient over any other subset is zero. Using the orthogonality
property of Hadamard matrices, one chooses US to be the uniform distribution over all strings whose parity
over S is 1 (or −1, depending on the sign of the distribution’s bias over S). Although one can generalize it
to work for prime fields, this construction breaks down when the alphabet size is a composite number.

For binary field a better bound is obtained in [1]. This is achieved by first working in the Fourier domain
to remove all the first k-level Fourier coefficients of the input distribution. Such an operation ends up with
a so-called “pseudo-distribution”, since at some points the resulting function may assume negative values.
Then a series of carefully chosen k-wise independent distributions are added to the pseudo-distribution to fix
the negative points. This approach does not admit a direct generalization to the non-Boolean cases because,
for larger domains, the pseudo-distributions are in general complex-valued. Nevertheless4, one may use
generalized Fourier expansion of real-valued functions to overcome this difficulty. We present this approach
in Section 3. However, the bound obtained from this approach is weaker than our main results for the

3Here “mixing” means replacing the distribution D with a convex combination of D and some other distribution.
4We thank an anonymous referee for pointing this out.
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uniform case which we discuss shortly. Moreover, the proof is “non-constructive” in the sense that we do
not know exactly what distributions should we mix with the input distribution to make it k-wise independent.
This drawback seems make it hard to generalize the approach to handle the non-uniform case. In contrast,
our results on non-uniform k-wise independence relies crucially on the fact that the correction procedure
for the uniform case is explicit and all the distributions used for mixing have some special structure (that is,
they are uniform over all but at most k coordinates in the domain).

Uniform Distributions. Our results on uniform k-wise independent distributions extend the framework
in [4]. As noted before, the key property used to mend a distribution into k-wise independent is the orthogo-
nality relation between any pair of vectors. We first observe that all prime fields also enjoy this nice feature
after some slight modifications. More specifically, for any two non-zero vectors a and b in Znp that are
linearly independent, the set of strings with

∑n
i=1 aixi ≡ j (mod p) are uniformly distributed over the sets

Sb,`
def
={x :

∑n
i=1 bixi ≡ ` (mod p)} for every 0 ≤ ` ≤ p−1. We call this the strong orthogonality between

vectors a and b. The case when q = |Σ| is not a prime is less straightforward. The main difficulty is that the
strong orthogonality between pairs of vectors no longer holds, even when they are linearly independent5.

Suppose we wish to use some distribution Ua to correct the bias over a. A simple but important observa-
tion is that we only need that Ua’s Fourier coefficient at b to be zero, which is a much weaker requirement
than the property of being strongly orthogonal between a and b. Using a classical result in linear systems
of congruences due to Smith [39], we are able to show that when a satisfies gcd(a1, . . . , an) = 1 and b
is not a multiple of a, the set of strings with

∑n
i=1 aixi ≡ j (mod q) are uniformly distributed over Sb,`

for `’s that lie in a subgroup of Zq (compared with the uniform distribution over the whole group Zp for
the prime field case). We refer to this as the weak orthogonality between vectors a and b. To zero-out the
Fourier coefficient at a, we instead bundle the Fourier coefficient at a with the Fourier coefficients at `a
for every ` = 2, . . . , q − 1, and think of them as the Fourier coefficients of some function over the one-
dimensional space Zq. This allows us to upper bound the total weight required to simultaneously correct all
the Fourier coefficients at a and its multiples using only Ua. We also generalize the result to product spaces
Ω = Σ1 × · · · × Σn, which in general have different alphabets at different coordinates.

Non-uniform Distributions. One possible way of extending the upper bounds of the uniform case to the
non-uniform case would be to map non-uniform probabilities to uniform probabilities over a larger domain.
For example, consider when q = 2 a distribution D with PrD[xi = 0] = 0.501 and PrD[xi = 1] = 0.499.
We could map xi = 0 and xi = 1 uniformly to {1, . . . , 501} and {502, . . . , 1000}, respectively and test
if the transformed distribution D′ over {1, . . . , 1000} is k-wise independent. Unfortunately, this approach
produces a huge overhead on the distance upper bound, due to the fact that the alphabet size (and hence
the distance bound) blowup depends on the closeness of marginal probabilities over different letters in the
alphabet. However, in the previous example we should expect D behaves very much like the uniform case
rather than with an additional factor of 1000 blowup in the alphabet size.

Instead we take the following approach. Consider a compressing/stretching factor for each marginal
probability PrD[xi = z], where z ∈ Σ and 1 ≤ i ≤ n. Specifically, let θi(z)

def
= 1

qPrD[xi=z]
so that

θi(z) PrD[xi = z] = 1
q , the probability that xi = z in the uniform distribution. If we multiply D(x)

for each x in the domain by a product of n such factors, one for each coordinate, the non-uniform k-wise
independent distribution will be transformed into a uniform one. The hope is that distributions close to

5We say two non-zero vectors a and b in Znq are linearly dependent if there exist two non-zero integers s and t in Zq such that
sai ≡ tbi (mod q) for every 1 ≤ i ≤ n, and linearly independent if they are not linearly dependent
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non-uniform k-wise independent will also be transformed into distributions that are close to uniform k-wise
independent. However, this could give rise to exponentially large distribution weight at some points in the
domain, making the task of estimating the relevant Fourier coefficients intractable. Intuitively, for testing k-
wise independence purposes, all we need to know are the “local” weight distributions. To be more specific,
for a vector a ∈ Σn, the support set or simply support of a is supp(a)

def
={i ∈ [n] : ai 6= 0}. For every

non-zero vector a of weight at most k, we define a new non-uniform Fourier coefficient at a in the following
steps:

1. Project D to supp(a) to get Dsupp(a);

2. For every point in the support of Dsupp(a), multiply the marginal probability by the product of a
sequence of compressing/stretching factors, one for each coordinate in supp(a). Denote this trans-
formed distribution by D′supp(a);

3. Define the non-uniform Fourier coefficient of D at a to be the (uniform) Fourier coefficient of
D′supp(a) at a.

We then show a new characterization that D is non-uniform k-wise independent if and only if all the
first k levels non-zero non-uniform Fourier coefficients of D are zero. This enables us to apply the Fourier
coefficient correcting approach developed for the uniform case to the non-uniform case. Loosely speaking,
for any vector a, we can find a (small-weight) distribution Wa such that mixing D′supp(a) with Wa zeroes-
out the (uniform) Fourier coefficient at a, which is, by definition, the non-uniform Fourier coefficient of
D at a. But this Wa is the distribution to mix with the “transformed” distribution, i.e., D′supp(a). To find
out the distribution works for D, we apply an inverse compressing/stretching transformation to Wa to get
W̃a. It turns out that mixing W̃a with the original distribution D not only corrects D’s non-uniform Fourier
coefficient at a but also dose not increase D’s non-uniform Fourier coefficients at any other vectors except
those vectors whose supports are strictly contained in supp(a). Moreover, transforming from Wa to W̃a

incurs at most a constant (independent of n) blowup in the total weight. Therefore we can start from vectors
of weight k and correct the non-uniform Fourier coefficients from level k to lower levels. This process ter-
minates after we finish correcting all vectors of weight 1 and thus obtain a k-wise independent distribution.
Bounding the total weight added during this process gives an upper bound on the distance between D and
non-uniform k-wise independence. We hope that the notion of non-uniform Fourier coefficients may find
other applications when non-uniform independence is involved.

1.3 Other Related Research

There are many works on k-wise independence, most focus on various constructions of k-wise indepen-
dence or distributions that approximate k-wise independence. k-wise independent random variables were
first studied in probability theory [23] and then in complexity theory [12, 2, 28, 29] mainly for derandom-
ization purposes. Constructions of almost k-wise independent distributions were studied in [31, 3, 5, 17, 9].
Construction results of non-uniform k-wise independent distributions were given in [24, 26].

There has been much activity on property testing of distributions. Some examples include testing unifor-
mity [20, 7], independence [6], monotonicity and being unimodal [8], estimating the support sizes [34] and
testing a weaker notion than k-wise independence, namely, “almost k-wise independence” [1].

Many other techniques have also been developed to generalize results from Boolean domains to arbitrary
domains [15, 30, 10].
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1.4 Organization

We first give some necessary definitions and preliminary facts in Section 2. A proof of the first main
theorem based on orthogonal polynomials is then given in Section 3. We present another proof of the
robust characterization of the uniform k-wise independent distributions in Section 4. We then generalize
the approach developed in Section 4 to the case of non-uniform k-wise independence and prove the second
main theorem in Section 5. Finally in Section 6 we study the problem of testing almost k-wise independence
over product spaces.

2 Preliminaries

Let n and m be two natural numbers with m > n. We write [n] for the set {1, . . . , n} and [n,m] for the
set {n, n + 1, . . . ,m}. For any integer 1 ≤ k ≤ n, we write

([n]
k

)
to denote the set of all k-subsets of

[n]. Throughout this paper, Σ always stands for a finite set. Without loss of generality, we assume that
Σ = {0, 1, . . . , q − 1}, where q = |Σ|.

We use bold letters to denote vectors in Σn, for example, a stands for the vector (a1, . . . , an) with ai ∈ Σ

being the ith component of a. For two vectors a and b in Σn, their inner product is a·bdef
=
∑n

i=1 aibi (mod q).
The support of a is the set of indices at which a is non-zero. That is, supp(a) = {i ∈ [n] : ai 6= 0}.
The weight of a vector a is the cardinality of its support. Let 1 ≤ k ≤ n be an integer. We use
M(n, k, q)

def
=
(
n
1

)
(q − 1) + · · · +

(
n
k

)
(q − 1)k to denote the total number of non-zero vectors in Σn of

weight at most k. Note that M(n, k, q) = Θ(nk(q − 1)k) for k = O(1).
We assume that there is an underlying probability distributionD from which we can receive independent,

identically distributed (i.i.d) samples. The domain Ω of every distribution we consider in this paper will
always be finite and in general is of the form Ω = Σ1 × · · · ×Σn, where Σ1, . . . ,Σn are finite sets. A point
x in Ω is said to be in the support of a distribution D if D(x) > 0.

Let D1 and D2 be two distributions over the same domain Ω. The statistical distance between D1 and
D2 is ∆(D1, D2) = 1

2

∑
x∈Ω |D1(x)−D2(x)|. One can check that statistical distance is a metric and in

particular satisfies the triangle inequality. We use statistical distance as the main metric to measure closeness
between distributions in this paper. For any 0 ≤ ε ≤ 1, one may define a new distribution D′ as the convex
combination of D1 and D2: D′ = 1

1+εD1 + ε
1+εD2. It then follows that ∆(D′, D1) ≤ ε

1+ε ≤ ε. Sometimes
we abuse notation and call the non-negative function εD1 a weighted distribution (in particular, a small-
weight distribution when ε is small).

Let S = {i1, . . . , ik} ⊆ [n] be an index set. Let x be an n-dimensional vector. We write xS to
denote the k-dimensional vector obtained from projecting x to the indices in S. Similarly, the projection
distribution of a discrete distribution D over Σn with respect to S, denoted by DS , is the distribution
obtained by restricting to the coordinates in S. Namely, DS : Σk → [0, 1] is a distribution such that
DS(zi1 · · · zik) =

∑
xS=(zi1 ,...,zik )D(x). For brevity, we sometimes write DS(zS) for DS(zi1 · · · zik).

2.1 The k-wise Independent Distributions

Let D : Σ1 × · · · × Σn → [0, 1] be a distribution. We say D is the uniform distribution if for every
x ∈ Σ1 × · · · × Σn, PrX∼D[X = x] = 1

q1···qn , where qi = |Σi|. D is k-wise independent if for any
set of k indices {i1, . . . , ik} and for any z1 · · · zk ∈ Σi1 × · · · × Σik , PrX∼D[Xi1 · · ·Xik = z1 · · · zk] =
PrX∼D[Xi1 = z1]× · · · × PrX∼D[Xik = zk]. D is uniform k-wise independent if, on top of the previous
condition, we have PrX∼D[Xi = zj ] = 1

|Σi| for every 1 ≤ i ≤ n and every zj ∈ Σi. Let Dkwi denote
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the set of all uniform k-wise independent distributions. The distance between D and Dkwi, denoted by
∆(D,Dkwi), is the minimum statistical distance between D and any uniform k-wise independent distribu-

tion, i.e., ∆(D,Dkwi)
def
= infD′∈Dkwi

∆(D,D′).

2.2 Discrete Fourier Transform.

For background on the discrete Fourier transform in computer science, the reader is referred to [40, 41, 14].
Let f : Σ1 × · · · × Σn → C be any function defined over the discrete product space, we define the Fourier
transform of D to be, for every a ∈ Σ1 × · · · × Σn,

f̂(a) =
∑

x∈Σ1×···×Σn

f(x)e
2πi(

a1x1
q1

+···+anxn
qn

)
. (1)

f̂(a) is called f ’s Fourier coefficient at a. If the weight of a is k, we then refer to f̂(a) as a degree-k or
level-k Fourier coefficient.

One can easily verify that the inverse Fourier transform is

f(x) =
1

q1 · · · qn

∑
a∈Σ1×···×Σn

f̂(a)e
−2πi(

a1x1
q1

+···+anxn
qn

)
. (2)

Note that if Σi = Σ for every 1 ≤ i ≤ n (which is the main focus of this paper), then f̂(a) =
∑

x∈Σn f(x)e
2πi
q

a·x

and f(x) = 1
|Σ|n

∑
a∈Σn f̂(a)e

− 2πi
q

a·x.
We will use the following two simple facts about discrete Fourier transform which are straightforward to

prove. Note that Fact 2.1 is a special case of Fact 2.2.

Fact 2.1. For any integer ` which is not congruent to 0 modulo q,
∑q−1

j=0 e
2πi
q
`j

= 0.

Fact 2.2. Let d, `0 be integers such that d|q and 0 ≤ `0 ≤ d− 1. Then
∑ q

d
−1

j=0 e
2πi
q

(`0+dj)
= 0.

Proposition 2.3. Let D be a distribution over Σ1×· · ·×Σn. Then D is the uniform distribution if and only
if for any non-zero vector a ∈ Σ1 × · · · × Σn, D̂(a) = 0.

Proof. First note that D̂(0) =
∑

xD(x) = 1. Therefore, if D̂(a) = 0 for all non-zero a, then by the
inverse Fourier transform (2),

D(x) =
1

q1 · · · qn
D̂(0) =

1

q1 · · · qn
.

For the converse, let a be any non-zero vector. Without loss of generality, suppose a1 6= 0. Since D(x) =
1

q1···qn for all x, we have

D̂(a) =
1

q1 · · · qn

∑
x

e
2πi(

a1x1
q1

+···+anxn
qn

)

=
1

q1 · · · qn

∑
x2,...,xn

e
2πi(

a2x2
q2

+···+anxn
qn

)
q1−1∑
x1=0

e
2πi
q1
a1x1

= 0. (by Fact 2.1)
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By applying Proposition 2.3 to distributions obtained from restricting D to any k indices and observing
the fact that, by the definition of Fourier transform, D̂(a) = D̂S(a) when supp(a) ⊆ S, we have the
following characterization of k-wise independent distributions over product spaces, which is the basis of all
the testing algorithms in this paper.

