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Abstract

This paper addresses the problem of testing whether a Bookdaed functiory is a halfspace, i.e. a
function of the formf (z) = sgn(w-x — 6). We consider halfspaces over the continuous doRdirien-
dowed with the standard multivariate Gaussian distrim)tés well as halfspaces over the Boolean cube
{—1,1}" (endowed with the uniform distribution). In both cases weegin algorithm that distinguishes
halfspaces from functions that ardar from any halfspace using ont;oly(é) queries, independent of
the dimensiom.

Two simple structural results about halfspaces are at the b&our approach for the Gaussian dis-
tribution: the first gives an exact relationship betweenekjgected value of a halfspageand the sum
of the squares of's degree-1 Hermite coefficients, and the second showslydtiaction that approxi-
mately satisfies this relationship is close to a halfspaaepkve analogous results for the Boolean cube
{1, 1}" (with Fourier coefficients in place of Hermite coefficierfs) balanced halfspaces in which all
degree-1 Fourier coefficients are small. Dealing with geltealfspaces over—1, 1}™ poses significant
additional complications and requires other ingredieitsese include “cross-consistency” versions of
the results mentioned above for pairs of halfspaces witlséinee weights but different thresholds; new
structural results relating the largest degree-1 Founefficient and the largest weight in unbalanced
halfspaces; and algorithmic techniques from recent wortesting juntas [FKR 0Z].
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1 Introduction

A halfspaceis a function of the formf(z) = sgn(wizy + -+ + w,x,, — 0). Halfspaces are also known
asthreshold function®r linear threshold functiongfor brevity we shall often refer to them in this paper as
LTFs. LTFs are a simple yet powerful class of functions, WHiar decades have played an important role
in fields such as complexity theory, optimization, and maehearning (see e.g. [HMM3,[Yao90| Blo6R,
Nov6Z [MP68[STCUO0]).

In this work, we focus on thealfspace testingroblem: given query access to a function, we would
like to distinguish whether it is an LTF or whether itddar from any LTF. This is in contrast to the proper
halfspace learningroblem: given examples labeled according to an unknown(EftRer random examples
or gueries to the function), find an LTF that iti€lose to. Though any proper learning algorithm can be used
as a testing algorithm (see, e.g., the observations_of [@HR&sting potentially requires fewer queries.
Indeed, in situations where query access is available, iyapificient testing algorithm can be used to check
whether a function is close to a halfspace, before botheédamgn a more intensive algorithm to learn which
halfspace it is close to.

Our main result is to show that the halfspace testing proldambe solved with a number of queries
that isindependenof n. In doing so, we establish new structural results about LiWkieh essentially
characterize LTFs in terms of their degree-0 and degreedtiétacoefficients.

We note that any learning algorithm — even one with black-gorry access tg — must make at
leastQ2(%) queries to learn an unknown LTF to accuraaynder the uniform distribution ofi—1, 1}" (this
follows easily from, e.g., the results 6f [KMTB3]). Thus tbemplexity of learning is linear in, as opposed
to our testing bounds which are independent of

We start by describing our testing results in more detalil.

Our Results. We consider the standard property testing model, in whiehtélsting algorithm is allowed
black-box query access to an unknown functfoand must minimize the number of times it querfesThe
algorithm must with high probability pass all functionstthave the property and with high probability fail
all functions that have distance at leastom any function with the property. Our main algorithmicuds
are the following:

1. We first consider functions that m&J* — {—1, 1}, where we measure the distance between func-
tions with respect to the standarddimensional Gaussian distribution. In this setting weega/
poly(%) query algorithm for testing LTFs with two-sided error.

2. [Main Result.] We next consider functions that mapl, 1} — {—1,1}, where (as is standard in
property testing) we measure the distance between fursctigth respect to the uniform distribution
over{—1,1}". In this setting we also givelaoly(%) query algorithm for testing LTFs with two-sided
error.

Resultd1l anfl2 show that in two natural settings we can teghéylgeometric property — whether or
not the—1 and-+1 values defined by are linearly separable — with a number of queries that isgeddent
of the dimension of the space. Moreover, the dependendeeism)nly polynomial, rather than exponential
or tower-type as in some other property testing algorithms.

While it is slightly unusual to consider property testingden the standard multivariate Gaussian dis-
tribution, we remark that our results are much simpler taldigh in this setting because the rotational
invariance essentially means that we can deal with a 1-difoeal problem. We moreover observe that
it seems essentiallgecessanto solve the LTF testing problem in the Gaussian domain irotd solve
the problem in the standafd-1, 1}"™ uniform distribution framework; to see this, observe thatiaknown



function f : {—1,1}" — {—1, 1} to be tested could in fact have the structure

(Tt Ty T(d—1)ym+1 T+ + Tdm
f(:c1,...,xdm)=f< ! N ey ( )Jr\/m >,

in which case the arguments fdehave very much liké independent standard Gaussian random variables.
We note that the assumption that our testing algorithm hasycaccess tg (as opposed to, say, access

only to random labeled examples) is necessary to achievenplerity independent of.. Any LTF testing

algorithm with access only to uniform random examplesf(x)) for f : {—1,1}" — {—1,1} must use

at leastQ)(log n) examples (an easy argument shows that with fewer exampleslistribution on exam-

ples labeled according to a truly random function is stadlyy indistinguishable from the distribution on

examples labeled according to a randomly chosen variate {1, ..., x,}).

Characterizations and TechniguesWe establish new structural results about LTFs which eggnthar-
acterize LTFs in terms of their degree-0 and degree-1 Focoefficients. For functions mappirg-1, 1}
to{—1, 1} it has long been knowh [Chob1] that any linear threshold tioncf is completely specifieby the
n+ 1 parameters consisting of its degree-0 and degree-1 Fawédficients (also referred to as &how pa-
rameter$. While this specification has been usediarn LTFs in various contexts [BDBE8,[Gol06| Ser(7],

it is not clear how it can be used to construct efficiesters(for one thing this specification involves+ 1
parameters, and in testing we want a query complexity inugget ofn). Intuitively, we get around this
difficulty by giving new characterizations of LTFs as thos@dtions that satisfy a particular relationship
between justwo parameters, namely the degree-0 Fourier coefficient anduiimeof the squared degree-1
Fourier coefficients. Moreover, our characterizationsrabeist in that if a function approximately satisfies
the relationship, then it must be close to an LTF. This is whakes the characterizations useful for testing.

We first consider functions mappirlg” to {—1, 1} where we viewR" as endowed with the standard
n-dimensional Gaussian distribution. Our characterizaiéogparticularly clean in this setting and illustrates
the essential approach that also underlies the much maskvéa/Boolean case. On one hand, it is not hard
to show that for every LTH, the sum of the squares of the degteklermite coefficient of f is equal
to a particular function of the mean ¢f— regardless oWwhichLTF f is. We call this functionld/; it is
essentially the square of the “Gaussian isoperimetricttion.

Conversely, Theoren R0 shows thatfif: R* — {—1,1} is any function for which the sum of the
squares of the degreeHermite coefficients is withinte® of W (E[f]), then f must beO(¢)-close to an
LTF —in fact to an LTF whose: weights are the: degree-1 Hermite coefficients ¢f The valueE[f]| can
clearly be estimated by sampling, and moreover it can be stibat a simple approach of samplirigon
pairs of correlated inputs can be used to obtain an accustiteate of the sum of the squares of the degree-
Hermite coefficients. We thus obtain a simple and efficiesttfr LTFs under the Gaussian distribution and
thereby establish Resllt 1. This is done in Sedfion 4.

In Section[d we take a step toward handling general LTFs ¢vér, 1} by developing an analogous
characterization and testing algorithm for the classadénced regulaLTFs over{—1, 1}"; these are LTFs
with E[f] = 0 for which all degree-1 Fourier coefficients are small. Tharhef this characterization is a
pair of results, TheorenisP4 aind 25, which give Boolean-eutadogues of our characterization of Gaussian
LTFs. Theoreni24 states that the sum of the squares of theatedtourier coefficients of any balanced
regular LTF is approximately}’ (0) = % TheorenZb states that any functigrwhose degree-1 Fourier
coefficients are all small and whose squares sum to rouﬁmyin fact close to an LTF — in fact, to one
whose weights are the degree-1 Fourier coefficients. &imilar to the Gaussian setting, we can estimate
E[f] by uniform sampling and can estimate the sum of squares oédegFourier coefficients by sampling
f on pairs of correlated inputs. An additional algorithmiepsts also required here, namely checking that

1These are analogues of the Fourier coefficientdfofunctions overR™ with respect to the Gaussian measure; see Sddtion 2.



all the degree-1 Fourier coefficients ffare indeed small; it turns out that this can be done by edtignat
the sum offourth powers of the degree-1 Fourier coefficients, which can agaiobtained by sampling
on (4-tuples of) correlated inputs.

