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Abstract

This paper addresses the problem of testing whether a Boolean-valued functionf is a halfspace, i.e. a
function of the formf(x) = sgn(w ·x−θ). We consider halfspaces over the continuous domainR

n (en-
dowed with the standard multivariate Gaussian distribution) as well as halfspaces over the Boolean cube
{−1, 1}n (endowed with the uniform distribution). In both cases we give an algorithm that distinguishes
halfspaces from functions that areε-far from any halfspace using onlypoly(1

ε
) queries, independent of

the dimensionn.
Two simple structural results about halfspaces are at the heart of our approach for the Gaussian dis-

tribution: the first gives an exact relationship between theexpected value of a halfspacef and the sum
of the squares off ’s degree-1 Hermite coefficients, and the second shows that any function that approxi-
mately satisfies this relationship is close to a halfspace. We prove analogous results for the Boolean cube
{−1, 1}n (with Fourier coefficients in place of Hermite coefficients)for balanced halfspaces in which all
degree-1 Fourier coefficients are small. Dealing with general halfspaces over{−1, 1}n poses significant
additional complications and requires other ingredients.These include “cross-consistency” versions of
the results mentioned above for pairs of halfspaces with thesame weights but different thresholds; new
structural results relating the largest degree-1 Fourier coefficient and the largest weight in unbalanced
halfspaces; and algorithmic techniques from recent work ontesting juntas [FKR+02].
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1 Introduction

A halfspaceis a function of the formf(x) = sgn(w1x1 + · · · + wnxn − θ). Halfspaces are also known
asthreshold functionsor linear threshold functions; for brevity we shall often refer to them in this paper as
LTFs. LTFs are a simple yet powerful class of functions, which for decades have played an important role
in fields such as complexity theory, optimization, and machine learning (see e.g. [HMP+93, Yao90, Blo62,
Nov62, MP68, STC00]).

In this work, we focus on thehalfspace testingproblem: given query access to a function, we would
like to distinguish whether it is an LTF or whether it isε-far from any LTF. This is in contrast to the proper
halfspace learningproblem: given examples labeled according to an unknown LTF(either random examples
or queries to the function), find an LTF that it isε-close to. Though any proper learning algorithm can be used
as a testing algorithm (see, e.g., the observations of [GGR98]), testing potentially requires fewer queries.
Indeed, in situations where query access is available, a query-efficient testing algorithm can be used to check
whether a function is close to a halfspace, before botheringto run a more intensive algorithm to learn which
halfspace it is close to.

Our main result is to show that the halfspace testing problemcan be solved with a number of queries
that is independentof n. In doing so, we establish new structural results about LTFswhich essentially
characterize LTFs in terms of their degree-0 and degree-1 Fourier coefficients.

We note that any learning algorithm — even one with black-boxquery access tof — must make at
leastΩ(n

ε ) queries to learn an unknown LTF to accuracyε under the uniform distribution on{−1, 1}n (this
follows easily from, e.g., the results of [KMT93]). Thus thecomplexity of learning is linear inn, as opposed
to our testing bounds which are independent ofn.

We start by describing our testing results in more detail.

Our Results. We consider the standard property testing model, in which the testing algorithm is allowed
black-box query access to an unknown functionf and must minimize the number of times it queriesf . The
algorithm must with high probability pass all functions that have the property and with high probability fail
all functions that have distance at leastε from any function with the property. Our main algorithmic results
are the following:

1. We first consider functions that mapRn → {−1, 1}, where we measure the distance between func-
tions with respect to the standardn-dimensional Gaussian distribution. In this setting we give a
poly(1

ε ) query algorithm for testing LTFs with two-sided error.

2. [Main Result.] We next consider functions that map{−1, 1}n → {−1, 1}, where (as is standard in
property testing) we measure the distance between functions with respect to the uniform distribution
over{−1, 1}n. In this setting we also give apoly(1

ε ) query algorithm for testing LTFs with two-sided
error.

Results 1 and 2 show that in two natural settings we can test a highly geometric property — whether or
not the−1 and+1 values defined byf are linearly separable — with a number of queries that is independent
of the dimension of the space. Moreover, the dependence on1

ε is only polynomial, rather than exponential
or tower-type as in some other property testing algorithms.

While it is slightly unusual to consider property testing under the standard multivariate Gaussian dis-
tribution, we remark that our results are much simpler to establish in this setting because the rotational
invariance essentially means that we can deal with a 1-dimensional problem. We moreover observe that
it seems essentiallynecessaryto solve the LTF testing problem in the Gaussian domain in order to solve
the problem in the standard{−1, 1}n uniform distribution framework; to see this, observe that an unknown
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functionf : {−1, 1}n → {−1, 1} to be tested could in fact have the structure

f(x1, . . . , xdm) = f̃

(
x1 + · · · + xm√

m
, . . . ,

x(d−1)m+1 + · · · + xdm√
m

)
,

in which case the arguments tõf behave very much liked independent standard Gaussian random variables.
We note that the assumption that our testing algorithm has query access tof (as opposed to, say, access

only to random labeled examples) is necessary to achieve a complexity independent ofn. Any LTF testing
algorithm with access only to uniform random examples(x, f(x)) for f : {−1, 1}n → {−1, 1} must use
at leastΩ(log n) examples (an easy argument shows that with fewer examples, the distribution on exam-
ples labeled according to a truly random function is statistically indistinguishable from the distribution on
examples labeled according to a randomly chosen variable from {x1, . . . , xn}).

Characterizations and Techniques.We establish new structural results about LTFs which essentially char-
acterize LTFs in terms of their degree-0 and degree-1 Fourier coefficients. For functions mapping{−1, 1}n

to{−1, 1} it has long been known [Cho61] that any linear threshold function f is completely specifiedby the
n+1 parameters consisting of its degree-0 and degree-1 Fouriercoefficients (also referred to as itsChow pa-
rameters). While this specification has been used tolearnLTFs in various contexts [BDJ+98, Gol06, Ser07],
it is not clear how it can be used to construct efficienttesters(for one thing this specification involvesn + 1
parameters, and in testing we want a query complexity independent ofn). Intuitively, we get around this
difficulty by giving new characterizations of LTFs as those functions that satisfy a particular relationship
between justtwo parameters, namely the degree-0 Fourier coefficient and thesum of the squared degree-1
Fourier coefficients. Moreover, our characterizations arerobust in that if a function approximately satisfies
the relationship, then it must be close to an LTF. This is whatmakes the characterizations useful for testing.

We first consider functions mappingRn to {−1, 1} where we viewR
n as endowed with the standard

n-dimensional Gaussian distribution. Our characterization is particularly clean in this setting and illustrates
the essential approach that also underlies the much more involved Boolean case. On one hand, it is not hard
to show that for every LTFf , the sum of the squares of the degree-1 Hermite coefficients1 of f is equal
to a particular function of the mean off — regardless ofwhich LTF f is. We call this functionW ; it is
essentially the square of the “Gaussian isoperimetric” function.

Conversely, Theorem 20 shows that iff : R
n → {−1, 1} is any function for which the sum of the

squares of the degree-1 Hermite coefficients is within±ε3 of W (E[f ]), thenf must beO(ε)-close to an
LTF — in fact to an LTF whosen weights are then degree-1 Hermite coefficients off. The valueE[f ] can
clearly be estimated by sampling, and moreover it can be shown that a simple approach of samplingf on
pairs of correlated inputs can be used to obtain an accurate estimate of the sum of the squares of the degree-1
Hermite coefficients. We thus obtain a simple and efficient test for LTFs under the Gaussian distribution and
thereby establish Result 1. This is done in Section 4.

In Section 5 we take a step toward handling general LTFs over{−1, 1}n by developing an analogous
characterization and testing algorithm for the class ofbalanced regularLTFs over{−1, 1}n; these are LTFs
with E[f ] = 0 for which all degree-1 Fourier coefficients are small. The heart of this characterization is a
pair of results, Theorems 24 and 25, which give Boolean-cubeanalogues of our characterization of Gaussian
LTFs. Theorem 24 states that the sum of the squares of the degree-1 Fourier coefficients of any balanced
regular LTF is approximatelyW (0) = 2

π . Theorem 25 states that any functionf whose degree-1 Fourier
coefficients are all small and whose squares sum to roughly2

π is in fact close to an LTF — in fact, to one
whose weights are the degree-1 Fourier coefficients off. Similar to the Gaussian setting, we can estimate
E[f ] by uniform sampling and can estimate the sum of squares of degree-1 Fourier coefficients by sampling
f on pairs of correlated inputs. An additional algorithmic step is also required here, namely checking that

1These are analogues of the Fourier coefficients forL2 functions overRn with respect to the Gaussian measure; see Section 2.
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all the degree-1 Fourier coefficients off are indeed small; it turns out that this can be done by estimating
the sum offourth powers of the degree-1 Fourier coefficients, which can againbe obtained by samplingf
on (4-tuples of) correlated inputs.

The general case of testing arbitrary LTFs over{−1, 1}n is substantially more complex and is dealt with
in Section 6. Very roughly speaking, the algorithm has threemain conceptual steps:

• First the algorithm implicitly identifies a set ofO(1) many variables that have “large” degree-1 Fourier
coefficients. Even a single such variable cannot be explicitly identified usingo(log n) queries; we
perform the implicit identification usingO(1) queries by adapting an algorithmic technique from
[FKR+02].

• Second, the algorithm analyzes the regular subfunctions that are obtained by restricting these implic-
itly identified variables; in particular, it checks that there is a single set of weights for the unrestricted
variables such that the different restrictions can all be expressed as LTFs with these weights (but dif-
ferent thresholds) over the unrestricted variables. Roughly speaking, this is done using a generalized
version of the regular LTF test that tests whether apair of functions are close to LTFs over the same
linear form but with different thresholds. The key technical ingredients enabling this are Theorems 37
and 38, which generalize Theorems 24 and 25 in two ways (to pairs of functions, and to functions
which may have nonzero expectation).

• Finally, the algorithm checks that there exists a single setof weights for the restricted variables that
is compatible with the different biases of the different restricted functions. If this is the case then
the overall function is close to the LTF obtained by combining these two sets of weights for the
unrestricted and restricted variables. (Intuitively, since there are onlyO(1) restricted variables there
are onlyO(1) possible sets of weights to check here.)

Related Work. Various classes of Boolean functions have recently been studied from a testing perspective.
[PRS02] shows how to test dictator functions, monomials, and O(1)-term monotone DNFs with query com-
plexity O(1

ε ). [FKR+02] gave algorithms for testingk-juntas with query complexities that are low-order
polynomials ink and 1/ε. On the other hand, [FLN+02] showed that any algorithm for testing mono-
tonicity must have a query complexity which increases withn. See also [AKK+03, BLR93, GGL+00] and
references therein for other work on testing various classes of Boolean functions.

In [DLM +07] a general method is given for testing functions that haveconcise representations in various
formats; among other things this work shows that the class ofdecision lists(a subclass of LTFs) is testable
using poly(1

ε ) queries. The method of [DLM+07] does not apply to LTFs in general since it requires that
the functions in question be “well approximated” by juntas,which clearly does not hold for general LTFs.

Outline of the Paper. In Section 2 we give some notation and preliminary facts usedthroughout the paper.
In Section 3 we describe a subroutine for estimating sums of powers of Fourier and Hermite coefficients,
based on the notion of Noise Stability. Section 4 contains our algorithm for testing general LTFs over
Gaussian Space. Section 5 contains an algorithm for testingbalanced, regularLTFs over{−1, 1}n, a
“warm-up” to our main result. Finally, Section 6 contains our main result, a general algorithm for testing
LTFs over{−1, 1}n

2 Notation and Preliminaries.

Except in Section 4, throughout this paperf will denote a function from{−1, 1}n to {−1, 1} (in Section 4
f will denote a function fromR

n to {−1, 1}). We say that a Boolean-valued functiong is ε-far from
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f if Pr[f(x) 6= g(x)] ≥ ε; for f defined over the domain{−1, 1}n this probability is with respect to the
uniform distribution, and forf defined overRn the probability is with respect to the standardn-dimensional
Gaussian distribution.

We make extensive use of Fourier analysis of functionsf : {−1, 1}n → {−1, 1} and Hermite analysis
of functionsf : R

n → {−1, 1}. In this section we summarize some facts we will need regarding Fourier
analysis of functionsf : {−1, 1}n → {−1, 1} and Hermite analysis of functionsf : R

n → {−1, 1}.
For more information on Fourier analysis see, e.g., [Šte00]; for more information on Hermite analysis see,
e.g., [LT91].

Fourier analysis. Here we consider functionsf : {−1, 1}n → R, and we think of the inputsx to f as
being distributed according to the uniform probability distribution. The set of such functions forms a2n-
dimensional inner product space with inner product given by〈f, g〉 = Ex[f(x)g(x)]. The set of functions
(χS)S⊆[n] defined byχS(x) =

∏
i∈S xi forms a complete orthonormal basis for this space. We will also

often write simplyxS for
∏

i∈S xi. Given a functionf : {−1, 1}n → R we define itsFourier coefficients

by f̂(S) = Ex[f(x)xS ], and we have thatf(x) =
∑

S f̂(S)xS . We will be particularly interested inf ’s
degree-1 coefficients, i.e.,̂f(S) for |S| = 1; we will write these aŝf(i) rather thanf̂({i}). Finally, we have
Plancherel’s identity〈f, g〉 =

∑
S f̂(S)ĝ(S), which has as a special caseParseval’s identity, Ex[f(x)2] =∑

S f̂(S)2. From this it follows that for everyf : {−1, 1}n → {−1, 1} we have
∑

S f̂(S)2 = 1.

Hermite analysis. Here we consider functionsf : R
n → R, and we think of the inputsx to f as being

distributed according to the standardn-dimensional Gaussian probability distribution. We treatthe set of
square-integrable functions as an inner product space withinner product〈f, g〉 = Ex[f(x)g(x)] as before.
In the casen = 1, there is a sequence ofHermite polynomialsh0 ≡ 1, h1(x) = x, h2(x) = (x2 −
1)/

√
2, . . . that form a complete orthonormal basis for the space; they can be defined viaexp(λx−λ2/2) =∑∞

d=0(λ
d/
√

d!)hd(x). In the case of generaln, givenS ∈ N
n, we have that the collection ofn-variate

polynomialsHS(x) :=
∏n

i=1 hSi(xi) forms a complete orthonormal basis for the space. Given a square-
integrable functionf : R

n → R we define itsHermite coefficientsby f̂(S) = 〈f,HS〉 for S ∈ N
n and we

have thatf(x) =
∑

S f̂(S)HS(x) (the equality holding inL2). Again, we will be particularly interested in
f ’s “degree-1” coefficients, i.e.,f̂(ei), whereei is the vector which is1 in theith coordinate and0 elsewhere.
Recall that this is simplyEx[f(x)xi]. Plancherel and Parseval’s identities also hold in this setting.

We will also use the following definitions:

Definition 1. A “linear threshold function,” or LTF, is a Boolean-valued function of the formf(x) =
sgn(w1x1 + ... + wnxn − θ) wherew1, ..., wn, θ ∈ R. Thewi’s are called “weights,” andθ is called the
“threshold.” Thesgn function is1 on arguments≥ 0, and−1 otherwise.

Definition 2. We say thatf : {−1, 1}n → {−1, 1} is “ τ -regular” if |f̂(i)| ≤ τ for all i ∈ [n].

Definition 3. A functionf : {−1, 1}n → {−1, 1} is said to be a “junta onJ ⊂ [n]” if f only depends on
the coordinates inJ . Typically we think ofJ as a “small” set in this case.

Definition 4. For a, b ∈ R we writea
η≈ b to indicate that|a − b| ≤ O(η).

and the following simple facts:

Fact 5. SupposeA andB are nonnegative and|A − B| ≤ η. Then|
√

A −
√

B| ≤ η/
√

B.

Proof. |
√

A −
√

B| = |A−B|√
A+

√
B

≤ η√
B

.

Fact 6. If X is a random variable taking values in the range[−1, 1], its expectation can be estimated to
within an additive±ε, with confidence1 − δ, usingO(log(1/δ)/ε2) queries.

Proof. This follows from a standard additive Chernoff bound.
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3 Tools for Estimating Sums of Powers of Fourier and Hermite Coefficients

In this section we show how to estimate the sum
∑n

i=1 f̂(i)2 for functions over a boolean domain, and
the sum

∑n
i=1 f̂(ei)

2 for functions over gaussian space. This subroutine lies at the heart of our testing
algorithms. We actually prove a more general theorem, showing how to estimate

∑n
i=1 f̂(i)p for any integer

p ≥ 2. Estimating the special case of
∑n

i=1 f̂(i)4 allows us to distinguish whether a function has a single
large|f̂(i)|, or whether all|f̂(i)| are small. The main results in this section are Corollary 13 (along with its
analogue for Gaussian space, Lemma 16), and Lemma 15.

3.1 Noise Stability.

Definition 7. (Noise stability for Boolean functions.) Letf, g : {−1, 1}n → {−1, 1}, let η ∈ [0, 1], and
let (x, y) be a pair ofη-correlated random inputs — i.e.,x is a uniformly random string andy is formed by
settingyi = xi with probabilityη and lettingyi be uniform otherwise, independently for eachi. We define

Sη(f, g) = E[f(x)g(y)].

Fact 8. In the above setting,Sη(f, g) =
∑

S⊆[n] f̂(S)ĝ(S)η|S|.

Definition 9. (Noise stability for Gaussian functions.) Letf, g : R
n → R be inL2(Rn) with respect to

the Gaussian measure, letη ∈ [0, 1], and let(x, y) be a pair ofη-correlatedn-dimensional Gaussians.
I.e., each pair of coordinates(xi, yi) is chosen independently as follows:xi is a standard1-dimensional
Gaussian, andyi = ηxi +

√
1 − η2 · zi, wherezi is an independent standard Gaussian. We define

Sη(f, g) = E[f(x)g(y)].