Corollary 2.4. A distribution D over Σ1 × · · · × Σn is k-wise independent if and only if for all non-zero
vectors a of weight at most k, D̂(a) = 0.

2.3 Some other Definitions and Notation

We are going to use the following notation extensively in this paper.

Definition 2.5. Let D be a distribution over Σn. For every a ∈ Σn and every 0 ≤ j ≤ q − 1, let
PDa,j

def
= PrX∼D[a ·X ≡ j (mod q)]. When the distribution D is clear from the context, we often omit the

superscript D and simply write Pa,j .

The Fourier transform (1) can be rewritten as

D̂(a) =

q−1∑
j=0

Pr
X∼D

[a ·X ≡ j (mod q)]e
2πi
q
j

=

q−1∑
j=0

Pa,je
2πi
q
j
. (3)

For any non-zero vector a ∈ Σn and any integer 0 ≤ j ≤ q − 1, let Sa,j
def
={x ∈ Σn :

∑n
i=1 aixi ≡

j (mod q)}. Finally we write Ua,j for the uniform distribution over Sa,j .

2.4 Query and Time Complexity Analysis of the Generic Testing Algorithm

We now provide a detailed analysis of the query and time complexity analysis of the generic testing algo-
rithm as shown in Fig. 1. The main technical tool is the following standard Chernoff bound.

Theorem 2.6 (Chernoff Bound). Let X1, . . . , Xm be i.i.d. 0-1 random variables with E [Xi] = µ. Let

µ̄ = 1
m

∑m
i=1Xi. Then for all γ, 0 < γ < 1, we have Pr[|µ̄− µ| ≥ γµ] ≤ 2 · e−

γ2µm
3 .

Theorem 2.7. Let D be a distribution over Σn where |Σ| = q and A be a subset of vectors in Σn. Suppose
the distance between D and the set of k-wise independent distributions satisfies the following conditions:

• (completeness) For any 0 ≤ δ ≤ 1, if ∆(D,Dkwi) ≤ δ, then |D̂(a)| ≤ κδ for every a in A;

• (soundness) ∆(D,Dkwi) ≤ K maxa∈A

∣∣∣D̂(a)
∣∣∣ , where K is a function of n, k, q and A.

Then for any 0 < ε ≤ 1, the generic testing algorithm draws6 m = O( q
2K2

ε2
log(q|A|)) independent

samples from D and runs in time O( q
2K2|A|
ε2

log(q|A|)) and satisfies the followings: If ∆(D,Dkwi) ≤ ε
3κK ,

then with probability at least 2/3, it outputs “Accept”; if ∆(D,Dkwi) > ε, then with probability at least
2/3, it outputs “Reject”.

6For all the cases studied in this paper, the size of A is much larger than q, therefore we omit the factor q in the logarithm in all
the subsequent formulas.
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Proof. The algorithm is to sample D independently m times and use these samples to estimate, for each
a ∈ A, the Fourier coefficient ofD at a. Then if maxa∈A

∣∣∣D̂(a)
∣∣∣ ≤ 2ε

3K , the algorithm acceptsD; otherwise
it rejects D. The running time bound follows from the fact that we need to estimate |A| Fourier coefficients
using m samples.

For every a ∈ A and 0 ≤ j ≤ q − 1, define a 0-1 indicator variable Ia,j(x), where x ∈ Σn, which is 1

if a · x ≡ j (mod q) and 0 otherwise. Clearly Īa,j
def
=E [Ia,j ] = Pa,j . Let P̄a,j = 1

m

∑
x∈Q Ia,j(x); that is,

P̄a,j is the empirical estimate of Pa,j . Since Pa,j ≤ 1, by Chernoff bound, Pr[|P̄a,j−Pa,j | > ε
3qK ] < 2

3q|A| .
By union bound, with probability at least 2/3, for every vector a in A and every 0 ≤ j < q, |P̄a,j −Pa,j | ≤
ε

3qK .
The following fact provides an upper bound of the error in estimating the Fourier coefficient at a in terms

of the errors from estimating Pa,j .

Fact 2.8. Let f, g : {0, . . . , q − 1} → R with |f(j) − g(j)| ≤ ε for every 0 ≤ j ≤ q − 1. Then∣∣∣f̂(`)− ĝ(`)
∣∣∣ ≤ qε for all 0 ≤ ` ≤ q − 1.

Proof. Let h = f − g, then |h(j)| ≤ ε for every j. Therefore,

|f̂(`)− ĝ(`)|

= |ĥ(`)| = |
q−1∑
j=0

h(j)e
2πi
q
`j |

≤
q−1∑
j=0

|h(j)e
2πi
q
`j | =

q−1∑
j=0

|h(j)|

≤
q−1∑
j=0

ε = qε.

Let ¯̂
D(a) be the estimated Fourier coefficient computed from P̄a,j . Fact 2.8 and (3) then imply that with

probability at least 2/3,
∣∣∣ ¯̂
D(a)− D̂(a)

∣∣∣ ≤ ε
3K for every a in A.

Now if ∆(D,Dkwi) ≤ ε
3κK , then by our completeness assumption, we have maxa∈A

∣∣∣D̂(a)
∣∣∣ ≤ ε

3K .

Taking the error from estimation into account, maxa∈A

∣∣∣ ¯̂
D(a)

∣∣∣ ≤ 2ε
3K holds with probability at least 2/3.

Therefore with probability at least 2/3, the algorithm returns “Accept”.
If ∆(D,Dkwi) > ε, then by our soundness assumption, maxa∈A

∣∣∣D̂(a)
∣∣∣ > ε

K . Again with probability

at least 2/3, maxa∈A

∣∣∣ ¯̂
D(a)

∣∣∣ > 2ε
3K for every a in A, so the algorithm returns “Reject”.

3 A Proof of Theorem 1.1 Based on Orthogonal Polynomials

In this section we give our first and conceptually simple proof of Theorem 1.1. The bound we prove here
is somewhat weaker that stated in Theorem 1.1. The basic idea is to apply the “cut in the Fourier space
and then mend in the function space” approach in [1] to Fourier expansions with discrete orthogonal real
polynomials as the basis functions.
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3.1 Generalized Fourier series

The discrete Fourier transform reviewed in Section 2 can be generalized to decompositions over any or-
thonormal basis of an inner product space. In particular, for the discrete function space R{0,...,q−1}, any
orthonormal basis of real functions {g0(x), . . . , gq−1(x)} with g0(x) = 1 for every x (the identity func-

tion)7 can be used in place of the standard Fourier basis {1, e
2πix
q , . . . , e

2πi(q−1)x
q }. In general, such a basis

of functions may be constructed by the Gram-Schmidt process. For concreteness, we present an explicit
construction based on discrete Legendre orthogonal polynomials [32], a special case of Hahn polynomials.
An extensive treatment of discrete orthogonal polynomials may be found in [33]. We remark that our proof
works for any set of complete orthonormal basis of real functions as long as one of the basis functions is the
identity function.

For n ≥ 0, we write (x)n := x(x − 1) · · · (x − n + 1) for the nth falling factorial of x. For any integer
q ≥ 2, the discrete Legendre orthogonal polynomials, {Pa(x; q)}q−1

a=0, are defined as

Pa(x; q) =

a∑
j=0

(−1)j
(
a

j

)(
a+ j

j

)
(x)j

(q − 1)j
,

Pa(0; q) = 1, for all a = 0, 1, . . . , q − 1.

These polynomials satisfy the following orthogonal properties (see, e.g., [32]):

q−1∑
x=0

Pa(x; q)Pb(x; q) =

{
0, if a 6= b,

1
2a+1

(q+a)a+1

(q−1)a
, if a = b.

Now we define 8 a complete set of orthonormal functions {χOF
a (x)}q−1

a=0 by

χOF
a (x) =

√
(2a+ 1)(q)a+1

(q + a)a+1
Pa(x; q),

then they form a complete basis for the real functions space over {0, 1, . . . , q − 1} and satisfy the orthogo-
nality relation

q−1∑
x=0

χOF
a (x)χOF

b (x) =

{
0, if a 6= b,
q, if a = b.

Because of the orthogonality relation
∑q−1

x=0 |χOF
a (x)|2 = q for every a, we immediately have

Fact 3.1. For every 0 ≤ a ≤ q − 1 and every x ∈ {0, 1, . . . , q − 1}, |χOF
a (x)| ≤ √q.

Due to the orthogonality and the completeness of the basis functions, any real function f : {0, 1, . . . , q−
1} → R can be uniquely expanded in terms of {χOF

a (x)}q−1
a=0 as:

f(x) =
1

q

q−1∑
a=0

f̂OF(a)χOF
a (x),

7Therefore the uniform distribution is proportional to g0 and then by the orthogonality relation, all the non-zero Fourier coeffi-
cients of the uniform distribution are zero.

8We add the superscript OF (denoting orthogonal functions) to distinguish them from the standard real Fourier basis functions
over {0, 1}n.
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with the inversion formula

f̂OF(a) =

q−1∑
x=0

f(x)χOF
a (x).

We call the expansion coefficients {f̂OF(a)} the generalized Fourier coefficients of f .
Generalizing this expansion to real functions over higher dimensional spaces is straightforward. Let

n ≥ 1 be an integer and let f : {0, 1, . . . , q − 1}n → R. The generalized Fourier expansion of f is simply

f(x) =
1

qn

∑
a

f̂OF(a)χOF
a (x),

with the inversion formula

f̂OF(a) =
∑
x

f(x)χOF
a (x),

where χOF
a (x)

def
=
∏n
i=1 χ

OF
ai (xi) and satisfy the orthogonality relation

∑
x χ

OF
a (x)χOF

b (x) =

{
0, if a 6= b,
qn, if a = b.

A direct consequence of the orthogonality of the basis functions {χOF
a (x)} is the following Parseval’s

equality ∑
x

f2(x) =
1

qn

∑
a

f̂OF(a)2.

It is easy to check that the following characterizations of the uniform distribution and k-wise independent
distributions over {0, 1, . . . , q − 1}n in terms of the generalized Fourier coefficients. The proofs follow
directly from the orthogonality of {χOF

a (x)} and the definition of k-wise independence, therefore we omit
them here.

Proposition 3.2. Let D be a distribution over {0, 1, . . . , q − 1}n. Then D is the uniform distribution if and
only if for all non-zero vector a ∈ {0, 1, . . . , q − 1}n, D̂OF(a) = 0.

Corollary 3.3. A distribution D over {0, 1, . . . , q−1}n is k-wise independent if and only if for all non-zero
vectors a of weight at most k, D̂OF(a) = 0.

3.2 Proof of Theorem 1.1

The basic idea of [1] is the following. Given a distribution D, we first operate in the Fourier space to
construct a “pseudo-distribution” D1 by setting all the first k-level generalized Fourier coefficients (except
for the trivial Fourier coefficient) to zero. All other generalized Fourier coefficients of D1 are the same as
D. Generally speaking, D1 is not going to be a distribution because it may assume negative values at some
points. We then correct all these negative points by mixing D1 with the uniform distribution with some
appropriate weight. That is, we set D′ = 1

1+wD1 + w
1+wU , where U is the uniform distribution and w > 0

is the weight of the uniform distribution. After such an operation, since the uniform distribution clearly
has all its first k-level generalized Fourier coefficients equal to zero and due to linearity of the generalized
Fourier transform, we maintain that all the first k-level generalized Fourier coefficients of D′ are still zero;
on the other hand, we increase the weights at negative points so that they now assume non-negative values
in D′. Bounding the total statistical distance between D and D′ then offers an upper bound on the distance
between D and k-wise independence.
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LetD : {0, 1, . . . , q−1}n → R≥0 be a distribution, that is, D(x) ≥ 0 for all x and
∑

xD(x) = 1. First
we define a real function D1 : {0, 1, . . . , q − 1}n → R by explicitly specifying all its generalized Fourier
coefficients:

D̂OF
1 (a) =

{
0, if 0 < wt(a) ≤ k
D̂OF(a), otherwise.

We call D1 a “pseudo-distribution” because D1 may assume negative values at some points in the do-
main, which are called the holes in D1. Note that since D̂OF

1 (0) = D̂OF(0) = 1, we have
∑

xD1(x) = 1.
So the only difference between D1 and a distribution is these holes. The following lemma bounds the
maximum depth of the holes in D1.

Lemma 3.4. Let h be the maximum depth of the holes in D1, then

h ≤ qk/2

qn

∑
0<wt(a)≤k

|D̂OF(a)|.

Proof. From the upper bound in Fact 3.1, it follows that |χOF
a (x)| ≤ qk/2 if the weight of a is at most

k. Now since D(x) ≥ 0 for every x in the domain and D1 is obtained by cutting off all the first k level
generalized Fourier coefficients of D, by linearity of the generalized Fourier expansion,

D1(x) = D(x)− 1

qn

∑
0<wt(a)≤k

D̂OF(a)χOF
a (x).

Therefore, for all x with D1(x) < 0, 1
qn
∑

0<wt(a)≤k D̂
OF(a)χOF

a (x) > 0, so we can upper bound the
depth of every hole as

|D1(x)| =

∣∣∣∣∣∣ 1

qn

∑
0<wt(a)≤k

D̂OF(a)χOF
a (x)−D(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

qn

∑
0<wt(a)≤k

D̂OF(a)χOF
a (x)

∣∣∣∣∣∣
≤ qk/2

qn

∑
0<wt(a)≤k

|D̂OF(a)|.

The following lemma bounds the `1-distance between a function and its convex combination with other
distributions.

Lemma 3.5 ([1]). Let f be a real function defined over {0, 1, . . . , q − 1}n such that
∑

x f(x) = 1. Let
D1, . . . , D` be distributions over the same domain and suppose there exist non-negative real numbers
w1, . . . , w` such that D′def

= 1
1+

∑`
i=1 wi

(f +
∑`

i=1wiDi) is non-negative for all x ∈ {0, 1, . . . , q − 1}n.

Then
∑

x |f(x)−D′(x)| ≤ 2
∑`

i=1wi.

Now we can mix D1 with the uniform distribution U over {0, 1, . . . , q − 1}n of weight qnh (recall that
U(x) = 1/qn for every x in {0, 1, . . . , q − 1}n) to obtain a distribution D′, that is,

D′
def
=

1

1 + qnh
D1 +

qnh

1 + qnh
U.
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Then D′ is non-negative at every point in the domain and D′ has all its first k-level generalized Fourier
coefficients equal to zero. Thus D′ is a k-wise independent distribution by Corollary 3.3. Furthermore, by
Lemma 3.5, ∑

x

|D1(x)−D′(x)| ≤ 2qnh ≤ 2qk/2
∑

0<wt(a)≤k

|D̂OF(a)|.