The general case of testing arbitrary LTFs ofrerl, 1}" is substantially more complex and is dealt with
in Sectior®. Very roughly speaking, the algorithm has thmeén conceptual steps:

e Firstthe algorithm implicitly identifies a set 6f(1) many variables that have “large” degree-1 Fourier
coefficients. Even a single such variable cannot be expliclentified usingo(logn) queries; we
perform the implicit identification usin@ (1) queries by adapting an algorithmic technique from
[EKRTO2].

e Second, the algorithm analyzes the regular subfuncticatsatie obtained by restricting these implic-
itly identified variables; in particular, it checks that thés a single set of weights for the unrestricted
variables such that the different restrictions can all hgressed as LTFs with these weights (but dif-
ferent thresholds) over the unrestricted variables. Riyugieaking, this is done using a generalized
version of the regular LTF test that tests wheth@aa of functions are close to LTFs over the same
linear form but with different thresholds. The key techhiogredients enabling this are Theorelm$ 37
and[38, which generalize Theoremd 24 25 in two ways (i paifunctions, and to functions
which may have nonzero expectation).

e Finally, the algorithm checks that there exists a singleofeteights for the restricted variables that
is compatible with the different biases of the differenttrieted functions. If this is the case then
the overall function is close to the LTF obtained by comhgnthese two sets of weights for the
unrestricted and restricted variables. (Intuitively,cgirthere are only)(1) restricted variables there
are onlyO(1) possible sets of weights to check here.)

Related Work. Various classes of Boolean functions have recently beahestdrom a testing perspective.
[PRS02] shows how to test dictator functions, monomiald,@(i )-term monotone DNFs with query com-
plexity O(%). [EKRT0Z] gave algorithms for testing-juntas with query complexities that are low-order
polynomials ink and1/e. On the other hand| [FLNO2] showed that any algorithm for testing mono-
tonicity must have a query complexity which increases witlfsee also [AKK 03,[BLR93, GGLT0C] and
references therein for other work on testing various clas$®oolean functions.

In [DLM *07] a general method is given for testing functions that ltawveise representations in various
formats; among other things this work shows that the claskoision listga subclass of LTFs) is testable
using polx%) gueries. The method of [DLNMO7] does not apply to LTFs in general since it requires that
the functions in question be “well approximated” by juntasjch clearly does not hold for general LTFs.

Outline of the Paper. In Sectior 2 we give some notation and preliminary facts wisezlighout the paper.
In SectiorB we describe a subroutine for estimating sumsweps of Fourier and Hermite coefficients,
based on the notion of Noise Stability. Sectldn 4 containsadgorithm for testing general LTFs over
Gaussian Space. Sectibh 5 contains an algorithm for tebttenced, regularL.TFs over{—1,1}", a
“warm-up” to our main result. Finally, Sectidih 6 containg ouain result, a general algorithm for testing
LTFs over{—1,1}"

2 Notation and Preliminaries.

Except in Sectiofill4, throughout this pagewill denote a function from{ —1,1}" to {—1, 1} (in Sectior #
f will denote a function fromR™ to {—1,1}). We say that a Boolean-valued functignis e-far from
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fif Pr[f(z) # g(z)] > ¢ for f defined over the domaifi—1, 1}" this probability is with respect to the
uniform distribution, and foif defined ovelR™ the probability is with respect to the standardlimensional
Gaussian distribution.

We make extensive use of Fourier analysis of functipns{—1,1}" — {—1, 1} and Hermite analysis
of functionsf : R™ — {—1,1}. In this section we summarize some facts we will need reggrBiburier
analysis of functionsf : {—1,1}" — {—1,1} and Hermite analysis of functiong : R" — {—1,1}.
For more information on Fourier analysis see, el§te0Q0]; for more information on Hermite analysis see,
e.g., [LT91].

Fourier analysis. Here we consider functiong : {—1,1}" — R, and we think of the inputs to f as
being distributed according to the uniform probabilitytdisution. The set of such functions form&-
dimensional inner product space with inner product giver fly)) = E.[f(z)g(x)]. The set of functions
(xs)sc[n defined byxs(z) = [[;cgz: forms a complete orthonormal basis for this space. We wstb al
often write simplyzs for [ [, =;. Given a functionf : {—1,1}" — R we define itsourier coefficients
by £(S) = E.[f(z)zs], and we have thaf(z) = 3¢ f(S)zs. We will be particularly interested iff’s
degreet coefficients, i.e.f(S) for |S| = 1; we will write these ag'(¢) rather thany({i}). Finally, we have
Plancherel’s identity f, g) = > ¢ £(8)4(S), which has as a special caBarseval's identityE,[f(x)?] =
S5 £(S)2. From this it follows that for every : {—1,1}" — {-1,1} we have}_ ¢ f(5)? = 1.

Hermite analysis. Here we consider functiong : R” — R, and we think of the inputs to f as being
distributed according to the standasedimensional Gaussian probability distribution. We triet set of
square-integrable functions as an inner product spaceinvitr product(f, g) = E,[f(z)g(x)] as before.
In the casen = 1, there is a sequence éfermite polynomialshy = 1,h1(z) = z,ha(z) = (2% —
1)/v/2, ... that form a complete orthonormal basis for the space; theypealefined viaxp(\z — \2/2) =
S % o(A/Vdha(x). In the case of general, givenS € N", we have that the collection of-variate
polynomialsHg(z) := [, hs,(x;) forms a complete orthonormal basis for the space. Given arsqu
integrable functiory : R — R we define itHermite coefficientdy f(S) = (f, Hg) for S € N" and we
have thatf (z) = > ¢ f‘(S)HS(x) (the equality holding in.?). Again, we will be particularly interested in
f's “degreei” coefficients, i.e.f‘(ei), wheree; is the vector which ig in theith coordinate and elsewhere.
Recall that this is simpl§,[f (z)x;]. Plancherel and Parseval’s identities also hold in thignget

We will also use the following definitions:

Definition 1. A “linear threshold function,” or LTF, is a Boolean-valuediriction of the formf(z) =
sgn(wizy + ... + wpx, — 0) Wherewy, ..., w,, 0 € R. Thew;’s are called “weights,” andd is called the
“threshold.” Thesgn function is1 on arguments> 0, and —1 otherwise.

Definition 2. We say thaff : {—1,1}* — {—1,1} is “7-regular” if | f(i)| < 7 forall i € [n].

Definition 3. A functionf : {—1,1}" — {—1, 1} is said to be a “junta onJ C [n]”if f only depends on
the coordinates inJ. Typically we think off as a “small” set in this case.

Definition 4. For a,b € R we writea 2 b to indicate thata — b| < O(n).
and the following simple facts:
Fact 5. Supposed and B are nonnegative angd — B| < . Then|v/A — vB| < n/vB.

Proof. |[v/A —VB| = \/‘215% < O

N
75
Fact 6. If X is a random variable taking values in the ranfel, 1], its expectation can be estimated to
within an additived-¢, with confidencd — §, usingO(log(1/§)/€?) queries.

Proof. This follows from a standard additive Chernoff bound. O



3 Tools for Estimating Sums of Powers of Fourier and Hermite @efficients

In this section we show how to estimate the siifi_, f(i)? for functions over a boolean domain, and
the sum}_" | f(ei)2 for functions over gaussian space. This subroutine liedateart of our testing
algorithms. We actually prove a more general theorem, shphow to estimatd """ , f (1)P for any integer

p > 2. Estimating the special case pf , f(i)4 allows us to distinguish whether a function has a single
large|f(i)|, or whether all f(i)| are small. The main results in this section are Corol@lyal@ng with its
analogue for Gaussian space, Lenimia 16), and Leimina 15.

3.1 Noise Stability.

Definition 7. (Noise stability for Boolean functions.) L¢tg : {—1,1}" — {—1,1}, letn € [0, 1], and
let (z,y) be a pair ofp-correlated random inputs — i.ex,is a uniformly random string ang is formed by
settingy; = x; with probability » and lettingy; be uniform otherwise, independently for edackVe define

Sy(f,9) = Elf (2)g(y)]-
Fact 8. In the above settings,(f,9) = > gcpn £(5)3(S)n!%!.

Definition 9. (Noise stability for Gaussian functions.) Lgtg : R® — R be in L?(R") with respect to

the Gaussian measure, lgte [0,1], and let(z,y) be a pair ofn-correlated n-dimensional Gaussians.
l.e., each pair of coordinateér;, y;) is chosen independently as follows; is a standardl-dimensional

Gaussian, and; = nz; + /1 — n? - z;, wherez; is an independent standard Gaussian. We define

Sy(f,9) = Elf (x)g(y)]-
Fact 10. In the above settings, (f,9) = > genn £(8)3(S)n's!, where|S| denotesy " , S;.

3.2 Estimating sums of powers of Fourier coefficients.

Forz = (z1,...,x,) andS C [n] we writexs for the monomial [, 4 z;. The following lemma generalizes
Fact3:

Lemma 11. Fix p > 2. Let f1,..., f, bep functionsf; : {-1,1}" — {—1,1}. Fix any setl’ C [n]. Let
x!, ..., 2P~1 be independent uniform random strings{in1,1}" and lety be a random string whose bits
are independently chosen with(y; = 1] = 1 fori ¢ T andPr[y; = 1] = 1 + infori € T. Let® denote

coordinate-wise multiplication. Then

E[fi(z") f2(2®) -+ fp1 (@ ) fpa' @2 @ @2l oy)] = S;Tn‘s'f1<5>f2<5> - fo(S).

