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1 Introduction

Nowadays we are both blessed and cursed by the colossal amount of data available for processing. In
many situations, simply scanning the whole data set once can be a daunting task. It is then natural
to ask what we can do in sublinear time. For many computational questions, if instead of asking the
decision version of the problems, one can relax the questions and consider the analogous property testing
problems, then sublinear algorithms are often possible. See survey articles [18,35,27,14].

Property testing algorithms [36,19] are usually based on robust characterizations of the objects being
tested. For instance, the linearity test introduced in [12] is based on the characterization that a function
is linear if and only if the linearity test (for all x and y, it holds that f(x) + f(y) = f(x + y)) has
acceptance probability 1. Moreover, the characterization is robust in the sense that if the linearity test
accepts a function with probability close to 1, then the function must be also close to some linear function.
Property testing often leads to a new understanding of well-studied problems and sheds insight on related
problems.

In this work, we show robust characterizations of k-wise independent distributions over discrete
product spaces and give sublinear-time testing algorithms based on these robust characterizations. Note
that distributions over product spaces are in general not product distributions, which by definition are
n-wise independent distributions.

The k-wise Independent Distributions: For finite set Σ, a discrete probability distribution D over Σn

is (non-uniform) k-wise independent if for any set of k indices {i1, . . . , ik} and for all z1, . . . , zk ∈ Σ,
PrX∼D[Xi1 · · ·Xik

= z1 · · · zk] = PrX∼D[Xi1 = z1] · · ·PrX∼D[Xik
= zk]. That is, restricting D to any k

coordinates gives rise to a fully independent distribution. For the special case of PrX∼D[Xi = z] = 1
|Σ| for

all i and all z ∈ Σ, we refer to the distribution as uniform k-wise independent1. A distribution is almost
k-wise independent if its restriction to any k coordinates is very close to some independent distribution.
k-wise independent distributions look independent “locally” to any observer of only k coordinates, even
though they may be far from fully independent “globally”. Furthermore, k-wise independent distributions
can be constructed with exponentially smaller support sizes than fully independent distributions. Because
of these useful properties, k-wise independent distributions have many applications in both probability
theory and computational complexity theory [23,25,28,31].

Given samples drawn from a distribution, it is natural to ask, how many samples are required to tell
whether the distribution is k-wise independent or far from k-wise independent, where by “far from k-wise
independent” we mean that the distribution has large statistical distance from any k-wise independent
distribution. Usually the time and query complexity of distribution testing algorithms are measured
against the support size of the distributions; For example, algorithms that test distributions over {0, 1}n

with time complexity o(2n) are said to be sublinear-time testing algorithms.
Alon, Goldreich and Mansour [4] implicitly give the first robust characterization of k-wise indepen-

dence. Alon et al. [1] improve the bounds in [4] and also give efficient testing algorithms. All of these
results consider only uniform distributions over GF(2). Our work generalizes previous results in two ways:
to distributions over arbitrary finite product spaces and to non-uniform k-wise independent distributions.

1.1 Our Results

Let Σ = {0, 1, . . . , q − 1} be the alphabet and let D : Σn → [0, 1] be the distribution to be tested. For
any vector a ∈ Σn, the Fourier coefficient of distribution D at a is D̂(a) =

∑
x∈Σn D(x)e

2πi
q

Pn
j=1 ajxj =

Ex∼D

[
e

2πi
q

Pn
j=1 ajxj

]
. The weight of a is the number of non-zero entries in a. It is a folklore fact that a

distribution D is uniform k-wise independent if and only if for all non-zero vectors a of weight at most
k, D̂(a) = 0. A natural test for k-wise independence is thus the following Generic Algorithm for testing
k-wise independence shown in Fig. 1.

However, in order to prove that the generic algorithm works, one needs to show that the simple
characterization of k-wise independence is robust in the sense that, for any distribution D, if all its
Fourier coefficients at vectors of weight at most k are at most δ (in magnitude), then D is ε(δ)-close to
some uniform k-wise independent distribution, where the closeness parameter ε depends, among other

1 In literature the term “k-wise independence” usually refers to uniform k-wise independence.
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Generic Algorithm for Testing Uniform k-wise Independence

1. Sample D uniformly and independently M times
2. Use these samples to estimate all the low-weight Fourier coefficients
3. Accept if the magnitudes of all the estimated Fourier coefficients are at most δ

Fig. 1. A generic algorithm for testing uniform k-wise independence.

things, on the error parameter δ.2 Furthermore, the query and time complexity of the generic testing
algorithm will depend on the underlying upper bound. One of our main results is the following robust
characterization of uniform k-wise independence. Let ∆(D,Dkwi) denote the distance between D and
the set of k-wise independent distributions over {0, 1, . . . , q − 1}n, then

∆(D,Dkwi) ≤
∑

0<wt(a)≤k

|D̂(a)|.

Consequently, the sample complexity of our testing algorithm is Õ(n2k(q−1)2kq2

ε2 ) and the time complexity

is Õ(n3k(q−1)3kq2

ε2 ), which are both sublinear when k = O(1) and q ≤ poly(n). We further generalize
these results to non-uniform k-wise independent distributions over product space, i.e., distributions over
Σ1 × · · · ×Σn, where Σ1, . . . , Σn are finite sets.

We remark that another related problem, namely testing almost k-wise independence over product
spaces admits a straightforward generalization of the testing algorithm in [1], which is shown there to
work only for the (uniform) binary case. We refer interested readers to the full version of the paper.

Our results add a new understanding of the structures underlying (non-uniform) k-wise independent
distributions and it is hoped that one may find other applications of these robust characterizations.