By Parseval’s equality,
∑

x |D(x) − D1(x)|2 = 1
qn
∑

0<wt(a)≤k |D̂OF(a)|2. Combining this with
Cauchy-Schwarz inequality yields∑

x

|D(x)−D1(x)| ≤
√ ∑

0<wt(a)≤k

|D̂OF(a)|2.

Now the distance between D and k-wise independence can be upper bounded as

∆(D,Dkwi) ≤ ∆(D,D′)

=
1

2

∑
x

|D(x)−D′(x)|

≤ 1

2

∑
x

|D(x)−D1(x)|+ 1

2

∑
x

|D1(x)−D′(x)| (by the triangle inequality)

≤ 1

2

√ ∑
0<wt(a)≤k

|D̂OF(a)|2 + qk/2
∑

0<wt(a)≤k

|D̂OF(a)|

= O(qk/2)
∑

0<wt(a)≤k

|D̂OF(a)|.

We thus prove the following theorem

Theorem 3.6. Let D be a distribution over {0, 1, . . . , q − 1}n, then

∆(D,Dkwi) ≤ O(qk/2)
∑

0<wt(a)≤k

∣∣∣D̂OF(a)
∣∣∣ . (4)

In particular,
∆(D,Dkwi) ≤ O(qk/2)M(n, k, q) max

0<wt(a)≤k

∣∣∣D̂OF(a)
∣∣∣ .

Remark 3.7. One may try to generalize the approach of discrete orthogonal polynomials to the non-uniform
k-wise independence as well. However, this seems to require some additional new ideas and we leave
it as an interesting open problem. To see the obstacle, consider the simplest one-dimensional case and
let p(x), for every x ∈ {0, 1, . . . , q − 1}, be the non-uniform marginal probabilities. We need to find a
complete set of orthonormal functions {χOF

a (x)}q−1
a=0. On the one hand, the constraint D̂OF(0) = 1 for

every distribution D (so that the “cut and paste” method may apply) requires that χOF
0 (x) = 1 for every

x ∈ {0, 1, . . . , q − 1}; on the other hand, if we stick to the characterization that D = p if and only if all
the non-zero Fourier coefficients of D vanish, then combining this with the orthonormality of {χOF

a (x)}q−1
a=0

yields that χOF
0 (x) = qp(x) for every x. Clearly only the uniform distribution p(x) = 1/q can satisfy both

conditions.
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3.3 Testing algorithm analysis

Since the bound in Theorem 3.6 is slightly weaker than the bound in Theorem 1.1, we will not give a detailed
analysis of the testing algorithm based on orthogonal polynomials. In fact, by combining Fact 3.1 with the
proof of Fact 2.8, it is easy to see that for any 0 ≤ δ ≤ 1 and any non-zero vector a of weight at most k, if
∆(D,Dkwi) ≤ δ, then

∣∣∣D̂OF(a)
∣∣∣ ≤ q3/2δ. We thus have the following theorem

Theorem 3.8. There is an algorithm that tests the k-wise independence over {0, 1, . . . , q − 1}n with query
complexityO

(
qk+2M(n,k,q)2

ε2
log(M(n, k, q))

)
and time complexityO

(
qk+2M(n,k,q)3

ε2
log(M(n, k, q))

)
and

satisfies the following: for any distribution D over Σn, if ∆(D,Dkwi) ≤ ε
3q(k+3)/2M(n,k,q)

, then with prob-
ability at least 2/3, the algorithm accepts; if ∆(D,Dkwi) > ε, then with probability at least 2/3, the
algorithm rejects.

4 Uniform k-wise Independence

We now give another proof of Theorem 1.1 based on the standard Fourier transform. The advantage of this
approach is twofold: first it gives slightly better bound; second and more importantly, the construction of a
k-wise independent distribution from an input distribution is explicit and this enables us to generalize it the
non-uniform case. For ease of exposition, we start from the simplest case: when the domain is a prime field.

4.1 Warm-up: Distributions over Znp
We begin our study with testing k-wise independent distributions when the alphabet size is a prime. Our
main result is that in this case the distance between a distribution and k-wise independence can be upper
bounded by the sum of the biases (to be defined later) of the distribution, slightly generalizing an idea of
Alon, Goldreich and Mansour [4] that they applied to the binary field case.

Let D be a discrete distribution over Znp , where p is a prime number.

Definition 4.1. Let a ∈ Znp be a non-zero vector. We say D is unbiased over a if PDa,` = 1/p for every

0 ≤ ` ≤ p− 1. The MaxBias(a) of a distribution D is defined to be MaxBiasD(a)
def
= max0≤j<p P

D
a,j − 1

p .

Note that the MaxBias is non-negative for any distribution. It is well-known that when p is prime, the
Fourier coefficient D̂(a) of a distribution D over Znp as defined by (3) is zero if and only if Pa,j = 1/p for
every 0 ≤ j ≤ p − 1. Combining this with the fact that D is unbiased over a if and only if MaxBiasD(a)
is zero, we thus have the following simple characterization of k-wise independence in terms of MaxBias.

Proposition 4.2. D is k-wise independent if and only if for all non-zero a ∈ Znp with wt(a) ≤ k,
MaxBiasD(a) = 0.

We say two non-zero vectors a and b are linearly dependent if there exists some c ∈ Z∗p such that b = ca
and linearly independent if they are not linearly dependent.

Claim 4.3. If a and b are linearly dependent, then MaxBiasD(a) = MaxBiasD(b).

Proof. Suppose MaxBiasD(a) is attained at j, i.e., MaxBiasD(a) = Pa,j − 1
p . Then MaxBiasD(b) ≥

P
b,cj(mod p)−

1
p = Pa,j− 1

p = MaxBiasD(a). Similarly, since c−1 exists, we also have MaxBiasD(a) ≥
MaxBiasD(b). It follows that MaxBiasD(a) = MaxBiasD(b).
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For each a ∈ Znp there are p − 2 other vectors (namely, by taking c = 2, . . . , p − 1) that are linearly
dependent with a.

Lemma 4.4. Let a, b ∈ Znp be two non-zero, linearly independent vectors, then for any 0 ≤ ra, rb ≤ p− 1,

Pr
x∈Znp

[
n∑
i=1

aixi ≡ ra (mod p) ∧
n∑
i=1

bixi ≡ rb (mod p)

]
=

1

p2

Proof. This follows from the well-known fact that the number of solutions to a system of 2 linearly inde-
pendent linear equations over Zp in n variables is pn−2, independent of the vectors of free coefficients.

Definition 4.5 (Strong Orthogonality). Let a and b be two non-zero vectors in Znp . We say a is strongly
orthogonal to b ifUa,j is unbiased over b for every 0 ≤ j ≤ p−1. That is, PrX∼Ua,j [b ·X ≡ ` (mod p)] =
1/p, for all 0 ≤ j, ` ≤ p− 1.

Corollary 4.6. Let a be a non-zero vector in Znp and b be another non-zero vector that is linearly indepen-
dent of a. Then a is strongly orthogonal to b.

Proof. Clearly we have |Sa,j | = pn−1 for all non-zero a and all j. Then by Lemma 4.4, the pn−1 points in
Sa,j are uniformly distributed over each of the p sets Sb,`, 0 ≤ ` ≤ p− 1.

Now we are ready to prove the following main result of this section.

Theorem 4.7. Let D be a distribution over Znp . Then ∆(D,Dkwi) ≤ p
p−1

∑
0<wt(a)≤k MaxBiasD(a).

Note that this generalizes the result of [4] for GF(2) to GF(p) for any prime p. When p = 2, we recover
the same (implicit) bound there (our MaxBias is exactly half of their “Bias”).

We first give a brief overview of the proof. We are going to prove Theorem 4.7 by constructing a k-wise
independent distribution that is close to D. Generalizing the approach in [4], we start from D, step by step,
zeroing-out MaxBiasD(a) for every non-zero vector a of weight at most k. By Proposition 4.2, the resulting
distribution will be a k-wise independent one. At each step, we pick any a with MaxBiasD(a) > 0. To
zero-out MaxBiasD(a), we apply a convex combination between the old distribution and some carefully
chosen distribution to get a new distribution. By the strong orthogonality between linearly independent
vectors (c.f. Corollary 4.6), if for every 0 ≤ j ≤ q − 1, we mix with D the uniform distribution over
all strings in Sa,j with some appropriate weight (this weight can be zero), we will not only zero-out the
MaxBias at a but also guarantee that for any b that is linearly independent from a, MaxBiasD(b) is not
going to increase (therefore the MaxBias of all zeroed-out vectors will remain zero throughout the correcting
steps). This enables us to repeat the zeroing-out process for all other vectors of weight at most k and finally
obtain a k-wise independent distribution.

Proof of Theorem 4.7. First we partition all the non-zero vectors of weight at most k into families of linearly
dependent vectors, say F1, F2, . . ., etc. Pick any vector a from F1. If MaxBiasD(a) = 0, we move on to
the next family of vectors. Now suppose MaxBiasD(a) > 0, and without loss of generality, assume that
Pa,0 ≤ Pa,1 ≤ · · · ≤ Pa,p−1. Let εj = Pa,j − 1

p . Since
∑p−1

j=0 Pa,j = 1, we have ε0 + · · ·+ εp−1 = 0. Also
note that MaxBiasD(a) = εp−1.

Now we define a new distribution D′ as

D′ =
1

1 + ε
D +

εp−1 − ε0
1 + ε

Ua,0 + · · ·+ εp−1 − εp−2

1 + ε
Ua,p−2,
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where ε = (εp−1 − ε0) + · · ·+ (εp−1 − εp−2). Now by the triangle inequality,

∆(D,D′) ≤ ε = (εp−1 − ε0) + · · ·+ (εp−1 − εp−2)

= pεp−1 = pMaxBiasD(a).

It is easy to check that MaxBiasD′(a) = 0, since for every 0 ≤ j ≤ p− 1,

PD
′

a,j =
1

1 + ε
PDa,j +

εp−1 − εj
1 + ε

=
1

1 + ε
(PDa,j + εp−1 − εj)

=
1

1 + ε
(εp−1 +

1

p
)

=
1

p
(because ε = pεp−1).

Moreover, due to Corollary 4.6 and the fact that Ua,j is unbiased over b for every 0 ≤ j < p, we have
for any vector b that is not in the same family with a (i.e., in F2, . . . , etc.),

MaxBiasD′(b) =
1

1 + ε
MaxBiasD(b) ≤ MaxBiasD(b).

In particular, if MaxBiasD(b) is zero, then after zeroing-out the bias at a, MaxBiasD′(b) remains zero.
Note that once we zero-out the MaxBias over a, then by Claim 4.3, the biases over all other p−2 vectors

in F1 vanish as well (that is, we only need to perform one zeroing-out for the p − 1 vectors in the same
family). Repeating this process for all other families of vectors, we reach a distribution Df that is unbiased
over all vectors of weight at most k. By Proposition 4.2 Df is k-wise independent and the distance between
Df and D is at most as claimed in the theorem.

4.2 Distributions over Znq
We now address the main problem of this section, that is, robust characterization of k-wise independent dis-
tributions over domains of the form Znq when q is composite. A straightforward application of the method for
the prime fields case breaks down for general commutative rings because the strongly orthogonal condition
in Corollary 4.6 does not hold, even if the two vectors are linearly independent. Recall that a distribution D
over Znq is k-wise independent if and only if for all non-zero vectors a of weight at most k, D̂(a) = 0. Our
main technical result in this section is to show, analogous to the prime field case, for a distribution D over
the general domain Znq , the following holds: for every non-zero vector a of weight at most k, there exists a
(small-weight) distribution such that mixing it with D zeroes-out the Fourier coefficient at a and does not
increase the Fourier coefficient at any other vector.

Unless stated otherwise, all arithmetic operations in this section are performed modulo q; for instance,
we write a = b to mean that ai ≡ bi (mod q) for each 1 ≤ i ≤ n.

Definition 4.8 (Prime Vectors). Let a = (a1, . . . , an) be a non-zero vector in Znq . a is called a prime vector
if gcd(a1, . . . , an) = 1. If a is a prime vector, then we refer to the set of vectors {2a, . . . , (q − 1)a} (note
that all these vectors are distinct) as the multiples of a. A prime vector and its multiples are collectively
referred to as a family of vectors.
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Note that families of vectors do not form a partition of the set of all the vectors. For example when n = 2
and q = 6, vector (4, 0) is a multiple of both (1, 0) and (2, 3), but the latter two are not multiples of each
other. Furthermore, there can be more than one prime vector in a family of vectors, e.g., for q = 6 again,
(2, 3) and (4, 3) are multiples while they are both prime vectors.

Recall that we use Sa,j to denote the set {x ∈ Znq :
∑n

i=1 aixi ≡ j (mod q)}.
Proposition 4.9. If a is a prime vector, then |Sa,j | = qn−1 for any 0 ≤ j ≤ q − 1.

Proof. Since gcd(a1, . . . , an) = 1, there exist integers z1, . . . , zn such that a1z1+· · ·+anzn = 1. Note that
for any z ∈ Znq the map hz(x) = x+z is injective. Now if x ∈ Sa,0, then hz(x) = (x1+z1, . . . , xn+zn) ∈
Sa,1. Therefore |Sa,0| ≤ |Sa,1|. Similarly we have |Sa,1| ≤ |Sa,2| ≤ · · · ≤ |Sa,q−1| ≤ |Sa,0|. Since the
sets Sa,0, . . . , Sa,q−1 form a partition of Znq , it follows that |Sa,0| = |Sa,1| = · · · = |Sa,q−1| = qn−1.

4.2.1 Linear Systems of Congruences

A linear system of congruences is a set of linear modular arithmetic equations in some variables. We will
be particularly interested in the case when all modular arithmetic equations are modulo q. If the number of
variables is k, then a solution to the system of congruences is a vector in Zkq . Two solutions x,x′ in Zkq are
congruent to each other if x = x′ (i.e. xi ≡ x′i (mod q) for every 1 ≤ i ≤ k) and incongruent otherwise.

We record some useful results on linear systems of congruences in this section. For more on this, the
interested reader is referred to [22] and [39]. These results will be used in the next section to show some
important orthogonality properties of vectors in Znq . In this section, all matrices are integer-valued. Let
M be a k × n matrix with k ≤ n. The greatest divisor of M is the greatest common divisor (gcd) of the
determinants of all k × k sub-matrices of M . M is a prime matrix if the greatest divisor of M is 1.

Lemma 4.10 ([39]). Let M be a (k + 1) × n matrix. If the sub-matrix consisting of the first k rows of
M is a prime matrix and M has greatest divisor d, then there exist integers u1, . . . , uk such that for every
1 ≤ j ≤ n,

u1M1,j + u2M2,j + . . .+ ukMk,j ≡Mk+1,j (mod d).

Consider the following system of linear congruent equations:
M1,1x1 +M1,2x2 + · · ·+M1,nxn ≡M1,n+1 (mod q)

...
...