Fact 10. In the above setting,Sη(f, g) =
∑

S∈Nn f̂(S)ĝ(S)η|S|, where|S| denotes
∑n

i=1 Si.

3.2 Estimating sums of powers of Fourier coefficients.

Forx = (x1, . . . , xn) andS ⊆ [n] we writexS for the monomial
∏

i∈S xi. The following lemma generalizes
Fact 8:

Lemma 11. Fix p ≥ 2. Let f1, . . . , fp bep functionsfi : {−1, 1}n → {−1, 1}. Fix any setT ⊆ [n]. Let
x1, . . . , xp−1 be independent uniform random strings in{−1, 1}n and lety be a random string whose bits
are independently chosen withPr[yi = 1] = 1

2 for i /∈ T andPr[yi = 1] = 1
2 + 1

2η for i ∈ T. Let� denote
coordinate-wise multiplication. Then

E[f1(x
1)f2(x

2) · · · fp−1(x
p−1)fp(x

1 � x2 � · · · � xp−1 � y)] =
∑

S⊆T
η|S|f̂1(S)f̂2(S) · · · f̂p(S).

Proof. We have

E[f1(x
1)f2(x

2) · · · fp−1(x
p−1)fp(x

1 � x2 � · · · � xp−1 � y)]

= E[
∑

S1,...,Sp⊆[n]

f̂1(S1) · · · f̂p−1(Sp−1)f̂p(Sp) · (x1)S1
· · · (xp−1)Sp−1

(x1 � x2 � · · · � xp−1 � y)Sp ]

=
∑

S1,...,Sp⊆[n]

f̂1(S1) · · · f̂p−1(Sp−1)f̂p(Sp) · E[(x1)S1∆Sp · · · (xp−1)Sp−1∆SpySp ]

Now recalling thatx1, . . . , xp−1 andy are all independent and the definition ofy, we have that the only
nonzero terms in the above sum occur whenS1 = · · · = Sp−1 = Sp ⊆ T ; in this case the expectation is
η|Sp|. This proves the lemma.
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Lemma 12. Let p ≥ 2. Suppose we have black-box access tof1, . . . , fp : {−1, 1}n → {−1, 1}. Then for
anyT ⊆ [n], we can estimate the sum of products of degree-1 Fourier coefficients

∑
i∈T

f̂1(i) · · · f̂p(i)

to within an additiveη, with confidence1 − δ, usingO(p · log(1/δ)/η4) queries.

Proof. Let x1, . . . , xp be independent uniform random strings in{−1, 1}n and lety be as in the previous
lemma. Empirically estimate

E[f1(x
1)f2(x

2) · · · fp(x
p)] and E[f1(x

1)f2(x
2) · · · fp−1(x

p−1)fp(x
1 � x2 � · · · � xp−1 � y)] (1)

to within an additive±η2, usingO(1/η4) samples. By the previous lemma these two quantities are exactly
equal to

f̂1(∅) · · · f̂p(∅) and
∑

S⊆T
η|S|f̂1(S)f̂2(S) · · · f̂p(S)

respectively. Subtracting the former estimate from the latter yields
∑

|S|>0,S⊆T

η|S|f̂1(S) · · · f̂p(S)

to within an additiveO(η2), and this itself is withinη2 of
∑

|S|=1,S⊆T

ηf̂1(S) · · · f̂p(S)

because the difference is
∑

|S|>1,S⊆T

η|S|f̂1(S) · · · f̂p(S) ≤ η2 ∑
|S|>1,S⊆T

|f̂1(S) · · · f̂p(S)|

≤ η2
√ ∑

|S|>1,S⊆T

f̂1(S)2
√ ∑

|S|>1,S⊆T

(f̂2(S) · · · f̂p(S))2 (2)

≤ η2 · 1 ·
√ ∑

|S|>1,S⊆T

f̂2(S)2 ≤ η2 (3)

where (2) is Cauchy-Schwarz and (3) uses the fact that the sumof the squares of the Fourier coefficients of
a Boolean function is at most 1. Thus we haveη ·∑i∈T f̂1(i) · · · f̂p(i) to within an additiveO(η2); dividing
by η gives us the required estimate withinO(η).

Taking allfi’s to be the same functionf , we have

Corollary 13. Fix p ≥ 2 and fix anyT ⊆ [n]. Given black-box access tof : {−1, 1}n → {−1, 1}, we can
estimate

∑
i∈T f̂(i)p to an additive±η, with confidence1 − δ, usingO(p · log(1/δ)/η4) queries.

Proposition 14. If everyi ∈ T has|f̂(i)| < α, then
∑

i∈T f̂(i)4 < α2
∑

i∈T f̂(i)2 ≤ α2.

Lemma 15. Fix anyT ⊆ [n]. There is anO(log(1/δ)/τ16)-query testNon-Regular(τ, δ, T ) which, given
query access tof : {−1, 1}n → {−1, 1}, behaves as follows: with probability1 − δ,

• If |f̂(i)| ≥ τ for somei ∈ T then the test accepts;

• If everyi ∈ T has|f̂(i)| < τ2/4 then the test rejects.

Proof. The test is to estimate
∑

i∈T f̂(i)4 to within an additive±τ4/4 and then accept if and only if the
estimate is at mostτ4/2. If |f̂(i)| ≥ τ for somei then clearly

∑n
i=1 f̂(i)4 ≥ τ4 so the test will accept

since the estimate will be at least3τ4/4. On the other hand, if eachi ∈ T has |f̂(i)| < τ2/4, then∑
i∈T f̂(i)4 < τ4/16 by Proposition 14 and so the test will reject since the estimate will be less than

5τ4/16.
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3.3 Estimating sums of powers of Hermite coefficients.

Here we letf̂(ei) denote thei-th degree-1 Hermite coefficient off : Rn → R as described in Section 4.
For the Gaussian distribution we require only the followinglemma, which can be proved in a straight-

forward way following the arguments in Section 3.2 and usingFact 10.

Lemma 16. Given black-box access tof : R
n → {−1, 1}, we can estimate

∑n
i=1 f̂(ei)

2 to within an
additiveη, with confidence1 − δ, usingO(log(1/δ)/η4) queries.

4 A Tester for General LTFs overRn

In this section we consider functionsf that mapRn to {−1, 1}, where we viewR
n as endowed with the

standardn-dimensional Gaussian distribution. Recall that a draw ofx from this distribution overRn is
obtained by drawing each coordinatexi independently from the standard one-dimensional Gaussiandistri-
bution with mean zero and variance1. In this section we will use Hermite analysis on functions.

Gaussian LTF facts.Let f : Rn → {−1, 1} be an LTF,f(x) = sgn(w·x−θ), and assume by normalization
that‖w‖ = 1. Now then-dimensional Gaussian distribution is spherically symmetric, as is the class of LTFs.
Thus there is a sense in which all LTFs with a given thresholdθ are “the same” in the Gaussian setting. (This
is very much untrue in the discrete setting of{−1, 1}n.) We can thus derive Hermite-analytic facts about
all LTFs by studying one particular LTF; say,f(x) = sgn(e1 · x − θ). In this case, the picture is essentially
1-dimensional; i.e., we can think of simplyh : R → {−1, 1} defined byh(x) = sgn(x − θ), wherex is a
single standard Gaussian. The only parameter now isθ ∈ R. Let us give some simple definitions and facts
concerning this function:

Definition 17. Lethθ : R → {−1, 1} be the function of one Gaussian random variablex given byhθ(x) =
sgn(x − θ). We writeφ for the p.d.f. of a standard Gaussian; i.e.,φ(t) = 1√

2π
e−t2/2.

1. We define the functionµ : R ∪ {±∞} → [−1, 1] by µ(θ) = ĥθ(0) = E[hθ]. Explicitly, µ(θ) =
−1+2

∫∞
θ φ. Note thatµ is a monotone strictly decreasing function, and it follows thatµ is invertible.

2. We have that̂hθ(1) = E[hθ(x)x] = 2φ(θ) (by an easy explicit calculation). We define the function
W : [−1, 1] → [0, 2/π] byW (ν) = (2φ(µ−1(ν)))2. Equivalently,W is defined so thatW (E[hθ]) =

ĥθ(1)
2; i.e., W tells us what the squared degree-1 Hermite coefficient should be, given the mean. We

remark thatW is a function symmetric about0, with a peak atW (0) = 2
π .

Proposition 18. 1. If x denotes a standard Gaussian random variable, thenE[|x−θ|] = 2φ(θ)−θµ(θ).

2. |µ′| ≤
√

2/π everywhere, and|W ′| < 1 everywhere.

3. If |ν| = 1 − η thenW (ν) = Θ(η2 log(1/η)).

Proof. The first statement is because both equalE[hθ(x)(x−θ)]. The bound onµ’s derivative holds because
µ′ = −2φ. The bound onW ’s derivative is becauseW ′(ν) = 4φ(θ)θ, whereθ = µ−1(ν), and this
expression is maximized atθ = ±1, where it is.96788 · · · < 1. Finally, the last statement follows ultimately
from the fact that1 − µ(θ) ∼ 2φ(θ)/|θ| for |θ| ≥ 1.

Having understood the degree-0 and degree-1 Hermite coefficients for the “1-dimensional” LTFf :
R

n → {−1, 1} given byf(x) = sgn(x1 − θ), we can immediately derive analogues for general LTFs:

7



Proposition 19. Let f : R
n → {−1, 1} be the LTFf(x) = sgn(w · x − θ), wherew ∈ R

n. By scaling,
assume that‖w‖ = 1. Then:

1. f̂(0) = E[f ] = µ(θ). 2. f̂(ei) =
√

W (E[f ])wi. 3.

n∑

i=1

f̂(ei)
2 = W (E[f ]).

Proof. The third statement follows from the second, which we will prove. The first statement is left to the
reader. We havêf(ei) = Ex[sgn(w · x − θ)xi]. Now w · x is distributed as a standard1-dimensional
Gaussian. Further,w · x andxi are jointly Gaussian with covarianceE[(w · x)xi] = wi. Hence(w · x, xi)

has the same distribution as(y,wiy +
√

1 − w2
i · z) wherey andz are independent standard1-dimensional

Gaussians. Thus

E
x
[sgn(w · x − θ)x1] = E[sgn(y − θ)(wiy +

√
1 − w2

i · z)]

= wiĥθ(1) + E[sgn(y − θ)
√

1 − w2
i · z] = wi

√
W (E[hθ]) + 0 =

√
W (E[f ])wi,

as desired.

The second item in the above proposition leads us to an interesting observation: iff(x) = sgn(w1x1 +
· · ·+ wnxn − θ) is any LTF, then its vector of degree-1 Hermite coefficients,(f̂(e1), . . . , f̂(en)), is parallel
to its vector of weights,(w1, . . . , wn).

The tester. We now give a simple algorithm and prove that it accepts any LTF with probability at least
2/3 and rejects any function that isO(ε)-far from all LTFs with probability at least2/3. The algorithm is
nonadaptive and has two-sided error; the analysis of the two-sided confidence error is standard and will be
omitted.

Given an input parameterε > 0, the algorithm works as follows:

1. Let µ̃ denote an estimate ofE[f ] that is accurate to within additive accuracy±ε3.

2. Let σ̃2 denote an estimate of
∑n

i=1 f̂(ei)
2 that is accurate to within additive accuracy±ε3.

3. If |σ̃2 − W (µ̃)| ≤ 2ε3 then output “yes,” otherwise output “no.”

The first step can be performed simply by makingO(1/ε6) independent draws from the Gaussian dis-
tribution, queryingf on each draw, and letting̃µ be the corresponding empirical estimate ofE[f ]; the result
will be ±ε3-accurate with high probability. The second step of estimating

∑n
i=1 f̂(ei)

2 was described in
section 3.

We now analyze the correctness of the test. The “yes” case is quite easy: Sincẽµ is within±ε3 of E[f ],
and since|W ′| ≤ 1 for all x (by Proposition 18 item 2), we conclude thatW (µ̃) is within ±ε3 of the true
valueW (E[f ]). But sincef is an LTF, this value is precisely

∑n
i=1 f̂(ei)

2, by Proposition 19 item 3. Now
σ̃2 is within ±ε3 of

∑n
i=1 f̂(ei)

2, and so the test indeed outputs “yes”.
As for the “no” case, the following theorem implies that any functionf which passes the test with high

probability isO(ε)-close to an LTF (either a constant function±1 or a specific LTF defined byE[f ] andf ’s
degree-1 Hermite coefficients):

Theorem 20. Assume that|E[f ]| ≤ 1 − ε. If |∑n
i=1 f̂(ei)

2 − W (E[f ])| ≤ 4ε3, thenf is O(ε)-close to an
LTF (in fact to an LTF whose coefficients are the Hermite coefficientsf̂(ei)).
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Proof. Let σ =
√∑

i f̂(ei)2, let t = µ−1(E[f ]), and leth(x) = 1
σ

∑
f̂(ei)xi − t. We will show thatf and

the LTFsgn(h) areO(ε)-close, by showing that both functions are correlated similarly with h. We have

E[fh] =
1

σ

∑

i

f̂(ei)
2 − tE[f ] = σ − tE[f ],

where the first equality uses Plancherel. On the other hand, by Proposition 18 (item 1), we have

E[|h|] = 2φ(t) − tµ(t) = 2φ(µ−1(E[f ])) − tE[f ] =
√

W (E[f ]) − tE[f ], and thus

E[h(sgn(h) − f)] = E[|h| − fh] =
√

W (E[f ]) − σ ≤ 4ε3

√
W (E[f ])

≤ Cε2,

whereC > 0 is some universal constant. Here the first inequality follows easily fromW (E[f ]) being
4ε3-close toσ2 (see Fact 5) and the second follows from the assumption that|E[f ]| ≤ 1 − ε, which by
Proposition 18 (item 3) implies that

√
W (E[f ]) ≥ Ω(ε).

Now given thatE[h(sgn(h) − f)] ≤ Cε2, the value ofPr[f(x) 6= sgn(h(x))] is greatest if the points
of disagreement are those on whichh is smallest. Letp denotePr[f 6= sgn(h)]. Sinceh is a normal
random variable with variance 1, it is easy to see thatPr[|h| ≤ p/2] ≤ 1√

2π
p ≤ p/2. It follows thatf and

sgn(h) disagree on a set of measure at leastp/2, over which|h| is at leastp/2. Thus,E[h(sgn(h) − f)] ≥
2 · (p/2) · (p/2) = p2/2. Combining this with the above, it follows thatp ≤

√
2C · ε, and we are done.

5 A Tester for Balanced Regular LTFs over{−1, 1}n

It is natural to hope that an algorithm similar to the one we employed in the Gaussian case — estimating
the sum of squares of the degree-1 Fourier coefficients of the function, and checking that it matches up with
W of the function’s mean — can be used for LTFs over{−1, 1}n as well. It turns out that LTFs which are
what we call “regular” — i.e., they have all their degree-1 Fourier coefficients small in magnitude — are
amenable to the basic approach from Section 4, but LTFs whichhave large degree-1 Fourier coefficients pose
significant additional complications. For intuition, consider Maj(x) = sgn(x1 + · · · + xn) as an example
of a highly regular halfspace andsgn(x1) as an example of a halfspace which is highly non-regular. In the
first case, the argumentx1 + · · · + xn behaves very much like a Gaussian random variable so it is nottoo
surprising that the Gaussian approach can be made to work; but in the second case, the±1-valued random
variablex1 is very unlike a Gaussian.

We defer the general case to Section 6, and here present a tester forbalanced, regularLTFs.

Definition 21. We say that any functionf : {−1, 1}n → {−1, 1} is “ τ -regular” if |f̂(i)| ≤ τ for all i ∈ [n].

Definition 22. We say that an LTFf : {−1, 1}n → {−1, 1} is “balanced” if it has threshold zero and mean
zero. We defineLTFn,τ to be the class of all balanced,τ -regular LTFs.

The balanced regular LTF subcase gives an important conceptual ingredient in the testing algorithm
for general LTFs and admits a relatively self-contained presentation. As we discuss in Section 6, though,
significant additional work is required to get rid of either the “balanced” or “regular” restriction.

The following theorem shows that we can test the classLTFn,τ with a constant number of queries:

Theorem 23. Fix anyτ > 0. There is anO(1/τ8)-query algorithmA that satisfies the following property:
Let ε be any valueε ≥ Cτ1/6, whereC is an absolute constant. Then ifA is run with inputε and black-box
access to anyf : {−1, 1}n → {−1, 1},

• if f ∈ LTFn,τ thenA outputs “yes” with probability at least2/3;
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• if f is ε-far from every function inLTFn,τ thenA outputs “no” with probability at least2/3.

The algorithmA in Theorem 23 has two steps. The purpose of Step 1 is to check that f is roughlyτ -
regular; if it is not, then the test rejects sincef is certainly not aτ -regular halfspace. In Step 2,A checks that∑n

i=1 f̂(i)2 ≈ W (0) = 2
π . This check is based on the idea (see Section 5.1) that foranyregular functionf ,

the degree-1 Fourier weight is close to2
π if and only if f is close to being an LTF. (Note the correspondence

between this statement and the results of Section 4 in the caseE[f ] = 0.)
We now describe algorithmA, which takes as input a parameterε ≥ Cτ1/6:

1. FirstA estimates
∑n

i=1 f̂(i)4 to within an additive±τ2. If the estimate is greater than2τ2 thenA
halts and outputs “no,” otherwise it continues.