As is often the case, commutative rings demonstrate different algebraic structures from those of
prime fields. For example, the recent improved construction [16] of 3-query locally decodable codes of
Yekhanin [41] relies crucially on a set system construction [21] which holds only modulo composite
numbers. Generalizing results in the binary field (or prime fields) to commutative rings often poses new
technical challenges and requires additional new ideas. We hope our results may find future applications
in generalizing other results working in the Boolean domains to general domains.

1.2 Techniques

Previous Techniques: Given a distribution D over binary field, a k-wise independent distribution is
constructed in [4] by mixing D with a series of carefully chosen distributions to the given distribution in
order to zero-out all the Fourier coefficients over subsets of size at most k. For a given subset S, the added
distribution US is chosen such that, on the one hand it corrects the Fourier coefficient over S; on the
other hand, US ’s Fourier coefficient of D over any other subset is zero. Using the orthogonality property
of Hadamard matrices, they choose US to be the uniform distribution over all strings whose parity over
S is 1 (or −1, depending on the sign of the distribution’s bias over S). Although one can generalize it to
work for prime fields, this construction breaks down when the alphabet size is a composite number.

For binary field a better bound is obtained in [1]. This is achieved by first working in the Fourier
domain to remove all the first k-level Fourier coefficients of the input distribution. Such an operation
ends up with a so-called “pseudo-distribution”, since at some points the resulting function may assume
negative values. Then a series of carefully chosen k-wise independent distributions are added to the
pseudo-distribution to fix the negative points. This approach does not admit a direct generalization
to the non-Boolean cases because, for larger domains, the pseudo-distributions are in general complex-
valued. Nevertheless3, one may use generalized Fourier expansion of real-valued functions to overcome
this difficulty. We present this approach in the appendices of the full version of the paper. However, the
bound obtained from this approach is weaker than our main results for the uniform case which we discuss
2 Note that, for almost k-wise independence, all the Fourier coefficients at vectors of weight at most k being

small already implies that the distribution is almost k-wise independent.
3 We thank an anonymous referee for pointing this out.
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shortly. Moreover, the proof is “non-constructive” in the sense that we are not aware of what distributions
should we mix with the input distribution to make it a k-wise independent one. This drawback seems
make it hard to generalize the approach to handle the non-uniform case. In contrast, our results on
non-uniform k-wise independence relies crucially on the fact that the correction process for the uniform
case is explicit and all the distributions used for mixing are of some special structure.

Uniform Distributions: Our results on uniform k-wise independent distributions extend the framework
in [4]. As noted before, the key property used to mend a distribution into k-wise independent is the
orthogonality relation between any pair of vectors. We first observe that all prime fields also enjoy this
nice feature after some slight modifications. More specifically, for any two vectors a and b in Zn

p that
are linearly independent, the set of strings with

∑n
i=1 aixi ≡ j (mod p) are uniformly distributed over

Sb,` := {x :
∑n

i=1 bixi ≡ ` (mod p)} for every 0 ≤ ` ≤ p − 1. We will call this the strong orthogonality
between vectors a and b. The case when q = |Σ| is not a prime is less straightforward. The main difficulty
is that the strong orthogonality between pairs of vectors no longer holds, even when they are linearly
independent. Suppose we wish to use some distribution Ua to correct the bias over a. A simple but
important observation is that we only need that Ua’s Fourier coefficient at b to be zero, which is a much
weaker requirement than the property of being strongly orthogonal between a and b. Using a classical
result in linear systems of congruences due to Smith [38], we are able to show that, when a satisfies
gcd(a1, . . . , an) = 1 and b is not a multiple of a, the set of strings with

∑n
i=1 aixi ≡ j (mod p) are

uniformly distributed over Sb,` for `’s that lie in a subgroup of Zq (compared with uniform distribution
over the whole group Zp for prime fields case). We refer to this as weak orthogonality between vectors
a and b. To zero-out the Fourier coefficients at a, we instead bundle the Fourier coefficient at a with
the Fourier coefficients at `a for every ` = 2, . . . , q − 1, and treat them as Fourier coefficients defined in
one-dimensional space with ` as the variable. This allows us to upper bound the total weights required to
simultaneously correct all the Fourier coefficients at a and its multiples using only Ua. We also generalize
the result to product spaces of different alphabet sizes D = Σ1 × · · · ×Σn.

Non-uniform Distributions: One possible way of extending the upper bounds for the uniform case to
the non-uniform case would be to map non-uniform probabilities to uniform probabilities over a larger
domain. For example, consider when q = 2 a distribution D with PrD[xi = 0] = 0.501 and PrD[xi =
1] = 0.499. We could map xi = 0 and xi = 1 uniformly to {1, . . . , 501} and {502, . . . , 1000}, respectively
and test if the transformed distribution D′ over {1, . . . , 1000} is k-wise independent. Unfortunately, this
approach produces a huge overhead on the distance upper bound, due to the fact that the alphabet
size increases depends on the closeness of marginal probabilities over different symbols. However, in the
previous example we would expect D behaves very much like the uniform case rather than with an
additional factor of 1000 blowup in the alphabet size. Instead we take the following approach. Consider
a stretching/compressing factor for each marginal probability PrD[xi = zj ], where zj ∈ Σ. Specifically,
define θi(zj) = 1