...
Mk,1x1 +Mk,2x2 + · · ·+Mk,nxn ≡Mk,n+1 (mod q).

(5)

Let M denote the k × n matrix consisting of the coefficients of the linear system of equations and let M̃
denote the corresponding augmented matrix of M , that is, the k × (n + 1) matrix with one extra column
consisting of the free coefficients.

Definition 4.11. Let M be the coefficient matrix of (5) and M̃ be the augmented matrix of M . Suppose
k < n so that system (5) is a defective system of equations. Define Yk, Yk−1, . . . , Y1, respectively, to be the
greatest common divisors of the determinants of all the k × k, (k − 1) × (k − 1), . . . , 1 × 1, respectively,
sub-matrices ofM . Analogously define Zk, Zk−1, . . . , Z1 for the augmented matrix M̃ . Also we set Y0 = 1

and Z0 = 1. Finally let s =
∏k
j=1 gcd(q,

Yj
Yj−1

) and t =
∏k
j=1 gcd(q,

Zj
Zj−1

).

The following Theorem of Smith gives the necessary and sufficient conditions for a system of congruent
equations to have solutions.

Theorem 4.12 ([39]). If k < n, then the (defective) linear system of congruences (5) has solutions if and
only if s = t. Moreover, if this condition is met, the number of incongruent solutions is sqn−k.
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4.2.2 Weak Orthogonality between Families of Vectors

To generalize the proof idea of the GF(2) case (and also the prime field case studied in Section 4.1) to
commutative rings Zq for arbitrary q, it seems crucial to relax the requirement that linearly independent
vectors are strongly orthogonal. Rather, we introduce the notion of weak orthogonality between a pair of
vectors.

Definition 4.13 (Weak Orthogonality). Let a and b be two non-zero vectors in Znq . We say a is weakly
orthogonal to b if for all 0 ≤ j ≤ q − 1, Ûa,j(b) = 0.

Remark 4.14. Note that in general weak orthogonality is not a symmetric relation, that is, a is weakly or-
thogonal to b does not necessarily imply that b is weakly orthogonal to a. Also note that strong orthogonal-
ity implies weak orthogonality while the converse is not necessarily true. In particular, strong orthogonality
does not hold in general for linearly independent vectors in Znq . However, for our purpose of constructing
k-wise independent distributions, weak orthogonality between pairs of vectors suffices.

The following lemma is the basis of our upper bound on the distance between a distribution and k-wise
independence. This lemma enables us to construct a small-weight distribution using an appropriate convex
combination of {Ua,j}q−1

j=0, which on the one hand zeroes-out all the Fourier coefficients at a and its multiple
vectors, on the other hand has zero Fourier coefficient at all other vectors. The proof of the Lemma 4.15
relies crucially on the results in Section 4.2.1 about linear system of congruences.

Lemma 4.15. Let a be a non-zero prime vector and b any non-zero vector that is not a multiple of a. Then
a is weakly orthogonal to b.

Proof. Consider the following system of linear congruences:{
a1x1 + a2x2 + · · ·+ anxn ≡ a0 (mod q)

b1x1 + b2x2 + · · ·+ bnxn ≡ b0 (mod q).
(6)

Following our previous notation, let M =

[
a1 a2 · · · an
b1 b2 · · · bn

]
and M̃ =

[
a1 a2 · · · an a0

b1 b2 · · · bn b0

]
.

Since a is a prime vector, Y1 = Z1 = 1. We next show that if b is not a multiple of a, then Y2 can not be a
multiple of q.

Claim 4.16. Let a be a prime vector and let M =

[
a1 a2 · · · an
b1 b2 · · · bn

]
. The determinants of all 2 × 2

sub-matrices of M are congruent to 0 modulo q if and only if a and b are multiple vectors.

Proof. If a and b are multiple vectors, then it is clear that the determinants of all the sub-matrices are
congruent to 0 modulo q. For the only if direction, all we need to prove is that b = ca for some integer c.
First suppose that the determinants of all 2 × 2 sub-matrices of M are 0. Then it follows that b1

a1
= · · · =

bn
an

= c. If c is an integer then we are done. If c is not an integer, then c = u
v , where u, v are integers and

gcd(u, v) = 1. But this implies v|ai for every 1 ≤ i ≤ n, contradicting our assumption that a is a prime
vector. Now if not all of the determinants are 0, it must be the case that the greatest common divisor of the
determinants of all 2× 2 sub-matrices, say d′, is a multiple of q. By Lemma 4.10, there is an integer c such
that cai ≡ bi (mod d′) for every 1 ≤ i ≤ n. Consequently, bi ≡ cai (mod q) for every i and hence b is a
multiple of a.
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Let d = gcd(q, Y2). Clearly 1 ≤ d ≤ q and according to Claim 4.16, d 6= q so d|q. Applying
Theorem 4.12 with k = 2 to (6), the two linear congruences are solvable if and only if d = gcd(q, Y2) =
gcd(q, Z2). If this is the case, the total number of incongruent solutions is dqn−2. Furthermore, if we let
h denote the greatest common divisor of the determinants of all 2 × 2 sub-matrices of M̃ , then d|h. By
Lemma 4.10, there is an integer u such that b0 ≡ ua0 (mod h). It follows that d|(b0−ua0). Let us consider
a fixed a0 and write `0 = ua0 (mod d). Since a is a prime vector, by Proposition 4.9, there are in total
qn−1 solutions to (6). But for any fixed b0 that has solutions to (6), there must be dqn−2 solutions to (6) and
in addition d|q. Since there are exactly q/d b0’s in {0, . . . , q − 1}, we conclude that (6) has solutions for b0
if and only if b0 = `0 + d`, where `0 is some constant and ` = 0, . . . , qd − 1. Finally we have

Ûa,j(b) =
∑
x∈Znq

Ua,j(x)e
2πi
q

b·x
=

1

qn−1

∑
a·x≡j (mod q)

e
2πi
q

b·x

=
d

q

∑
b0:b0=`0+d`

e
2πi
q
b0 = 0. (by Fact 2.2)

This finishes the proof of Lemma 4.15.

4.2.3 Correcting the Fourier Coefficients of Multiple Vectors

Now we show how to zero-out a distribution’s Fourier coefficient at every vector in a family. Let D be a
distribution over Znq . By (3), for every 1 ≤ ` ≤ q− 1, the Fourier coefficient of a vector `a can be rewritten

as D̂(`a) =
∑q−1

j=0 Pa,je
2πi
q
`j . Recall that MaxBias(a) = max0≤j≤q−1 Pa,j − 1

q .

Claim 4.17. We have that MaxBias(a) ≤ 1
q

∑q−1
`=1

∣∣∣D̂(`a)
∣∣∣.

Proof. Since D̂(`a) =
∑q−1

j=0 Pa,je
2πi
q
`j , by the inverse Fourier transform (2), for every 0 ≤ j ≤ q − 1,

Pa,j =
1

q

q−1∑
`=0

D̂(`a)e
− 2πi

q
`j
.

Since D̂(0) = 1, we have for every 0 ≤ j ≤ q − 1,∣∣∣∣Pa,j −
1

q

∣∣∣∣ =
1

q

∣∣∣∣∣
q−1∑
`=1

D̂(`a)e
− 2πi

q
`j

∣∣∣∣∣
≤ 1

q

q−1∑
`=1

∣∣∣D̂(`a)e
− 2πi

q
`j
∣∣∣ ≤ 1

q

q−1∑
`=1

∣∣∣D̂(`a)
∣∣∣ .

Now we are ready to prove the main theorem of this section.

Theorem 1.1. Let D be a distribution over Znq , then 9

∆(D,Dkwi) ≤
∑

0<wt(a)≤k

∣∣∣D̂(a)
∣∣∣ .

9 It is easy to verify that the same bound holds for prime field case if we transform the bound in MaxBias there into a bound in
terms of Fourier coefficients. Conversely we can equivalently write the bound of the distance from k-wise independence in terms
of MaxBias at prime vectors. However, we believe that stating the bound in terms of Fourier coefficients is more natural and
generalizes more easily.
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Test-Uniform-KWI(D, k, q, ε)

1. Sample D independently O
(
q2M(n,k,q)2

ε2 log (M(n, k, q))
)

times to obtain a set Q

2. For every non-zero vector a of weight at most k, use Q to estimate D̂(a)

3. If maxa

∣∣∣D̂(a)
∣∣∣ ≤ 2ε

3M(n,k,q) , return “Accept”; else return “Reject”

Figure 2: Algorithm for testing if a distribution D over Σn is uniform k-wise independent.

In particular, ∆(D,Dkwi) ≤M(n, k, q) max0<wt(a)≤k

∣∣∣D̂(a)
∣∣∣ .

Proof. Let a be a prime vector and D̂(a), D̂(2a), . . . , D̂((q − 1)a) be the Fourier coefficients of a and all
the multiples of a. Now construct a new distribution D′ over Znq as

D′ =
1

1 + ε
D +

1

1 + ε

q−1∑
j=0

v(j)Ua,j ,

where ε =
∑q−1

j=0 v(j) and {v(j)}q−1
j=0 are a set of non-negative real numbers that will be specified later.

It is easy to check that D′ is indeed a distribution. Moreover, by Lemma 4.15 and linearity of the Fourier
transform, for every b that is not a multiple of a,∣∣∣D̂′(b)

∣∣∣ =
1

1 + ε

∣∣∣D̂(b)
∣∣∣ ≤ ∣∣∣D̂(b)

∣∣∣ .
Without loss of generality, assume that Pa,0 ≤ · · · ≤ Pa,q−1. That is, MaxBias(a) = Pa,q−1− 1

q . If we
choose v(j) = Pa,q−1 − Pa,j , then clearly v(j) is non-negative for every 0 ≤ j ≤ q − 1. Furthermore, by
our construction PD

′
a,j = 1

q for every j. Therefore by Fact 2.1, D̂′(`a) = 0 for every 1 ≤ ` ≤ q − 1. Since∑q−1
j=0 Pa,j = 1, it follows that

∑q−1
j=0 v(j) = qMaxBias(a). By Claim 4.17,

∆(D,D′) ≤ ε =

q−1∑
j=0

v(j) ≤
q−1∑
`=1

∣∣∣D̂(`a)
∣∣∣ . (7)

Finally observe that although some vectors are multiples of more than one prime vector (thus they belong
to more than one family and appear more than once in (7)), because the distance bound in (7) is the sum of
magnitudes of all the Fourier coefficients in the family, once a vector’s Fourier coefficient is zeroed-out, it
will not contribute to the distance bound at any later stage. This completes the proof of the theorem.

4.2.4 Testing Algorithm and its Analysis

We are now ready to prove the following result on testing k-wise independence over Znq .

Theorem 4.18. There is an algorithm that tests the k-wise independence over Σn with query complex-
ity Õ(n

2k(q−1)2kq2

ε2
) and time complexity Õ(n

3k(q−1)3kq2

ε2
) and satisfies the following: for any distribution

D over Σn, if ∆(D,Dkwi) ≤ ε
3qM(n,k,q) , then with probability at least 2/3, the algorithm accepts; if

∆(D,Dkwi) > ε, then with probability at least 2/3, the algorithm rejects.
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Proof. Our testing algorithm simply plugs the upper bound on distance to k-wise independence in The-
orem 1.1 into the Generic Algorithm as shown in Fig. 1. The algorithm is described in Figure 2. For
the analysis of Test-Uniform-KWI(D, k, q, ε), we simply apply Theorem 2.7 with K = M(n, k, q),
A = {a ∈ Σn : 0 < wt(a) ≤ k} and κ = q. To see κ = q, note that Pa,j = 1/q holds for every a
in A and 0 ≤ j ≤ q − 1 for any k-wise independent distribution. Since no (randomized) algorithm can
increase the statistical difference between two distributions [37], by Fact 2.8 (more precisely, the proof of
Fact 2.8), if ∆(D,Dkwi) ≤ δ, then we have

∣∣∣D̂(a)
∣∣∣ ≤ qδ for every a ∈ A.

4.3 Distributions over Product Spaces

Now we generalize the underlying domains from Znq to product spaces. Let Σ1, . . . ,Σn be n finite sets.
Without loss of generality, let Σi = {0, 1, . . . , qi − 1}. In this section, we consider distributions over the
product space Ω = Σ1 × · · · × Σn. For a set of integers {q1, . . . , qn}, denote their least common multiple

(lcm) by lcm(q1, . . . , qn). Let Qdef
= lcm(q1, . . . , qn) and in addition, for every 1 ≤ i ≤ n, set Mi = Q

qi
. Then

we can rewrite the Fourier coefficient defined in (1) as

D̂(a) =
∑

x∈Σ1×···×Σn

D(x)e
2πi
Q

(M1a1x1+···+Mnanxn)

=
∑

x∈Σ1×···×Σn

D(x)e
2πi
Q

(a′1x1+···+a′nxn)
,

where a′i ≡ Miai (mod Q) for every 1 ≤ i ≤ n. This suggests that we may view D as a distribution over
Σn with effective alphabet size |Σ| = Q = lcm(q1, . . . , qn) and consider the following map from vectors in
Σ1 × · · · × Σn to vectors in ZnQ:

H : (a1, . . . , an) 7→ (M1a1 (mod Q), . . . ,Mnan (mod Q)) . (8)

Then we only need to consider the Fourier coefficients at vectors a′
def
=H(a) = (a′1, . . . , a

′
n) ∈ ZnQ

(that is, vectors in ZnQ whose ith component is a multiple of Mi for every i). Note that in general M =

lcm(q1, . . . , qn) could be an exponentially large number and is therefore not easy to handle in practice10.
However, this difficulty can be overcome by observing the following simple fact. Since we are only con-
cerned with vectors of weight at most k, we may take different effective alphabet sizes for different index
subsets of size k. For example, consider a k-subset S = {i1, . . . , ik}. Then the effective alphabet size of S is
|ΣS | = lcm(qi1 , . . . , qik), which is at most poly(n) if we assume k is a constant and each qi is polynomially
bounded.

Our main result for distributions over product spaces is the following theorem.

Theorem 4.19. Let D be a distribution over Σ1 × · · · × Σn. Then ∆(D,Dkwi) ≤
∑

0<wt(a)≤k

∣∣∣D̂(a)
∣∣∣ .

We now sketch the proof of Theorem 4.19.
A vector a ∈ Σ1 × · · · × Σn is a prime vector if gcd(a1, . . . , an) = 1. For any integer ` > 0, the

`-multiple of a is `adef
= (`a1 (mod q1), . . . , `an (mod qn)). Let a be a prime vector. Then vectors in the

set {2a, . . . , (Q − 1)a} are called the multiple vectors of a. Note that these Q − 1 vectors may not be all
distinct.