Proof. We have

Elfi(z") fo(z®) - fpor1(@P D fpa' 02?0 0P O y))
= E[ X AW fo1(Sp-1) fp(Sp) - (@), - (aP s, (@t 0 a? @0 2P T @ y)s,)

S1,...,5pCln]
= > fl(Sl) T fpfl(spfl)fp(sp) : E[(xl)&ASp T (xp_l)sp—lASpySp]
S1,...,Spg[n]
Now recalling thatz!, ..., 2P~ andy are all independent and the definition@fwe have that the only
nonzero terms in the above sum occur witgn= --- = S,_; = S, C T, in this case the expectation is
n!Sel. This proves the lemma. O



Lemma 12. Letp > 2. Suppose we have black-box accesgito. ., f, : {—1,1}" — {—1,1}. Then for
anyT C [n], we can estimate the sum of products of degree-1 Fourier cieeffs

> @) fpld)
€T
to within an additiven, with confidencd — 4, usingO(p - log(1/6)/n*) queries.

Proof. Let 2!, ..., zP be independent uniform random strings{in1,1}" and lety be as in the previous
lemma. Empirically estimate

E[fi(z!)f2(2%) - fo(aP)] and E[fi(z)) fa(a?) - foa(@ ) fp(a! ©2? @ 02 oy)] (1)

to within an additivetn?, usingO(1/n*) samples. By the previous lemma these two quantities arelgxac
equal to

AW £0) and S SRS AS) - £(5)

scr
respectively. Subtracting the former estimate from thetatields

> A fp(S)

|S|>0,SCT

to within an additiveO(n?), and this itself is withim? of
> nfi(8) fy(S)

|S|=1,5CT
because the difference is

> A S8 < P S AS) - (9

|S|>1,8CT |S|>1,8CT
<) X A2 Y (B9 (9?2 (@)

|S|>1,SCT |S|>1,8CT
< prel S A8 <y ©)
|S|>1,SCT

where [2) is Cauchy-Schwarz arid (3) uses the fact that theo$time squares of the Fourier coefficients of
a Boolean function is at most 1. Thus we have ", f1(i) - - - f,(¢) to within an additiveO (n?); dividing
by n gives us the required estimate withi(n). O

Taking all f;’s to be the same functiofi, we have

Corollary 13. Fix p > 2 and fix anyI' C [n]. Given black-box access fo: {—1,1}" — {-1,1}, we can
estimate ", f(i)? to an additivetn, with confidence — 4, usingO(p - log(1/6)/n*) queries.
Proposition 14. If everyi € T has|f(i)] < o, thenY_,cp f(i)* < a® Xcp f(i)? < 2.
Lemma 15. Fix any T C [n]. There is anO(log(1/6)/71¢)-query tesNon-Regular(r, 5, T') which, given
query access tg : {—1,1}" — {—1,1}, behaves as follows: with probability— ,

e If |f(i)| > 7 for somei e T then the test accepts;

e Ifeveryi € T has|f(i)| < 72/4 then the test rejects.

Proof. The test is to estimat®_, f(i)* to within an additive+7*/4 and then accept if and only if the
estimate is at most!/2. If |f(i)| > 7 for somei then clearly> ", f(i)* > 7* so the test will accept
since the estimate will be at least*/4. On the other hand, if each € T has|f(i)|] < 72/4, then
Y ier f(i)* < 7*/16 by Propositionl”T¥ and so the test will reject since the esémull be less than
574/16. [



3.3 Estimating sums of powers of Hermite coefficients.

Here we Ietf‘(ei) denote the-th degree-1 Hermite coefficient ¢gf: R — R as described in Sectidmh 4.
For the Gaussian distribution we require only the followiagima, which can be proved in a straight-
forward way following the arguments in Sectionl3.2 and u$tag10.

Lemma 16. Given black-box access t : R” — {—1,1}, we can estimat& ", f(e;)? to within an
additiven, with confidencd — 6, usingO(log(1/6)/n*) queries.

4 A Tester for General LTFs overR"

In this section we consider functiorfsthat mapR™ to {—1, 1}, where we viewR" as endowed with the
standardn-dimensional Gaussian distribution. Recall that a draw: dfom this distribution oveR™ is
obtained by drawing each coordinatgindependently from the standard one-dimensional Gaustsri-
bution with mean zero and varianteln this section we will use Hermite analysis on functions.

Gaussian LTF facts.Let f : R” — {—1,1} be an LTFf(x) = sgn(w-z—0), and assume by normalization
that||w|| = 1. Now then-dimensional Gaussian distribution is spherically symiogas is the class of LTFs.
Thus there is a sense in which all LTFs with a given threshalte “the same” in the Gaussian setting. (This
is very much untrue in the discrete setting{ef1, 1}".) We can thus derive Hermite-analytic facts about
all LTFs by studying one particular LTF; saf(z) = sgn(e; - = — 6). In this case, the picture is essentially
1-dimensional; i.e., we can think of simply: R — {—1,1} defined byh(z) = sgn(z — 6), wherezx is a
single standard Gaussian. The only parameter n@waR.. Let us give some simple definitions and facts
concerning this function:

Definition 17. Lethy : R — {—1, 1} be the function of one Gaussian random variablgiven byhy(z) =
sgn(z — 0). We writeg for the p.d.f. of a standard Gaussian; i.e(t) = \/%76—9/2.

1. We define the function : R U {+oc0} — [—1,1] by u(0) = 71;(0) = Elhy]. Explicitly, u(0) =
—1+2 f;’o ¢. Note thaty is a monotone strictly decreasing function, and it follohest{ is invertible.

2. We have thafz;(l) = Elhg(x)z] = 2¢(0) (by an easy explicit calculation). We define the function
W [=1,1] — [0,2/x] by W (v) = (2¢(u~1(v)))%. Equivalently,l¥ is defined so thatV (E[hy]) =

%(1)2; i.e., W tells us what the squared degréddermite coefficient should be, given the mean. We

remark thatlV” is a function symmetric aboot with a peak at’ (0) = 2.

Proposition 18. 1. If z denotes a standard Gaussian random variable, @ —0|] = 2¢(0) —0u(0).
2. |¢| < +/2/m everywhere, and¥’| < 1 everywhere.
3. If[v] =1 —nthenW (v) = O(n*log(1/7n)).

Proof. The first statement is because both edtidly(x)(z—60)]. The bound on’s derivative holds because

i = —2¢. The bound on/’s derivative is becaus®”’(v) = 44(0)6, wheref = p~'(v), and this
expression is maximized at= +1, where itis.96788 - - - < 1. Finally, the last statement follows ultimately
from the fact thaft — x(6) ~ 2¢(6)/|0| for |0] > 1. O

Having understood the degréeand degred- Hermite coefficients for theldimensional” LTFf :
R" — {—1,1} given by f(x) = sgn(z; — #), we can immediately derive analogues for general LTFs:



Proposition 19. Let f : R™ — {—1,1} be the LTFf(z) = sgn(w - x — #), wherew € R". By scaling,
assume thafw|| = 1. Then:

L f0O)=E[f]=p®). 2 fle)=VWE[Nwi. 3. Y fler)* = W(E[f).
i=1

Proof. The third statement follows from the second, which we withy@. The first statement is left to the
reader. We havg(e;) = E,[sgn(w - x — 0)z;]. Now w - z is distributed as a standatddimensional
Gaussian. Furthety - = andx; are jointly Gaussian with covarian®(w - z)z;| = w;. Hence(w - x, x;)
has the same distribution &g, w;y + 1/1 — w? - z) wherey andz are independent standaretimensional
Gaussians. Thus

3
&

Ef[sgn(w -z — 0)x1] = E[sgn(y — 0)(w;y + /1 —

— w;hg(1) + Efsgn(y - e>\/1— — wyy/W(Ehg]) +0 = /W (E[ ;.

as desired. O
The second item in the above proposition leads us to an stiegeobservation: iff (x) = sgn(wixy +
.-+ wpx, — 0) is any LTF, then its vector of degrdeHermite coefficients(f(e1),. .., f(e )) is parallel

to its vector of weights(ws, ..., wy).

The tester. We now give a simple algorithm and prove that it accepts any With probability at least
2/3 and rejects any function that {3(¢)-far from all LTFs with probability at leas?/3. The algorithm is
nonadaptive and has two-sided error; the analysis of thestded confidence error is standard and will be
omitted.

Given an input parameter> 0, the algorithm works as follows:

1. Letj denote an estimate &]f] that is accurate to within additive accuragy?.
2. Lets? denote an estimate OF"_, f(e;)? that is accurate to within additive accuragy®.

3. If |52 — W(f1)| < 2€3 then output “yes,” otherwise output “no.”

The first step can be performed simply by makiagl /e%) independent draws from the Gaussian dis-
tribution, querylngf on each draw, and letting be the corresponding empirical estlmateEj}ﬂ the result
will be +e3-accurate with high probability. The second step of estimga} ", f(el) was described in
sectiorB.