q PrD[xi=zj ]
so that θi(zj) PrD[xi = zj ] = 1

q , the probability in the uniform distribution.
If we multiply D(x) for each x in the domain by the product of all n of these factors, the non-uniform
k-wise independent distribution will be transformed into a uniform one. The hope is that distributions
close to non-uniform k-wise independent will also be transformed into distributions that are close to
uniform k-wise independent. However, this could give rise to exponentially large distribution weights
at some points in the domain, making the task of estimating the corresponding Fourier coefficients
intractable. Observe that, intuitively for testing k-wise independence purposes, all we need to know are
the “local” weight distributions. To be more specific, for a vector a ∈ Σn, define the support of a by
supp(a) = {i ∈ [n] : ai 6= 0}. For every non-zero vector a of weight at most k, we define a new non-
uniform Fourier coefficient at a by first project D to supp(a), then apply the stretching/compressing
transformation and finally compute the Fourier coefficient based on the “transformed” local distribution.
We are able to show a new characterization that D is a non-uniform k-wise independent distribution if
and only if all these low-degree non-uniform Fourier coefficients are zero. This enable us to apply the
Fourier coefficient correcting approach developed for the uniform cases. Roughly speaking, for any vector
a, we can find a (small-weight) distribution Ua such that mixing D with Ua zeroes-out the non-uniform
Fourier coefficient at a. But this Ua is the distribution to mix in the ”transformed” world. We therefore
apply some appropriate inverse stretching/compressing transformations to Ua to get Ũa, and show that
mixing Ũa with the original distribution will not only correct the non-uniform Fourier coefficient at a but
also will not increase the non-uniform Fourier coefficients at any vector b as long as supp(b) * supp(a).
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Therefore we can start from vectors of weight k and correct the non-uniform Fourier coefficients level by
level until we finish correcting vectors of weight 1 and finally obtain a k-wise independent distribution.
Bounding the total weights added during this process gives an upper bound on the distance between
D and non-uniform k-wise independence. The notion of non-uniform Fourier coefficients may find other
applications when non-uniform independence is involved.

1.3 Other Related Research

There are many works on k-wise independence, most focus on various constructions of k-wise indepen-
dence or distributions that approximate k-wise independence. k-wise independent random variables were
first studied in probability theory [23] and then in complexity theory [13,2,28,29] mainly for derandom-
ization purposes. Constructions of almost k-wise independent distributions were studied in [31,3,6,17,10].
Construction results of non-uniform k-wise independent distributions were given in [24,26].

There has been much activity on property testing of distributions. Some examples include testing
uniformity [20,8], independence [7], monotonicity and being unimodal [9], estimating the support sizes [34]
and testing a weaker notion than k-wise independence, namely, “almost k-wise independence” [1].

Many other techniques have also been developed to generalize results from Boolean domains to
arbitrary domains [15,30,11].

1.4 Organization

We first give some necessary definitions in Section 2. Then we study k-wise independent distributions over
general domains and product spaces in Section 3.1 and Section 3.2, respectively. The cases of non-uniform
k-wise independence are treated in Section 4. Most proofs are omitted from this extended abstract, which
may be found in the full version of the present paper.

2 Preliminaries

Let n and m be two natural numbers with m > n. We write [n] for the set {1, . . . , n} and [n, m] for the
set {n, n+1, . . . ,m}. Throughout this paper, Σ always stands for a finite set. Without loss of generality,
we assume that Σ = {0, 1, . . . , q − 1}, where q = |Σ|.

We use a to denote a vector (a1, . . . , an) in Σn with ai being the ith component of a. The support
of a is the set of indices at which a is non-zero. That is, supp(a) = {i ∈ [n] : ai 6= 0}. The weight
of a vector a is the cardinality of its support. Let 1 ≤ k ≤ n be an integer. We use M(n, k, q) :=(
n
1

)
(q − 1) + · · · +

(
n
k

)
(q − 1)k to denote the total number of non-zero vectors in Σn of weight at most

k. Note that M(n, k, q) = Θ(nk(q − 1)k) for k = O(1). For two vectors a and b in Σn, we define their
inner-product to be a · b =

∑n
i=1 aibi (mod q).

Let D1 and D2 be two distributions over the same domain D. The statistical distance between D1

and D2 is ∆(D1, D2) = 1
2

∑
x∈D |D1(x)−D2(x)|. One can check that statistical distance is a metric and

in particular satisfies the triangle inequality. We use statistical distance as the main metric to measure
closeness between distributions in this paper. For any 0 ≤ ε ≤ 1, define a new distribution to be the
convex combination of D1 and D2 as D′ = 1

1+εD1 + ε
1+εD2, then ∆(D′, D1) ≤ ε

1+ε ≤ ε. Sometimes
we abuse notation and call the non-negative function εD1 a weighted-ε distribution (in particular a
small-weight distribution if ε is small).

Let S = {i1, . . . , ik} ⊆ [n] be an index set. The projection distribution of D with respect to S, denoted
by DS , is the distribution obtained by restricting to the coordinates in S. Namely, DS : Σk → [0, 1] such
that DS(zi1 · · · zik

) =
∑

x∈Σn:xi1=zi1 ,...,xik
=zik

D(x). For brevity, we sometimes write DS(zj : j ∈ S) for
DS(zi1 · · · zik

). We also use xS to denote the k-dimensional vector obtained from projecting x to the
indices in S.

The k-wise Independent Distributions: Let D : Σ1 × · · · × Σn → [0, 1] be a distribution. We say D is
a uniform distribution if for every x ∈ Σ1 × · · · × Σn, PrX∼D[X = x] = 1

q1···qn
, where qi = |Σi|. D

is k-wise independent if for any set of k indices {i1, . . . , ik} and for any z1 · · · zk ∈ Σi1 × · · · × Σik
,

PrX∼D[Xi1 · · ·Xik
= z1 · · · zk] = PrX∼D[Xi1 = z1] × · · · × PrX∼D[Xik

= zk]. D is uniform k-wise
independent if, on top of the previous condition, we have PrX∼D[Xi = zj ] = 1

|Σi| for every i and every
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zj ∈ Σi. Let Dkwi denote the set of all uniform k-wise independent distributions. The distance between
D and Dkwi, denoted by ∆(D,Dkwi), is the minimum statistical distance between D and any uniform
k-wise independent distribution, i.e., ∆(D,Dkwi) := minD′∈Dkwi ∆(D,D′).