2. NextA estimates
∑n

i=1 f̂(i)2 to within an additive±C1τ
1/3 (whereC1 > 0 is an absolute constant

specified below). If this estimate is within an additive±2C1τ
1/3 of 2

π thenA outputs “yes”, otherwise
it outputs “no.”

A description of how the sums of powers of degree-1 Fourier coefficients can be estimated is given in
Section 3, see Corollary 13 in particular.

In Section 5.1, we prove two theorems showing that balanced regular LTFs are essentially characterized
by the property

∑n
i=1 f̂(i)2 ≈ 2

π . In Section 5.2 we prove correctness of the test.

5.1 Two theorems aboutLTFn,τ .

The first theorem of this section tells us that anyf ∈ LTFn,τ has sum of squares of degree-1 Fourier
coefficients very close to2π . The next theorem is a sort of dual; it states that any Booleanfunctionf whose
degree-1 Fourier coefficients are all small and have sum of squares≈ 2

π is close to being a balanced regular
LTF (in fact, to the LTF whose weights equalf ’s degree-1 Fourier coefficients). Note the similarity in spirit
between these results and the characterization of LTFs withrespect to the Gaussian distribution that was
provided by Proposition 19 item 3 and Theorem 20.

Theorem 24. Letf ∈ LTFn,τ . Then
∣∣∣
∑n

i=1 f̂(i)2 − 2
π

∣∣∣ ≤ O(τ2/3).

Proof. Let ρ > 0 be small (chosen later). Using Proposition 7.1 and Theorem 5of [KKMO07], we have

∑
S

ρ|S|f̂(S)2 =
2

π
arcsin ρ ± O(τ).

On the LHS side we have that̂f(S) = 0 for all even |S| since f is an odd function, and therefore,
|∑S ρ|S|f̂(S)2 − ρ

∑
|S|=1 f̂(S)2| ≤ ρ3

∑
|S|≥3 f̂(S)2 ≤ ρ3. On the RHS, by a Taylor expansion we

have 2
π arcsin ρ = 2

πρ + O(ρ3). We thus conclude

ρ
n∑

i=1
f̂(i)2 =

2

π
ρ ± O(ρ3 + τ).

Dividing by ρ and optimizing withρ = Θ(τ1/3) completes the proof.

Theorem 25. Letf : {−1, 1}n → {−1, 1} be any function such that|f̂(i)| ≤ τ for all i and|∑n
i=1 f̂(i)2−

2
π | ≤ γ. Write`(x) :=

∑n
i=1 f̂(i)xi. Thenf andsgn(`(x)) areO(

√
γ + τ)-close.
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Proof. First note that ifγ > 1/3 then the claimed bound is vacuous, so we may assume thatγ ≤ 1/3. Let

L :=
√∑n

i=1 f̂(i)2; note that by our assumption onγ we haveL ≥ 1
2 . We have:

(2/π) − γ ≤
n∑

i=1
f̂(i)2 = E[f`] ≤ E[|`|] (4)

≤
√

2/π · L + O(τ) (5)

≤
√

2/π
√

2/π + γ + O(τ) ≤ (2/π) + O(γ) + O(τ).

The equality in (4) is Plancherel’s identity, and the latterinequality is becausef is a±1-valued function.
The inequality (5) holds for the following reason:`(x) is a linear form over random±1’s in which all the
coefficients are at mostτ in absolute value. Hence we expect it to act like a Gaussian (up to O(τ) error)
with standard deviationL, which would have expected absolute value

√
2/π ·L. See Propositions 58 and 59

in Appendix A for the precise justification. Comparing the overall left- and right-hand sides, we conclude
thatE[|`|] − E[f`] ≤ O(γ) + O(τ).

Let ε denote the fraction of points in{−1, 1}n on whichf andsgn(`) disagree. Given that there is aε
fraction of disagreement, the valueE[|`|] − E[f`] is smallest if the disagreement points are precisely those
points on which|`(x)| takes the smallest value. Now again we use the fact that` should act like a Gaussian
with standard deviationL, up to some errorO(τ/L) ≤ O(2τ); we can assume this error is at mostε/4,
since ifε ≤ O(τ) then the theorem already holds. Hence we have (see Theorem 55for precise justification)

Pr[|`| ≤ ε/8] = Pr[|`/L| ≤ ε/8L] ≤ Pr[|N(0, 1)| ≤ ε/8L] + ε/4 ≤ ε/8L + ε/4 ≤ ε/2,

sinceL ≥ 1/2. It follows that at least anε/2 fraction of inputsx have bothf(x) 6= sgn(`(x)) and
|`(x)| > ε/8. This implies thatE[|`|]−E[f`] ≥ 2 · (ε/2) · (ε/8) = ε2/8. Combining this with the previous
boundE[|`|] − E[f`] ≤ O(γ) + O(τ), we getε2/8 ≤ O(γ) + O(τ) which gives the desired result.

5.2 Proving correctness of the test.

First observe that for any Boolean functionf : {−1, 1}n → {−1, 1}, if |f̂(i)| ≤ τ for all i then
∑

i∈T f̂(i)4 ≤
τ2
∑

i∈T f̂(i)2 ≤ τ2, using Parseval. On the other hand, if|f̂(i)| ≥ 2τ1/2 for somei, then
∑n

i=1 f̂(i)4 is
certainly at least16τ2.

Suppose first that the functionf being tested belongs toLTFn,τ . As explained above, in this casef will
with high probability pass Step 1 and continue to Step 2. By Theorem 24 the true value of

∑n
i=1 f̂(i)2 is

within an additiveO(τ2/3) of 2
π ; sinceO(τ2/3) ≤ C1τ

1/3 the algorithm outputs “yes” with high probability.
So the algorithm behaves correctly on functions inLTFn,τ .

Now supposef : {−1, 1}n → {−1, 1} is such that the algorithm outputs “yes” with high probability;
we show thatf must beε-close to some function inLTFn,τ . Since there is a low probability thatA outputs
“no” in Step 1 onf , it must be the case that each|f̂(i)| is at most2τ1/2. Sincef outputs “yes” with high
probability in Step 2, it must be the case that

∑n
i=1 f̂(i)2 is within an additiveO(τ1/3) of 2

π . Plugging in
2τ1/2 for “τ ” and O(τ1/3) for “γ” in Theorem 25, we have thatf is Cτ1/6-close tosgn(`(x)) whereC is
some absolute constant. This proves the correctness ofA.

To analyze the query complexity, note that Corollary 13 tells us that Step 1 requiresO(1/τ8) many
queries, and Step 2 onlyO(1/τ4/3), so the total query complexity isO(1/τ8). This completes the proof of
Theorem 23.

6 A Tester for General LTFs over{−1, 1}n

In this section we give our main result, a constant-query tester for general halfspaces over{−1, 1}n. We
start with a very high-level overview of our approach.
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As we saw in Section 5, it is possible to test a functionf for being close to a balancedτ -regular LTF.
The key observation was that such functions have

∑n
i=1 f̂(i)2 approximately equal to2π if and only if they

are close to LTFs. Furthermore, in this case, the functions are actually close to being the sign of their degree-
1 Fourier part. It remains to extend the test described there to handle general LTFs which may be unbalanced
and/or non-regular.

A clear approach suggests itself for handling unbalanced regular LTFs using theW (·) function as in
Section 4. This is to try to show that forf an arbitraryτ -regular function, the following holds:

∑n
i=1 f̂(i)2

is approximately equal toW (E[f ]) if and only if f is close to an LTF — in particular, close to an LTF whose
linear form is the degree-1 Fourier part off . The “only if” direction here is not too much more difficult than
Theorem 25 (see Theorem 38 in Section 6.2), although the result degrades as the function’s mean gets close
to 1 or−1. However the “if” direction turns out to present a significant probabilistic difficulty.

In the proof of Theorem 24, the special case of mean-zero, we appealed to two results from [KKMO07].
The first shows that a balancedτ -regular LTF can be represented with “small weights” (smallcompared to
their sum-of-squares); the second shows that

∑
S ρ|S|f̂(S)2 is close to2

π arcsin ρ for balanced LTFs with
small weights. It is not too hard to appropriately generalize the second of these to unbalanced LTFs with
small weights (see Theorem 37 in Section 6.2). However generalizing the first result to unbalanced LTFs is
quite complicated, and requires the following theorem, which we prove in Section 6.1:2

Theorem 26. Letf(x) = sgn(w1x1+· · ·+wnxn−θ) be an LTF such that
∑

i w2
i = 1 andδ := |w1| ≥ |wi|

for all i ∈ [n]. Let0 ≤ ε ≤ 1 be such that|E[f ]| ≤ 1 − ε. Then|f̂(1)| ≥ Ω(δε6 log(1/ε)).

We now discuss removing the regularity condition; this requires additional analytic work and moreover
requires that several new algorithmic ingredients be addedto the test. Given any Boolean functionf , Parse-
val’s inequality implies thatJ := {i : |f̂(i)| ≥ τ2} has cardinality at most1/τ4. Let us pretend for now that
the testing algorithm could somehow know the setJ . (If we allowed the algorithmΘ(log n) many queries,
it could in fact exactly identify some set likeJ . However with constantly many queries this is not possible.
We ignore this problem for the time being, and will discuss how to get around it at the end of this section.)

Our algorithm first checks whether it is the case that for all but anε fraction of restrictionsρ to J , the
restricted functionfρ is ε-close to a constant function. If this is the case, thenf is an LTF if and only iff is
close to an LTF which depends only on the variables inJ . So in this case the tester simply enumerates over
“all” LTFs over J and checks whetherf seems close to any of them. (Note that sinceJ is of constant size
there are at most constantly many LTFs to check here.)

It remains to deal with the case that for at least anε fraction of restrictions toJ , the restricted function is
ε-far from a constant function. In this case, it can be shown using Theorem 26 that iff is an LTF then in fact
everyrestriction of the variables inJ yields a regular subfunction. So it can use the testing procedure for
(general mean) regular LTFs already described to check thatfor most restrictionsπ, the restricted function
fπ is close to an LTF — indeed, close to an LTF whose linear form isits own degree-1 Fourier part.

This is a good start, but it is not enough. At this point the tester is confident that most restricted functions
fπ are close to LTFs whose linear forms are their own degree-1 Fourier parts — but in a true LTF, all of
these restricted functions are expressible using acommonlinear form. Thus the tester needs to testpairwise
consistencyamong the linear parts of the differentfπ’s.

To do this, recall that when the algorithm tests that a restricted functionfπ is close to an LTF, the actual
test is that there is near-equality in the inequality

∑
|S|=1 f̂π(S)2 ≤ W (E[fπ]). If this holds for bothfπ

andfπ′ , the algorithm can further check that the degree-1 parts offπ andfπ′ are essentially parallel (i.e.,
equivalent) by testing that near-equality holds in the Cauchy-Schwarz inequality

∑
|S|=1 f̂π(S)f̂π′(S) ≤√

W (E[fπ])
√

W (E[fπ′ ]). Thus to become convinced that most restrictedfπ ’s are close to LTFs over the

2Readers familiar with the notion of influence (Definition 60)will recall that for any LTFf we haveInfi(f) = |f̂(i)| for eachi.
Thus Theorem 26 may roughly be viewed as saying that “every not-too-biased LTF with a large weight has an influential variable.”
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samelinear form, the tester can pick a particularfπ∗ and check that
∑

|S|=1 f̂π∗(S)f̂π(S) ≈
√

W (E[fπ∗ ])·√
W (E[fπ]) for mostπ’s. (At this point there is one caveat. As mentioned earlier,the general-mean LTF

tests degrade when the function being tested has mean close to 1 or −1. For the above-described test to
work, fπ∗ needs to have mean somewhat bounded away from1 and−1, so it is important that the algorithm
uses a restrictionπ∗ that has|E[f ]| bounded away from 1. Fortunately, finding such a restrictionis not a
problem since we are in the case in which at least anε fraction of restrictions have this property.)

Now the algorithm has tested that there is a single linear form ` (with small weights) such that for most
restrictionsπ to J , fπ is close to being expressible as an LTF with linear form`. It only remains for the
tester to check that the thresholds — or essentially equivalently, for small-weight linear forms, the means
— of these restricted functions are consistent with some arbitrary weight linear form on the variables inJ .
It can be shown that there are at most2poly(|J |) essentially different such linear formsw ·π− θ, and thus the
tester can just enumerate all of them and check whether for mostπ’s it holds thatE[fπ] is close to the mean
of the threshold functionsgn(` − (θ − w · π)). This will happen for one such linear form if and only iff is
close to being expressible as the LTFh(π, x) = sgn(w · π + ` − θ).

This completes the sketch of the testing algorithm, modulo the explanation of how the tester can get
around “knowing” what the setJ is. Looking carefully at what the tester needs to do withJ , it turns out
that it suffices for it to be able to queryf on random strings and correlated tuples of strings, subjectto given
restrictionsπ to J . This can be done essentially by borrowing a technique from the paper [FKR+02] (see
the discussion after Theorem 42 in Section 6.4.2).

In the remainder of this section we make all these ideas precise and prove the following, which is our
main result:

Theorem 27. There is an algorithmTest-LTF for testing whether an arbitrary black-boxf : {−1, 1}n →
{−1, 1} is an LTF versusε-far from any LTF. The algorithm has two-sided error and makes at most
poly(1/ε) queries tof.

Remark 28. The algorithm described above is adaptive. We note that similar to [FKR+02], the algorithm
can be made nonadaptive with a polynomial factor increase inthe query complexity (see Remark 44 in
Section 6.4.2).

Section 6.1 gives the proof of Theorem 26. Section 6.2 gives two theorems essentially characterizing
LTFs; these theorems are the main tools in proving the correctness of our test. Section 6.3 gives an overview
of the algorithm, which is presented in Sections 6.4 and 6.5.Section 6.6 proves correctness of the test.

6.1 On the structure of LTFs: relating weights, influences and biases

In this section we prove a structural theorem about LTFs. Thetheorem says that an LTF’s most influential
variable has influence at least polynomial in the size of the LTF’s largest weight and the size of the LTF’s
bias.

Theorem 26. Letf(x) = sgn(
∑n

i=1 aixi − θ) be an LTF such that
∑

i a
2
i = 1 andδ

def
= |a1| ≥ |ai| for all

i ∈ [n]. Let0 ≤ ε ≤ 1 be such that|E[f ]| = 1 − ε. ThenInf1(f) = Ω(δε6 log(1/ε)).

Even theθ = 0 case of the theorem, corresponding toε = 1, is somewhat tricky to prove. It appeared
first as Proposition 10.2 of [KKMO07]. A substantially more intricate proof is required for the general
statement; indeed, the arguments of [KKMO07] occur in somewhat modified form as Cases 1.a and 1.b of
our proof below.

We note that it is easy to give anupperbound onInf1(f) in terms of eitherδ or ε: it is immediate that
Inf1(f) ≤ O(ε), and from Proposition 64 we have thatInf1(f) ≤ O(δ). We suspect thatΘ(δε) may be the
optimal bound for Theorem 26.
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6.1.1 Useful tools for proving Theorem 26.

We first observe that
Inf1(f) = Pr

[
|a2x2 + · · · + anxn − θ| ≤ δ

]
. (6)

We shall prove Theorem 26 by lower bounding the right hand side of (6).
At many points in the proof of Theorem 26 we will use the following fact, which is a simple consequence

of “Poincaré’s inequality” — i.e., the fact that the sum of afunction’s influences is at least its variance:

Fact 29. Let g : {−1, 1}` → {−1, 1} be a linear threshold functiong(x) = sgn(
∑`

i=1 aixi − θ) with
|a1| ≥ |ai| for all i = 1, . . . , `. ThenInf1(g) ≥ Var[g]/`.

Proof. Poincaré’s inequality says that
∑`

i=1 Infi(g) ≥ Var[g] for any Boolean functiong. Since|a1| ≥ |ai|
for all i (Proposition 61), we haveInf1(g) ≥ Infi(g), and the fact follows.

The following easily verified fact is also useful:

Fact 30. Let g : {−1, 1}` → {−1, 1} be a linear threshold functiong(x) = sgn(
∑`

i=1 aixi − θ) with
|a1| > |θ|. ThenVar[g] = Ω(1).

Proof. Since|a1| > |θ|, one of the two restrictions obtained by fixing the first variable outputs1 at least
half the time, and the other outputs−1 at least half the time. This implies that1/4 ≤ Pr[g(x) = 1] < 3/4,
which givesVar[g] = Ω(1).

We will also often use the Berry-Esseen theorem, Theorem 55.For definiteness, we will writeC for
the implicit constant in theO(·) of the statement, and we note that for every intervalA we in fact have
|Pr[`(x)/σ ∈ A] − Pr[X ∈ A]| ≤ 2Cτ/σ.

Finally, we will also use the Hoeffding bound:

Theorem 31. Fix any0 6= w ∈ R
n and write‖w‖ for

√
w2

1 + · · · + w2
n. For anyγ > 0, we have

Pr
x∈{−1,1}n

[w · x ≥ γ‖w‖] ≤ e−γ2/2 and Pr
x∈{−1,1}n

[w · x ≤ −γ‖w‖] ≤ e−γ2/2.

6.1.2 The idea behind Theorem 26.

We give a high-level outline of the proof before delving intothe technical details. Here and throughout the
proof we suppose for convenience thatδ = |a1| ≥ |a2| ≥ · · · ≥ |an| ≥ 0.