We now analyze the correctness of the test. The “yes” casstis epsy: Sinc@ is within ¢ of E[f],
and sincgW’| < 1 for all « (by PropositiorIB item 2), we conclude tHat(j) is within +¢3 of the true
vaIueW( [f]). Butsincef is an LTF, this value is precisely’" ; f(e;)2, by Propositiofi.I9 item 3. Now
&2 is within £¢3 of Y7, f(e;)2, and so the test indeed outputs “yes”.

As for the “no” case, the following theorem implies that anpdtion f which passes the test with high
probability isO(¢)-close to an LTF (either a constant functieri or a specific LTF defined bl2[f] and f’s
degree-1 Hermite coefficients):

Theorem 20. Assume thatE[f]| < 1 —e. If | 27, f(ei)?> — W(E[f])| < 462, thenf is O(¢)-close to an
LTF (in fact to an LTF whose coefficients are the Hermite cmeﬁts f(e)).



Proof. Leto = /3", f(e;)?, lett = =Y (E[f]), and leth(z) = L 3 f(e;)a; — t. We will show thatf and
the LTFsgn(h) areO(e)-close, by showing that both functions are correlated sirlyilwith 7. We have

ELfH) = - 3 flei)? ~tBlf] = o — E[/)

where the first equality uses Plancherel. On the other hanérdpositiorIB (item 1), we have

E[h]] = 26(t) — tu(t) = 26~ (BIf))) — tE[f] = /W(ELf]) — ¢E[f], and thus

4¢3
E[h(sgn(h) — f)] = E[|h| — fh] = VW(E[f]) — 0 < ——x e,
[h(sgn(h) — f)] = E[|h| - fh] (E[f]) o < ek
whereC' > 0 is some universal constant. Here the first inequality follaasily fromWW (E[f]) being
4e3-close too? (see Fackl5) and the second follows from the assumption| #gt]| < 1 — ¢, which by
PropositiorIB (item 3) implies thay W (E[f]) > Q(e).
Now given thatE[h(sgn(h) — f)] < Ce?, the value ofPr[f(z) # sgn(h(z))] is greatest if the points

of disagreement are those on whighs smallest. Lefp denotePr[f # sgn(h)]. Sinceh is a normal

random variable with variance 1, it is easy to see thadth| < p/2] < \/%p < p/2. It follows that f and

sgn(h) disagree on a set of measure at lgg®, over which|h/| is at leastp/2. Thus,E[h(sgn(h) — f)] >
2-(p/2) - (p/2) = p*/2. Combining this with the above, it follows that< +/2C - ¢, and we are done. O]

5 A Tester for Balanced Regular LTFs over{—1,1}"

It is natural to hope that an algorithm similar to the one weleyed in the Gaussian case — estimating
the sum of squares of the degre&ourier coefficients of the function, and checking that itchas up with
W of the function’s mean — can be used for LTFs oyerl, 1}™ as well. It turns out that LTFs which are
what we call “regular” — i.e., they have all their degreé-ourier coefficients small in magnitude — are
amenable to the basic approach from Sedflon 4, but LTFs wigich large degreg+ourier coefficients pose
significant additional complications. For intuition, cafer Maj(x) = sgn(z + - - - + z,,) as an example
of a highly regular halfspace arsgn(z;) as an example of a halfspace which is highly non-regularhén t
first case, the argument + - - - + x,, behaves very much like a Gaussian random variable so it ifoonot
surprising that the Gaussian approach can be made to warky the second case, thel-valued random
variablex; is very unlike a Gaussian.

We defer the general case to Secfibn 6, and here presentaftedtalanced, regulat.TFs.

Definition 21. We say that any functiofi: {—1,1}* — {—1,1}is “7-regular” if | f(i)| < 7 forall i € [n].

Definition 22. We say thatan LTF : {—1,1}" — {—1, 1} is “balanced” if it has threshold zero and mean
zero. We defin@TF,, ;- to be the class of all balanced;regular LTFs.

The balanced regular LTF subcase gives an important camadejpigredient in the testing algorithm
for general LTFs and admits a relatively self-containedsengation. As we discuss in Sectidn 6, though,
significant additional work is required to get rid of eithbet‘balanced” or “regular” restriction.

The following theorem shows that we can test the claBB,, , with a constant number of queries:

Theorem 23. Fix any T > 0. There is arO(1/7%)-query algorithmA that satisfies the following property:
Lete be any value > Ct1/8, whereC is an absolute constant. Then4fis run with inpute and black-box
accesstoany : {—1,1}" — {—1,1},

e if f € LTF, ; thenA outputs “yes” with probability at leas2/3;
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e if f ise-far from every function ilLTF,, - then A outputs “no” with probability at least/3.

The algorithmA in Theoren{2ZB has two steps. The purpose of Step 1 is to chatk ik roughly 7-
regular; if it is not, then the test rejects sinftes certainly not ar-regular halfspace. In Step 4,checks that
Yoy F(@)2~W(0) = % This check is based on the idea (see Seffidn 5.1) thanfpregular functionf,
the degree-1 Fourier weight is close%df and only if f is close to being an LTF. (Note the correspondence
between this statement and the results of Seflion 4 in treRg$ = 0.)

We now describe algorithrd, which takes as input a parameter C'r1/6:

1. FirstA estimatesy" , f(i)* to within an additive+72. If the estimate is greater than? then A
halts and outputs “no,” otherwise it continues.

2. NextA estimatesy !, £(4)? to within an additive+C;7'/3 (whereC; > 0 is an absolute constant
specified below). If this estimate is within an additiv@C, /3 of % then A outputs “yes”, otherwise
it outputs “no.”

A description of how the sums of powers of degree-1 Fourieffiments can be estimated is given in
Sectior B, see Corollafy1L3 in particular.

In Sectiof &1L, we prove two theorems showing that balanegalar LTFs are essentially characterized
by the property>_""" , f (i)? ~ % In Sectior 5P we prove correctness of the test.

5.1 Two theorems aboutTF,, ;.

The first theorem of this section tells us that afye LTF,, , has sum of squares of degree-1 Fourier
coefficients very close té. The next theorem is a sort of dual; it states that any Bodigaction f whose
degree-1 Fourier coefficients are all small and have sumuzreg~ % is close to being a balanced regular
LTF (in fact, to the LTF whose weights equik degree-1 Fourier coefficients). Note the similarity ifrisp
between these results and the characterization of LTFsnefihect to the Gaussian distribution that was
provided by Proposition19 item 3 and Theorgnh 20.

Theorem 24. Let f € LTF,, .. Then|>_7, f(i)? — 2| < O(r%/3).
Proof. Let p > 0 be small (chosen later). Using Proposition 7.1 and Theoref{ltKMOO/|, we have
P 2
S p¥f(9)? = Z arcsin p £ O(7).
S 7T
On the LHS side we have thgt(S) = 0 for all even|S| since f is an odd function, and therefore,

|25 P1F(9)2 = p X510 F(9)?] < 9P 31525 f(S)? < pP. On the RHS, by a Taylor expansion we
haveZ arcsin p = 2p + O(p?). We thus conclude

p3 F0 = 200+ 7).

Dividing by p and optimizing withp = ©(7'/3) completes the proof. O

Theorem 25. Letf : {—1,1}" — {—1,1} be any function such thaf (i)| < 7 forall iand| 31", f(i)* -
2| <. Write {(z) :== Y11, f(i)z;. Thenf andsgn(¢(z)) are O(y/7 + 7)-close.
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Proof. First note that ify > 1/3 then the claimed bound is vacuous, so we may assume that /3. Let
L:=4/>", f(z’)Z; note that by our assumption arwe havelL > % We have:

(2/m) -y < éf@)? — E[f(] < E[|(] (@)
< V2/7-L+0(r) (5)
< VRm2T A+ 0(7) < (2/7) + O(1) + O(7).

The equality in[(#) is Plancherel’s identity, and the latterquality is becauség is a +1-valued function.
The inequality [b) holds for the following reasof(z) is a linear form over randornt1’s in which all the
coefficients are at most in absolute value. Hence we expect it to act like a Gaussipriiq@(r) error)
with standard deviatio,, which would have expected absolute valye /= - L. See Propositiorls 58 ahdl59
in Appendix[A for the precise justification. Comparing theemll left- and right-hand sides, we conclude
thatE[|¢[] — E[/¢] < O(7) + O(r).

Let e denote the fraction of points i1, 1}"™ on which f andsgn(¢) disagree. Given that there isa
fraction of disagreement, the vallig|¢|] — E[f/] is smallest if the disagreement points are precisely those
points on which/¢(x)| takes the smallest value. Now again we use the fact/tehbuld act like a Gaussian
with standard deviatiord, up to some erroO(7/L) < O(27); we can assume this error is at megt,
since ife < O(r) then the theorem already holds. Hence we have (see Théalém @®cise justification)

Pr(|¢] <¢/8] =Pr[|¢/L| < €/8L] < Pr[|[N(0,1)] <¢/8L] +¢€/4 <¢e/8L+¢€/4<¢/2,

since L > 1/2. It follows that at least ar/2 fraction of inputsz have bothf(z) # sgn(¢(x)) and
|6(x)| > €/8. This implies thalE[|¢|]] — E[f] > 2 (¢/2) - (¢/8) = ¢2/8. Combining this with the previous
boundE|[|¢|] — E[f{] < O(v) + O(7), we gete?/8 < O(v) + O(7) which gives the desired result. [

5.2 Proving correctness of the test.

First observe that for any Boolean functign {—1,1}" — {-1,1},if | f(i)| < 7 forallithen}", , f(i)* <
723 .er f(i)? < 72, using Parseval. On the other hand|fifi)| > 27'/2 for somei, then>"7, f(i)* is
certainly at least672.