10Recall that the testing algorithm requires estimating all the low-degree Fourier coefficients, where each Fourier coefficient is
an exponential sum with M as the denominator.
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The main difficulty in applying our result for distributions over Znq to distributions over product spaces
is that the mapping in (8) is not surjective. In particular, after the mapping some families of vectors may
have no prime vector in it. To handle this problem, we slightly generalize the result of weak orthogonality
in Lemma 4.15 to non-prime vectors. Specifically, we say a non-zero vector a (not necessarily prime) is
weakly orthogonal to vector b if Ûa,`(b) = 0 for all ` such that Sa,` is non-empty.

Lemma 4.20. Let a and b be two vectors in Znq . If b is not a multiple of a, then vector a is weakly
orthogonal to b.

Proof. Clearly we only need to prove the case when a is not a prime vector. Let ã be any prime vector that
is a multiple of a and suppose a = dã. Now Sa,` is non-empty only if ` ≡ `′d (mod q) for some integer
`′. Note that Sa,`′d = ∪

j:jd≡`′d (mod q)Sã,j . Since the sets {Sã,j}q−1
j=0 are pairwise disjoint, it follows

that Ua,`′d = 1
gcd(d,q)

∑
j:jd≡`′d (mod q) Uã,j , where gcd(d, q) is the number of incongruent j’s satisfying

jd ≡ `′d (mod q). Now by Lemma 4.15, if b is not a multiple of ã, then Ûã,j(b) = 0 for every j. It follows
that Ûa,`d(b) = 0.

Note that for any integer ` > 0 and every 1 ≤ i ≤ n, `ai ≡ bi (mod qi) if and only if `aimi ≡
bimi (mod Q), hence the map H preserves the multiple relationship between vectors. Now Lemma 4.20
implies that if we map the vectors in Σ1 × · · · ×Σn to vectors in ZnQ as defined in (8), then we can perform
the same zeroing-out process as before: for each family of vectors, zero-out all the Fourier coefficients at
the vectors in this family using a mixture of uniform distributions without increasing the magnitudes of
the Fourier coefficients everywhere else. This will end up with a k-wise independent distribution over the
product space Σ1 × · · · × Σn.

Next we bound the total weight required to zero-out a family of vectors. Let S be any k-subset of [n].
Without loss of generality, we may take S = [k]. Let qS = lcm(q1, . . . , qk) and let mi = qS

qi
for each

1 ≤ i ≤ k. Let a ∈ Σ1 × · · · × Σn be a prime vector whose support is contained in [k]. Then

D̂(a) =
∑

x∈Σ1×···×Σk

DS(x)e
2πi(

a1x1
q1

+···+akxk
qk

)

=
∑

x∈Σ1×···×Σk

DS(x)e
2πi
qS

(m1a1x1+···+mkakxk)

=
∑

x∈Σ1×···×Σk

DS(x)e
2πi
qS

(a′1x1+···+a′kxk)
,

where, as before, we define a′ = (a′1, . . . , a
′
k) with a′i = miai (mod qS) for 1 ≤ i ≤ k.

Let d = gcd(m1a1 (mod qS), . . . ,mkak (mod qS)) = gcd(a′1, . . . , a
′
k) and set Sa′,j = {x ∈ Σ1 ×

· · · × Σk : a′1x1 + · · ·+ a′kxk ≡ j (mod qS)}. Clearly Sa′,j is non-empty only if d|j.

Claim 4.21. Let a be a vector in Σ1×· · ·×Σk with d = gcd(a′1, . . . , a
′
k). Then |Sa′,`d| = dq1···qk

qS
for every

0 ≤ ` ≤ qS
d − 1.

Proof. Since d = gcd(a′1, . . . , a
′
k), if we let bi =

a′i
d for each 1 ≤ i ≤ k, then gcd(b1, . . . , bk) = 1. Now

applying the same argument as in the proof of Proposition 4.9 gives the desired result.
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Now for every 1 ≤ ` ≤ qS
d − 1 and put q∗def

= qS
d , we have

D̂(`a) =
∑

x∈Σ1×···×Σk

DS(x)e
2πi(

`a1x1
q1

+···+ `akxk
qk

)

=
∑

x∈Σ1×···×Σk

DS(x)e
2πi
qS
`a′·x

=

qS
d
−1∑

j=0

Pr
X∼D

[a′ ·X ≡ jd (mod qS)]e
2πi
qS
`jd

=

qS
d
−1∑

j=0

w(j)e
2πi
qS
`jd

=

q∗−1∑
j=0

w(j)e
2πi
q∗ `j ,

wherew(j)
def
=Pa′,jd. That is, each of the Fourier coefficients D̂(a), D̂(2a), . . . , D̂((q∗−1)a) can be written

as a one-dimensional Fourier transform of a function (namely, w(j)) over Zq∗ . Then following the same
proofs as those in Sec. 4.2.3, we have that the total weight to zero-out the Fourier coefficients at a and its

multiples is at most
∑ qS

d
−1

`=1

∣∣∣D̂(`a)
∣∣∣. This in turn gives the upper bound stated in Theorem 4.19 on the

distance between D and k-wise independence over product spaces.

4.3.1 Testing Algorithm and its Analysis

We study the problem of testing k-wise independence over the product space Σ1 × · · · ×Σn in this section.
To simplify notation, in the following we write

Mprod =

k∑
`=1

∑
I∈([n]` )

∏
i∈I

(qi − 1)

for the total number of non-zero Fourier coefficients of weight at most k, and

qmax = max
S∈([n]k )

lcm(qi : i ∈ S)

for the maximum effective alphabet size of any index subset of size k.
Note that a simple corollary of Theorem 4.19 is

∆(D,Dkwi) ≤Mprod max
0<wt(a)≤k

∣∣∣D̂(a)
∣∣∣ ,

which gives the soundness condition for the distance bound. For the completeness condition, it is easy to
see that for any 0 ≤ δ ≤ 1 and any non-zero vector a of weight at most k, if ∆(D,Dkwi) ≤ δ, then∣∣∣D̂(a)

∣∣∣ ≤ qmaxδ. The following theorem can now be proved easily by plugging these two conditions into
Theorem 2.7. We omit the proof.

Theorem 4.22. There is an algorithm that tests the k-wise independence over the product space Σ1 ×
· · · × Σn (as shown in Fig 3) with query complexity O

(
q2maxM

prod(n,k,q)2

ε2
log
(
Mprod(n, k, q)

))
and time

complexity O
(
q2maxM

prod(n,k,q)3

ε2
log
(
Mprod(n, k, q)

))
and satisfies the following: for any distribution D

over Σn, if ∆(D,Dkwi) ≤ ε
3qmaxMprod(n,k,q)

, then with probability at least 2/3, the algorithm accepts; if
∆(D,Dkwi) > ε, then with probability at least 2/3, the algorithm rejects.
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Test-Product-KWI(D, k, q, ε)

1. Sample D independently O
(
q2maxM

prod(n,k,q)2

ε2 log
(
Mprod(n, k, q)

))
times to obtain a set

Q

2. For every non-zero vector a of weight at most k, use Q to estimate D̂(a)

3. If maxa

∣∣∣D̂(a)
∣∣∣ ≤ 2ε

3Mprod(n,k,q)
, return “Accept”; else return “Reject”

Figure 3: Algorithm for testing uniform k-wise independence over product spaces.

5 Non-uniform k-wise Independence

In this section we seek a robust characterization of non-uniform k-wise independent distributions. For ease
of exposition, we present our results only for the case when the underlying domain is {0, 1, . . . , q − 1}n.
Our approach can be generalized easily to handle distributions over product spaces.

Recall that a distribution D : Σn → [0, 1] is k-wise independent if for any index subset S ⊂ [n] of size
k, S = {i1, . . . , ik}, and for any z1 · · · zk ∈ Σk, DS(z1 · · · zk) = PrD[Xi1 = z1] · · ·PrD[Xik = zk]. Our
strategy of showing an upper bound on the distance between D and non-uniform k-wise independence is to
reduce the non-uniform problem to the uniform case and then apply Theorem 1.1.

5.1 Non-uniform Fourier Coefficients

In the following we define a set of factors which are used to transform non-uniform k-wise independent
distributions into uniform ones. Let pi(z)

def
= PrD[Xi = z]. We assume that 0 < pi(z) < 1 for every i ∈ [n]

and every z ∈ Σ (this is without loss of generality since if some pi(z)’s are zero, then it reduces to the

case of distributions over product spaces). Let θi(z)
def
= 1

qpi(z)
. Intuitively, one may think of the θi(z)’s as

a set of compressing/stretching factors which transform a non-uniform k-wise distribution into a uniform
one. For convenience of notation, if S = {i1, . . . , i`} and z = zi1 · · · zi` , we write θS(z) for the product
θi1(zi1) · · · θi`(zi`).

Definition 5.1 (Non-uniform Fourier Coefficients). Let D be a distribution over Σn. Let a be a non-
zero vector in Σn and supp(a) to be its support. Let Dsupp(a) be the projection of D to coordinates in
supp(a). For every z in the support of Dsupp(a), define D′supp(a)(z) = θsupp(a)(z)Dsupp(a)(z), which is
the transformed distribution11 of the projected distribution Dsupp(a). The non-uniform Fourier coefficient of
D at a, denoted D̂non(a), is defined by

D̂non(a)
def
= D̂′supp(a)(a) =

∑
z∈Σ|supp(a)|

D′supp(a)(z)e
2πi
q

a·z
. (9)

Remark 5.2. In the following we always refer to D̂non collectively as a set of (complex) numbers that will
be used to indicate the distance between distribution D and the non-uniform k-wise independence. Strictly
speaking, D̂non are not Fourier coefficients since in general there is no distribution whose (low degree)
Fourier coefficients are exactly D̂non.

11Note that in general D′supp(a) is not a distribution: it is non-negative everywhere but
∑

x D′supp(a)(x) = 1 may not hold.
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To summarize, let us define a function

F : (R≥0)Σn × (

(
[n]

k

)
× Σk)→ (R≥0)Σk

which maps a distribution D over Σn and a vector a ∈ Σn of weight k to a non-negative function over
Σ|supp(a)|. That is, for every z ∈ Σk,

F(D,a)(z) = Dsupp(a)(z)θsupp(a)(z). (10)

Then the non-uniform Fourier coefficient of D at a is simply the ordinary uniform Fourier coefficient of
F̂(D,a) at a:

D̂non(a) = F̂(D,a)(a).

The idea of defining D′supp(a) is that if D is non-uniform k-wise independent, then D′supp(a) will be a
uniform distribution over the coordinates in supp(a). Indeed, our main result in this section is to show a
connection between the non-uniform Fourier coefficients of D and the property that distribution D is non-
uniform k-wise independent. In particular we have the following simple characterization of the non-uniform
k-wise independence.

Theorem 5.3. A distribution D over Σn is non-uniform k-wise independent if and only if for every non-zero
vector a ∈ Σn of weight at most k, D̂non(a) = 0.

5.2 New Characterization of Non-uniform k-wise Independence

We prove Theorem 5.3 in this section. It is straightforward to show that if D is a non-uniform k-wise
independent distribution, then all the non-zero non-uniform Fourier coefficients of degree at most k are
zero. However, the proof of the converse is more involved. The key observation is that if we write the
non-uniform Fourier transform as a linear transformation, the non-uniform Fourier transform matrix, like
the uniform Fourier transform matrix, can be expressed as a tensor product of a set of heterogeneous DFT
(discrete Fourier transform) matrices (as opposed to homogeneous DFT matrices in the uniform case). This
enables us to show that the non-uniform Fourier transform is invertible. Combined with the condition that
all the non-trivial non-uniform Fourier coefficients are zero, this invertibility property implies that D must
be a non-uniform k-wise independent distribution.

Recall that our new characterization of non-uniform k-wise independent distributions is:

Theorem 5.3. A distribution D over Σn is k-wise independent if and only if for every non-zero vector
a ∈ Σk with wt(a) ≤ k, D̂non(a) = 0.

Proof. Suppose D is a non-uniform k-wise independent distribution. Then it is easy to see that for any
non-empty T ⊂ [n] of size at most k (not just for subsets whose sizes are exactly k),

DT (zT ) =
∏
i∈T

pi(zi).

Indeed, if |T | = k then this follows directly from the definition of non-uniform k-wise independent distri-
butions. If |T | < k, let S ⊃ T be any index set of size k, then

DT (zT ) =
∑

zj :j∈S\T

DS(zS)
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=
∑

zj :j∈S\T

∏
`∈S

p`(z`)

=
∏
i∈T

pi(zi)
∑

zj :j∈S\T

∏
j∈S\T

pj(zj)

=
∏
i∈T

pi(zi)
∏

j∈S\T

∑
zj∈Σ

pj(zj)


=
∏
i∈T

pi(zi),

as
∑

zj∈Σ pj(zj) = 1 for every 1 ≤ j ≤ n.
Let a be any non-zero vector of weight ` ≤ k whose support set is supp(a). Now we show thatD′supp(a)

is a uniform distribution and consequently all the non-uniform Fourier coefficients whose support sets are
supp(a) must be zero. Indeed, by the definition of D′,

D′supp(a)(zsupp(a)) = Dsupp(a)(zsupp(a))
∏

i∈supp(a)

θi(zi)

=
∏

i∈supp(a)

pi(zi)
∏

i∈supp(a)

1

qpi(zi)

=
1

q`

for every zsupp(a) ∈ {0, 1, . . . , q − 1}`. Hence D̂non(a) = D̂′supp(a)(a) = 0 by Corollary 2.4.
The converse direction will follow directly from Lemma 5.4 below by setting E = DS in the statement.

Lemma 5.4. Let E : Σk → R≥0 be a distribution. For any index set T ⊆ [k], let ET (z), E′T (z) and
Ênon(a) be defined analogously to those of DT (z), D′T (z) and D̂non(a), respectively. If Ênon(a) = 0
for every non-zero vector a, then E is a non-uniform independent distribution, i.e. E′[k] is the uniform
distribution and consequently E is a product distribution.

One may think of Lemma 5.4 as the non-uniform version of Proposition 2.3.

Proof. For notational simplicity we write S = [k]. Let T be a subset of S of size k − 1, and without loss of
generality, we assume that T = {1, . . . , k − 1}. We first observe the following relation between E′S(z) and
E′T (zT ).