Discrete Fourier Transforms: For background on discrete Fourier transforms in computer science, the
reader is referred to [39,40]. Let f : Σ1×· · ·×Σn → C be any function defined over the discrete product
space, we define the Fourier transform of D as, for all a ∈ Σ1 × · · · ×Σn,

f̂(a) =
∑

x∈Σ1×···×Σn

f(x)e2πi(
a1x1

q1
+···+ anxn

qn
).

One can easily verify that the inverse Fourier transform is

f(x) =
1

q1 · · · qn

∑
a∈Σ1×···×Σn

f̂(a)e−2πi(
a1x1

q1
+···+ anxn

qn
).

Note that if Σi = Σ for every 1 ≤ i ≤ n (which is the main focus of this paper), then f̂(a) =∑
x∈Σn f(x)e

2πi
q a·x and f(x) = 1

|Σ|n
∑

a∈Σn f̂(a)e−
2πi

q a·x.
We will use the following two simple facts about Fourier transforms which are easy to verify.

Fact 1 For any integer ` which is not congruent to 0 modulo q,
∑q−1

j=0 e
2πi

q `j = 0.

Fact 2 Let d, `0 be integers such that d|q and 0 ≤ `0 ≤ d− 1. Then
∑ q

d−1

`=0 e
2πi

q (`0+d`) = 0.

Proposition 1. Let D be a distribution over Σ1 × · · · × Σn. Then D is a uniform distribution if and
only if for any non-zero vector a ∈ Σ1 × · · · ×Σn, D̂(a) = 0.

By applying Proposition 1 to distributions obtained from restriction to any k indices, we have the
following characterization of k-wise independent distributions over product spaces, which is the basis of
all of our testing algorithms.

Corollary 1. A distribution D over Σ1 × · · · ×Σn is k-wise independent if and only if for all non-zero
vectors a of weight at most k, D̂(a) = 0.

Other Definitions and Notation: We are going to use the following notation extensively in this paper.

Definition 1. Let D be a distribution over Σn. For every a ∈ Σn and every 0 ≤ j ≤ q − 1, define
PD

a,j := PrX∼D[a ·X ≡ j (mod q)]. When the distribution D is clear from context, we often omit the
superscript D and simply write Pa,j.

For any non-zero vector a ∈ Zn
q and any integer j, 0 ≤ j ≤ q − 1, let Sa,j := {X ∈ Zn

q :
∑n

i=1 aiXi ≡
j (mod q)}. Let Ua,j denote the uniform distribution over Sa,j .

3 Uniform k-wise Independent Distributions over Product Spaces

3.1 Domains of the Form Zn
q

We first consider the problem of testing k-wise independent distributions over domains of the form Zn
q ,

where q is the size of the alphabet. Recall that a distribution D over Zn
q is k-wise independent if and

only if for all non-zero vectors a of weight at most k, D̂(a) = 0. In the following, we are going to show
that we can mix D with a series (small-weight) distributions to get a new distribution D′ such that
D̂′(a) = 0 for every 0 < wt(a) ≤ k. Therefore D′ is k-wise independent and thus the total weights of
the distributions used for mixing is an upper bound on the distance between D and the set of k-wise
independent distributions.

Unless stated otherwise, all arithmetic operations in this section are performed modulo q; For instance,
we use a = b to mean that ai ≡ bi (mod q) for each 1 ≤ i ≤ n.

Let a = (a1, . . . , an) be a non-zero vector. We say a is a prime vector if gcd(a1, . . . , an) = 1. If a
is a prime vector, then we refer to the set of vectors {2a, . . . , (q − 1)a} (note that all these vectors are
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distinct) as the siblings of a, and together with a collectively we refer to them as a family of vectors.
Note that families of vectors do not form a partition of all the vectors. For example when n = 2 and
q = 6, vector (4, 0) is a sibling of both (1, 0) and (2, 3), but the latter two vectors are not siblings of each
other.

Recall that Sa,j denotes the set {x ∈ Zn
q :

∑n
i=1 aixi ≡ j (mod q)}.

Proposition 2. If a is a prime vector, then |Sa,j | = qn−1 for any 0 ≤ j ≤ q − 1.

Linear Systems of Congruences Here we record some useful results on linear systems of congruences.
For more on this, the interested reader is referred to [22] and [38]. These results will be used in the next
section to show some important orthogonality properties of vectors. In this section, all matrices are
integer-valued. Let M be a k × n matrix with k ≤ n. The greatest divisor of M is the greatest common
divisor (gcd) of the determinants of all the k× k sub-matrices of M . M is a prime matrix if the greatest
divisor of M is 1.

Lemma 1 ([38]). Let M be a (k + 1)× n matrix. If the sub-matrix consisting of the first k rows of M
is a prime matrix and M has greatest divisor d, then there exist integers u1, . . . , uk such that

u1M1,j + u2M2,j + . . . + ukMk,j ≡ Mk+1,j (mod d),

for every 1 ≤ j ≤ n.

Consider the following system of linear congruent equations:
M1,1x1 + M1,2x2 + · · ·+ M1,nxn ≡ M1,n+1 (mod q)

...
Mk,1x1 + Mk,2x2 + · · ·+ Mk,nxn ≡ Mk,n+1 (mod q).

(1)

Let M denote the k× n matrix consisting of the coefficients of the linear system of equations and let M̃
denote the corresponding augmented matrix of M , that is, the k × (n + 1) matrix including the extra
column of constants.