We first consider the case (Case 1) that the biggest weightδ is small relative toε. We show that with
probability Ω(ε2), the “tail” aβxβ + · · · + anxn of the linear form (for a suitably chosenβ) takes a value
in [θ − 1, θ + 1]; this means that the effective threshold for the “head”a2x2 + · · · + aβ−1xβ−1 is in the
range[−1, 1]. In this event, a modified version of the [KKMO07] proof shows that the probability that
a2x2 + · · ·+ aβ−1xβ−1 lies within±δ of the effective threshold isΩ(δ); this gives us an overall probability
bound ofΩ(δε2) for (6) in Case 1.

We next consider the case (Case 2) that the biggest weightδ is large. We define the “critical index”
of the sequencea1, . . . , an to be the first indexk ∈ [n] at which the Berry-Esseen theorem applied to the
sequenceak, . . . , an has a small error term; see Definition 35 below. (This quantity was implicitly defined
and used in [Ser07].) We proceed to consider different casesdepending on the size of the critical index.

Case 2.a handles the case in which the critical indexk is “large” (larger thanΘ(log(1/ε)/ε4). Intuitively,
in this case the weightsa1, . . . , ak decrease exponentially and the value

∑
j≥k′ a2

j is very small, where
k′ = Θ(log(1/ε)/ε4). The rough idea in this case is that the effective number of relevant variables is at
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mostk′, so we can use Fact 29 to get a lower bound onInf1. (There are various subcases here for technical
reasons but this is the main idea behind all of them.)

Case 2.b handles the case in which the critical indexk is “small” (smaller thanΘ(log(1/ε)/ε4)). Intu-

itively, in this case the valueσk
def
=
√∑

j≥k a2
j is large, so the random variableakxk + · · · + anxn behaves

like a Gaussian random variableN(0, σk) (recall that sincek is the critical index, the Berry-Esseen error
is “small”). Now there are several different subcases depending on the relative sizes ofσk andθ, and on
the relative sizes ofδ andθ. In some of these cases we argue that “many” restrictions to the tail variables
xk, . . . , xn yield a resulting LTF which has “large” variance; in these cases we can use Fact 29 to argue that
for any such restriction the influence ofx1 is large, so the overall influence ofx1 cannot be too small. In the
other cases we use the Berry-Esseen theorem to approximate the random variableakxk + · · · + anxn by a
GaussianN(0, σk), and use properties of the Gaussian to argue that the analogue to expression (6) (with a
Gaussian in place ofakxk + · · · + anxn) is not too small.

6.1.3 The detailed proof of Theorem 26.

We suppose without loss of generality thatE[f ] = −1+ ε, i.e. thatθ ≥ 0. We have the following two useful
facts:

Fact 32. We have0 ≤ θ ≤
√

2 ln(2/ε).

Proof. The lower bound is by assumption, and the upper bound followsfrom the Hoeffding bound and the
fact thatE[f ] = −1 + ε.

Fact 33. Let S be any subset of variablesx1, . . . , xn. For at least anε/4 fraction of restrictionsρ that fix
the variables inS and leave other variables free, we haveE[fρ] ≥ −1 + ε/4.

Proof. If this were not the case then we would haveE[f ] < (ε/4) · 1 + (1 − ε/4)(−1 + ε/4) < −1 + ε,
which contradicts the fact thatE[f ] = −1 + ε.

Now we consider the cases outlined in the previous subsection. Recall thatC is the absolute constant in
the Berry-Esseen theorem; we shall suppose w.l.o.g. thatC is a positive integer. LetC1 > 0 be a suitably
large (relative toC) absolute constant to be chosen later.

Case 1:δ ≤ ε2/C1. We will show that in Case 1 we actually haveInf1(f) = Ω(δε2).

Let us defineT
def
= {β, . . . , n} whereβ ∈ [n] is the last value such that

∑n
i=β a2

i ≥ 1
2 . Since each|ai| is

at mostε2/C1 ≤ 1/C1 (because we are in Case 1), we certainly have that
∑

i∈T a2
i ∈ [12 , 3

4 ] by choosingC1

suitably large.
We first show that the tail sum

∑
i∈T aixi lands in the interval[θ−1, θ +1] with fairly high probability:

Lemma 34. We have

Pr

[∑

i∈T

aixi ∈ [θ − 1, θ + 1]

]
≥ ε2/18.

Proof. Let σT denote
(∑

i∈T a2
i

)1/2
. As noted above we have

√
4/3 ≤ σ−1

T ≤
√

2. We thus have

Pr

[∑

i∈T

aixi ∈ [θ − 1, θ + 1]

]
= Pr

[
σ−1

T

∑

i∈T

aixi ∈ σ−1
T [θ − 1, θ + 1]

]

≥ Φ([σ−1
T θ − σ−1

T , σ−1
T θ + σ−1

T ]) − 2Cδσ−1
T (7)

> Φ([σ−1
T θ − σ−1

T , σ−1
T θ + σ−1

T ]) − 2
√

2Cδ (8)
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where (7) follows from the Berry-Esseen theorem using the fact that each|ai| ≤ δ.
If 0 ≤ θ ≤ 1, then clearly the interval[σ−1

T θ − σ−1
T , σ−1

T θ + σ−1
T ] contains the interval[0, 1]. Since

Φ([0, 1]) ≥ 1
3 , the boundδ ≤ ε2/C1 easily gives that (8) is at leastε2/18 as required, for a suitably large

choice ofC1.
If θ > 1, then using our bounds onσ−1

T we have that

Φ([σ−1
T θ − σ−1

T , σ−1
T θ + σ−1

T ]) ≥ Φ([
√

2 · θ −
√

4/3,
√

2 · θ +
√

4/3)

> Φ([
√

2 · θ −
√

4/3,
√

2 · θ])

>
√

4/3 · φ(
√

2 · θ)

≥
√

4/3 · φ(2
√

ln(2/ε)) (9)

=

√
4

3
· 1√

2π
· ε2

4
>

ε2

9
. (10)

Here (9) follows from Fact 32 and (10) follows from definitionof φ(·). Sinceδ ≤ ε2/C1, again with a
suitably large choice ofC1 we easily have2

√
2Cδ ≤ ε2/18, and thus (8) is at leastε2/18 as required and

the lemma is proved.

Now consider any fixed setting ofxβ, . . . , xn such that the tail
∑

i∈T aixi comes out in the interval
[θ − 1, θ + 1], say

∑
i∈T aixi = θ − τ where|τ | ≤ 1. We show that the heada2x2 + · · ·+ aβ−1xβ−1 lies in

[τ − δ, τ + δ] with probabilityΩ(δ); with Lemma 34, this implies that the overall probability (6) is Ω(δε2).

Let α
def
= C2

1/8, let S
def
= {α, . . . , β − 1}, and letR

def
= {2, . . . , α − 1}. Sinceδ ≤ ε2/C1, we have

that
∑α−1

i=1 a2
i ≤ 1/8, so consequently1/8 ≤ ∑

i∈S a2
i ≤ 1/2. Letting σS denote(

∑
i∈S a2

i )
1/2, we have√

2 ≤ σ−1
S ≤ 2

√
2.

We now consider two cases depending on the magnitude ofaα. Let C2
def
= C1/4.

Case 1.a:|aα| ≤ δ/C2. In this case we use the Berry-Esseen theorem onS to obtain

Pr

[∑

i∈S

aixi ∈ [τ − δ, τ + δ]

]
= Pr

[
σ−1

S

∑

i∈S

aixi ∈ σ−1
S [τ − δ, τ + δ]

]

≥ Φ([σ−1
S τ − σ−1

S δ, σ−1
S τ + σ−1

S δ]) − 2C(δ/C2)σ
−1
S . (11)

Using our bounds onτ andσ−1
S , we have that theΦ(·) term of (11) is at least(

√
2δ) · φ(2

√
2) > δ/100.

Since the error term2C(δ/C2)σ
−1
S is at mostδ/200 for a suitably large choice ofC1 relative toC (recall

that C2 = C1/4), we have(11) ≥ δ/200. Now for any setting ofxα, . . . , xβ−1 such that
∑

i∈S aixi lies
in [τ − δ, τ + δ], since each of|a2|, . . . , |aα−1| is at mostδ there is (at least one) corresponding setting of
x2, . . . , xα−1 such that

∑
i∈(R∪S) aixi also lies in[τ − δ, τ + δ]. (Intuitively, one can think of successively

setting each bitxα−1, xα−2, . . . , xj , . . . , x2 in such a way as to always keep
∑β−1

i=j aixi in [τ −δ, τ +δ]). So
the overall probability thata2x2 + · · ·+ aβ−1xβ−1 lies in [τ − δ, τ + δ] is at least(δ/200) · 2−α+2 = Ω(δ),
and we are done with Case 1.a.

Case 1.b:aα > δ/C2. Similar to Case 2 of [KKMO07], we again use the Berry-Esseen theorem onS, now
using the bound that|ai| ≤ δ for eachi ∈ S and bounding the probability of a larger interval[τ − C2δ, τ +
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C2δ]:

Pr

[∑

i∈S

aixi ∈ [τ − C2δ, τ + C2δ]

]

= Pr

[
σ−1

S

∑

i∈S

aixi ∈ σ−1
S [τ − C2δ, τ + C2δ]

]

≥ Φ([σ−1
S τ − σ−1

S C2δ, σ
−1
S τ + σ−1

S C2δ]) − 2Cδσ−1
S (12)

≥ Φ([2
√

2 −
√

2C2δ, 2
√

2]) − 4
√

2Cδ (13)

In (12) we have used the Berry-Esseen theorem and in (13) we have used our bounds onσ−1
S andτ . Now

recalling thatδ ≤ ε2/C1 ≤ 1/C1 andC2 = C1/4, we have
√

2C2δ < 2
√

2, and hence

(13) ≥
√

2C2δ · φ(2
√

2) − 4
√

2Cδ > Cδ (14)

where the second inequality follows by choosingC1 (and henceC2) to be a sufficiently large constant
multiple ofC. Now for any setting ofxα, . . . , xβ−1 such that

∑
i∈S aixi = t lies in [τ −C2δ, τ +C2δ], since

δ/C2 ≤ |a2|, . . . , |aα−1| ≤ δ, there is at least one setting of the bitsx2, . . . , xα−1 for which t +
∑α−1

i=2 aixi

lies in[τ−δ, τ+δ]. (Since, as is easily verified from the definitions ofα andC2, we have(α−2)δ/C2 ≥ C2δ,
the magnitude ofa2, . . . , aα−1 is large enough to get fromτ−C2δ to τ ; and since each|ai| is at mostδ, once
the interval[τ − δ, τ + δ] is reached a suitable choice of signs will keep the sum in the right interval.) So in
Case 1.b. the overall probability thata2x2+· · ·+aβ−1xβ−1 lies in[τ−δ, τ+δ] is at leastCδ·2−α+2 = Ω(δ),
and we are done with Case 1.b..

We turn to the remaining case in whichδ is “large:”

Case 2:δ > ε2/C1. Let us introduce the following definition which is implicit in [Ser07]:

Definition 35. Leta1, . . . , an be a sequence of values such that|a1| ≥ · · · ≥ |an| ≥ 0. Thecritical indexof
the sequence is the smallest value ofk ∈ [n] such that

C|ak|√∑n
j=k a2

j

≤ C3δε
2. (15)

HereC3 > 0 is a (suitably small) absolute constant specified below. (Note that the LHS valueC|ak|/
√∑n

j=k a2
j

is an upper bound on the Berry-Esseen error when the theorem is applied toakxk + · · · + anxn.)

Throughout the rest of the proof we writek to denote the critical index ofa1, . . . , an. Observe that
k > 1 since we have

C|a1|√∑n
j=1 a2

j

= Cδ >
Cε2

C1
≥ Cδε2

C1
> C3δε

2

where the final bound holds for a suitably small constant choice ofC3.
We first consider the case that the critical indexk is large. In the followingC4 > 0 denotes a suitably

large absolute constant.

Case 2.a:k > C4 ln(1/ε)/ε4 + 1. In this case we definek′ def
= dC4 ln(1/ε)/ε4e + 1. Let us also define

σk′
def
=
√∑n

j=k′ a2
j . The following claim shows thatσk′ is small:

Claim 36. We haveσk′ ≤ ε3

10C1
.
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Proof. For i ∈ [n] let us writeAi to denote
∑n

j=i a
2
j ; note thatA1 = 1 andAi = a2

i + Ai+1. For ease of
notation let us writeζ to denoteδε2C3/C.

Since we are in Case 2.a, for any1 ≤ i < k′ we havea2
i > ζAi = ζa2

i + ζAi+1, or equivalently
(1 − ζ)a2

i > ζAi+1. Adding (1 − ζ)Ai+1 to both sides gives(1 − ζ)(a2
i + Ai+1) = (1 − ζ)Ai > Ai+1. So

consequently we have

Ak′ < (1 − ζ)k
′−1 ≤ (1 − ζ)C4 ln(1/ε)/ε4 ≤ (1 − ε4C3/(CC1))

C4 ln(1/ε)/ε4 ≤
(

ε3

10C1

)2

,

where in the third inequality we usedδ > ε2/C1 (which holds since we are in Case 2) and the fourth
inequality holds for a suitable choice of the absolute constantC4. This proves the claim.

At this point we knowδ is “large” (at leastε2/C1) andσk′ is “small” (at most ε3

10C1
). We consider two

cases depending on whetherθ is large or small.

Case 2.a.i:θ < ε2/(2C1). In this case we have0 ≤ θ < δ/2. Since4σk′ < ε2/(2C1) < δ/2, the Hoeffding
bound gives that a random restriction that fixes variablesxk′ , . . . , xn gives |ak′xk′ + · · · + anxn| > 4σk′

with probability at moste−8 < 1/100. Consequently we have that for at least99/100 of all restrictionsρ to
xk′ , . . . , xn, the resulting functionfρ (on variablesx1, . . . , xk′−1) is fρ(x) = sgn(a1x1+· · ·+ak′−1xk′−1−
θρ) where−δ/2 ≤ θρ < δ. Facts 29 and 30 now imply that each suchfρ hasInf1(fρ) = Ω(1)/k′ = Ω(1) ·
ε4/ ln(1/ε), so consequentlyInf1(f) is alsoΩ(1) · ε4/ log(1/ε), which certainly suffices for Theorem 26.
This concludes Case 2.a.i.

Case 2.a.ii:θ ≥ ε2/(2C1). We now apply the Hoeffding bound (Theorem 31) toak′xk′ + · · · + anxn with
γ = 2

√
ln(8/ε). This gives thatak′xk′ + · · · + anxn < −2

√
ln(8/ε) · σk′ with probability at mostε2/8.

Since2
√

ln(8/ε) · σk′ < ε2/(2C1) ≤ θ, we have that for at least a1 − ε2/8 fraction of all restrictionsρ to
xk′ , . . . , xn, the resulting functionfρ (on variablesx1, . . . , xk′−1) is fρ(x) = sgn(a1x1+· · ·+ak′−1xk′−1−
θρ) whereθρ > 0. i.e. E[fρ] < 0. Together with Fact 33, this implies that for at least anε/4 − ε2/8 > ε/8
fraction of restrictionsρ, we have−1 + ε/4 ≤ E[fρ] < 0. Each suchfρ hasVar[fρ] = Ω(ε), so by Fact 29
hasInf1(fρ) = Ω(ε)/k′ = Ω(ε5/ log(1/ε)). Consequently we have thatInf1(f) = Ω(ε6/ log(1/ε)) which
is certainlyΩ(δε6/ log(1/ε)). This concludes Case 2.a.ii.

Case 2.b:k ≤ C4 log(1/ε)/ε4 + 1. We now defineσk
def
=
√∑n

j=k a2
j and work with this quantity. First we

consider a subcase in whichσk is “small” relative toθ; this case can be handled using essentially the same
arguments as Case 2.a.ii.

Case 2.b.i:σk < θ/(2
√

ln(8/ε)). As above, the Hoeffding bound (now applied toakxk + · · ·+anxn) gives
thatakxk + · · ·+ anxn < −2

√
ln(8/ε) ·σk with probability at mostε2/8, so for at least a1− ε2/8 fraction

of restrictionsρ to xk, . . . , xn we haveE[fρ] < 0. Using Fact 33, the argument from Case 2.a.ii again gives
thatInf1(f) = Ω(ε6/ log(1/ε)), and we are done with Case 2.b.i.

Case 2.b.ii: σk ≥ θ/(2
√

ln(8/ε)). In this case we shall show thatN(0, σk), the zero-mean Gaussian
distribution with varianceσk, assigns at least2C3δε

2 probability weight to the interval[θ − δ/2, θ + δ/2].
In other words, writingΦσk

to denote the c.d.f. ofN(0, σk), we shall show

Φσk
([θ − δ/2, θ + δ/2]) ≥ 3C3δε

2. (16)

Given (16), by the Berry-Esseen theorem and the definition ofthe critical index we obtain

Pr

[
n∑

i=k

ak ∈ [θ − δ/2, θ + δ/2]

]
≥ 3C3δε

2 − 2C3δε
2 = C3δε

2. (17)
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For any restrictionρ that givesakxk + · · · + anxn ∈ [θ − δ/2, θ + δ/2], Fact 30 givesVar[fρ] =
Ω(1) and hence Fact 29 givesInf1(fρ) = Ω(1)/k = Ω(ε4/ log(1/ε)). By (17) we thus haveInf1(f) =
Ω(C3δε

6 log(1/ε)), which is the desired result.

We turn to proving (16). Letφσk
denote the c.d.f. ofN(0, σk), i.e. φσk

(x)
def
= (1/σk

√
2π)e−x2/2σ2

k . We
first observe that sinceσk ≥ θ/(2

√
ln 8/ε), we have

φσk
(θ) ≥ Ω(1/σk) · ε2 ≥ 6C3ε

2, (18)

where the second bound holds for a suitably small choice of the absolute constantC3 and usesσk ≤ 1.
We consider two different cases depending on the relative sizes ofδ andθ.