Suppose first that the functighbeing tested belongs IdI'F,, -. As explained above, in this cagewill
with high probability pass Step 1 and continue to Step 2. BgcfenmiZh the true value of;" , f(i)2is
within an additiveO(7%/3) of 2; sinceO(r2/%) < C;7!/3 the algorithm outputs “yes” with high probability.
So the algorithm behaves correctly on function&/irt, -

Now supposef : {—1,1}" — {—1,1} is such that the algorithm outputs “yes” with high probajli
we show thatf must bee-close to some function ibTF,, -. Since there is a low probability that outputs
“no” in Step 1 onf, it must be the case that eapf{z')| is at most271/2. Since f outputs “yes” with high
probability in Step 2, it must be the case thaf", f(i)? is within an additiveO(71/3) of 2. Plugging in
2712 for “7” and O(71/3) for “+” in TheoremZ5, we have thatis C7'/%-close tosgn(¢(z)) whereC is
some absolute constant. This proves the correctneds of

To analyze the query complexity, note that Corollary 13stek that Step 1 required(1/7%) many
queries, and Step 2 onl9(1/7%/3), so the total query complexity i9(1/7%). This completes the proof of
Theoren{ZB. O

6 A Tester for General LTFs over{—1,1}"

In this section we give our main result, a constant-quertetesr general halfspaces ovér1,1}". We
start with a very high-level overview of our approach.

11



As we saw in Sectiofl 5, it is possible to test a functjofor being close to a balancedregular LTF.
The key observation was that such functions have , f‘(z’)2 approximately equal té if and only if they
are close to LTFs. Furthermore, in this case, the functiomsetually close to being the sign of their degree-
1 Fourier part. It remains to extend the test described tluenandle general LTFs which may be unbalanced
and/or non-regular.

A clear approach suggests itself for handling unbalancgdlae LTFs using thé? (-) function as in
Sectior#. This is to try to show that fgran arbitraryr-regular function, the following holdsy ;" , f(i)2
is approximately equal td/ (E[f]) if and only if f is close to an LTF — in particular, close to an LTF whose
linear form is the degre&+ourier part off. The “only if” direction here is not too much more difficulteth
TheorenZb (see Theordml 38 in Secfiod 6.2), although thé desgrades as the function’s mean gets close
to 1 or —1. However the “if” direction turns out to present a significanobabilistic difficulty.

In the proof of Theorerfi 24, the special case of mean-zeroppeaded to two results frorh [KKMOD7].
The first shows that a balanceeregular LTF can be represented with “small weights” (smathpared to
their sum-of-squares); the second shows E@Ip's f (9)?% is close to% arcsin p for balanced LTFs with
small weights. It is not too hard to appropriately geneeatize second of these to unbalanced LTFs with
small weights (see Theordml37 in Secfiod 6.2). However gdimierg the first result to unbalanced LTFs is
quite complicated, and requires the following theorem,clrhwe prove in Sectiof8A.:

Theorem 26. Let f(z) = sgn(wyx1+- - -+wpx, —0) be an LTF such thal, w? = 1 and§ := |wy| > |w;]
for all i € [n]. Let0 < ¢ < 1 be such thatE[f]| < 1 —e. Then|f(1)| > Q(5¢® log(1/e)).

We now discuss removing the regularity condition; this iezgiadditional analytic work and moreover
requires that several new algorithmic ingredients be ad#uk test. Given any Boolean functignParse-
val's inequality implies that := {i : | f(i)| > 72} has cardinality at most/7*. Let us pretend for now that
the testing algorithm could somehow know the $e{If we allowed the algorithn®(log n) many queries,
it couldin fact exactly identify some set liké. However with constantly many queries this is not possible.
We ignore this problem for the time being, and will discusw/ho get around it at the end of this section.)

Our algorithm first checks whether it is the case that for afldne fraction of restrictions to J, the
restricted functiory,, is e-close to a constant function. If this is the case, tiiesman LTF if and only iff is
close to an LTF which depends only on the variables.if5o in this case the tester simply enumerates over
“all” LTFs over J and checks whethef seems close to any of them. (Note that sidde of constant size
there are at most constantly many LTFs to check here.)

It remains to deal with the case that for at least &naction of restrictions td/, the restricted function is
e-far from a constant function. In this case, it can be shovimguEheoreniZ6 that if is an LTF then in fact
everyrestriction of the variables id yields a regular subfunction. So it can use the testing phoeefor
(general mean) regular LTFs already described to checkdhatost restrictionsr, the restricted function
f=is close to an LTF — indeed, close to an LTF whose linear foritsiswn degree- Fourier part.

This is a good start, but it is not enough. At this point thégieis confident that most restricted functions
f» are close to LTFs whose linear forms are their own degdréeurier parts — but in a true LTF, all of
these restricted functions are expressible usiogramorlinear form. Thus the tester needs to teatrwise
consistencyamong the linear parts of the differefyt’s.

To do this, recall that when the algorithm tests that a sl functionf is close to an LTF, the actual
test is that there is near-equality in the inequa[t)fs‘:1 fx(8)2 < W(E[f,]). If this holds for bothf,
and f,, the algorithm can further check that the degtegarts of f; and f;. are essentially parallel (i.e.,
equivalent) by testing that near-equality holds in the Ggu8chwarz inequalit)Ew:1 fx(S) frr(S) <

VW (E[f])v/W (E[f~]). Thus to become convinced that most restricfed are close to LTFs over the

2Readers familiar with the notion of influence (Definit[all ®@)l recall that for any LTFf we havelnf;(f) = | f(i)| for eachi.
Thus Theorerfid6 may roughly be viewed as saying that “everyambiased LTF with a large weight has an influential Valea
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samelinear form, the tester can pick a particul and check tha |, T (S) 2 (S) = /W (E[f#])-

VW (E[f-]) for mostz’s. (At this point there is one caveat. As mentioned eartte,general-mean LTF
tests degrade when the function being tested has mean oldsert—1. For the above-described test to
work, fr« needs to have mean somewhat bounded away frand—1, so it is important that the algorithm
uses a restrictiom™ that has| E[f]| bounded away from 1. Fortunately, finding such a restricisonot a
problem since we are in the case in which at least fraction of restrictions have this property.)

Now the algorithm has tested that there is a single linean fofwith small weights) such that for most
restrictionsr to J, f is close to being expressible as an LTF with linear fatnit only remains for the
tester to check that the thresholds — or essentially eqeritigl for small-weight linear forms, the means
— of these restricted functions are consistent with somigrarp weight linear form on the variables ih
It can be shown that there are at mp&t¥(/) essentially different such linear forms: = — 6, and thus the
tester can just enumerate all of them and check whether fet#®it holds thatE[f,| is close to the mean
of the threshold functiongn(¢ — (8 — w - 7)). This will happen for one such linear form if and onlyfifis
close to being expressible as the LAfr, x) = sgn(w - 7+ ¢ — 0).

This completes the sketch of the testing algorithm, modioexplanation of how the tester can get
around “knowing” what the sef is. Looking carefully at what the tester needs to do witht turns out
that it suffices for it to be able to queryon random strings and correlated tuples of strings, subjegizen
restrictionsr to J. This can be done essentially by borrowing a technique fitwerpaperl[FKR02] (see
the discussion after Theordml42 in Secfion 6.4.2).

In the remainder of this section we make all these ideas ggeanid prove the following, which is our
main result:

Theorem 27. There is an algorithnTest-LTF for testing whether an arbitrary black-bok: {—1,1}" —
{=1,1} is an LTF versus-far from any LTF. The algorithm has two-sided error and nsle most
poly(1/¢€) queries tof.

Remark 28. The algorithm described above is adaptive. We note thatasita [EKR™02], the algorithm
can be made nonadaptive with a polynomial factor increasthenquery complexity (see Remé&rR 44 in
Sectior6.4]2).

Section[&1l gives the proof of Theorém 26. Seclioh 6.2 gwestheorems essentially characterizing
LTFs; these theorems are the main tools in proving the coress of our test. Secti@n 6.3 gives an overview
of the algorithm, which is presented in Secti@nd 6.4[and $estiof 6.6 proves correctness of the test.

6.1 On the structure of LTFs: relating weights, influences ad biases

In this section we prove a structural theorem about LTFs. thBerem says that an LTF’s most influential
variable has influence at least polynomial in the size of thE’'4 largest weight and the size of the LTF’s
bias.

Theorem[Z8. Let f(z) = sgn(>_1, a;z; — 0) be an LTF such tha}_, a? = 1 and§ def la1| > |a;| for all
i € [n]. Let0 < e < 1 be such that E[f]| = 1 — e. ThenInf;(f) = Q(5¢® log(1/e)).