Definition 2. Let M be the coefficient matrix of Eq.(1) and M̃ be the augmented matrix. Suppose k < n
so that system (1) is a defective system of equations. Define Yk, Yk−1, . . . , Y1 respectively to be the greatest
common divisors of the determinants of all the k×k, (k−1)× (k−1), . . . , 1×1, respectively sub-matrices
of M . Similarly define Zk, Zk−1, . . . , Z1 for the augmented matrix M̃ . Also we define Y0 = 1 and Z0 = 1.
Define s =

∏k
j=1 gcd(q, Yj

Yj−1
) and t =

∏k
j=1 gcd(q, Zj

Zj−1
).

The following theorem of Smith gives the necessary and sufficient conditions for a system of congruent
equations to have solutions.

Theorem 3 ([38]). If k < n, then the (defective) linear system of congruences (1) has solutions if and
only if s = t. Moreover, if this condition is met, the number of incongruent solutions is sqn−k.

Weak Orthogonality between Families of Vectors To generalize the proof idea of the GF(2) case to
commutative rings Zq for arbitrary q, it seems crucial to relax the requirement that linearly independent
vectors are strongly orthogonal. Rather, we introduce the notion of weak orthogonality between a pair
of vectors.

Definition 3. Let a and b be two vectors in Zn
q . We say a is weakly orthogonal to b if for all 0 ≤ j ≤

q − 1, Ûa,j(b) = 0.

We remark that strong orthogonality (defined in the Introduction) implies weak orthogonality while
the converse is not necessarily true. In particular, strong orthogonality does not hold in general for linearly
independent vectors in Zn

q . However, for our purpose of constructing k-wise independent distributions,
weak orthogonality between pairs of vectors suffices.

The following Lemma is the basis of our upper bound on the distance from a distribution to k-wise
independence. This Lemma enables us to construct a small-weight distribution using an appropriate
convex combination of {Ua,j}q−1

j=0, which on the one hand zeros-out all the Fourier coefficients at a and
its sibling vectors, on the other hand has zero Fourier coefficient at all other vectors. The proof of the
Lemma relies crucially on the results in Section 3.1 about linear system of congruences.
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Lemma 2 (Main). Let a be a non-zero prime vector and b any non-zero vector that is not a sibling of
a. Then a is weakly orthogonal to b.

Proof. Consider the following system of linear congruences:{
a1x1 + a2x2 + · · ·+ anxn ≡ a0 (mod q)
b1x1 + b2x2 + · · ·+ bnxn ≡ b0 (mod q).

(2)

Following our previous notation, let M =
[

a1 a2 · · · an

b1 b2 · · · bn

]
and M̃ =

[
a1 a2 · · · an a0

b1 b2 · · · bn b0

]
. Since a is a prime

vector, Y1 = Z1 = 1. We next show that Y2 can not be a multiple of q.

Claim. Let M =
[

a1 a2 · · · an

b1 b2 · · · bn

]
. The determinants of all 2 × 2 sub-matrices of M are congruent to 0

modulo q if and only if a and b are sibling vectors.

Proof. If a and b are sibling vectors, then it is clear that the determinants of all the sub-matrices are
congruent to 0 modulo q. For the only if direction, we may assume that a is a prime vector, since
otherwise we can divide the first row of M by the common divisor. all we need to prove is that b = ca for
some integer c. First suppose that the determinants of all 2× 2 sub-matrices of M are 0. Then it follows
that b1

a1
= · · · = bn

an
= c. If c is not an integer, then c = u

v , where u, v are integers and gcd(u, v) = 1. But
this implies v|ai for every 1 ≤ i ≤ n, contradicting our assumption that a is a prime vector. Now if not
all of the determinants are 0, it must be the case that the greatest divisor of the determinants of all 2×2
sub-matrices, say d′, is a multiple of q. By Lemma 1, there is an integer c such that cai ≡ bi (mod d′)
for every 1 ≤ i ≤ n. Consequently, bi ≡ cai (mod q) for every i and hence b is a sibling of a. ut

Let d = gcd(q, Y2). Clearly 1 ≤ d ≤ q− 1 and, according to Claim 3.1, d|q. Applying Theorem 3 with
k = 2 to (2), the two linear congruences are solvable if and only if d = gcd(q, Y2) = gcd(q, Z2). If this is
the case, the total number of incongruent solutions is dqn−2. Furthermore, if we let h denote the greatest
common divisor of the determinants of all 2× 2 sub-matrices of M̃ , then d|h. By Lemma 1, there is an
integer u such that b0 ≡ ua0 (mod h). It follows that d|(b0 − ua0). Let us consider a fixed a0 and write
`0 = ua0 (mod d). Since a is a prime vector, by Proposition 2, there are in total qn−1 solutions to (2).
But for any specific b0 that has solutions to (2), there must be dqn−2 solutions to (2) and in addition
d|q. Since there are exactly q/d b0’s in {0, . . . , q − 1}, we conclude that (2) has solutions for b0 if and
only if b0 = `0 + d`, where `0 is some constant and ` = 0, . . . , q

d − 1. Finally we have

Ûa,j(b) =
∑

x∈Zn
q

Ua,j(x)e
2πi

q b·x =
1

qn−1

∑
a·x≡j (mod q)

e
2πi

q b·x

=
d

q

∑
b0:b0=`0+d`

e
2πi

q b0 = 0. (by Fact 2)

This finishes the proof of Lemma 2. ut

Correcting Fourier Coefficients of Sibling Vectors In this section, we show how to zero-out all
the Fourier coefficients of a family of vectors. Let D be a distribution over Zn

q . Note that, for every

1 ≤ ` ≤ q − 1, the Fourier coefficient of a vector `a can be rewritten as D̂(`a) =
∑

x∈G D(x)e
2πi

q `a·x =∑q−1
j=0 Prx∼D[a · x ≡ j (mod q)]e

2πi
q `j =

∑q−1
j=0 Pa,je

2πi
q `j . Define MaxBias(a) := max0≤j≤q−1 Pa,j − 1

q .