Case 2.b.ii.A:δ/2 ≥ θ. In this case we have that[0, δ/2] ⊆ [θ − δ/2, θ + δ/2] and it suffices to show that
Φσk

([0, δ/2]) ≥ 3δε2C3.
If δ ≥ σk, then we have

Φσk
([0, δ/2]) ≥ Φσk

([0, σk/2]) ≥ 3C3 ≥ 3C3δε
2

by a suitable choice of the absolute constantC3. On the other hand, ifδ < σk then we have

Φσk
([0, δ/2]) ≥ (δ/2)φσk

(δ/2) ≥ (δ/2)φσk
(σk/2) ≥ 3C3δ ≥ 3C3δε

2

for a suitable choice of the absolute constantC3. This gives Case 2.b.ii.A.

Case 2.b.ii.B:δ/2 < θ. In this case we have

Φσk
([θ − δ/2, θ + δ/2]) ≥ Φσk

([θ − δ/2, θ]) ≥ (δ/2) · φσk
(θ) ≥ 3C3δε

2

where the final inequality is obtained using (18). This concludes Case 2.b.ii.B, and with it the proof of
Theorem 26.

6.2 Two theorems about LTFs

In this section we prove two theorems that essentially characterize LTFs. These theorems are the analogues
of Theorems 24 and 25 in Section 5.1.

The following is the main theorem used in proving the completeness of our test. Roughly speaking, it
says that iff1 = sgn(w · x − θ1), f2 = sgn(w · x − θ2) are two regular LTFs with the same weights (but
possibly different thresholds), then the the inner productof their degree-1 Fourier coefficients is essentially
determined by their means.

Theorem 37. Letf1 be aτ -regular LTF. Then
∣∣∣∣∣

n∑

i=1

f̂1(i)
2 − W (E[f1])

∣∣∣∣∣ ≤ τ1/6. (19)

Further, supposef2 : {−1, 1}n → {−1, 1} is anotherτ -regular LTFs that can be expressed using the same
linear form asf1; i.e., fk(x) = sgn(w · x − θk) for somew, θ1, θ2. Then

∣∣∣∣∣∣

(
n∑

i=1

f̂1(i)f̂2(i)

)2

− W (E[f1])W (E[f2])

∣∣∣∣∣∣
≤ τ1/6. (20)

(We assume in this theorem thatτ is less than a sufficiently small constant.)
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Proof. We first dispense with the case that|E[f1]| ≥ 1 − τ1/10. In this case, Proposition 2.2 of Tala-
grand [Tal96] implies that

∑n
i=1 f̂1(i)

2 ≤ O(τ2/10 log(1/τ)), and Proposition 18 (item 3) implies that
W (E[f1]) ≤ O(τ2/10 log(1/τ)). Thus

∣∣∣∣∣
n∑

i=1

f̂1(i)
2 − W (E[f1])

∣∣∣∣∣ ≤ O(τ1/5 log(1/τ)) ≤ τ1/6,

so (19) indeed holds. Further, in this case we have
(

n∑

i=1

f̂1(i)f̂2(i)

)2
Cauchy-Schwarz

≤
(

n∑

i=1

f̂1(i)
2

)(
n∑

i=1

f̂2(i)
2

)
≤ O(τ1/5 log(1/τ)) · 1,

and alsoW (E[f1])W (E[f2]) ≤ O(τ1/5 log(1/τ)) · 2
π . Thus (20) holds as well.

We may now assume that|E[f1]| < 1 − τ1/10. Without loss of generality, assume that the linear form
w definingf1 (andf2) has‖w‖ = 1 and|w1| ≥ |wi| for all i. Then from Theorem 26 it follows that

τ ≥ Inf1(f1) ≥ Ω(|w1|τ6/10 log(1/τ))

which implies that|w1| ≤ O(τ2/5). Note that by Proposition 57, this implies that

E[fk]
τ2/5

≈ µ(θk), k = 1, 2. (21)

Let (x, y) denote a pair ofη-correlated random binary strings, whereη = τ1/5. By definition ofSη, we
have

Sη(f1, f2) = 2Pr[(w · x,w · y) ∈ A ∪ B] − 1,

whereA = [θ1,∞) × [θ2,∞) andB = (−∞, θ1] × (−∞, θ2]. Using the same multidimensional Berry-
Esseen-based reasoning as in the proof of Proposition 10.1 of [KKMO07], the fact that|wi| ≤ O(τ2/5)
holds for alli implies

Pr[(w · x,w · y) ∈ A ∪ B]
τ2/5

≈ Pr[(X,Y ) ∈ A ∪ B],

where(X,Y ) is a pair ofη-correlated standard Gaussians. (Note that the error in theabove approximation
also depends multiplicatively on constant powers of1 + η and of1 − η, but these are just constants, since
|η| is bounded away from1.) It follows that

Sη(f1, f2)
τ2/5

≈ Sη(h1, h2), (22)

wherehk : R → {−1, 1} is the function of one Gaussian variablehk(X) = sgn(X − θk).
Using the Fourier and Hermite expansions, we can write Equation (22) as follows:

f̂1(∅)f̂2(∅) + η ·
(

n∑
i=1

f̂1(i)f̂2(i)

)
+
∑

|S|≥2

η|S|f̂1(S)f̂2(S)

τ2/5

≈ ĥ1(0)ĥ2(0) + η · ĥ1(1)ĥ2(1) +
∑

j≥2

ηj ĥ1(j)ĥ2(j). (23)

Now by Cauchy-Schwarz (and using the fact thatη ≥ 0) we have
∣∣∣∣∣∣
∑

|S|≥2

η|S|f̂1(S)f̂2(S)

∣∣∣∣∣∣
≤
√∑

|S|≥2

η|S|f̂1(S)2
√∑

|S|≥2

η|S|f̂2(S)2 ≤ η2

√∑

S

f̂1(S)2
√∑

S

f̂2(S)2 = η2.
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The analogous result holds forh1 andh2. If we substitute these into Equation (23) and also use

ĥk(0) = E[hk] = µ(θk)
τ2/5

≈ E[fk] = f̂k(∅)

which follows from Equation (21), we get:

η ·
(

n∑
i=1

f̂1(i)f̂2(i)

)
τ2/5+η2

≈ η · ĥ1(1)ĥ2(1) = η · 2φ(θ1) · 2φ(θ2),

where the equality is by the comment in Definition 17 (item 2).Dividing by η and usingτ2/5/η+η = 2τ1/5

in the error estimate, we get

n∑
i=1

f̂1(i)f̂2(i)
τ1/5

≈ 2φ(θ1) · 2φ(θ2) =
√

W (µ(θ1))W (µ(θ2)). (24)

Since we can apply this withf1 andf2 equal, we may also conclude

n∑
i=1

f̂k(i)
2 τ1/5

≈ W (µ(θk)) (25)

for eachk = 1, 2.
Using the Mean Value Theorem, the fact that|W ′| ≤ 1 on [−1, 1], and Equation (21), we conclude

n∑
i=1

f̂k(i)
2 τ1/5

≈ W (E[fk])

for eachk = 1, 2, establishing (19). Similar reasoning applied to the square of Equation (24) yields

(
n∑

i=1
f̂1(i)f̂2(i)

)2
τ1/5

≈ W (E[f1])W (E[f2]),

implying (20). The proof is complete.

The next theorem is a sort of dual of the previous theorem and will be the main theorem we use in
proving the soundness of our test. Very roughly speaking, itsays that for any Boolean functiong and any
τ -regular Boolean functionf that satisfies certain conditions, if the inner product of the degree-1 Fourier
coefficients off andg is close to the “right” value (see Theorem 37), theng is close to a particular linear
threshold function whose weights are the degree-1 Fourier coefficients off.

Theorem 38. Letf, g : {−1, 1}n → {−1, 1}, and suppose that:

1. f is τ -regular and|E[f ]| ≤ 1 − τ2/9;

2. |∑n
i=1 f̂(i)2 − W (E[f ])| ≤ τ ;

3. |(∑n
i=1 f̂(i)ĝ(i))2 − W (E[f ])W (E[g])| ≤ τ , and

∑n
i=1 f̂(i)ĝ(i) ≥ −τ .

Write `(x) for the linear form
∑n

i=1(f̂(i)/σ)xi, whereσ =
√∑n

i=1 f̂(i)2. Then there existsθ ∈ R such

that g(x) is O(τ1/9)-close to the functionsgn(`(x) − θ). Moreover, we have that each coefficient(f̂(i)/σ)
of `(x) is at mostO(τ7/9).
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Proof. We may assume|E[g]| ≤ 1 − τ1/9, since otherwiseg is τ1/9-close to a constant function, which
may of course be expressed in the desired form. Using this assumption, the fact that|E[f ]| ≤ 1− τ2/9, and
the final item in Proposition 18, it follows that

W (E[g]) ≥ Ω(τ2/9) and W (E[f ]) ≥ Ω(τ4/9). (26)

The latter above, combined with assumption 2 of the theorem,also yields

σ ≥ Ω(τ2/9). (27)

Note that the second assertion of the theorem follows immediately from theτ -regularity off and (27).
Let θ = µ−1(E[g]). We will show thatg is O(τ1/9)-close tosgn(h), whereh(x) = `(x) − θ, and thus

prove the first assertion of the theorem.
Let us considerE[gh]. By Plancherel and the fact thath is affine, we have

E[gh] =
∑

|S|≤1

ĝ(S)ĥ(S) =
n∑

i=1

ĝ(i)f̂(i)

σ
− θ E[g]. (28)

On the other hand,

E[gh] ≤ E[|h|] τ≈ E[|X − θ|] = 2φ(θ) − θµ(θ) =
√

W (E[g]) − θ E[g], (29)

where the inequality is becauseg is ±1-valued, the following approximation is by Proposition 58,the
following equality is by Proposition 59, and the last equality is by definition ofθ. Combining Equation (28)
and Equation (29) we get

E[|h|] − E[gh] ≤
(
√

W (E[g]) −
n∑

i=1

ĝ(i)f̂(i)

σ

)
+ O(τ). (30)

We now wish to show the parenthesized expression in (30) is small. Using Fact 5 and the first part of
assumption 3 of the theorem, we have

∣∣∣∣
∣∣∣∣

n∑
i=1

f̂(i)ĝ(i)

∣∣∣∣−
√

W (E[f ])
√

W (E[g])

∣∣∣∣ ≤
τ√

W (E[f ])
√

W (E[g])
≤ O(τ6/9), (31)

where we used (26) for the final inequality. We can remove the inner absolute value on the left of (31) by
using the second part of assumption 3 and observing that2τ is negligible compared withO(τ6/9), i.e. we
obtain ∣∣∣∣

n∑
i=1

f̂(i)ĝ(i) −
√

W (E[f ])
√

W (E[g])

∣∣∣∣ ≤ O(τ6/9), (32)

We can also use Fact 5 and the first part of assumption 2 of the theorem to get|σ −
√

W (E[f ])| ≤
τ/
√

W (E[f ]) ≤ O(τ7/9). Since|W (E[g])| = O(1), we thus have

∣∣∣σ
√

W (E[g]) −
√

W (E[f ])
√

W (E[g])
∣∣∣ ≤ O(τ7/9). (33)

Combining (33) and (32), we have
∣∣∣∣

n∑
i=1

f̂(i)ĝ(i) − σ
√

W (E[g])

∣∣∣∣ ≤ O(τ6/9).
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Dividing through byσ and using (27), this gives that
∣∣∣∣∣

n∑
i=1

ĝ(i)f̂(i)

σ
−
√

W (E[g])

∣∣∣∣∣ ≤ O(τ4/9).

Substituting this into (30) yields

E[|h|] − E[gh] ≤ O(τ4/9). (34)

Let ε denote the fraction of points in{−1, 1}n on whichg andsgn(h) disagree. Suppose first that that
ε < 12τ/σ. Sinceσ ≥ Ω(τ2/9) by (27), in this case we have thatε ≤ O(τ7/9). Thus we may assume that
ε ≥ 12τ/σ. We may apply Theorem 56 as follows sinceεσ/12 ≥ τ ≥ maxi |f̂(i)|:

Pr[|h(x)| ≤ εσ/12] ≤ 6εσ/12

σ
=

ε

2
.

It follows that at least anε/2 fraction of inputsx have bothg(x) 6= sgn(h(x)) and|h(x)| > εσ/12. This
implies thatE[|h|] − E[gh] ≥ 2 · (ε/2) · (εσ/12) = ε2σ/12. Combining this with the previous bound (34),
and recalling thatσ ≥ Ω(τ2/9), we get thatε2 ≤ O(τ2/9) and thusε ≤ O(τ1/9). This proves thatg is
O(τ1/9)-close tosgn(h), as desired.

6.3 Overview of the testing algorithm

We are givenε > 0 and black-box access to an unknownf : {−1, 1}n → {−1, 1}, and our goal is to test
whetherf is an LTF versusε-far from every LTF.

Our testing algorithmTest-LTF operates in three phases. The first two phases make queries tothe
black-box functionf ; the third phase is a deterministic test making no queries.

In the first phase the algorithm “isolates” a setJ that consists ofs “influential” coordinates. Essentially,
this setJ consists of those coordinatesi such that|f̂(i)| is large. We call this phaseIsolate-Variables; in
Section 6.4.1 we present theIsolate-Variablesalgorithm and prove a theorem describing its behavior.

We note that one can show that it is possible toidentify a setJ as described above usingΘ(log n)
queries using an approach based on binary search. However, since we want to use a number of queries
that is independent ofn, we cannot actually afford to explicitly identify the setJ (note that indeed this set
J is not part of the output thatIsolate-Variables produces). The approach we use to “isolate”J without
identifying it is based in part on ideas from [FKR+02].

In the second phase, the algorithm generates a setπ1, . . . , πM of i.i.d. uniform random strings in
{−1, 1}s; these strings will play the role of restrictions toJ. The algorithm then uses the output ofIsolate-
Variables to estimate various parameters of the restricted functionsfπ1, . . . , fπM . More specifically, for
each restrictionπi, the algorithm estimates the meanE[fπi ], the sum of squares of degree-1 Fourier co-
efficients

∑
k f̂πi(k)2, and the sum of fourth powers of degree-1 Fourier coefficients

∑
k f̂πi(k)4; and for

each pair of restrictionsπi, πj , the algorithm estimates the inner product of degree-1 Fourier coefficients∑
k/∈J f̂πi(k)f̂πi(k). We call this phaseEstimate-Parameters-Of-Restrictions; see Section 6.4.2 where

we present this algorithm and prove a theorem describing itsbehavior.
After these two query phases have been performed, in the third phase the algorithm does some compu-

tation on the parameters that it has obtained for the restrictionsπ1, . . . , πM , and either accepts or rejects. In
Section 6.5 we give a description of the entire algorithmTest-LTF and prove Theorem 27.
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6.4 The querying portions of the algorithm

6.4.1 Isolating variables.

Isolate-Variables(inputs areτ, δ > 0, and black-box access tof : {−1, 1}n → {−1, 1})

1. Let` = d1/(τ16δ)e. Randomly partition the set[n] into ` “bins” (subsetsB1, . . . , B`) by assign-
ing eachi ∈ [n] to a uniformly selectedBj .

2. RunNon-Regular(τ2, δ/`,Bj) on each setBj and letI be the set of those binsBj such that
Non-Regular accepts. Lets = |I|.

3. Output(B1, . . . , B`, I).

We require the following:

Definition 39. LetB1, . . . , B` be a partition of[n] andI be a subset of{B1, . . . , B`}. We say that(B1, . . . , B`, I)
is isolationistif the following conditions hold:

1. If maxi∈Bj |f̂(i)| ≥ τ2 thenBj ∈ I;

2. If Bj ∈ I thenmaxi∈Bj |f̂(i)| ≥ τ2/4;

3. If Bj ∈ I then the second-largest value of|f̂(i)| for i ∈ Bj is less thanτ4/32.

Given(B1, . . . , B`, I) we define the setJ to be

J :=
⋃

Bj∈I

{argmax
k∈Bj

|f̂(k)|}. (35)

The following lemma is useful:

Lemma 40. Let f : {−1, 1}n → {−1, 1} be any function. With probability1 − O(δ), the setsB1, . . . , B`

have the following property: for allj, the setBj contains at most one elementi such that|f̂(i)| ≥ τ4/32.

Proof. Parseval’s identity gives us that there are at most1024/τ8 many variablesi such that|f̂(i)| ≥
τ4/32. For each such variable, the probability that any other such variable is assigned to its bin is at most
(1024/τ8)/` ≤ 1024τ8δ. A union bound over all (at most1024/τ8 many) such variables gives that with
probability at least1−O(δ), each variablexi with |f̂(i)| ≥ τ4/32 is the only variable that occurs in its bin.
This gives the lemma.

Theorem 41. Let f : {−1, 1}n → {−1, 1}, and letτ, δ > 0 be given. Definesmax = 16/τ4 and ` =
d1/(τ16δ)e. Then with probability1 − O(δ),

1. AlgorithmIsolate-Variablesoutputs a list(B1, . . . , B`, I) that is isolationist;

2. The corresponding setJ has |J | = |I| ≤ smax, and J contains all coordinatesi ∈ [n] such that
|f̂(i)| ≥ τ2.

The algorithm makes̃O(1/(δτ48)) queries tof.
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Proof. Part (1) of the theorem follows from Lemma 40 and Lemma 15. Note that Lemma 40 contributes
O(δ) to the failure probability, and since the algorithm runsNon-Regular` times with confidence parameter
set toδ/`, Lemma 15 contributes anotherO(δ) to the failure probability.