Even thed = 0 case of the theorem, corresponding:te: 1, is somewhat tricky to prove. It appeared
first as Proposition 10.2 of [KKMOO07]. A substantially momgricate proof is required for the general
statement; indeed, the arguments[of [KKM®O07] occur in sohawnodified form as Cases 1.a and 1.b of
our proof below.

We note that it is easy to give aipperbound oninf; (f) in terms of eithe® or e: it is immediate that
Inf; (f) < O(e), and from Proposition 64 we have tHat; (f) < O(5). We suspect thabd(de) may be the
optimal bound for Theore 26.
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6.1.1 Useful tools for proving Theoreni2b.

We first observe that
Infy(f) = Pr[|agzs + -+ + anz, — 0] < 6]. (6)

We shall prove Theorem 26 by lower bounding the right hand efd@).
At many points in the proof of Theoreml26 we will use the follog/fact, which is a simple consequence
of “Poincaré’s inequality” — i.e., the fact that the sum diaction’s influences is at least its variance:

Fact 29. Letg : {—1,1}¥ — {—1,1} be a linear threshold functiog(z) = sgn(Zfz1 a;z; — 0) with
la1| > |a;| foralli =1,...,¢. Thenlnf;(g) > Var[g|/¢.

Proof. Poincaré’s inequality says thﬁf:1 Inf;(g) > Var|g| for any Boolean functioy. Since|a;| > |a;]|
for all i (Propositior[6lL), we havinf;(g) > Inf;(g), and the fact follows. O

The following easily verified fact is also useful:

Fact 30. Letg : {—1,1} — {—1,1} be a linear threshold functiog(z) = sgn(zf:1 a;z; — 6) with
la1| > |0]. ThenVar[g] = (1).

Proof. Since|a;| > |0|, one of the two restrictions obtained by fixing the first vlaléaoutputsl at least
half the time, and the other outputsl at least half the time. This implies that4 < Pr[g(x) = 1] < 3/4,
which givesVar[g] = (1). O

We will also often use the Berry-Esseen theorem, ThedrdnFs5.definiteness, we will writ€' for
the implicit constant in the)(-) of the statement, and we note that for every intectalve in fact have
|Prié(z)/o € A] — Pr[X € A]| <2C7/o.

Finally, we will also use the Hoeffding bound:

Theorem 31. Fix any0 # w € R™ and write||w|| for \/w? + - -- 4+ w?. For any~y > 0, we have

P x> <e /2 and P < — <e 2
xe{_il}n[w zzy|wl] <e xe{_il}n[w < —llwl] <e

6.1.2 Theidea behind Theoreni 26.

We give a high-level outline of the proof before delving i@ technical details. Here and throughout the
proof we suppose for convenience that |a;| > |az| > -+ > |a,| > 0.

We first consider the case (Case 1) that the biggest weéighsmall relative to:. We show that with
probability Q(e?), the “tail” agxg + - - - + ap, Of the linear form (for a suitably choset) takes a value
in [0 — 1,60 + 1]; this means that the effective threshold for the “heagt; + - - - + ag_125_; is in the
range[—1,1]. In this event, a modified version of the_[KKMOO7] proof showmt the probability that
asxe + - - +ag—1x3-1 lies within £6 of the effective threshold iQ(0); this gives us an overall probability
bound ofQ2(5¢?) for @) in Case 1.

We next consider the case (Case 2) that the biggest weéightarge. We define the “critical index”

of the sequence,, ..., a, to be the first index € [n]| at which the Berry-Esseen theorem applied to the
sequence, . . . ,a, has a small error term; see Definitibd 35 below. (This quantas implicitly defined

and used in[Ser®7].) We proceed to consider different cdspending on the size of the critical index.
Case 2.a handles the case in which the critical iridisxlarge” (larger thar® (log(1/¢)/€*). Intuitively,

in this case the weightsy, ..., a; decrease exponentially and the va@hk, a,? is very small, where

k' = ©(log(1/€)/e*). The rough idea in this case is that the effective number @vegit variables is at
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mostk’, so we can use Fdctl29 to get a lower boundidh. (There are various subcases here for technical
reasons but this is the main idea behind all of them.)
Case 2.b handles the case in which the critical indéx“small” (smaller thar® (log(1/¢)/e*)). Intu-

itively, in this case the valuey def A /Zj>k a? is large, so the random variabigxy + - - - + a,x, behaves

like a Gaussian random variabMé(0, o) (recall that sincek is the critical index, the Berry-Esseen error
is “small”). Now there are several different subcases déipgnon the relative sizes of;, andf, and on
the relative sizes of andd. In some of these cases we argue that “many” restrictionsetddil variables
T, - - ., Ty Yield aresulting LTF which has “large” variance; in theseasmwe can use F4cll29 to argue that
for any such restriction the influence of is large, so the overall influence of cannot be too small. In the
other cases we use the Berry-Esseen theorem to approxineatertdom variable,xy + - - - + apz, by a
GaussianV (0, o), and use properties of the Gaussian to argue that the amalogixpressior16) (with a
Gaussian in place afyzy + - - - + a,x,,) is not too small.

6.1.3 The detailed proof of Theoreni26.

We suppose without loss of generality t&t| = —1 +¢, i.e. thatd > 0. We have the following two useful
facts:

Fact 32. We have) < 6 < /21In(2/e).

Proof. The lower bound is by assumption, and the upper bound folfoeva the Hoeffding bound and the
fact thatE[f] = —1 + €. O

Fact 33. Let S be any subset of variables, . .., x,,. For at least ane/4 fraction of restrictionsp that fix
the variables inS and leave other variables free, we haldgf,] > —1 + ¢/4.

Proof. If this were not the case then we would hagf] < (e/4) - 1+ (1 —¢/4)(—1 +€¢/4) < —1 + ¢,
which contradicts the fact th&[f] = —1 + e. O

Now we consider the cases outlined in the previous subsed®ecall that” is the absolute constant in
the Berry-Esseen theorem; we shall suppose w.l.0.g.(hata positive integer. Lef’; > 0 be a suitably
large (relative ta”') absolute constant to be chosen later.

Case 1:6 < €2/Cy. We will show that in Case 1 we actually haluef; (f) = Q(d¢?).
Let us definer” &' {B,...,n} whereg € [n] is the last value such that;"_, a? > 1. Since eacHa;| is
at moste?/Cy < 1/C; (because we are in Case 1), we certainly haveXhat, a? € [%, 3] by choosing’;

suitably large.
We first show that the tail sufn, . a;z; lands in the intervald — 1, 6 + 1] with fairly high probability:

Lemma 34. We have

Pr [Zam S [(9— 1,(9+1] > 62/18.

€T

Proof. Letor denote(>", . a?)l/2 . As noted above we havwg/4/3 < o' < v/2. We thus have

Pr [Zazxz S [(9— 1,9—1—1]

= Pr [U;l Zaixi € 0771[(9 - 1,0 +1]

€T €T
> &([o7'0 — ot 0710 + 03t]) — 2CS0* (7)
> ®([07'0 — ot 0710 + 051]) — 2200 (8)
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where [T) follows from the Berry-Esseen theorem using tbetfaat eacha;| < 6.

If 0 < 6 < 1, then clearly the intervd.'0 — o', 010 + 07.'] contains the interva)0, 1]. Since
®([0,1]) > %, the bounds < €2/C easily gives that(8) is at least/18 as required, for a suitably large
choice ofC;.

If & > 1, then using our bounds ari." we have that

o(lop'0 -0 0p' 0+07') > B(V2-0—/4/3,V2-0+/4/3)
> B([V2-6—\/4/3,V2-0))
> \/4/3-6(vV2-6)
> /4/3-¢(2y/(2/e)) ©)
4 1 €2 €2
V3 ATy (10)

Here [@) follows from Fadiz32 and{}L0) follows from definitiof ¢(-). Sinced < ¢2/Cy, again with a
suitably large choice of’; we easily have\/2CJ < €2/18, and thus[(B) is at least /18 as required and
the lemma is proved. O

Now consider any fixed setting afs, ..., z, such that the taib ;. a;z; comes out in the interval
0—1,0+1], say) ,.pa;x; = 0 — 7 where|r| < 1. We show that the heatbxs + - - - +ag_175_1 liesin
[T — 6,7 + 6] with probability (5); with Lemmal3#, this implies that the overall probabiliy) (§Q(5e?).

Leta £ 02/8, let S € {a,...,3 — 1}, and letR € {2,...,a — 1}. Sinced < ¢2/C;, we have
that 30" a? < 1/8, so consequently/8 < 37, ga? < 1/2. Letting og denote(}", ¢ a?)'/?, we have
V2 <agl <2v2.

def

We now consider two cases depending on the magnitudg.dfetCy = C /4.