Claim. We have that MaxBias(a) ≤ 1
q

∑q−1
`=1 |D̂(`a)|.

Theorem 4. Let D be a distribution over Zn
q , then 4

∆(D,Dkwi) ≤
∑

0<wt(a)≤k

|D̂(a)|.

4 It is easy to verify that the same bound holds for prime field case if we transform the bound in MaxBias there
into a bound in terms of Fourier coefficients. Conversely we can equivalently write the bound of the distance
from k-wise independence in terms of MaxBias over prime vectors. However, we believe that stating the bound
in terms of Fourier coefficients is more natural and generalizes more easily.
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In particular, ∆(D,Dkwi) ≤ M(n, k, q) max0<wt(a)≤k |D̂(a)|.

Testing Algorithm and its Analysis The following Theorem summarizes the query and time com-
plexities of our testing algorithm for uniform k-wise independence. The proof is omitted here due to
space limitation.

Theorem 5. There is an algorithm that tests k-wise independence over {0, . . . , q− 1}n with query com-
plexity Õ(n2k(q−1)2kq2

ε2 ) and time complexity Õ(n3k(q−1)3kq2

ε2 ).

3.2 Uniform k-wise Independent Distributions over Product Spaces

Now we generalize the Zn
q domains case to product spaces. Let Σ1, . . . , Σn be finite sets. Without loss of

generality, let Σi = {0, 1, . . . , qi − 1}. In this section, we consider distributions over product space Σ1 ×
· · ·×Σn. Let M = lcm(q1, . . . , qn) and for each 1 ≤ i ≤ n let Mi = M

qi
. Then the Fourier coefficients can be

rewritten as D̂(a) =
∑

x∈Σ1×···×Σn
D(x)e

2πi
M (M1a1x1+···+Mnanxn) =

∑
x∈Σ1×···×Σn

D(x)e
2πi
M (a′1x1+···+a′nxn),

where a′i = Miai. Therefore we can see D as a distribution over Σn with effective alphabet size |Σ| =
M = lcm(q1, . . . , qn) and we are only concerned with Fourier coefficients at a′ = (a′1, . . . , a

′
n). Note that

in general M = lcm(q1, . . . , qn) can be an exponentially large number and is therefore not easy to handle
in practice5. We overcome this difficulty by observing that, since we are only concerned with vectors of
weight at most k, we may take different effective alphabet sizes for different index subsets of size k, i.e.,
|ΣS | = lcm(qi1 , . . . , qik

) where S = {i1, . . . , ik}.
Under this formalism, we can prove the following Theorem:

Theorem 6. Let D be a distribution over Σ1 × · · · ×Σn. Then ∆(D,Dkwi) ≤
∑

0<wt(a)≤k |D̂(a)|.

4 Non-uniform k-wise Independent Distributions

In this section we focus on non-uniform k-wise independent distributions. For ease of exposition, we
only prove our results for the case when the underlying domain is Σn with q = |Σ|. Our approach here
generalizes easily to distributions over product spaces.

Recall that a distribution D : Σn → [0, 1] is k-wise independent if for any index subset S ⊂ [n] of
size k, S = {i1, . . . , ik}, and for any z1 · · · zk ∈ Σk, DS(z1 · · · zk) = PrD[Xi1 = z1] · · ·PrD[Xik

= zk]. We
prove an upper bound on the distance between D and k-wise independence by reducing the problem to
uniform case and then applying Theorem 4.

In the following we define a set of multipliers which are used to transform non-uniform k-wise inde-
pendent distributions into uniform ones. Let pi(z) := PrD[Xi = z]. We assume that 0 < pi(z) < 1 for all
i ∈ [n] and z ∈ Σ (this is without loss of generality since if some pi(z)’s are zero, then it reduces to the
case of distributions over product spaces). Define θi(z) := 1

qpi(z) . Intuitively, one may think θi(z) as a
set of compressing/stretching factors which transform a non-uniform k-wise distribution into a uniform
one. For notation convenience, if S = {i1, . . . , i`} and z = zi1 · · · zi`

, we use θS(z) to denote the product
θi1(zi1) · · · θi`

(zi`
).

Definition 4 (Non-uniform Fourier Coefficients). Let D be a distribution over Σn. Let a be a
non-zero vector in Σn with supp(a) being its support set and Dsupp(a) be the projection distribution of D
with respect to supp(a). Set D′

supp(a)(z) = θsupp(a)(z)Dsupp(a)(z), which is the transformed distribution6

of the projection distribution Dsupp(a). Then the non-uniform Fourier coefficient of D at a is

D̂non(a) = D̂′
supp(a)(a) =

∑
z∈Σsupp(a)

D′
supp(a)(z)e

2πi
q a·z. (3)

5 Recall that the testing algorithm requires estimating all the low-degree Fourier coefficients which is an expo-
nential sum with M as the denominator.

6 Note that in general D′
supp(a) is not a distribution, since although it is non-negative everywhere butP

x D′
supp(a)(x) = 1 may not hold.
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The idea of defining D′
supp(a) is that, if D is non-uniform k-wise independent, then D′

supp(a) will be
a uniform distribution over the index set supp(a). Indeed, our main result in this section is to show
the connection between non-uniform Fourier coefficients and the property of the distribution D being
k-wise independent. In particular we have the following simple characterization of non-uniform k-wise
independence.

Theorem 7. A distribution D over Σn is k-wise independent if and only if for every non-zero vector
a ∈ Σk with wt(a) ≤ k, D̂non(a) = 0.