E′T (z1, . . . , zk−1) = ET (z1, . . . , zk−1)θ1(z1) · · · θk−1(zk−1)

=
∑
zk

ES(z1, . . . , zk−1, zk)θ1(z1) · · · θk−1(zk−1)

=
∑
zk

1

θk(zk)
E′S(z1, . . . , zk)

=
∑
zk

qpk(zk)E
′
S(z1, . . . , zk).
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By induction, we have in general, for any T ⊂ S,

E′T (zT ) =
∑

zj :j∈S\T

E′S(z1, . . . , zk)
∏

j∈S\T

(qpj(zj)). (11)

Next we use (11) to eliminate the intermediate projection distributions E′T , and write the non-uniform
Fourier transform of E as a linear transform of {E′S(z)}z∈Σk . Let a be a vector whose support set is T ,
then

Ênon(a) = Ê′T (a)

=
∑
zi:i∈T

E′T (zT )e
2πi
q

∑
i∈T aizi

=
∑
zi:i∈T

∑
zj :j∈S\T

E′S(z)e
2πi
q

∑
i∈T aizi

∏
j∈S\T

(qpj(zj))

=
∑
z∈Σk

E′S(z)
∏
i∈T

e
2πi
q
aizi

∏
j∈S\T

(qpj(zj))

=
∑
z∈Σk

E′S(z)
∏

i∈supp(a)

e
2πi
q
aizi

∏
j∈S\supp(a)

(qpj(zj)). (12)

Define a qk-dimensional column vector E′ with entries E′S(z) (we will specify the order of the entries
later). Similarly define another qk-dimensional column vector whose entries are the non-uniform Fourier
coefficients Ênon. Then we may write (12) more compactly as

Ênon = F̃E′. (13)

In what follows, we will show that F̃ can be written nicely as a tensor product of k matrices. This in turn
enables us to show that F̃ is non-singular.

Let ω = e
2πi
q be a primitive qth root of unity. The q-point discrete Fourier transform (DFT) matrix is

given by

F =



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωq−1

1 ω2 ω4 ω6 · · · ω2(q−1)

1 ω3 ω6 ω9 · · · ω3(q−1)

...
...

...
...

...
1 ωq−1 ω2(q−1) ω3(q−1) · · · ω(q−1)(q−1)


Note that a DFT matrix is also a Vandermonde matrix and therefore det(F) 6= 0.

Definition 5.5 (Tensor Product of Vectors and Matrices). Let A be anm×nmatrix and B be a p×q matrix.
Then the tensor product (a.k.a. Kronecker product) A⊗B is an mp× nq block matrix given by

A⊗B =

 a00B · · · a0,n−1B
...

. . .
...

am−1,0B · · · am−1,n−1B
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=



a00b00 · · · a00b0,q−1 · · · · · · a0,n−1b00 · · · a0,n−1b0,q−1
...

. . .
...

...
. . .

...
a00bp−1,0 · · · a00bp−1,q−1 · · · · · · a0,n−1bp−1,0 · · · a0,n−1bp−1,q−1

...
...

. . .
...

...
...

...
. . .

...
...

am−1,0b00 · · · am−1,0b0,q−1 · · · · · · am−1,n−1b00 · · · am−1,n−1bp−1,q−1
...

. . .
...

...
. . .

...
am−1,0bp−1,0 · · · am−1,0bp−1,q−1 · · · · · · am−1,n−1bp−1,0 · · · am−1,n−1bp−1,q−1


.

Let a be an m-dimensional column vector in Rm and b be a p-dimensional column vector in Rp. Then the
tensor product a⊗ b is an mp-dimensional column vector in Rmp and its entries are given by

a⊗ b =

 a0
...

am−1

⊗
 b0

...
bp−1

 =



a0b0
...

a0bp−1
...
...

am−1b0
...

am−1bp−1


.

Let q ≥ 2 be an integer. The q-ary representation of a natural number r is an ordered tuple (bk, . . . , b1, b0)
such that 0 ≤ bi ≤ q − 1 for every 0 ≤ i ≤ k and r = b0 + b1 · q + · · · bk · qk. The following simple while
useful fact about the tensor product of matrices can be proved easily by induction on the number of matrices
in the product.

Fact 5.6. Let F (1), . . . , F (k) be a set of q × q matrices where the (i, j)th entry of F (`) is denoted by F (`)
i,j ,

0 ≤ i, j ≤ q − 1. Let G = F (1) ⊗ · · · ⊗ F (k). For 0 ≤ I, J ≤ qk − 1, let the q-ary representations of I and
J be I = (i1, . . . , ik) and J = (j1, . . . , jk), respectively. Then

GI,J = F
(1)
i1,j1
· · ·F (k)

ik,jk
.

Let’s first consider the simple case when E is a one-dimensional distribution. Let E be the column
vector whose entries are values of E at {0, 1, . . . , q − 1}. Similarly let Ê be the column vector of E’s
Fourier transform. If we arrange the entries of E and Ê in increasing order, then the one-dimensional
(uniform) Fourier transform can be written in the matrix multiplication form as

Ê =

 Ê(0)
...

Ê(q − 1)

 = F

 E(0)
...

E(q − 1)

 = FE. (14)

For the general case in whichE is a distribution over {0, 1, . . . , q−1}k, we may view every k-dimensional
point (x1, . . . , xk) in E(x1, . . . , xk) as the representation of a natural number X in the q-ary representation:
X = x1 · qk−1 + · · · + xk−1 · q + xk. Then this provides a natural order of the entries in any column
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vector defined over {0, 1, . . . , q − 1}k: view each vector (x1, . . . , xk) as a natural number X in the q-ary
representation and arrange them in the increasing order. By tensor product and arranging the entries in E
and Ê in the natural order, the k-dimensional Fourier transform can be written as

Ê =

 Ê(0, 0, . . . , 0)
...

Ê(q − 1, q − 1, . . . , q − 1)

 = F⊗ · · · ⊗ F︸ ︷︷ ︸
k times

 E(0, 0, . . . , 0)
...

E(q − 1, q − 1, . . . , q − 1)

 =

F⊗ · · · ⊗ F︸ ︷︷ ︸
k times

E.

(15)

Definition 5.7 (Non-uniform DFT Matrices). For every 1 ≤ i ≤ k, define (recall that pi(z)’s are the
marginal probabilities of E at coordinate i) the non-uniform DFT matrix at coordinate i to be

F̃i =



qpi(0) qpi(1) qpi(2) qpi(3) · · · qpi(q − 1)
1 ω ω2 ω3 · · · ωq−1

1 ω2 ω4 ω6 · · · ω2(q−1)

1 ω3 ω6 ω9 · · · ω3(q−1)

...
...

...
...

...
1 ωq−1 ω2(q−1) ω3(q−1) · · · ω(q−1)(q−1)


The following lemma follows directly from Fact 5.6 and (12).

Lemma 5.8. If we arrange the entries in E′ and Ênon in the natural order, then the qk× qk matrix F̃ in (13)
is the tensor product of k non-uniform DFT matrices, i.e.,

F̃ = F̃1 ⊗ · · · ⊗ F̃k,

and consequently
Ênon = (F̃1 ⊗ · · · ⊗ F̃k)E′.

The following is a well-known fact on the determinants of tensor product matrices, see e.g. [38] for an
elementary proof.

Fact 5.9. If A is an m×m square matrix and B is an n× n square matrix, then

det(A⊗B) = (det(A))n(det(B))m.

Proposition 5.10. The non-uniform DFT matrix is non-singular for every 1 ≤ i ≤ k. In particular,

det(F̃i) = q (pi(0) + · · ·+ pi(q − 1)) (−1)q−1
∏

1≤`<m≤q−1

(ωm−ω`) = (−1)q−1q
∏

1≤`<m≤q−1

(ωm−ω`) 6= 0.

Proof. By Laplace expansion along the first row, we have

det(F̃i) =

q−1∑
j=0

(−1)jqpi(j) det(M1j). (16)

The determinant of the minor M1j is

det(M1j) =

∣∣∣∣∣∣∣∣∣
1 ω · · · ωj−1 ωj+1 · · · ωq−1

1 ω2 · · · ω2(j−1) ω2(j+1) · · · ω2(q−1)

...
...

...
...

...
. . .

...
1 ωq−1 · · · ω(j−1)(q−1) ω(j+1)(q−1) · · · ω(q−1)(q−1)

∣∣∣∣∣∣∣∣∣
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=

 q−1∏
`=0,` 6=j

ω`


∣∣∣∣∣∣∣∣∣
1 1 · · · 1 1 · · · 1
1 ω · · · ωj−1 ωj+1 · · · ωq−1

...
...

...
...

...
. . .

...
1 ωq−2 · · · ω(j−1)(q−2) ω(j+1)(q−2) · · · ω(q−1)(q−2)

∣∣∣∣∣∣∣∣∣
=

q−1∏
`=0,`6=j

ω`
∏

0≤`<m≤q−1
`,m 6=j

(ωm − ω`)

=

∏q−1
`=0,` 6=j ω

`
∏

0≤`<m≤q−1(ωm − ω`)∏j−1
`=0(ωj − ω`)

∏q−1
`=j+1(ω` − ωj)

,

since the matrix in the second step is a Vandermonde matrix.
Using the fact that ωq = 1, the denominator may be simplified as

j−1∏
`=0

(ωj − ω`)
q−1∏
`=j+1

(ω` − ωj)

=(−1)j
j−1∏
`=0

ω`
j∏
`=1

(1− ω`)
q−1∏
`=j+1

(ω` − ωj)

=(−1)j
j−1∏
`=0

ω`
j∏
`=1

(1− ω`)
q−1∏
`=j+1

ω`−q(ωq − ωq+j−`)

=(−1)j
j−1∏
`=0

ω`
j∏
`=1

(1− ω`)
q−1∏
`=j+1

ω`
q−1∏
`=j+1

(1− ωq+j−`)

=(−1)j
q−1∏

`=0,` 6=j
ω`

q−1∏
`=1

(1− ω`).

Therefore we have
det(M1j) = (−1)j(−1)q−1

∏
1≤`<m≤q−1

(ωm − ω`).

Plugging det(M1j) into (16) completes the proof.

Combining Fact 5.9 and Proposition 5.10 gives

Lemma 5.11. We have that
det(F̃) = det(F̃1 ⊗ · · · ⊗ F̃k) 6= 0.

Recall that we assume that all the non-zero Fourier coefficients Ênon(a) are zero. Now to make the
linear system of equations in (13) complete, we add another constraint that Ênon(0) =

∑
z E
′(z) = cqk,

where c is a constant which will be determined later. Since F̃ is non-singular, there is a unique solution to
this system of qk linear equations. But we know the uniform distribution E′(z) = c for every z ∈ Σk is a
solution (by the proof of the only if direction of Theorem 5.3), therefore this is the unique solution.
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Now we have, for every z ∈ Σk, E(z)θS(z) = c. Observe that 1/θS(z) = qkp1(z1) · · · pk(zk), and
since pi(z)’s are marginal probabilities,

∑
z∈Σ pi(z) = 1 for every i, it follows that∑

z∈Σk

1

θS(z)
= qk

∑
z∈Σk

p1(z1) · · · pk(zk) = qk.

Using the fact that
∑

z∈Σk E(z) = 1, we arrive at

1 =
∑
z∈Σk

E(z) = c
∑
z∈Σk

1

θS(z)
= qkc,

and therefore c = 1
qk

and E(z) = 1
qkθS(z)

= p1(z1) · · · pk(zk) as desired. This completes the proof of
Lemma 5.4.

5.3 Zeroing-out Non-uniform Fourier Coefficients

Given a distributionD which is not k-wise independent, what is the distance betweenD and the non-uniform
k-wise independence? In the following we will, based on the approach that has been applied to the uniform
case, try to find a set of small-weight distributions to mix with D in order to zero-out all the non-uniform
Fourier coefficients of weight at most k. Moreover, we can bound the total weight added to the original
distribution in this zeroing-out process in terms of the non-uniform Fourier coefficients of D. This will
show that the characterization of the non-uniform k-wise independence given in Theorem 5.3 is robust.

A careful inspection of Theorem 1.1 and its proof shows that if we focus on the weights added to correct
any fixed prime vector and its multiples, we actually prove the following.

Theorem 5.12. Let E′ be a non-negative function12 defined over Σn, a be a prime vector of weight at
most k and Ê′(a), Ê′(2a), . . . , Ê′((q − 1)a) be the Fourier coefficients at a and its multiple vectors. Then
there exist a set of non-negative real numbers wj , j = 0, 1, . . . , q − 1, such that the (small-weight) distri-

bution13 WE′,a
def
=
∑q−1

j=0 wjUa,j satisfies the following properties. The Fourier coefficients of E′ + WE′,a at

a, 2a, . . . , (q − 1)a all equal zero and ŴE′,a(b) = 0 for all non-zero vectors that are not multiples of a.

Moreover, the total weight of WE′,a is at most
∑q−1

j=0 wj ≤
∑q−1

`=1

∣∣∣Ê′(`a)
∣∣∣.

Applying Theorem 5.12 with E′ equal to D′supp(a) gives rise to a small-weight distribution WD′
supp(a)

,a

which, by abuse of notation, we denote by Wa. When we add Wa to D′supp(a), the resulting non-negative
function has zero Fourier coefficients at a and all its multiple vectors. That is,

Ŵa(`a) = −D̂′supp(a)(`a), for every 1 ≤ ` ≤ q − 1. (17)

= −D̂non(`′a), for every `′ such that supp(`′a) = supp(a). (17′)

and for any b which is not a multiple of a,
Ŵa(b) = 0. (18)

12In Theorem 1.1 we only prove this for the case when E′ is a distribution. However it is easy to see that the result applies to
non-negative functions as well.

13Recall that Ua,j is the uniform distribution over all strings x ∈ Znq such that a · x ≡ j (mod q).
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However, this small-weight distribution only works for the auxiliary function D′supp(a) but what we are
looking for is a small-weight distribution that corrects the non-uniform Fourier coefficients of D at a. To
this end, we apply the reversed compressing/stretching factor to Wa to get W̃a,

W̃a(x)
def
=

Wa(x)

θ[n](x)
. (19)

The following lemma shows that mixing D with W̃a results in a distribution whose non-uniform Fourier
coefficients at a as well as its multiple vectors are zero14. In addition, the mixing only adds a relatively
small weight and may increase the magnitudes of the non-uniform Fourier coefficients only at vectors whose
supports are completely contained in the support of a.

Lemma 5.13. Let D be a distribution over Σn and a be a prime vector of weight at most k. Let supp(a)
be the support set of a and W̃a be as defined in (19). Let the maximum factor over all possible compress-
ing/stretching factors be denoted as γk

def
= maxS,z

1
θS(z) , where S ranges over all subsets of [n] of size at

most k and z ∈ Σ|S|. Then W̃a satisfies the following properties:

1. The non-uniform Fourier coefficients of D + W̃a at a as well as at the multiple vectors of a whose

support sets are also supp(a) are all zero.15 Moreover, ˆ̃W non
a (a′) = 0 for every vector a′ whose

support set is supp(a) but is not a multiple vector of a.

2. For any vector b with supp(b) * supp(a), ˆ̃W non
a (b) = 0.

3. The total weight of W̃a is at most γk
∑

x∈Σn Wa(x) ≤ γk
∑q−1

j=1

∣∣∣D̂non(ja)
∣∣∣.

4. For any non-zero vector c with supp(c) ⊂ supp(a), ˆ̃W non
a (c) ≤ γk

∑q−1
j=1

∣∣∣D̂non(ja)
∣∣∣.