Case l.a:|as| < 0/C5. In this case we use the Berry-Esseen theorerfi tmobtain

Pr Zaixi €r—0,7+]
€S

= Pr [oslzaixi €ogllr— 6,7+
€S
> &([og't —05'6,05' T+ 0g'0]) —20(6/Ca)ogt.  (11)

Using our bounds om andog ', we have that thé(-) term of [I1) is at leastv/25) - ¢(2v/2) > §/100.
Since the error terrﬁC(é/Cz)ag1 is at mostd /200 for a suitably large choice df’; relative toC (recall
that C, = C1/4), we have(d) > §/200. Now for any setting ofc,, ..., 231 such thaty, ¢ a;z; lies

in [ — d,7 + J], since each ofas|, ..., |an—1] is at most there is (at least one) corresponding setting of
T9,...,Ta—1 SUCh thatZiE(Rus) a;z; also lies in[t — &, 7 4 §]. (Intuitively, one can think of successively
setting each bit,_1,za—2,...,2;,..., 22 in such away as to always ke@f;jl a;z;in [T —0,7+4]). So

the overall probability thatozs + - - - +ag_125-1 liesin[r — &, 7 + §] is at leas{(§,/200) - 2722 = Q(§),
and we are done with Case 1.a.

Case 1.b:a,, > §/Cs. Similar to Case 2 of [KKMOO7], we again use the Berry-Essé@otem onS, now
using the bound thdt;| < § for eachi € S and bounding the probability of a larger interyal— Cs6, T +
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025]I

Pr [Z a;z; € [T — Co0, 7 + Co0]
€S

Pr [051 Z a;T; € 051[7' — 00, 7 + (0]

1€S
> ®([og't—05'Cad, 05T+ g Ca6]) — 20505 (12)
> B([2v2 — V2055,2V2]) — 4200 (13)

In (I2) we have used the Berry-Esseen theorem aridn (13) weeused our bounds czfg1 andr. Now
recalling thaty < €2/C; < 1/Cy andCy = Oy /4, we havey2C»d < 2v/2, and hence

M@ > V2056 - 6(2V2) — 4206 > C§ (14)

where the second inequality follows by choosifg (and hencels) to be a sufficiently large constant
multiple of C. Now for any setting of,, ..., 2zg_; suchthad , ¢ a;x; = tliesin[r —Cyd, 7+ C3], since
§/Cy <lasl,...,laa—1| < 6, there is at least one setting of the hits . . ., z,_; for which¢ + Z?:}l a;T;
liesin[T—d, 7+4]. (Since, as is easily verified from the definitionsxandC>, we havg a—2)3§/Cy > C46,
the magnitude oz, . . . , a,—1 is large enough to get from— C4 to 7; and since each;| is at mos, once
the interval[r — §, 7 + J] is reached a suitable choice of signs will keep the sum inighe interval.) So in
Case 1.b. the overall probability thatzo+ - - +ag_125_1 liesin[r—J,7+4] is atleasC§-27+2 = (),
and we are done with Case 1.b..

We turn to the remaining case in whighs “large:”

Case 2:0 > ¢2/C;. Let us introduce the following definition which is implicit {Ser07]:

Definition 35. Letay,...,a, be a sequence of values such that > --- > |a,| > 0. Thecritical indexof
the sequence is the smallest valué af [n] such that

Clay|

Z?:k a?

< C30€2. (15)

HereCs > 0is a (suitably small) absolute constant specified belowtéMuat the LHS valu€’|ay|/ Z?:k a?
is an upper bound on the Berry-Esseen error when the the@epglied toagzy + - - - + anzy,.)

Throughout the rest of the proof we writeto denote the critical index afy, ..., a,. Observe that
k > 1 since we have ) )
)
_Gal g G990 s
Siial a-a

where the final bound holds for a suitably small constantahoi C’s.
We first consider the case that the critical indebs large. In the followingCs > 0 denotes a suitably
large absolute constant.

Case 2.a:k > Cyln(1/€)/e* + 1. In this case we defing’ aef [CyIn(1/€)/e*] + 1. Let us also define

def . . .
Ok = 4 /Z?:k/ a?. The following claim shows that; is small:

. 63
Claim 36. We haver,, < Toor -
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Proof. Fori € [n] let us write A; to denote) "
notation let us write to denote¥e?C3/C.

Since we are in Case 2.3, for ahy< i < k' we havea? > (A; = Ca? + (A;+1, or equivalently
(1 —¢)a? > CA;1. Adding (1 — ¢) A;41 to both sides givesl — ¢)(a? + A;11) = (1 — () A; > Aiq1. So
consequently we have

i j, note thatd; = 1 andA4; = a + A;y1. For ease of

3 2
Ap < (L= QF T < U= QAR < (1 ety (OO T < (uicl) |

where in the third inequality we usetl > ¢2/C; (which holds since we are in Case 2) and the fourth
inequality holds for a suitable choice of the absolute camtsty. This proves the claim. O

At this point we knows is “large” (at least?/C}) andoy is “small” (at mosthC ). We consider two
cases depending on whetlteis large or small.

Case 2.a.i:0 < €2/(2C1). In this case we have < 0 < §/2. Sincedoy < €2/(2C1) < §/2, the Hoeffding
bound gives that a random restriction that fixes variablgs. . ., z, gives|apxy + -+ + anxy,| > 4oy

with probability at most—® < 1/100. Consequently we have that for at le@$f 100 of all restrictionsp to

Ty, ..., Zn, the resulting functiorf, (on variablesey, . ..,z —1)is fy(x) = sgn(ar1z1+- - -+ap 1T —1—

0 )Where §/2 <0, < é. Factd{ZP anf30 now |mpIy that each sytthasinf, (f,) = Q(1)/k' = Q(1) -
4/ln(l/e) SO consequentlirnfl(f) is alsoQ(1) - €*/log(1/e€), which certainly suffices for Theorefnl26.
This concludes Case 2.a.i.

Case 2.a.ii:f > €2/(2C1). We now apply the Hoeffding bound (Theor&€nd 31)4exy + - - - + a,z, With
v = 2¢/In(8/¢). This gives thaty s + - - + apr, < —24/In(8/¢) - o with probability at most?/8.
Since2+/In(8/¢) - o < €2/(2C1) < 6, we have that for at leastla— /8 fraction of all restrictiong to
Ty, ..., %y, the resulting functiorf, (on variablesy, . ..,z —1)is fy(x) = sgn(ar1z1+- - -+ap 1T —1—
0,) whered, > 0. i.e. E[f,] < 0. Together with FadE33, this implies that for at leastegt — €2/8 > ¢/8
fraction of restrictiong, we have—1 + ¢/4 < E[f,] < 0. Each suclyf, hasVar[f,] = Q(¢), so by FacEZ9
hasInf; (f,) = Q(e)/k' = Q(e°/log(1/e)). Consequently we have thhtf; (f) = Q(e®/log(1/€)) which
is certainlyQ(de5 / log(1/¢)). This concludes Case 2.a.ii.

Case 2.b:k < Cylog(1/e)/e* + 1. We now definery, - /3", a3 and work with this quantity. First we
consider a subcase in whiefy is “small” relative tof; this case can be handled using essentially the same
arguments as Case 2.a.ii.

Case 2.h.i:o, < 0/(2+/In(8/¢)). As above, the Hoeffding bound (now appliediay, + - - - + a,z,,) gives
thatagxy, + - - - + anz, < —2+/In(8/¢) - oy with probability at most? /8, so for at least a — ¢2/8 fraction

of restrictionsp to x, . . ., x, we haveE[f,] < 0. Using FacEZ3B, the argument from Case 2.a.ii again gives
thatInfy(f) = Q(¢%/log(1/¢)), and we are done with Case 2.b.i.

Case 2.biii: 0, > 60/(24/In(8/¢)). In this case we shall show thaf(0,0}), the zero-mean Gaussian
distribution with variancer,,, assigns at leaftC3d¢? probability weight to the intervah — 6/2,6 + 6/2).
In other words, writingd,,, to denote the c.d.f. aV (0, o), we shall show

D, ([0 — /2,0 +6/2]) > 3C35¢€>. (16)

Given [18), by the Berry-Esseen theorem and the definitidghetritical index we obtain

Pr|> ap€[0—06/2,0+06/2]| > 3C306* — 2C30¢” = Csbe’. (17)
i=k
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For any restrictionp that givesajzy + -+ + anz, € [0 — 0/2,0 + 6/2], Fact[3D givesVar|f,] =
Q(1) and hence Fa€fP9 givasf,(f,) = Q(1)/k = Q(e*/log(1/¢)). By (@) we thus havénf,(f) =
Q(C3€%log(1/¢)), which is the desired result.

We turn to proving[[6). Lep,, denote the c.d.f. aN(0,0%,), i.e. by, (z) & (1/04v/2r)e*/27 . We
first observe that sincg, > 0/(2/In8/¢), we have

00, (0) > Q(1/0%) - € > 6C3¢%, (18)

where the second bound holds for a suitably small choiceeo@lisolute constaidts and uses;, < 1.
We consider two different cases depending on the relataasifs andd.

Case 2.b.ii.A:0/2 > 0. In this case we have that, §/2] C [0 — /2,6 + ¢/2] and it suffices to show that
©0,.([0,8/2]) > 3¢°Cs.
If & > o, then we have

®,,([0,6/2]) > ®,, ([0,01/2]) > 3C3 > 3C35¢°
by a suitable choice of the absolute const@gnt On the other hand, # < o4, then we have

©4,,([0,0/2)) > (§/2)6,,(8/2) = (8/2)¢0, (01/2) = 3C30 > 3C36¢”
for a suitable choice of the absolute constapt This gives Case 2.b.ii.A.