We now show that if part (1) holds then so does part (2). Observe that since(B1, . . . , B`, I) is isola-
tionist, for eachBj ∈ I there is precisely one element that achieves the maximum value of |f̂(k)|; thus
|J ∩ Bj| = 1 for all Bj ∈ I and|J | = |I|. It is easy to see that|J | ≤ 16/τ4; this follows immediately from
Parseval’s identity and part 2 of Definition 39.

For the query complexity, observe thatIsolate-VariablesmakesO(1/(τ16δ)) calls toNon-Regular(τ2, δ/`,Bj),
each of which requires̃O(1/τ32) queries tof , for an overall query complexity of

Õ

(
1

δτ48

)

queries.

6.4.2 Estimating Parameters of Restrictions.

Estimate-Parameters-Of-Restrictions (inputs areτ, η, δ > 0, M ∈ Z
+, an isolationist list

(B1, . . . , B`, I) where|I| = s, and black-box access tof : {−1, 1}n → {−1, 1})

0. Letδ′ := O( δη2

M2 · log(M2

δη2 )).

1. Fori = 1, . . . ,M let πi be an i.i.d. uniform string from{−1, 1}s.

2. Fori = 1, . . . ,M do the following:

(a) MakeNµ := O(log(1/δ′)/η2) calls toRandom-String(πi, I, δ′, f) to obtainNµ stringsw.
Let µ̃i be the average value off(w) over theNµ strings.

(b) Make Nκ := O(log(1/δ′)/η2) calls to Correlated-4Tuple(πi, πi, I, δ′, f, η) to obtain
Nκ pairs of 4-tuples(w1, x1, y1, z1), (w2, x2, y2, z2). Run algorithmEstimate-Sum-Of-
Fourths on the output of these calls and letκ̃i be the value it returns. If̃κi < 0 or κ̃i > 1
then set̃κi to 0 or 1 respectively.

3. For i, j = 1, . . . ,M do the following: MakeNρ := O(log(1/δ′)/η2) calls to Correlated-
Pair(πi, πj , I, δ′, f, η) to obtainNρ pairs of pairs(w1, x1), (w2, x2). Run algorithmEstimate-
Inner-Product on the output of these calls and letρ̃i,j be the value it returns. If|ρ̃i,j| > 1 then
setρ̃i,j to sgn(ρ̃i,j).

4. Fori = 1, . . . ,M , set(σ̃i)2 to (ρ̃i,i)2.

Theorem 42. Letf : {−1, 1}n → {−1, 1}, τ, η, δ > 0, M ∈ Z
+, and let(B1, . . . , B`, I) be an isolationist

list where|I| = s ≤ smax = 16/τ4. Then with probability at least1 − δ, algorithmEstimate-Parameters-
Of-Restrictions outputs a list of tuples(π1, µ̃1, σ̃1, κ̃1), . . . ,(πM , µ̃M , σ̃M , κ̃M ) and a matrix(ρ̃i,j)1≤i,j≤M

with the following properties:

1. Eachπi is an element of{−1, 1}s; further, the strings(πi)i≥1 are i.i.d. uniform elements of{−1, 1}s.

2. The quantities̃µi, ρ̃i,j are real numbers in the range[−1, 1], and the quantities̃σi, κ̃i, are real numbers
in the range[0, 1].
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3. For the setJ corresponding to(B1, . . . , B`, I) as in (35), the following properties hold. (In (a)-(d)
below,fπi denotes the restricted function obtained by substitutingπi’s bits for the coordinates ofJ as
follows: for eachk = 1, . . . , s, the restriction assigns the valueπi

k to the (unique) variable inJ∩Bk.)

(a) For eachi = 1, . . . ,M ,
|µ̃i − E[fπi ]| ≤ η.

(b) For eachi = 1, . . . ,M ,
|κ̃i − ∑

|S|=1

f̂πi(S)4| ≤ η.

(c) For all 1 ≤ i, j ≤ M,
|ρ̃i,j − ∑

|S|=1

f̂πi(S)f̂πj (S)| ≤ η.

(d) For eachi = 1, . . . ,M ,
|(σ̃i)2 − ∑

|S|=1

f̂πi(S)2| ≤ η.

The algorithm makes̃O
(

M2

η2τ36

)
queries tof.

The proof of Theorem 42 uses the ideas from Section 3 as well ascertain ideas from [FKR+02]. It
appears in Section 6.4.3.

6.4.3 Proof of Theorem 42.

The proof of Theorem 42 follows as a sequence of lemmas. Firsta word of terminology: forx ∈ {−1, 1}n,
andπ a restriction of the variables inJ , we say thatx is compatible withπ if for every j ∈ J the value of
xj is the value assigned to variablej by π.

The goal of Step 2(a) is to obtain estimatesµ̃i of the meansE[fπi ] of the restricted functionsfπi . Thus
to execute Step 2(a) ofEstimate-Parameters-Of-Restrictionswe would like to be able to draw uniform
stringsx ∈ {−1, 1}n conditioned on their being compatible with particular restrictions πi of the variables
in J . Similarly, to estimate sums of squares, fourth powers, etc. of degree-1 Fourier coefficients of restricted
functions, recalling Section 3 we would like to be able to draw pairs, 4-tuples, etc. of bitwise correlated
strings subject to their being compatible with the restriction

The subroutineCorrelated-4Tuple, described below, lets us achieve this. (The subroutinesRandom-
Pair andCorrelated-Pair will be obtained as special cases ofCorrelated-4Tuple.) The basic approach,
which is taken from [FKR+02], is to work with each blockBj separately: for each block we repeatedly
draw correlated assignments until we find ones that agree with the restriction on the variable ofJ in that
block. Once assignments have been independently obtained for all blocks they are combined to obtain the
final desired 4-tuple of strings. (For technical reasons, the algorithm actually generates a pair of 4-tuples as
seen below.)
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Correlated-4Tuple (Inputs areπ1, π2 ∈ {−1, 1}s, a setI of s bins, δ′ > 0, black-box access to
f : {−1, 1}n → {−1, 1}, andη ≥ 0. Outputs are two 4-tuples(w1, x1, y1, z1) and(w2, x2, y2, z2),
each in({−1, 1}n)4.)

1. For eachBj ∈ I, do the followingO(log(s/δ′)) times:

(a) Draw six independent uniform assignments (call themw1j , x1j , y1j andw2j , x2j , y2j) to the
variables inBj . Let z1j be an assignment to the same variables obtained by independently
assigning each variable inBj the same value it has inw1j � x1j � y1j with probability
1
2 + 1

2η and the opposite value with probability12 − 1
2η. Let z2j be obtained independently

exactly likez1j (in particular we usew1j � x1j � y1j, notw2j � x2j � y2j , to obtainz2j).
Let

P = {i ∈ Bj : (wjk)i = (xjk)i = (yjk)i = (zjk)i = πk
j for k = 1, 2}.

i.e. P is the set of thosei ∈ Bj such that fork = 1, 2, assignmentswjk, xjk, yjk andzjk all
set biti the same way that restrictionπk setsπk

j .

(b) RunNon-Regular(τ2/4, δ′/(s log(s/δ′)), P, f).

2. If any call ofNon-Regular above returned “accept,” let(w1j , x1j , y1j , z1j), (w2j , x2j , y2j , z2j)
denote the pair of assignments corresponding to the call that accepted. If no call returned “accept,”
stop everything and FAIL.

3. Fork = 1, 2 let (wk, xk, yk, zk) be obtained as follows:

• For eachi /∈ ∪Bj∈IBj , set(wk)i, (x
k)i, (y

k)i independently to±1. Similar to 1(a) above,
set both(z1)i and(z2)i independently tow1

i � x1
i � y1

i with probability 1
2 + 1

2η.

• For each binBj ∈ I, set the corresponding bits ofw according towj ; the corresponding
bits ofx according toxj ; the corresponding bits ofy according toyj; and the corresponding
bits of z according tozj .

Return the 4-tuples(w1, x1, y1, z1) and(w2, x2, y2, z2).

Lemma 43. Each timeCorrelated-4Tuple(π1, π2, I, δ′, f) is invoked byEstimate-Parameters-Of-Restrictions,
with probability1−O(δ′) it outputs two 4-tuples(w1, x1, y1, z1), (w2, x2, y2, z2), each in({−1, 1}n)4, such
that:

• For k = 1, 2 we have thatwk, xk, yk andzk are all compatible withπk onJ ;

• For k = 1, 2, for eachi /∈ J , the bits(wk)i, (x
k)i, (y

k)i are each independent uniform±1 values
independent of everything else;

• For k = 1, 2, for eachi /∈ J , the bit(zk)i is independently randomly equal to(w1)i � (x1)i � (y1)i
with probability 1

2 + 1
2η.

Proof. Fix anyBj ∈ I, and consider a particular execution of Step 1(a). Let`j denote the unique element
of J ∩ Bj. By Definition 39 we have that|f̂(`j)| ≥ τ2/4 and |f̂(k)| < τ4/32 for all k ∈ Bj such that
k 6= `j . Now consider the corresponding execution of Step 1(b). Assuming thatNon-Regular does not
make an error, if̀ j ∈ P thenNon-Regular will accept by Lemma 15, and if̀j /∈ P then by Lemma 15
we have thatNon-Regular will reject. It is not hard to see (using the fact thatη ≥ 0) that the element̀j
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belongs toP with probability Θ(1), so the probability thatO(log(s/δ′)) repetitions of 1(a) and 1(b) will
pass for a givenBj without any “accept” occurring is at mostcO(log(s/δ′)), wherec is an absolute constant
less than 1. Thus the total failure probability resulting from step 2 (“stop everything and fail”) is at most
s2−O(log(s/δ′)) ≤ δ′. Since each invocation ofNon-Regular errs with probability at mostδ′/(s log(s/δ′))
and there areO(s log(s/δ)) invocations, the total failure probability from the invocations ofNon-Regular
is at mostO(δ′).

Once Step 3 is reached, we have that for eachj,

• Each ofwjk, xjk, yjk is a uniform independent assignment to the variables inBj conditioned on
(wjk)`j

, (xjk)`j
, (yjk)`j

each being set according to the restrictionπk;

• Each bitzjk
`j

is compatible withπk
j . For each variablei 6= `j in Bj , the bitzjk

i is independently set to

wj1
i � xj1

i � yj1
i with probability 1

2 + 1
2η.

By independence of the successive iterations of Step 1 for differentBj ’s, it follows that the final output
strings(w1, x1, y1, z1) and(w2, x2, y2, z2) are distributed as claimed in the lemma.

Remark 44. The overall algorithmTest-LTF is nonadaptive because the calls toNon-Regular (which
involve queries tof ) in Correlated-4Tuple are only performed for thoseBj which belong toI, and the set
I was determined by the outcomes of earlier calls toNon-Regular (and hence earlier queries tof ). The
algorithm could be made nonadaptive by modifyingCorrelated-4Tuple to always perform Step 1 on all`
blocksB1, . . . , B`. Once all these queries were completed for all calls toCorrelated-4Tuple (and thus all
queries tof for the entire algorithm were done), the algorithm could simply ignore the results of Step 1
for those setsBj that do not belong toI. Thus, as claimed earlier, there is an nonadaptive version of the
algorithm with somewhat – but only polynomially – higher query complexity (because of the extra calls to
Non-Regular for setsBj /∈ I).

The subroutineRandom-String(πi, I, δ′, f) can be implemented simply by invoking the subroutine
Correlated-4Tuple(πi, πi, I, δ, f, 0) to obtain a pair(w1, x1, y1, z1), (w2, x2, y2, z2) and then discarding
all components butw1. This stringw1 is uniform conditioned on being consistent with the restriction πi.
We then easily obtain:

Lemma 45. If (B1, . . . , B`, I) is isolationist, then with probability at least1−δ′1 (whereδ′1 := O(MNµδ′)),
each of theM valuesµ̃1, . . . , µ̃M obtained in Step 2(a) ofEstimate-Parameters-Of-Restrictionsatisfies
|µ̃i − E[fπi ]| ≤ η.

Proof. Step 2(a) makes a total ofMNµ many calls toCorrelated-4Tuple, each of which incurs failure
probability O(δ′). Assuming the calls toCorrelated-4Tuple all succeed, by the choice ofNµ each of the
M applications of the Chernoff bound contributes anotherδ′ to the failure probability, for an overall failure
probability as claimed.

Now we turn to part 3(b) of Theorem 42, corresponding to Step 2(b) of Estimate-Parameters-Of-
Restrictions. We have:

Lemma 46. There is an algorithmEstimate-Sum-Of-Fourths with the following property: Suppose the
algorithm is given as input valuesη, δ > 0, black-box access tof , and the output ofNκ many calls to
Correlated-4Tuple(π, π, I, δ, f, η). Then with probability1 − δ the algorithm outputs a valuev such that

|v − ∑
k∈[n],k /∈J

f̂π(k)4| ≤ η.
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Proof. The algorithm is essentially that of Lemma 12. Consider the proof of Lemma 12 in the case where
there is only one functionfπ and p = 4. For the LHS of (1), we would like to empirically estimate
E[fπ(α1)fπ(α2)fπ(α3)fπ(α4)] whereα1, . . . , α4 are independent uniform strings conditioned on being
compatible withπ. Such strings can be obtained by taking eachα1 = w1, α2 = w2, α3 = x1 andα4 = x2

where(w1, x1, y1, z1), (w2, x2, y2, z2) is the output of a call toCorrelated-4Tuple(π, π, I, δ, f, η).
For the RHS of (1), we would like to empirically estimateE[fπ(α1)fπ(α2)fπ(α3)fπ(α4)] where each

of α1, α2, α3 is independent and uniform conditioned on being compatiblewith π, andα4 is compatible
with π and has each bit(α4)i for i /∈ J independently set equal to(α1 �α2 �α3)i with probability 1

2 + 1
2η.

By Lemma 43, such strings can be obtained by takingα1 = w1, α2 = x1, α3 = y1, andα4 = z1. The
corollary now follows from Lemma 12.

Observing that the two restrictions that are arguments toCorrelated-4Tuple in Step 2(b) are bothπi,
Lemma 48 directly gives us part 3(b) of Theorem 42:

Lemma 47. If (B1, . . . , B`, I) is isolationist, then with probability at least1−δ′2 (whereδ′2 := O(MNκδ′)),
each of theM valuesκ̃i obtained in Step 2(b) ofEstimate-Parameters-Of-Restrictionssatisfies|κ̃i −∑

|S|=1 f̂πi(S)4| ≤ η.

Now we turn to parts 3(c)-(d) of Theorem 42, corresponding toSteps 3 and 4 of the algorithm. The sub-
routineCorrelated-Pair(πi , πj , I, δ′, f, η) works simply by invokingCorrelated-4Tuple(πi, πj , I, δ′, f, η)
to obtain a pair(w1, x1, y1, z1), (w2, x2, y2, z2) and outputting(u1, z1), (u2, z2) where eachuk = (wk �
xk � yk). The following corollary of Lemma 12 describes the behavior of algorithm Estimate-Inner-
Product:

Lemma 48. There is an algorithmEstimate-Inner-Product with the following property: Suppose the al-
gorithm is given as input valuesη, δ > 0, black-box access tof , and the output ofNρ many successful calls
to Correlated-Pair(π1 , π2, I, δ, f, η). Then with probability1− δ the algorithm outputs a valuev such that

|v − ∑
k∈[n],k /∈J

f̂π1(k)f̂π2(k)| ≤ η.

Proof. Again the algorithm is essentially that of Lemma 12. Consider the proof of Lemma 12 in the case
where there arep = 2 functionsfπ1 and fπ2. For the LHS of (1), we would like to empirically esti-
mateE[fπ1

(α1)fπ2(α2)] whereα1, α2 are independent uniform strings conditioned on being compatible
with restrictionsπ1 andπ2 respectively. Such strings can be obtained by taking eachαk to beuk where
(u1, z1), (u2, z2) is the output of a call toCorrelated-Pair(π1 , π2, I, δ, fη).

For the RHS of (1), we would like to empirically estimateE[fπ1
(α1)fπ2(α2)] whereα1 is uniform

conditioned on being compatible withπ1 andα2 is compatible withπ2 and has each bit(α2)i for i /∈ J
independently set equal to(α1)i with probability 1

2 + 1
2η. By Lemma 43 and the definition ofCorrelated-

Pair, such strings can be obtained by takingα1 = u1 and α2 = z2. The corollary now follows from
Lemma 12.

Lemma 48 gives us parts 3(c)-(d) of Theorem 42:

Lemma 49. If (B1, . . . , B`, I) is isolationist, then with probability at least1−δ′3 (whereδ′3 := O(M2Nρδ
′))

both of the following events occur: each of theM2 values(ρ̃i,j)2 obtained in Step 3 ofEstimate-Parameters-
Of-Restrictions satisfies|ρ̃i,j −∑|S|=1 f̂πi(S)f̂πj (S)| ≤ η, and each of theM values(σ̃i)2 obtained in

Step 4 satisfies|(σ̃i)2 −∑|S|=1 f̂πi(S)2| ≤ η.
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This essentially concludes the proof of parts 1-3 of Theorem42. The overall failure probability is
O(δ′1 + δ′2 + δ′3); by our initial choice ofδ′ this isO(δ).

It remains only to analyze the query complexity. It is not hard to see that the query complexity is domi-
nated by Step 3. This step makesM2Nρ = Õ(M2/η2) invocations toCorrelated-4Tuple(πi, πj , I, δ′, f, η);
at each of these invocationsCorrelated-4Tuple makes at most

O(smax log(smax/δ
′) = Õ(1/τ4)

many invocations toNon-Regular(τ2/4, δ′, P, f), each of which requires

O(log(smax log(smax/δ
′)/δ′)/τ32)) = Õ(1/τ32)

queries by Lemma 15. Thus the overall number of queries is at most

Õ

(
M2

η2τ36

)
.