Proof. For simplicity, we assume that supp(a) = [k]. Recall that Wa =
∑q−1

j=0 wjUa,j and Ua,j is the
uniform distribution over the strings x ∈ Znq such that

∑n
i=1 aixi ≡ j (mod q). A simple while important

observation is the following: since the support of a is [k], if x1 · · ·xk satisfies the constraint
∑k

i=1 aixi ≡
j (mod q), then for any yk+1 · · · yn ∈ Σn−k, x1 · · ·xkyk+1 · · · yn will satisfy the constraint and thus is in
the support of the distribution.

Remark on notation. In the rest of this section, we always write x for an n-bit vector in Σn and write z
for a k-bit vector in Σk.

Note that we may decompose Wa (or any non-negative function) into a sum of qk weighted distributions
as Wa =

∑
z∈Σk wzUz, such that each of the distribution Uz is supported on the |Σ|n−k strings whose

k-bit prefixes are z. That is,

wzUz(x) =

{
Wa(x), if x[k] = z,
0, otherwise.

14In fact, the lemma only guarantees to zero-out the Fourier coefficients at a and its multiples whose support sets are the same
as that of a. But that will not be a problem since we will perform the correction process in stages and will come to vectors with
smaller support sets at some later stages.

15Note that if a is a prime vector and a′ is a multiple vector of a, then supp(a′) ⊆ supp(a).
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To make Uz indeed a distribution, i.e.,
∑

x Uz(x) = 1, we simply set

wz
def
= (Wa)[k] (z). (20)

That is, wz equals the mass of the projected distribution Wa at z. By Theorem 5.12 clearly we have

∑
z∈Σk

wz ≤
q−1∑
j=1

∣∣∣D̂non(ja)
∣∣∣ . (21)

The aforementioned observation then implies that for every z ∈ Σk, Uz is the uniform distribution over
all |Σ|n−k strings whose k-bit prefixes are z. In other words, Uz is uniform over the strings in its support.
We will refer to these distributions as atomic uniform distributions. More explicitly,

Uz(x) =

{
1

qn−k
, if x[k] = z,

0, otherwise.
(22)

After applying the compressing/stretching factor, Uz is transformed into Ũz:

Ũz(x) =

{
1

qn−kθ[n](x)
, if x[k] = z,

0, otherwise.
(23)

We call Ũz a transformed atomic uniform distribution. Clearly we have

W̃a =
∑
z∈Σk

wzŨz.

We remark that both atomic uniform distributions and transformed atomic uniform distributions are intro-
duced only for the sake of analysis; they play no role in the testing algorithm.

Our plan is to show the following: on the one hand, {wzŨz}z, the weighted transformed atomic uniform
distributions, collectively zero-out the non-uniform Fourier coefficients ofD at a and all the multiple vectors
of a whose supports are the same as a. On the other hand, individually, each transformed atomic uniform
distribution Ũz has zero non-uniform Fourier coefficient at any vector whose support is not a subset of
supp(a). Then by linearity of the Fourier transform, W̃a also has zero Fourier coefficients at these vectors.

We first show that if we project Ũz to index set [k] to obtain the distribution
(
Ũz

)
[k]

, then
(
Ũz

)
[k]

is supported only on a single string (namely z) and has total weight 1
θ[k](z) , which is independent of the

compressing/stretching factors applied to the last n− k coordinates.

Remark on notation. To simplify notation, we will use Kronecker’s delta function, δ(u,v), in the fol-
lowing. By definition, δ(u,v) equals 1 if u = v and 0 otherwise. An important property of δ-function is∑

u′ f(u′)δ(u,u′) = f(u), where f is an arbitrary function.

Claim 5.14. We have (
Ũz

)
[k]

(z′) =
δ(z′, z)

θ[k](z)
, (24)

and consequently ∑
x∈Σn

Ũz(x) =
1

θ[k](z)
. (24′)
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Proof. Note that Ũz(x) can be written as

Ũz(x) =
δ(x[k], z)

θ[k](z)

1

qn−kθ[k+1,n](x[k+1,n])
=
δ(x[k], z)

θ[k](z)

1

qn−kθk+1(xk+1) · · · θn(xn)
.

Then by simple calculation,(
Ũz

)
[k]

(x[k]) =
∑

xk+1,...,xn

Ũz(x) =
δ(x[k], z)

θ[k](z)

∑
xk+1,...,xn

1

qn−kθk+1(xk+1) · · · θn(xn)

=
δ(x[k], z)

θ[k](z)

1

qn−k

∑
xk+1,...,xn

qn−kpk+1(xk+1) · · · pn(xn)

=
δ(x[k], z)

θ[k](z)

∑
xk+1

pk+1(xk+1)

 · · ·(∑
xn

pn(xn)

)

=
δ(x[k], z)

θ[k](z)
.

Note that (24) is exactly what we want, since to compute the non-uniform Fourier coefficient ofwzŨz(z′)
at a, we need to multiply the projected distribution by θ[k](z

′). Specifically, denote the transformed function
F(W̃a,a) (as defined in (10)) by W ′ and use (24), then for every z′ ∈ Σk,

W ′(z′) =
(
W̃a

)
[k]

(z′)θ[k](z
′)

=
∑
z

wz

(
Ũz

)
[k]

(z′)θ[k](z
′)

=
∑
z

wz
δ(z′, z)

θ[k](z)
θ[k](z

′)

= wz′ .

It follows that W ′ = Wa by (20). Therefore for any vector b whose support set is [k], we have
ˆ̃W non
a (b) = Ŵa(b). In particular, by (17′) and (18), ˆ̃W non

a (`′a) = −D̂non(`′a) for every vector `′a such

that supp(`′a) = supp(a) and ˆ̃W non
a (b) = 0 for every vector b which is not a multiple of a and satisfies

supp(b) = supp(a). This proves the first part of the Lemma 5.13.
Next we consider the non-uniform Fourier coefficient of Ũa at b, where supp(b) * [k]. Without loss

of generality, assume that supp(b) = {` + 1, . . . , k, k + 1, . . . , k + m}, where ` ≤ k − 1 and m ≥ 1.
Consider the non-uniform Fourier coefficient of any atomic uniform distribution Ũz at b. By the form of
Ũz(x) in (23),(

Ũz

)
supp(b)

(x`+1, . . . , xk+m) =
(
Ũz

)
[`+1,k+m]

(x`+1, . . . , xk+m)

=
∑

x1,...,x`

∑
xk+m+1,...,xn

Ũz(x)

=
1

qn−k

∑
x1,...,x`

δ(x[k], z)

θ[k](z)

∑
xk+m+1,...,xn

1

θk+1(xk+1) · · · θk+m(xk+m)θk+m+1(xk+m+1) · · · θn(xn)

34



=
δ(x[`+1,k], z[`+1,k])

qn−kθ[k](z)

qn−k−m

θk+1(xk+1) · · · θk+m(xk+m)

 ∑
xk+m+1

pk+m+1(xk+m+1)

 · · ·(∑
xn

pn(xn)

)

=
1

qmθ[k](z)θk+1(xk+1) · · · θk+m(xk+m)
δ(x[`+1,k], z[`+1,k]).

Therefore, after applying the compressing/stretching transformation, Ũz is uniform over [k + 1, k + m].
Consequently, its non-uniform Fourier coefficient at b is

ˆ̃U non
z (b) =

∑
x`+1,...,xk+m

δ(x[`+1,k], z[`+1,k])θ`+1(x`+1) · · · θk+m(xk+m)

qmθ[k](z)θk+1(xk+1) · · · θk+m(xk+m)
e

2πi
q

(b`+1x`+1+···+bk+mxk+m)

=
e

2πi
q

(b`+1z`+1+···+bkzk)

qmθ1(z1) · · · θ`(z`)
∑

xk+1,...,xk+m

e
2πi
q

(bk+1xk+1+···+bk+mxk+m)

=
e

2πi
q

(b`+1z`+1+···+bkzk)

qmθ1(z1) · · · θ`(z`)
∑

xk+2,...,xk+m

e
2πi
q

(bk+2xk+2+···+bk+mxk+m)
∑
xk+1

e
2πi
q

(bk+1xk+1)

= 0,

where the last step follows from Fact 2.1 as bk+1 is non-zero. This proves the second part of the Lemma 5.13.
By (24′) in Claim 5.14 the total weight added by a transformed atomic uniform distribution is wz

θ[k](z) ≤
γkwz. Adding the weights of all the atomic uniform distributions together and using the upper bound on
total weights in (21) proves the third part of Lemma 5.13.

For the last part, assume supp(c) = T ⊂ [k]. Now consider the contribution of a transformed atomic
uniform distribution wzŨz to the non-uniform Fourier coefficient at c. The probability mass at z′T of the
transformed atomic distribution is

F(wzŨz, c)(z′T ) = wz

(
δ(z′, z)

θ[k](z)

)
T

θT (z′T )

= wz
θT (z′T )

θ[k](z)
δ(z′T , zT ).

Therefore we can upper bound its non-uniform Fourier coefficient at c by

∣∣∣F̂(wzŨz, c)(c)
∣∣∣ ≤

∣∣∣∣∣∣
∑
z′T

F(wzŨz, c)(z′T )

∣∣∣∣∣∣
= wz

θT (z′T )

θ[k](z)
(since F(wzŨz, c) is non-negative)

≤ wz
1

θ[k](z)
(since θT (z′T ) ≤ 1)

≤ γkwz.

Finally we add up the weights of all transformed atomic uniform distributions in W̃ and apply (21) to prove
the last part of Lemma 5.13.
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Now for any prime vector a of weight k, we can mix D with Ũa to zero-out the non-uniform Fourier
coefficient at a and all its multiples whose supports sets are supp(a). By Lemma 5.13, the added small-
weight distribution will only increase the magnitudes of the non-uniform Fourier coefficients at vectors
whose supports are strict subsets of supp(a). After doing this for all the prime vectors at level k, we obtain
a distribution whose non-uniform Fourier coefficients at level k are all zero. We then recompute the non-
uniform Fourier coefficients of the new distribution and repeat this process for prime vectors whose weights
are k − 1. By iterating this process k times, we finally zero out all the non-uniform Fourier coefficients on
the first level and obtain a non-uniform k-wise independent distribution.

Theorem 1.2. Let D be a distribution over Σn, then

∆(D,Dkwi) ≤ O
(
n
k2−k+2

2 qk(k+1)

)
max

a:0<wt(a)≤k

∣∣∣D̂non(a)
∣∣∣ .

Proof. First observe that for every 1 ≤ i ≤ n and every z ∈ Σ, 1
θi(z)

= qpi(z) < q, so γj < qj , for every
1 ≤ j ≤ k.

We consider the zeroing-out processes in k+ 1 stages. At stage 0 we have the initial distribution. Finally
at stage k, we zero-out all the level-1 non-uniform Fourier coefficients and obtain a non-uniform k-wise
independent distribution.

Let fmax = max0<wt(a)≤k

∣∣∣D̂non(a)
∣∣∣. To simplify notation, we shall normalize by fmax every bound on

the magnitudes of the non-uniform Fourier coefficients as well as every bound on the total weight added in
each stage. That is, we divide all the quantities by fmax and work with the ratios.

Let f (j) denote the maximum magnitude, divided by fmax, of all the non-uniform Fourier coefficients that
have not been zeroed-out at stage j; that is, the non-uniform Fourier coefficients at level i for 1 ≤ i ≤ k− j.
Clearly f (0) = 1.

Now we consider the zeroing-out process at stage 1. There are
(
n
k

)
(q − 1)k vectors at level k, and by

part(3) of Lemma 5.13, correcting the non-uniform Fourier coefficient at each vector adds a weight at most
γk(q−1)f (0). Therefore, the total weight added at stage 1 is at most

(
n
k

)
(q−1)kγk(q−1)f (0) = O(nkq2k+1).

Next we calculate f (1), the maximal magnitude of the remaining non-uniform Fourier coefficients. For any
vector c at level i, 1 ≤ i ≤ k − 1, there are

(
n−i
k−i
)
(q − 1)k−i vectors at level k whose support sets are

supersets of supp(c). By part(4) of Lemma 5.13, zeroing-out the non-uniform Fourier coefficient at each
such vector may increase

∣∣∣D̂non(c)
∣∣∣ by γk(q − 1)f (0). Therefore the magnitude of the non-uniform Fourier

coefficient at c is at most

f (0) +

(
n− i
k − i

)
(q − 1)k−iγk(q − 1)f (0) = O

(
nk−iq2k−i+1

)
.

Clearly the worst case happens when i = 1 and we thus have f (1) ≤ O
(
nk−1q2k

)
.

In general it is easy to see that at every stage, the maximum magnitude increases of the non-uniform
Fourier coefficients always occur at level 1. At stage j, we need to zero-out the non-uniform Fourier coef-
ficients at level k − j + 1. For a vector a at level 1, there are

(
n−1
k−j
)
(q − 1)k−j vectors at level k − j + 1

whose support sets are supersets of supp(a), and the increase in magnitude of D̂non(a) caused by each such
level-(k − j + 1) vector is at most γk−j+1(q − 1)f (j−1). We thus have

f (j) ≤
(
n− 1

k − j

)
(q − 1)k−jγk−j+1(q − 1)f (j−1) ≤ O

(
nk−jq2(k−j+1)

)
f (j−1), for 1 ≤ j ≤ k − 1.
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This in turn gives
f (j) ≤ O

(
n
j(2k−j−1)

2 qj(2k−j+1)
)
, for 1 ≤ j ≤ k − 1.

It is easy to check that the weights added at stage k dominates the weights added at all previous stages,
therefore the total weight added during all k + 1 stages is at most

O

((
n

1

)
(q − 1)γ1

)
f (k−1) ≤ O

(
n
k2−k+2

2 qk(k+1)

)
.

5.4 Testing Algorithm and its Analysis

We now study the problem of testing non-uniform k-wise independence over Znq . Define

θmax
def
= max

S⊂[n],0<|S|≤k,z∈Σ|S|
θS(z)

to be the maximum compressing/stretching factor we ever apply when compute the non-uniform Fourier
coefficients.

Claim 5.15. For any 0 ≤ δ ≤ 1, if ∆(D,Dkwi) ≤ δ, then for any non-zero vector a of weight at most k,∣∣∣D̂non(a)
∣∣∣ ≤ qθmaxδ.

Proof. Recall that we compute the non-uniform Fourier coefficient of D at a by first projecting D to
supp(a) and then apply a compressing/stretching factor to each marginal probability in Dsupp(a). Let
D′ be any k-wise independent distribution with ∆(D,D′) ≤ δ. For every 0 ≤ j ≤ q − 1, let P non

a,j and
P ′non
a,j be the total probability mass of points in D and D′ that satisfy a · z ≡ j (mod q) after applying the

compressing/stretching factors. By the definitions of statistical distance and θmax, we have

|PDa,j − 1/q| = |P non
a,j − P ′non

a,j |

=

∣∣∣∣∣∣∣
∑

a·z≡j (mod q)

(Dsupp(a)(z)−D′supp(a)(z))θsupp(a)(z)

∣∣∣∣∣∣∣
≤

∑
a·z≡j (mod q)

|(Dsupp(a)(z)−D′supp(a)(z))θsupp(a)(z)|

≤ θmax

∑
a·z≡j (mod q)

|Dsupp(a)(z)−D′supp(a)(z)|

≤ θmaxδ.