The proof of Theorem 7 relies on the observation that, when written in the form of linear transforma-
tion, non-uniform Fourier transform matrix, like the uniform Fourier transform matrix, can be expressed
as a tensor product of a set of heterogeneous DFT (discrete Fourier transform) matrices. This enables
us to show that the non-uniform Fourier transform is invertible.

Given a distribution D which is not k-wise independent, what is its distance to non-uniform k-wise
independence? In the following, we will follow the same approach as used in the uniform case and try to
find a set of small-weight distributions to mix with D to zero-out all the non-uniform Fourier coefficients
at vectors of weight at most k. This will show the robustness of characterization of non-uniform k-wise
independence given in Theorem 7.

A careful inspection of Theorem 4 and its proof shows that, if we focus on the weights added to
correct any fixed prime vector and its siblings, we actually prove the following.

Theorem 8. Let E′ be a distribution over Σn, a be a prime vector of weight at most k and let
Ê′(a), . . . , Ê′((q − 1)a) be the Fourier coefficients at a and its sibling vectors. Then there exist a set
of non-negative real numbers wj , j = 0, 1, . . . , q − 1 such that the (small-weight) distribution7 UE′,a =∑q−1

j=0 wjUa,j has the following properties. ÛE′,a(b) = 0 for all non-zero vectors that are not siblings of a

and E′ +UE′,a has zero Fourier coefficients at a, 2a, . . . , (q− 1)a. Moreover,
∑q−1

j=0 wj ≤
∑q−1

`=1 |Ê′(`a)|.

It is easy to see that the Theorem applies to any non-negative functions as well. Applying Theorem 8
with E′ equal to D′

supp(a) gives rise to a small-weight distribution Usupp(a),a which we denote by Ua,
to zero-out all the Fourier coefficients at a and its siblings8. Now we apply the (reversed) compress-
ing/stretching factor to Ua to get Ũa,

Ũa(x) =
Ua(x)
θ[n](x)

. (4)

The following Lemma shows that mixing with Ũa zeroes-out the D’s non-uniform Fourier coefficients at
a and its sibling vectors. Moreover, the mixing only adds up a relative small amount of weight and can
only mess up the non-uniform Fourier coefficient at vectors whose support sets are strictly contained in
the support set of a.

Lemma 3. Let D be a distribution over Σn and a be a prime vector of weight at most k. Let supp(a)
be the support set of a and Ũa be as defined in Equation(4). Let γk := maxS,z

1
θS(z) , where S is a subset

of [n] of size at most k and z ∈ Σ|S|. Then

– The non-uniform Fourier coefficients of D + Ũa at a as well as at the sibling vectors of a whose
support sets are also supp(a) are all zero. Moreover, ˆ̃Unon

a (a′) = 0 for every vector a′ whose support
set is supp(a) but is not a sibling vector of a.

– For any vector b with supp(b) * supp(a), ˆ̃Unon
a (b) = 0.

– The total weight of Ũa is at most γk

∑
x∈Σn Ua(x) ≤ γk

∑q−1
j=1 |D̂non(ja)|.

– For any non-zero vector c with supp(c) ⊂ supp(a), ˆ̃Unon
a (c) ≤ γk

∑q−1
j=1 |D̂non(ja)|.

7 Recall that Ua,j is the uniform distribution over all strings x ∈ Zn
q with a · x ≡ j (mod q).

8 In fact, this only guarantees to zero-out the Fourier coefficients at a and its siblings whose support sets are
the same as that of a. But that suffices for our correcting purposes because we will proceed to vectors with
smaller support sets in later stages.
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Now we can, for each prime vector a whose support set is of size k, mix D with Ũa to zero-out all
the level k non-uniform Fourier coefficients. By Lemma 3 these added weights can only mess up the non-
uniform Fourier coefficients at level less than k. We then recompute the non-uniform Fouriere coefficients
of the new distribution and repeat this process for vectors whose support sets are of size k − 1. Keep
doing this until zeroing-out all the non-uniform Fourier coefficients at vectors of weight 1, we finally
obtain a non-uniform k-wise independent distribution.

Theorem 9. Let D be a distribution over Σn, then

∆(D,Dkwi) ≤ O
(
nkq

k(k+3)
2

)
max

a:0<wt(a)≤k
|D̂non(a)|.

4.1 Testing Algorithm and its Analysis

In Fig. 2, we give an outline of the algorithm for testing non-uniform k-wise independence when all the
marginal probabilities pi(z) are assumed to be known.9 The analysis of the testing algorithm is very
much the same10 as that presented in Section 3.1, we leave the details to interested readers.

Algorithm Testing Non-uniform k-wise Independence (D,k,q,ε)

1. Sample D uniformly and independently M times
2. Use the samples to estimate, for each non-zero vector a of weight at most k and each z,

Dsupp(a)(z), where supp(a) is the support set of a
– Compute D′

supp(a)(z) = θS(z)Dsupp(a)(z)

– Compute D̂non(a) = D̂′
supp(a)(a) =

P
z D′

supp(a)(z)e
2πi

q
a·z

for each a ∈ Σk

3. If maxa |D̂non(a)| ≤ δ return “Yes”; else return “No”

Fig. 2. Algorithm for testing non-uniform k-wise independence.

Acknowledgments

We would like to thank Per Austrin for correspondence on constructing orthogonal real functions, Tali
Kaufman for useful discussions and suggestions and Elchanan Mossel for his enthusiasm in this problem
and a enlightening conversation. We are grateful to the anonymous referees for pointing out a critical
error in an earlier version of this paper and for many helpful comments.

References

1. N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie. Testing k-wise and almost k-wise independence. In
Proc. 39th Annual ACM Symposium on the Theory of Computing, pages 496–505, 2007.

2. N. Alon, L. Babai, and A. Itai. A fast and simple randomized algorithm for the maximal independent set problem. Journal
of Algorithms, 7:567–583, 1986.