This concludes the proof of Theorem 42.

6.5 The full algorithm

We are given black-box access tof : {−1, 1}n → {−1, 1}, and also a “closeness parameter”ε > 0. Our
goal is to distinguish betweenf being an LTF andf being ε-far from every LTF, usingpoly(1/ε) many
queries. For simplicity of exposition, we will end up distinguishing from beingO(ε)-far from every LTF.
The algorithm for the test is given below, followed by a high-level conceptual explanation of the various
steps it performs.
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Test-LTF (inputs areε > 0 and black-box access tof : {−1, 1}n → {−1, 1})

0. Letτ = εK , a “regularity parameter”, whereK is a large universal constant to be specified later.a

Let δ be a sufficiently small absolute constant.

We will also takeη = τ (the error parameter forEstimate-Parameters-Of-Restrictions), smax =
16/τ4, andM = poly(smax) log(1/δ)/ε2.

1. Run Isolate-Variables(τ, δ) to obtain output(B1, . . . , B`, I). This implicitly defines some set
J ⊂ [n] and explicitly defines its cardinality (the same as the cardinality of I), somes with
s ≤ smax.

2. RunEstimate-Parameters-Of-Restrictions(τ, η, δ,M, (B1 , . . . , B`, I), f). This produces a list
of restrictionsπi ∈ {−1, 1}s and real values̃µi, (σ̃i)2, κ̃i, ρ̃i,j where1 ≤ i, j ≤ M .

3. At this point there are two cases depending on whether or not the fraction ofi’s for which |µ̃i| ≥
1 − ε is at least1 − ε:

(a) (The case that for at least a1 − ε fraction ofi’s, |µ̃i| ≥ 1 − ε.)

In this case, enumerate all possible length-s integer vectorsw with entries up to2O(s log s)

in absolute value, and also all possible integer thresholdsθ in the same range. For each pair
(w, θ), check whethersgn(w · πi − θ) = sgn(µ̃i) holds for at least a1− 20ε fraction of the
values1 ≤ i ≤ M . If this ever holds, ACCEPT. If it fails for all(w, θ), REJECT.

(b) (The case that for at least anε fraction ofi’s, |µ̃i| < 1 − ε.)

In this case, pick anyi∗ such that|µ̃i∗ | < 1 − ε. Then:

i. Check that̃κi∗ ≤ 2τ . If this fails, REJECT.

ii. Check that|(σ̃i∗)2 − W (µ̃i∗)| ≤ 2τ1/12. If this fails, REJECT.

iii. Check that both|(ρ̃i∗,i)2 − W (µ̃i∗)W (µ̃i)| ≤ 2τ1/12 and ρ̃i∗,i ≥ −η hold for all
1 ≤ i ≤ M . If this fails, REJECT.

iv. Enumerate all possible length-s vectorsw whose entries are integer multiples of
√

τ/s,
up to2O(s log s)

√
ln(1/τ) in absolute value, and also all possible thresholdsθ with the

same properties. For each pair(w, θ), check that|µ̃i − µ(θ −w · πi)| ≤ 5
√

τ holds for
all πi’s. If this ever happens, ACCEPT. If it fails for all(w, θ), REJECT.

aWe will eventually takeK = 108.

Note that all parameters described in the test are fixed polynomials inε. Further, the query complexity
of both Isolate-Variables andEstimate-Parameters-Of-Restrictionsis polynomial in all parameters (see
Theorems 41, 42). Thus the overall query complexity ispoly(1/ε). As given, the test is adaptive, since
Estimate-Parameters-Of-Restrictionsdepends on the output ofIsolate-Variables. However, in remark 44
we discuss how the test can easily be made nonadaptive with only a polynomial blowup in query complexity.

In Section 6.6 we will show that indeed this test correctly distinguishes (with probability at least2/3)
LTFs from functions that areO(ε)-far from being LTFs. Thus our main testing result, Theorem 27, holds as
claimed.

6.5.1 Conceptual explanation of the test.

Here we provide a high-level description of the ideas underlying the various stages of the test. The following
discussion should not be viewed in the light of mathematicalstatements but rather as narrative exposition
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to aid in understanding the test and its analysis. (It may also be useful to refer back to the sketch at the
beginning of Section 6.)

In Step 1, the idea is thatJ is (roughly) the set of variablesi such that|f̂(i)| ≥ τ2.
In Step 2, eachπi is an i.i.d. uniform random restriction of the variables inJ . Each valuẽµi is an

estimate ofE[fπi ], each(σ̃i)2 is an estimate of
∑

k f̂πi(k)2, each̃κi is an estimate of
∑

k f̂πi(k)4, and each

ρ̃i,j is an estimate of
∑

k f̂πi(k)f̂πj (k).
The idea of Step 3(a) is that in this case, almost every restriction π of the variables inJ causesfπ to be

very close to a constant function1 or −1. If this is the case, thenf is close to an LTF if and only if it is
close to an LTF which is a junta over the variables inJ . Step 3(a) enumerates over every possible LTF over
the variables inJ and checks each one to see if it is close tof.

If the algorithm reaches Step 3(b), then a non-negligible fraction of restrictionsπ have|E[fπ]| bounded
away from 1. We claim that whenf is an LTF, this implies that at least one of those restrictions should be
τ -regular, and moreover all restrictions should be

√
τ -regular (these claims are argued using Proposition 62

and Theorem 26, respectively). Step 3(b)(i) verifies that one such restrictionπi∗ is indeed
√

τ -regular.
Step 3(b)(ii) checks that the sum of squares of degree-1 Fourier coefficients

∑
k f̂πi∗ (k)2 is close to

the “correct” valueW (E[fπi∗ ]) that the sum should take iffπi∗ were a
√

τ -regular LTF (see the first in-
equality in the conclusion of Theorem 37). If this check passes, Step 3(b)(iii) checks that every other
restrictionfπi is such that the inner product of its degree-1 Fourier coefficients with those offπi∗ , namely∑

k/∈J f̂πi(k)f̂πi∗ (k), is close to the “correct” valueW (E[fπi ])W (E[fπi∗ ]) that it should take iffπi and
fπi∗ were LTFs with the same linear part (see Theorem 37 again).

At this point in Step 3(b), if all these checks have passed then every restrictionfπ is close to a function
of the formsgn(`(x) − θπ) with the same linear part (that is based on the degree-1 Fourier coefficients of
fπi∗ , see Theorem 38). Finally, Step 3(b)(iv) exhaustively checks “all” possible weight vectorsw for the
variables inJ to see if there is any weight vector that is consistent with all restrictionsfπi . The idea is that
if f passes this final check as well, then combiningw with ` we obtain an LTF thatf must be close to.

6.6 Proving correctness of the test

In this section we prove that the algorithmTest-LTF is both complete and sound. At many points in these
arguments we will need that our large sampleπ1, . . . , πM of i.i.d. uniform restrictions is representative of
the whole set of all2s restrictions, in the sense that empirical estimates of various probabilities obtained
from the sample are close to the true probabilities over all restrictions. The following proposition collects
the various statements of this sort that we will need. All proofs are straightforward Chernoff bounds.

Proposition 50. After running Steps 0,1 and 2 ofTest-LTF, with probability at least1 − O(δ) (with re-
spect to the choice of the i.i.d.π1, . . . , πM ’s in Estimate-Parameters-Of-Restrictions) the following all
simultaneously hold:

1. The true fraction of restrictionsπ to J for which |E[fπ]| ≥ 1 − 2ε is within an additiveε/2 of the
fraction of theπi’s for which this holds. Further, the same is true about occurrences of|E[fπ]| ≥
1 − ε/2.

2. For every pair(w∗, θ∗), wherew∗ is a length-s integer vector with entries at most2O(s log s) in absolute
value andθ∗ is an integer in the same range, the true fraction of restrictionsπ to J for which

|E[fπ] − sgn(w∗ · π − θ∗)| ≤ 3/5

is within an additiveε of the fraction ofπi’s for which this holds. Further, the same is true about
occurrences ofsgn(E[fπ]) = sgn(w∗ · π − θ∗).
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3. For every fixed restrictionπ∗ to J , the true fraction of restrictionsπ to J for which we have

|(
∑

|S|=1

f̂π∗(S)f̂π(S))2 − W (E[fπ∗])W (E[fπ])| ≤ 3τ1/12

is within anε fraction of the true fraction ofπi’s for which this holds.

4. For every fixed pair(w∗, θ∗), wherew∗ is a length-s vector with entries that are integer multiples of√
τ/s at most2O(s log s)

√
ln(1/τ) in absolute value andθ∗ is an integer multiple of

√
τ/s in the same

range, the true fraction of restrictionsπ to J for which

|E[fπ] − µ(θ∗ − w∗ · π)| ≤ 6
√

τ

is within an additiveε of the fraction ofπi’s for which this holds.

Proof. All of the claimed statements can be proved simply by using Chernoff bounds (using the fact that the
πi’s are i.i.d. andM is large enough) and union bounds. For example, regarding item 4, for any particular
(w∗, θ∗), a Chernoff bound implies that the true fraction and the empirical fraction differ by more thanε
with probability at mostexp(−Ω(ε2M)) ≤ δ/2poly(s), using the fact thatM ≥ poly(s) log(1/δ)/ε. Thus
we may union bound over all2poly(s) possible(w∗, θ∗) to get that the statement of item 4 holds except with
probability at mostδ. The other statement and the other items follow by similar oreasier considerations.

6.6.1 Completeness of the test.

Theorem 51. Let f : {−1, 1}n → {−1, 1} be any LTF. Thenf passesTest-LTF with probability at least
2/3.

Proof. Steps 1 and 2 of the test, where querying tof occurs, are the places where the test has randomness.
We have that Step 1 succeeds except with probability at mostδ; assuming it succeeds, the setJ becomes
implicitly defined according to (35). Step 2 also succeeds except with probability at mostδ; assuming it
succeeds, we obtain restrictionsπi and estimates̃µi, (σ̃i)2, κ̃i, ρ̃i,j that satisfy the conclusion of Theorem 42,
with η := τ . Finally, in Proposition 50 (which relates the empirical properties of the restrictions to the
true properties), all conclusions hold except with probability at mostO(δ). Thus all of these assumptions
together hold with probability at least1 − O(δ), which is at least2/3 when we takeδ to be a sufficiently
small constant. Note that we have not yet used the fact thatf is an LTF.

We will now show that given that all of these assumptions hold, the fact thatf is an LTF implies that
the deterministic part of the test, Step 3, returns ACCEPT. We consider the two cases that can occur:

Case 3(a): for at least a1−ε fraction of i’s, |µ̃i| ≥ 1−ε. Since Theorem 42 implies that|µ̃i−E[fπi ]| ≤ η,
and sinceη � ε, in this case we have that for at least a1 − ε fraction of thei’s it holds that|E[fπi ]| ≥
1 − ε − η ≥ 1 − 2ε. Applying Proposition 50 item 1, we get that|E[fπ]| ≥ 1 − 2ε for at least a1 − 2ε
fraction of all2s restrictionsπ onJ . It follows thatf is 2ε · 1

2 + (1 − 2ε) · ε ≤ 2ε-close to being a junta on
J . Thus by Proposition 63 we have thatf is 2ε-close to being an LTF onJ .

Write this LTF onJ asg(π) = sgn(w∗ · π − θ∗), wherew∗ is an integer vector with entries at most
2O(s log s) in absolute value andθ∗ is also an integer in this range. (Since|J | ≤ s, any LTF onJ can be
expressed thus by the well-known result of Murogaet al. [MTT61].) Sincef is 2ε-close tog, we know
that for at least a1 − 10ε fraction of the restrictionsπ to J , fπ(x) takes the valueg(π) on at least a4/5
fraction of inputsx. I.e., |E[fπ] − sgn(w∗ · π − θ∗)| ≤ 3/5 for at least a1 − 10ε fraction of allπ’s. Using
Proposition 50 item 2 we conclude that|E[fπi ] − sgn(w∗ · πi − θ∗)| ≤ 3/5 for at least a1 − 20ε fraction
of theπi’s. But for theseπi’s we additionally have|µ̃i − sgn(w∗ · πi − θ∗)| ≤ 3/5 + η < 1 and hence
sgn(µ̃i) = sgn(w∗ · πi − θ∗). Thus Step 3(a) returns ACCEPT once it tries(w∗, θ∗).
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Case 3(b): for at least anε fraction of i’s, |µ̃i| < 1 − ε. In this case we need to show that Steps i.–iv.
pass.

To begin, since|µ̃i − E[fπi ]| ≤ η � ε/2 for all i, we have that for at least anε fraction of thei’s,
|E[fπi ]| ≤ 1 − ε/2. Thus by Proposition 50 item 1, we know that among all2s restrictionsπ to J , the true
fraction of restrictions for which|E[fπi ]| ≤ 1 − ε/2 is at leastε/2.

On the other hand, sinceJ contains all coordinatesj with |f̂(j)| ≥ τ2, we know from Proposition 62
thatfπ is not τ -regular for at most aτ fraction of the2s restrictionsπ to J . Sinceτ � ε/2, we conclude
that there must exist some restrictionπ0 to the coordinates inJ for which both|E[fπ0

]| ≤ 1 − ε/2 andfπ0

is τ -regular.
Expressf asf(π, x) = sgn(w′ ·π +` ·x−θ′), whereπ denotes the inputs inJ , x denotes the inputs not

in J , and` is normalized so that‖`‖ = 1. We’ve established that the LTFfπ0
(x) = sgn(` ·x−(θ′−w′ ·π0))

has|E[fπ0
]| ≤ 1− ε/2 and isτ -regular. Applying Theorem 26, we conclude that all coefficients in` are, in

absolute value, at mostO(τ/(ε6 log(1/ε))) ≤ Ω(
√

τ); here use the fact thatK � 12.. In particular, we’ve
established:

Claim 52. There is a linear form̀ with ‖`‖ = 1 and all coefficients of magnitude at mostΩ(
√

τ), such
that the following two statements hold: 1. For every restriction π to J , the LTFfπ is expressed asfπ(x) =
sgn(` · x − (θ′ − w′ · π)). 2. For every restrictionπ to J , fπ is

√
τ -regular.

The second statement in the claim follows immediately from the first statement and Proposition 64,
taking the constant in theΩ(·) to be sufficiently small.

We now show that Steps 3b(i)–(iv) all pass. Sincefπ is
√

τ -regular for allπ, in particularfπi∗ is
√

τ -
regular. Hence

∑
|S|=1 f̂πi∗ (S)4 ≤ τ (see Proposition 14) and sõκi∗ ≤ τ + η ≤ 2τ . Thus Step 3b(i)

passes.
Regarding Step 3b(ii), Claim 52 implies in particular thatfπi∗ is

√
τ -regular. Hence we may apply

the first part of Theorem 37 to conclude that
∑

|S|=1 f̂πi∗ (S)2 is within τ1/12 of W (E[fπi∗ ]). The former

quantity is withinη of (σ̃i∗)2; the latter quantity is withinη of W (µ̃i∗) (using |W ′| ≤ 1). Thus indeed
(σ̃i∗)2 is within τ1/12 + η + η ≤ 2τ1/12 of W (µ̃i∗), and Step 3b(ii) passes.

The fact that the first condition in Step 3b(iii) passes follows very similarly, using the second part of
Theorem 37 (a small difference being that we can only say thatW (E[fπi∗ ])W (E[fπi ]) is within, say,3η of
W (µ̃i∗)W (µ̃i)). As for the second condition in Step 3b(iii), sincef is an LTF, for any pair of restrictions
π, π′ to J , the functionsfπ andfπ′ are LTFs expressible using the same linear form. This implies thatfπ

andfπ′ are both unate functions with the same orientation, a condition which easily yields that̂fπ(j) and
f̂π′(j) never have opposite sign for anyj. We thus have that

∑
|S|=1 f̂πi(S)f̂πi∗ (S) ≥ 0 and so indeed the

conditionρ̃i∗,i ≥ −η holds for alli. Thus Step 3b(iii) passes.
Finally we come to Step 3b(iv). Claim 52 tells us that for every restrictionπi, we havefπi(x) =

sgn(` · x − (θ′ − w′ · πi)), where` is a linear form with 2-norm 1 and all coefficients of magnitude at
mostΩ(

√
τ). Applying Proposition 57 we conclude that|E[fπ] − µ(θ′ − w′ · πi)| ≤ √

τ holds for alli
(again, ensuring the constant in theΩ(·) is small enough). Using the technical Lemma 53 below, we infer
that there is a vectorw∗ whose entries are integer multiples of

√
τ/s at most2O(s log s)

√
ln(1/τ) in absolute

value, and an integer multipleθ∗ of
√

τ/s, also at most2O(s log s)
√

ln(1/τ) in absolute value, such that
|E[fπi ] − µ(θ∗ − w∗ · πi)| ≤ 4

√
τ holds for allπi. By increasing the4

√
τ to 4

√
τ + η ≤ 5

√
τ , we can

make the same statement withµ̃i in place ofE[fπi ]. Thus Step 3(b)(iv) will return ACCEPT once it tries
(w∗, θ∗).

Lemma 53. Suppose that|E[fπ]−µ(θ′−w′ ·π)| ≤ √
τ holds for some setΠ of π’s. Then there is a vector

w∗ whose entries are integer multiples of
√

τ/s at most2O(s log s)
√

ln(1/τ) in absolute value, and an integer
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multipleθ∗ of
√

τ/s, also at most2O(s log s)
√

ln(1/η) in absolute value, such that|E[fπ]−µ(θ∗−w∗ ·π)| ≤
4η1/6 also holds for allπ ∈ Π.