Now applying Fact 2.8 gives the claimed bound.

For simplicity, in the following we use Mnon(n, k, q)
def
=O

(
n
k2−k+2

2 qk(k+1)

)
to denote the bound in

Theorem 1.2.

Theorem 5.16. There is an algorithm that tests the non-uniform k-wise independence over Σn with query

complexity Õ( θ
2
maxn

(k2−k+2)q2(k
2+2k+1)

ε2
) and time complexity Õ( θ

2
maxn

(k2+2)q(2k
2+5k+2)

ε2
) and satisfies the fol-

lowing: for any distribution D over Σn, if ∆(D,Dkwi) ≤ ε
3qθmaxMnon(n,k,q) , then with probability at least

2/3, the algorithm accepts; if ∆(D,Dkwi) > ε, then with probability at least 2/3, the algorithm rejects.

37



Test-Non-Uniform-KWI(D, k, q, ε)

1. Sample D independently m = O
(
q2(k+1)θ2maxM

non(n,k,q)2

ε2 log (M(n, k, q))
)

times

2. Use the samples to estimate, for each non-zero vector a of weight at most k and each
z ∈ Σ|supp(a)|, Dsupp(a)(z)

• Compute D′supp(a)(z) = θS(z)Dsupp(a)(z)

• Compute D̂non(a)
def
= D̂′supp(a)(a) =

∑
zD
′
supp(a)(z)e

2πi
q a·z

3. If maxa

∣∣∣D̂non(a)
∣∣∣ ≤ 2ε

3Mnon(n,k,q) return “Accept”; else return “Reject”

Figure 4: Algorithm for testing non-uniform k-wise independence.

We now briefly sketch the proof of Theorem 5.16. Instead of estimating Pa,j as in the proof Theorem 2.7,
we estimate Dsupp(a)(z) for every z such that a · z ≡ j (mod q). Since each P non

a,j is the sum of at most
qk terms, where each term is some Dsupp(a)(z) multiplied by a factor at most θmax, it suffices to estimate
eachDsupp(a)(z) within additive error ε/3qMnon(n, k, q)qkθmax. The soundness part follows directly from
Claim 5.15.

5.5 Testing Algorithm when the Marginal Probabilities are Unknown

If the one-dimensional marginal probabilities pi(z) are not known, we can first estimate these probabilities
by sampling the distribution D and then plug these empirical estimates into the testing algorithm shown
in Fig 4. The only difference between this case and the known probabilities case is that we need to deal
with errors from two sources: apart from those in estimating Dsupp(a)(z) there are additional errors from
estimating the compressing/stretching factors. It turns out that the query and time complexity are essentially
the same when all the one-dimensional marginal probabilities are bounded away from zero.

In the following we write pmin = mini,z pi(z) for the minimum one-dimensional marginal probability.
Note that θmax ≤ (qpmin)−k.

Theorem 5.17. There is an algorithm that tests the non-uniform k-wise independence over Σn where the
one-dimensional marginal probabilities of the given distribution are unknown. The algorithm has query

complexity Õ( θ
2
maxn

(k2−k+2)q2(k
2+2k+1)

ε2pmin
) and time complexity Õ( θ

2
maxn

(k2+2)q(2k
2+5k+2)

ε2pmin
) and satisfies the fol-

lowing: for any distribution D over Σn, if ∆(D,Dkwi) ≤ ε
3qθmaxMnon(n,k,q) , then with probability at least

2/3, the algorithm accepts; if ∆(D,Dkwi) > ε, then with probability at least 2/3, the algorithm rejects. 16

Proof. The algorithm is essentially the same as that of Theorem 5.16 shown in Fig 4. The only difference is

that this new algorithm first uses m = Õ( θ
2
maxn

(k2−k+2)q2(k
2+2k+1)

ε2pmin
) samples to estimate, for each 1 ≤ i ≤ n

and each z ∈ Σ, the one-dimensional marginal probability pi(z). Denote the estimated marginal probabili-
ties by p′i(z) and similarly the estimated compressing/stretching factors by θ′S(z). After that, the algorithm

16Note that if pmin is extremely small, the query and time complexity of the testing algorithm can be superpolynomial. One
possible fix for this is to perform a “cutoff” on the marginal probabilities. That is, if any of the estimated marginal probabilities
is too small, we simply treat it as zero. Then we test the input distribution against some k-wise independent distribution over a
product space. We leave this as an open question for future investigation.
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uses the same samples to estimate, for every non-zero a of weight at most k and every z, the projected prob-
ability Dsupp(a)(z). Then it uses these probabilities together with the estimated one-dimensional marginal
probabilities to calculate D̂non(a).

By Chernoff bound, for every p′i(z), with probability at least 1− 1/6qn, we have 1− ε′ ≤ p′i(z)
pi(z)

≤ 1 + ε′,
where ε′ = ε/(12kqθmaxM

non(n, k, q)). Therefore by union bound, with probability at least 5/6, all the
estimated one-dimensional marginal probabilities have at most (1± ε′) multiplicative errors.

It is easy to verify by Taylor’s expansion that for any fixed integer k > 1, (1 + y)k ≤ 1 + 2ky for all
0 ≤ y ≤ 1/(k − 1). Also by Bernoulli’s inequality, (1 − y)k ≥ 1 − ky for all 0 ≤ y ≤ 1. Combining
these two facts with the multiplicative error bound for p′i(z), we get that with probability at least 5/6 all the
estimated compressing/stretching factors have at most (1± 2kε′) multiplicative errors, as every such factor
is a product of at most k factors of the form 1/qpi(z).

Also by Chernoff bound, we have with probability at least 5/6,

|D̄supp(a)(z)−Dsupp(a)(z)| ≤ ε

12qMnon(n, k, q)qkθmax

for every a and z.
Define

P non
a,j

def
=

∑
a·z≡j (mod q)

Dsupp(a)(z)θsupp(a)(z)

as the “non-uniform” Pa,j .
Our estimated value of P non

a,j , denoted by P̄ non
a,j , is in fact

P̄ non
a,j =

∑
a·z≡j (mod q)

D̄supp(a)(z)θ′supp(a)(z),

where D̄supp(a)(z) denotes the empirical estimate of Dsupp(a)(z). To simplify notation, in the following
we write P (z) = Dsupp(a)(z), P̄ (z) = D̄supp(a)(z), θ(z) = θsupp(a)(z) and θ′(z) = θ′supp(a)(z).

Putting the two error estimates together, we have with probability at least 2/3, for every a and j

∣∣P̄ non
a,j − P non

a,j

∣∣ =

∣∣∣∣∣∣∣
∑

a·z≡j (mod q)

P̄ (z)θ′(z)− P (z)θ(z)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

a·z≡j (mod q)

P̄ (z)θ′(z)− P (z)θ′(z) + P (z)θ′(z)− P (z)θ(z)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∑

a·z≡j (mod q)

P̄ (z)θ′(z)− P (z)θ′(z)

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∑

a·z≡j (mod q)

P (z)θ′(z)− P (z)θ(z)

∣∣∣∣∣∣∣
≤

∑
a·z≡j (mod q)

θ′(z)|P̄ (z)− P (z)|+
∑

a·z≡j (mod q)

P (z)|θ′(z)− θ(z)|

≤ 2θmax

∑
a·z≡j (mod q)

|P̄ (z)− P (z)|+ (2kε′)θmax

∑
a·z≡j (mod q)

P (z)
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≤ 2θmaxq
k ε

12qMnon(n, k, q)qkθmax
+ 2kθmax

ε

12kqθmaxMnon(n, k, q)

=
ε

3qMnon(n, k, q)
.

The rest of the proof is similar to that of Theorem 2.7 so we omit the details.

6 Almost k-wise Independence over Product Spaces

We study the problem of testing the almost k-wise independent distributions over product spaces in this
section. In the following we will follow [1] and define the almost k-wise independence in terms of max-
norm.

Definition 6.1 (Uniform Almost k-wise Independence). Let Σ be a finite set with |Σ| = q. A discrete
probability distributionD over Σn is (uniform) (ε, k)-wise independent if for any set of k indices {i1, . . . , ik}
and for all z1, . . . , zk ∈ Σ, ∣∣∣∣ Pr

X∼D
[Xi1 · · ·Xik = z1 · · · zk]− 1/qk

∣∣∣∣ ≤ ε.
Generalizing this definition to non-uniform almost k-wise independence over product spaces is straight-

forward.

Definition 6.2 (Non-uniform Almost k-wise Independence over Product Spaces). Let Σ1, . . . ,Σn be finite
sets. A discrete probability distribution D over Σ1 × · · · × Σn is (non-uniform) (ε, k)-wise independent if
for any set of k indices {i1, . . . , ik} and for all zi1 ∈ Σi1 , . . . , zik ∈ Σik ,∣∣∣∣ Pr

X∼D
[Xi1 · · ·Xik = zi1 · · · zik ]− Pr

X∼D
[Xi1 = zi1 ]× · · · × Pr

X∼D
[Xik = zik ]

∣∣∣∣ ≤ ε.
From now on we will work with the most general notion of the almost k-wise independence, that

is the non-uniform almost k-wise independent distributions over product spaces. Let D(ε,k) denote the
set of all (ε, k)-wise independent distributions. The distance between a distribution D and the set of
(ε, k)-wise independent distributions is the minimum statistical distance between D and any distribution
in D(ε,k), i.e., ∆(D,D(ε,k)) = infD′∈D(ε,k)

∆(D,D′). D is said to be δ-far from (ε, k)-wise independence
if ∆(D,D(ε,k)) > δ. We write qm for max1≤i≤n |Σi|. To simplify notation, we use vectors p1, . . . ,pn of
dimensions |Σ1|, . . . , |Σn|, respectively to denote the marginal probabilities at each coordinates. That is, for
every zj ∈ Σi, the jth component of pi is pi(zj) = PrX∼D[Xi = zj ]. Clearly we have

∑
zj∈Σi

pi(zj) = 1
for every 1 ≤ i ≤ n.

In the property testing setting, for a given distribution D, we would like to distinguish between the case
that D is in D(ε,k) from the case that D is δ-far from D(ε,k).

Theorem 6.3. Given a discrete distribution D over Σ1 × · · · × Σn, there is a testing algorithm with query
complexity O(k log(nqm)

ε2δ2
) and time complexity Õ( (nqm)k

ε2δ2
) such that the following holds. If D ∈ D(ε,k), then

the algorithm accepts with probability at least 2/3; if D is δ-far from D(ε,k), then the algorithm rejects with
probability at least 2/3.

To analyze the testing algorithm we will need the following lemma which, roughly speaking, states that
the distance parameter δ can be translated into the error parameter ε (up to a factor of ε) in the definition of
the almost k-wise independence.
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Test-AKWI(D, k,Σ, ε, δ)

1. Sample D independently Q = O(k log(nqm)
ε2δ2 ) times

2. Use the samples to estimate, for every k-subset I = {i1, . . . , ik} of [n] and every zi1 · · · zik ,

p̄I(zi1 · · · zik)
def
= PrX∼D[Xi1 · · ·Xik = zi1 · · · zik ]

3. Let pI(zi1 · · · zik)
def
= PrX∼D[Xi1 = zi1 ]× · · · × PrX∼D[Xik = zik ]

4. If maxI,z |p̄I(zi1 · · · zik) − pI(zi1 · · · zik)| > ε + εδ/2, return “Reject”; else return “Ac-
cept”

Figure 5: Algorithm for testing almost k-wise independence over product spaces.

Lemma 6.4 ([1]). Let D be a distribution over Σ1 × · · · × Σn. If ∆(D,D(ε,k)) > δ, then D /∈ D(ε+εδ,k). If
∆(D,D(ε,k)) ≤ δ, then D ∈ D(ε+δ,k).

Proof. For the first part, suppose D ∈ D(ε+εδ,k). Let Up1,...,pn denote the distribution that for every
z1 · · · zn ∈ Σ1×· · ·×Σn,Up1,...,pn(z1 · · · zn) = p1(z1) · · ·pn(zn). It is easy to check that since

∑
zi
pi = 1,

Up1,...,pn is indeed a distribution. Now define a new distribution D′ as D′ = (1 − δ)D + δUp1,...,pn , then
one can easily verify that D′ ∈ D(ε,k), therefore ∆(D,D(ε,k)) ≤ δ.

For the second part, recall that no randomized procedure can increase the statistical difference between
two distributions [37], therefore to project distributions to any set of k coordinates and then look at the
probability of finding any specific string of length k can not increase the statistical distance between D and
any distribution in D(ε,k). It follows that when restricted to any k coordinates, the max-norm of D is at most
ε+ δ.

Proof of Theorem 6.3. The testing algorithm is illustrated in Fig. 5. The query complexity and time com-
plexity of the testing algorithm are straightforward to check. Now we prove the correctness of the algorithm.
As shown in Fig. 5, we write p̄I(zi1 · · · zik) for the estimated probability from the samples, pDI (zi1 · · · zik)
for PrX∼D[Xi1 · · ·Xik = zi1 · · · zik ] and pI(zi1 · · · zik) for PrX∼D[Xi1 = zi1 ]×· · ·×PrX∼D[Xik = zik ].
Observe that E [p̄I(zi1 · · · zik)] = pDI (zi1 · · · zik). Since p̄I(zi1 · · · zik) is the average of Q independent 0/1
random variables, Chernoff bound gives

Pr[
∣∣p̄I(zi1 · · · zik)− pDI (zi1 · · · zik)

∣∣ ≥ εδ/2] ≤ exp(−Ω(ε2δ2Q)).

By setting Q = C k log(nqm)
ε2δ2

for large enough constant C and applying a union bound argument to all k-
subsets and all possible strings of length k, we get that with probability at least 2/3, for every I and every
zi1 , . . . , zik ,

∣∣p̄I(zi1 · · · zik)− pDI (zi1 · · · zik)
∣∣ < εδ/2.

Now ifD ∈ D(ε,k), then with probability at least 2/3, for all I and all zi1 , . . . , zik ,
∣∣pDI (zi1 · · · zik)− pI(zi1 · · · zik)

∣∣ ≤
ε, so by the triangle inequality |p̄I(zi1 · · · zik)− pI(zi1 · · · zik)| ≤ ε+εδ/2. Therefore the algorithm accepts.

If D is δ-far from (ε, k)-wise independence, then by Lemma 6.4, D /∈ D(ε+εδ,k). That is, there are some
I and zi1 , . . . , zik such that

∣∣pDI (zi1 · · · zik)− pI(zi1 · · · zik)
∣∣ > ε + εδ. Then with probability at least 2/3,

|p̄I(zi1 · · · zik)− pI(zi1 · · · zik)| > ε+ εδ/2. Therefore the algorithm rejects.
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