3. N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k-wise independent random variables.
Random Structures and Algorithms, 3(3):289–304, 1992. Earlier version in FOCS’90.

4. N. Alon, O. Goldreich, and Y. Mansour. Almost k-wise independence versus k-wise independence. Information Processing
Letters, 88:107–110, 2003.

5. P. Austrin. Conditional inapproximability and limited independence. PhD thesis, KTH - Royal Institute of Technology,
2008. Available at http://www.csc.kth.se/ austrin/papers/thesis.pdf.

6. Y. Azar, J. Naor, and R. Motwani. Approximating probability distributions using small sample spaces. Combinatorica,
18(2):151–171, 1998.

7. T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing random variables for independence and
identity. In Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science, pages 442–451, 2001.

9 If we assume that these probabilities are all bounded away from 0 or 1, then they can also be estimated from
a small number of samples drawn independently from the distribution.

10 One major difference is that we need to use the following simple fact to show completeness of the testing
algorithm: if ∆(D, Dkwi) ≤ δ, then |D̂non(a)| ≤ qγkδ for all non-zero vectors a of weight at most k.

11



8. T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions are close. In Proc. 41st Annual
IEEE Symposium on Foundations of Computer Science, pages 189–197, 2000.

9. T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and unimodal distributions. In Proc. 36th
Annual ACM Symposium on the Theory of Computing, pages 381–390, New York, NY, USA, 2004. ACM Press.

10. C. Bertram-Kretzberg and H. Lefmann. MODp-tests, almost independence and small probability spaces. Random Structures
and Algorithms, 16(4):293–313, 2000.

11. E. Blais. Testing juntas nearly optimally. In Proc. 41st Annual ACM Symposium on the Theory of Computing, pages
151–158, 2009.

12. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. Journal of Computer
and System Sciences, 47:549–595, 1993. Earlier version in STOC’90.

13. B. Chor and O. Goldreich. On the power of two-point based sampling. Journal of Complexity, 5(1):96–106, 1989.
14. A. Czumaj and C. Sohler. Sublinear-time algorithms. Bulletin of the European Association for Theoretical Computer

Science, 89:23–47, 2006.
15. I. Diakonikolas, H. Lee, K. Matulef, K. Onak, R. Rubinfeld, R. Servedio, and A. Wan. Testing for concise representations. In

Proc. 48th Annual IEEE Symposium on Foundations of Computer Science, pages 549–558, 2007.
16. K. Efremenko. 3-query locally decodable codes of subexponential length. In Proc. 41st Annual ACM Symposium on the

Theory of Computing, pages 39–44, 2009.
17. G. Even, O. Goldreich, M. Luby, N. Nisan, and B. Velickovic. Efficient approximation of product distributions. Random

Structures and Algorithms, 13(1):1–16, 1998. Earlier version in STOC’92.
18. E. Fischer. The art of uninformed decisions: A primer to property testing. Bulletin of the European Association for

Theoretical Computer Science, 75, 2001.
19. O. Goldreich, S. Goldwaser, and D. Ron. Property testing and its connection to learning and approximation. Journal of the

ACM, 45:653–750, 1998.
20. O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Technical Report TR00-020, Electronic Colloquium

on Computational Complexity, 2000.
21. V. Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Combinatorica,

20(1):71–86, 2000.
22. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. Oxford University Press, 5th edition, 1980.
23. A. Joffe. On a set of almost deterministic k-independent random variables. Annals of Probability, 2:161–162, 1974.
24. H. Karloff and Y. Mansour. On construction of k-wise independent random variables. In Proc. 26th Annual ACM Symposium

on the Theory of Computing, pages 564–573, 1994.
25. R. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem. Journal of the ACM,

32(4):762–773, 1985.
26. D. Koller and N. Megiddo. Constructing small sample spaces satisfying given constraints. In Proc. 25th Annual ACM

Symposium on the Theory of Computing, pages 268–277, 1993.
27. R. Kumar and R. Rubinfeld. Sublinear time algorithms. SIGACT News, 34:57–67, 2003.
28. M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on Computing, 15(4):1036–

1053, 1986. Earlier version in STOC’85.
29. M. Luby. Removing randomness in parallel computation without a processor penalty. In Proc. 29th Annual IEEE Symposium

on Foundations of Computer Science, pages 162–173, 1988.
30. E. Mossel. Gaussian bounds for noise correlation of functions and tight analysis of long codes. In Proc. 49th Annual IEEE

Symposium on Foundations of Computer Science, pages 156–165, 2008.
31. J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications. SIAM Journal on Computing,

22(4):838–856, 1993. Earlier version in STOC’90.
32. C. P. Neuman and D. I. Schonbach. Discrete (Legendre) orthogonal polynomials - A survey. International Journal for

Numerical Methods in Engineering, 8:743–770, 1974.
33. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov. Classical Orthogonal Polynomials of a Discrete Variable. Springer-Verlag,

1991.
34. S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong lower bounds for approximating distribution support size and the

distinct elements problem. In Proc. 48th Annual IEEE Symposium on Foundations of Computer Science, pages 559–569,
2007.

35. D. Ron. Property testing (a tutorial). In P.M. Pardalos, S. Rajasekaran, J. Reif, and J.D.P. Rolim, editors, Handbook of
Randomized Computing, pages 597–649. Kluwer Academic Publishers, 2001.

36. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program testing. SIAM Journal
on Computing, 25:252–271, 1996.

37. J.R. Silvester. Determinants of block matrices. Maths Gazette, 84:460–467, 2000.
38. H. J. S. Smith. On systems of linear indeterminate equations and congruences. Phil. Trans. Royal Soc. London, A151:293–326,

1861.
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