Proof. Let us express the given estimates as
{
E[fπ] −√

τ ≤ µ(θ′ − w′ · π) ≤ E[fπ] +
√

τ
}

π∈Π
(36)

We would prefer all of the upper boundsE[fπ]+
√

τ and lower boundsE[fπ]−√
τ in these double inequal-

ities to have absolute value either equal to1, or at most1 −√
τ . It is easy to see that one can get this after

introducing some quantities1 ≤ Kπ,K ′
π ≤ 2 and writing instead

{
E[fπ] − Kπ

√
τ ≤ µ(θ′ − w′ · π) ≤ E[fπ] + K ′

π

√
τ
}

π∈Π
. (37)

Using the fact thatµ is a monotone function, we can applyµ−1 and further rewrite (37) as
{
cπ ≤ θ′ − w′ · π ≤ Cπ

}
π∈Π

, (38)

where each|cπ|, |Cπ| is either∞ (meaning the associated inequality actually drops out) or is at most
µ−1(−1 +

√
τ) ≤ O(

√
ln(1/τ)). Now (38) may actually be thought of as a “linear program” in the

entries ofw′ and inθ′ — one which we know is feasible.
By standard results in linear programming [Chv83] we know that if such a linear program is feasible, it

has a feasible solution in which the variables take values that are not too large. In particular, we can take as
an upper bound for the variables

L =
|maxA det(A)|
|minB det(B)| , (39)

whereB ranges over all nonsingular square submatrices of the constraint matrix andA ranges over all
square submatrices of the constraint matrix with a portion of the “right-side vector” substituted in as a
column. Note that the constraint matrix from (38) contains only ±1’s and that the right-side vector contains
numbers at mostO(

√
ln(1/τ)) in magnitude. Thus the minimum in the denominator of (39) is at least1 and

the maximum in the numerator of (39) is at mostO(
√

ln(1/τ)) · (s + 1)!; henceL ≤ 2O(s log s)
√

ln(1/τ).
Having made this conclusion, we may recast and slightly weaken (37) by saying that there exist a pair

(w′′, θ′′), with entries all at mostL in absolute value, such that
{
E[fπ] − 2

√
τ ≤ µ(θ′′ − w′′ · π) ≤ E[fπ] + 2

√
τ
}

π∈Π

Finally, suppose we round the entries ofw′′ to the nearest integer multiples of
√

τ/s forming w∗, and we
similarly roundθ′′ to θ∗. Then|(θ′′ −w′′ · π)− (θ∗ −w∗ · π)| ≤ 2

√
τ for everyπ. Since|µ′| ≤

√
2/π ≤ 1

we can thus conclude that the inequalities
{
E[fπ] − 4

√
τ ≤ µ(θ∗ − w∗ · π) ≤ E[fπ] + 4

√
τ
}

π∈Π

also hold, completing the proof.

6.6.2 Soundness of the test.

Theorem 54. Let f : {−1, 1}n → {−1, 1} be a function that passesTest-LTF with probability more than
1/3. Thenf is O(ε)-close to an LTF.

Proof. As mentioned at the beginning of the proof of Theorem 51, for any f , with probability at least
1 − O(δ) Step 1 of the algorithm succeeds (implicitly producingJ), Step 2 of the algorithm succeeds
(producing theπi’s, etc.), and all of the items in Proposition 50 hold. So if anf passes the test with
probability more than1/3 ≥ O(δ), it must be the case thatf passes the deterministic portion of the test,
Step 3, despite the above three conditions holding. We will show that in this casef must beO(ε)-close to
an LTF. We now divide into two cases according to whetherf passes the test in Step 3(a) or Step 3(b).

35



Case 3(a). In this case we have that for at least a1− ε fraction ofπi’s, |µ̃i| ≥ 1− ε and hence|E[fπi ]| ≥
1 − ε − η ≥ 1 − 2ε. By Proposition 50 item 1we conclude:

For at least a1 − 2ε fraction of all restrictionsπ to J , |E[fπ]| ≥ 1 − 2ε. (40)

Also, since the test passed, there is some pair(w∗, θ∗) such thatsgn(w∗ · πi − θ∗) = sgn(µ̃i) for at least a
1− 20ε fraction of theπi’s. Now except for at most anε fraction of theπi’s we have|E[fπi ]| ≥ 1− 2ε ≥ 2

3
and|µ̃i − E[fπi ]| ≤ η < 1

3 whencesgn(µ̃i) = sgn(E[fπi ]). Hencesgn(w∗ · πi − θ∗) = sgn(E[fπi ]) for at
least a1 − 20ε − ε ≥ 1 − 21ε fraction of theπi’s. By Proposition 50 item 2 we conclude:

For at least a1 − 22ε fraction of all restrictionsπ to J , sgn(E[fπ]) = sgn(w∗ · π − θ∗). (41)

Combining (40) and (41), we conclude that except for a22ε + 2ε ≤ 24ε fraction of restrictionsπ to J , fπ is
ε-close, as a function of the bits outsideJ , to the constantsgn(w∗ ·π−θ∗). Thusf is 24ε+(1−24ε)ε ≤ 25ε-
close to theJ-junta LTFπ 7→ sgn(w∗ · π − θ∗). This completes the proof in Case 3(a).

Case 3(b). In this case, writeπ∗ for πi∗ . Since|µ̃i∗ | ≤ 1− ε, we have that|E[fπ∗ ]| ≤ 1− ε+η ≤ 1− ε/2.
Once we pass Step 3(b)(i) we haveκ̃i∗ ≤ 2τ which implies

∑
|S|=1 f̂π∗(S)4 ≤ 2τ + η ≤ 3τ . This

in turn implies thatfπ∗ is (3τ)1/4 ≤ 2τ1/4-regular. Once we pass Step 3(b)(ii), we additionally have
|∑|S|=1 f̂π∗(S)2 − W (E[fπ∗ ])| ≤ 2τ1/12 + η + η ≤ 3τ1/12, where we’ve also used thatW (µ̃i∗) is within
η of W (E[fπ∗ ]) (since|W ′| ≤ 1).

Summarizing:

fπ∗ is 2τ1/4-regular and satisfies|E[fπ∗ ]| < 1 − ε/2,

∣∣∣∣∣
∑

|S|=1

f̂π∗(S)2 − W (E[fπ∗ ])

∣∣∣∣∣ ≤ 3τ1/12. (42)

Since Step 3(b)(iii) passes we have that both|(ρ̃i∗,i)2 − W (µ̃i∗)W (µ̃i)| ≤ 2τ1/12 andρ̃i∗,i ≥ −η hold for
all i’s. These conditions imply|(∑|S|=1 f̂π∗(S)f̂πi(S))2−W (E[fπ∗])W (E[fπi ])| ≤ 2τ1/12 +4η ≤ 3τ1/12

and
∑

|S|=1 f̂π∗(S)f̂πi(S) ≥ −2η hold for all i. Applying Proposition 50 item 3 we conclude:

For at least a1 − ε fraction of the restrictionsπ to J , both∣∣∣∣∣∣

(
∑

|S|=1

f̂π∗(S)f̂π(S)

)2

− W (E[fπ∗])W (E[fπ])

∣∣∣∣∣∣
≤ 3τ1/12 and

∑
|S|=1

f̂π∗(S)f̂πi(S) ≥ −2η. (43)

We can use (42) and (43) in Theorem 38, withfπ∗ playing the role off , the goodfπ ’s from (43) playing
the roles ofg and the “τ ” parameter of Theorem 38 set to3τ1/12. (This requires us to ensureK � 54.) We
conclude:

There is a fixed vector̀ with ‖`‖ = 1 and|`j | ≤ O(τ7/108) for eachj

such that for at least a1 − ε fraction of restrictionsπ to J ,

fπ(x) is O(τ1/108)-close to the LTFgπ(x) = sgn(` · x − θπ). (44)

We now finally use the fact that Step 3(b)(iv) passes to get a pair (w∗, θ∗) such that|µ̃i−µ(θ∗−w∗·πi)| ≤
5
√

τ ⇒ |E[fπi ] − µ(θ∗ − w∗ · πi)| ≤ 6
√

τ holds for allπi’s. By Proposition 50 item 4 we may conclude
that:

For at least a1 − ε/2 fraction of restrictionsπ to J , |E[fπ] − µ(θ∗ − w∗ · π)| ≤ 6
√

τ . (45)
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Define the LTFh : {−1, 1}n → {−1, 1} by h(π, x) = sgn(w∗ · π + ` · x− θ∗). We will complete the proof
by showing thatf is O(τ1/108)-close toh.

We have that the conclusions of (44) and (45) hold simultaneously for at least a1 − 2ε fraction of
restrictionsπ; call these the “good” restrictions. For the remaining “bad” restrictionsπ′ we will make no
claim on how close to each otherfπ′ andhπ′ may be. However, these bad restrictions contribute at most
2ε to the distance betweenf andh, which is negligible compared toO(τ1/108). Thus it suffices for us to
show that for any good restrictionπ, we have thatfπ andhπ are oh-so-close, namely,O(τ1/108)-close. So
assumeπ is a good restriction. In that case we have thatfπ is O(τ1/108)-close togπ, so it suffices to show
that gπ is O(τ1/108)-close tohπ. We havehπ(x) = sgn(` · x − (θ∗ − w∗ · π)), and since‖`‖ = 1 and

|`j | ≤ O(α7/108) for eachj, Proposition 57 implies thatE[hπ]
τ7/108

≈ µ(θ∗ − w∗ · π). Sinceπ is a good

restriction, using (45) we have thatE[hπ]
6
√

τ≈ E[fπ]. This certainly impliesE[hπ]
α1/108

≈ E[gπ] sincefπ and
gπ areO(α1/108)-close. But now it follows that indeedgπ is O(α1/108)-close tohπ because the functions
are both LTFs expressible with the same linear form and thus either gπ ≥ hπ pointwise orhπ ≥ gπ point-
wise, either of which implies that the distance between the two functions is proportional to the difference of
their means.

Finally, we’ve shown thatf is O(τ1/108)-close to an LTF. TakingK = 108 completes the proof.
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A Basic Theorems about Gaussians and LTFs

A.1 Gaussian basics.

We will often require the Berry-Esseen theorem, a version ofthe Central Limit Theorem with error bounds
(see, e.g., [Fel68]):

Theorem 55. Let `(x) = c1x1 + · · · + cnxn be a linear form over the random±1 bits xi. Assume that

|ci| ≤ τ for all i, and writeσ =
√∑

c2
i . Write F for the c.d.f. of̀ (x)/σ; i.e., F (t) = Pr[`(x)/σ ≤ t].

Then for allt ∈ R,

|F (t) − Φ(t)| ≤ O(τ/σ) · 1

1 + |t|3 ,

whereΦ denotes the c.d.f. ofX, a standard Gaussian random variable. In particular, ifA ⊆ R is any

interval thenPr[`(x)/σ ∈ A]
τ/σ
≈ Pr[X ∈ A].

A special case of this theorem, with a sharper constant, is sometimes useful (the following can be found
in [Pet95]):

Theorem 56. In the setup of Theorem 55, for anyλ ≥ τ and anyθ ∈ R it holds thatPr[|`(x) − θ| ≤ λ] ≤
6λ/σ.

We will use the following proposition:

Proposition 57. Let f(x) = sgn(c · x − u) be an LTF such that
∑

i c
2
i = 1 and |ci| ≤ τ for all i. Then we

haveE[f ]
τ≈ µ(u).

This is an almost immediate consequence of the Berry-Esseentheorem. Next we prove the following
more difficult statement, which gives an approximation for the expected magnitude of the linear formc·x−u
itself:

Proposition 58. Let `(x) =
∑

cixi be a linear form over{−1, 1}n and assume|ci| ≤ τ for all i. let

σ =
√∑

c2
i and letu ∈ R. Then

E[|` − u|] τ≈ E[|σX − u|],
whereX is a standard Gaussian random variable.

Proof. The result is certainly true ifσ = 0, so we may assumeσ > 0. Using the fact thatE[R] =∫∞
0 Pr[R > s] ds for any nonnegative random variableR for whichE[R] < ∞, we have that

E[|` − u|] =

∫ ∞

0
Pr[|` − u| > s] ds

=

∫ ∞

0
Pr[` > u + s] + Pr[` < u − s] ds

=

∫ ∞

0
(1 − F ((u + s)/σ) + F ((u − s)/σ) ds (46)

where we have writtenF for the c.d.f. of̀ (x)/σ. We shall apply Berry-Esseen to`(x). Since
∑n

i=1 E[|cxi|3] =∑n
i=1 |ci|3 ≤ τ

∑n
i=1 c2

i = τσ2, Berry-Esseen tells us that for allz ∈ R we have|F (z) − Φ(z)| ≤
O(τ/σ)/(1 + |z|3). It follows that (46)≤ (A) + (B), where

(A) =

∫ ∞

0
1 − Φ((u + s)/σ) + Φ((u − s)/σ) ds
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and

(B) = O(τ/σ) ·
∫ ∞

0

(
1

1 + |(u + s)/σ|3 +
1

1 + |(u − s)/σ|3
)

ds.

It is easy to see that

(B) = O(τ/σ) ·
∫ ∞

−∞

1

1 + |x/σ|3 dx = O(τ).

For (A), observe that(A) can be re-expressed as
∫ ∞

0
Pr[X > (u + s)/σ] + Pr[X < (u − s)/σ]ds =

∫ ∞

0
Pr[|σX − u| > s] ds.

Again using the fact thatE[R] =
∫∞
0 Pr[R > s] ds for any nonnegative random variableR for which

E[R] < ∞, this equalsE[|σX − u|]. This gives the desired bound.

Proposition 59. Using the notation above,E[|σX − u|] = σ · 2φ(u/σ)− uµ(u/σ). (This remains sensible
even forσ = 0.)

Proof.
E[|σX − u| = E[sgn(σX − u)(σX − u)] = σĝ(1) − uE[g],

whereg : R → R is the functiong(X) = sgn(X − u/σ). But E[g] = µ(u/σ) andĝ(1) = 2φ(u/σ) (see
Definition 17).

A.2 LTF basics.

We collect here some easy propositions about LTFs. First, weneed to recall the general notion of “influ-
ences” for Boolean functions:

Definition 60. Given f : {−1, 1}n → {−1, 1} and i ∈ [n], the influenceof variable i is defined as
Infi(f) = Prx[f(xi−) 6= f(xi+)], wherexi− andxi+ denotex with thei’th bit set to−1 or 1 respectively.

It is well-known that iff is a unate function thenInfi(f) = |f̂(i)|. In particular, this holds for LTFs
(which are unate).

The next proposition, relating the rank of the weights to therank of the influences/degree-1 Fourier
coefficients, is very elementary; an explicit proof appearsin, e.g., [FP04].

Proposition 61. Let f = sgn(w1x1 + · · · + wnxn − θ) be an LTF such that|w1| ≥ |wi| for all i ∈ [n].
Then|Inf1(f)| ≥ |Infi(f)| for all i ∈ [n].

Next, we show that LTFs typically become regular when their most influential coordinates are restricted:

Proposition 62. Let f : {−1, 1}n → {−1, 1} be an LTF and letJ ⊇ {j : |f̂(i)| ≥ β}. Thenfπ is not
(β/η)-regular for at most anη fraction of all restrictionsπ to J .

Proof. Sincef is an LTF,|f̂(j)| = Infj(f); thus every coordinate outsideJ has influence at mostβ on f .
Let k be a coordinate outside ofJ of maximum influence. Note that sincef is an LTF,k is a coordinate of
maximum influence forfπ under every restrictionπ to J ; this follows from Proposition 61. ButInfk(f) =

Avgπ(Infk(fπ)) = Avgπ(|f̂π(k)|) and so

β ≥ Infk(f) = Avgπ(regularity offπ).

The result now follows by Markov’s inequality.
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Next, a proposition on LTFs that are close to juntas:

Proposition 63. Let f = sgn(w1x1 + · · · + wnxn − θ) be an LTF which isε-close to being some junta on
the setJ . Thenf is in factε-close to being the LTF onJ given bysgn(

∑
i∈J wixi − θ).

Proof. Assume without loss of generality thatJ = {1, . . . , r}. Given any values forx1, . . . , xr, let fx1,...,xr

denote the restricted version off , a function of the remaining variablesxr+1, . . . , xn. Now without even
using the fact thatf is an LTF, we know that the junta over{−1, 1}r to whichf is closest is given by mapping
x1, . . . , xr to the more common value offx1,...,xr . But this more common value is certainlysgn(w1x1 +
· · · + wrxr − θ), by the symmetry of the variablesxr+1, . . . , xn. This completes the proof.

Finally, we show a partial converse to our Theorem 26:

Proposition 64. Supposef(x) = sgn(a1x1 + · · · + anxn − θ) is an LTF with
∑n

i=1 a2
i = 1 and |ai| ≤ δ

for all i. Thenf is O(δ)-regular; i.e.,Infi(f) ≤ O(δ) for all i.

Proof. Without loss of generality we may assume thatδ = |a1| ≥ |ai| for all i. By Proposition 61 we need
to show thatInf1(f) ≤ O(δ). Now observe that

Inf1(f) = Pr
[
|a2x2 + · · · + anxn − θ| ≤ δ

]
.

If δ ≥ 1/2 then clearlyInf1(f) ≤ 2δ so we may assumeδ < 1/2. By the Berry-Esseen theorem, the
probability (6) above is within an additiveO(δ/

√
1 − δ2) = O(δ) of the probability that|X−θ| ≤ δ, where

X is a mean-zero Gaussian with variance1 − δ2. This latter probability is at mostO(δ/
√

1 − δ2) = O(δ),
so indeed we haveInf1(f) ≤ O(δ).
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