Case 2.b.ii.B:6/2 < 6. In this case we have
Dy, ([0 —6/2,0 +6/2]) > @4, ([0 — §/2,0]) > (5/2) - b0, (0) > 3C36€*

where the final inequality is obtained usirgl(18). This cadek Case 2.b.ii.B, and with it the proof of
TheorenZb. O

6.2 Two theorems about LTFs

In this section we prove two theorems that essentially atarae LTFs. These theorems are the analogues
of Theorem§ 24 arfd®5 in Sectibnls.1.

The following is the main theorem used in proving the congaiess of our test. Roughly speaking, it
says that iff; = sgn(w -z — 61), fo = sgn(w - © — #3) are two regular LTFs with the same weights (but
possibly different thresholds), then the the inner prodidi¢heir degree-1 Fourier coefficients is essentially
determined by their means.

Theorem 37. Let f; be ar-regular LTF. Then

— W(E[f1]))| < 7V/C. (19)

Further, supposef, : {—1,1}" — {—1,1} is anotherr-regular LTFs that can be expressed using the same
linear form asfi; i.e., fx(z) = sgn(w - x — 6) for somew, 61, 05. Then

(Zﬁu)fg(z‘)) ~ W(E[f))W (B[f)

(We assume in this theorem thais less than a sufficiently small constant.)

< rl/8, (20)
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Proof. We first dispense with the case tHaE[f1]| > 1 — r'/1%. In this case, Proposition 2.2 of Tala-
grand [Tal98] implies thab ™, /1(i)> < O(r*/log(1/7)), and Propositiofi18 (item 3) implies that
W (E[f1]) < O(r?/"og(1/7)). Thus

~ W(ELA])| < O Plog(1/7)) < 7°,

so [I9) indeed holds. Further, in this case we have
] ) Cauchy Schwar.

(Zﬁ(z‘)ﬁ(z Zﬁ ) (Zh ) < O(r'°log(1/7)) - 1
=1
and alsoW (E[f1])W (E[f2]) < O(7/5log(1/7)) - 2. Thus [2D) holds as well.

We may now assume thaE([f;]| < 1 — 7'/19, Without loss of generality, assume that the linear form
w defining f1 (and f») has||w|| = 1 and|w;| > |w;]| for all i. Then from Theorer 26 it follows that

T > Infl(fl) > Q(‘wl‘TG/lo IOg(l/T))

which implies thatw,| < O(7%/®). Note that by Propositiofib7, this implies that

Elfi] '~ p(0), k=1,2. (21)

Let (z,%) denote a pair ofi-correlated random binary strings, where= 7'/%. By definition ofS,, we
have
Sy(f1, f2) =2Pr[(w-z,w-y) € AUB] -1,
whereA = [01,00) X [f2,00) and B = (—o0, 01] x (—00,#3]. Using the same multidimensional Berry-
Esseen-based reasoning as in the proof of Proposition TRK&0O07], the fact that|w;| < O(7%/%)
holds for all; implies

+2/5
Pr[(w-z,w-y) € AUB] = Pr[(X,Y) € AU B|,

where(X,Y) is a pair ofp-correlated standard Gaussians. (Note that the error iatibee approximation
also depends multiplicatively on constant powers gf n and of1 — n, but these are just constants, since
|n| is bounded away fron.) It follows that

Sy(f1, f2) '~ Sy(h1, ha), (22)

whereh;, : R — {—1,1} is the function of one Gaussian varialblg(X) = sgn(X — 6y).
Using the Fourier and Hermite expansions, we can write Emugf2) as follows:

FOEO +0- (£ HOR0O) + X 05 RES)RS)
15]>2

72/5 ~ o~
~ hi(0)h2(0) + 1 - hr(Dha(1) + > 071 ()ha(j (23)
j>2

Now by Cauchy-Schwarz (and using the fact that 0) we have

> n¥lf(s S alsIAS)2 > nlslfa(S)? < nz\/z ﬁ(S)Q\/Z F2(8)? =,

1S|>2 15]>2 1S|>2
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The analogous result holds fbg andh.. If we substitute these into Equatidn{23) and also use

T (0) = Elhe] = p(0) "~ Elfi] = F1(®)

which follows from Equation{21), we get:
72/5 42 o

” (z ﬁ(@)ﬁm) S T (D)a(1) = - 26(01) - 26(02).

where the equality is by the comment in Definitian 17 (itemixiding by n and using-%/® /n+n = 271/°
in the error estimate, we get

> R0 = 20(61) - 20(62) = WO ((6). (24)
Since we can apply this witliy and f> equal, we may also conclude
S i R W((6h) (25)

for eachk =1, 2.
Using the Mean Value Theorem, the fact tHat'| < 1 on[—1, 1], and Equation[{21), we conclude

n oo 71/5
;fk(i)2 ~ W(E[f])
for eachk = 1, 2, establishing[{1l9). Similar reasoning applied to the sgadiEquation[[2K¥) yields
n _ o~ 2 7_1/5
(£ A0R0O) = WEAWELD,
implying (Z0). The proof is complete. O

The next theorem is a sort of dual of the previous theorem aficdbe/the main theorem we use in
proving the soundness of our test. Very roughly speakinggys that for any Boolean functignand any
T-regular Boolean functiorf that satisfies certain conditions, if the inner product ef ttegree-1 Fourier
coefficients off andg is close to the “right” value (see Theordm 37), theis close to a particular linear
threshold function whose weights are the degree-1 Founigfficients off.

Theorem 38. Let f,g: {—1,1}" — {—1, 1}, and suppose that:
1. fis r-regular and| E[f]| < 1 — 7%/9;
2. |20 f)? = WE <7
3. [(Zi f(0)9(0))* = W(ELDW (Elg))| < 7, and 37, f()3(i) > —.

Write £(z) for the linear form>."_, (f(i)/o)x;, whereo = /S| f(i)2. Then there exist§ € R such

that g(z) is O(r'/?)-close to the functiosgn(¢(z) — 6). Moreover, we have that each coeffici¢fiti) /o)
of £(z) is at mostO(77/9).
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Proof. We may assuméE[g]| < 1 — 71/9, since otherwisg is 7!/9-close to a constant function, which
may of course be expressed in the desired form. Using thisrgstion, the fact thatE[f]| < 1 — 7%/, and
the final item in PropositioR18, it follows that

W(Elg]) > Q(*") and W(E[f]) > Q(*/?). (26)
The latter above, combined with assumpfibn 2 of the theoedsn, yields
o> Q). (27)

Note that the second assertion of the theorem follows imatelgi from ther-regularity of f and [2Y).
Letd = u~'(E[g]). We will show thatg is O(7'/9)-close tosgn(h), whereh(z) = £(z) — 6, and thus
prove the first assertion of the theorem.
Let us consideE[gh|. By Plancherel and the fact thats affine, we have

Bl = ¥ a(8)is) = 35 L0 gy (29)

|S]<1
On the other hand,

E[gh] < E[|h]] * E[|X — 0[] = 26(0) — 0u(0) = /W (E[g]) — 0 Eg], (29)

where the inequality is becaugeis +1-valued, the following approximation is by Propositibnl 38e
following equality is by Proposition %9, and the last eqyail by definition ofd. Combining Equatior{28)
and Equation[{29) we get

E[Jh]) - <¢ -5t ) )> o). (30)

We now wish to show the parenthesized expressiofi_ih (30) alsrusing Fac{h and the first part of
assumptioi]3 of the theorem, we have

— VW (E[f]) VW (E[g])

< O(r99), (31)

ﬁ:f@

'g W B /W (Blg)

where we used(26) for the final inequality. We can remove rtheri absolute value on the left {31) by
using the second part of assumptidn 3 and observing2tha negligible compared with)(76/9), i.e. we
obtain

S f(0ati) - VBV WERD| < 06") @)

We can also use FaEl 5 and the first part of assumfifion 2 of #wem to getoc — /W (E[f])| <
/W (E[f]) < O(r7/?). Since|W (E[g])| = O(1), we thus have

o/ WE[]) — VW (B VW EL])| < 0(""). (33)

Combining [3B) and(32), we have

5 1030 -0 W(E[g])‘ < 0(").
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Dividing through byo and using[{2]7), this gives that

s~ 3000 _ | < o),

i=1 o
Substituting this into[{30) yields
E[|n] - Elgh] < O(r*?). (34)

Let e denote the fraction of points ifi-1,1}" on whichg andsgn(h) disagree. Suppose first that that
€ < 127 /0. Sinceo > Q(72/9) by (1), in this case we have thak 0(77/9). Thus we may assume that
e > 127 /0. We may apply Theoreln b6 as follows sinee/12 > 7 > max; | f(i)|:

6eo/12 €
o 2

Pr{|h(2)] < e0/12] <

It follows that at least am/2 fraction of inputsz have bothy(z) # sgn(h(x)) and|h(z)| > eo/12. This
implies thatE[|h|] — E[gh] > 2 (¢/2) - (ec/12) = €%0/12. Combining this with the previous bourid{34),
and recalling that > Q(7%/9), we get thai? < O(7%/?) and thuse < O(7'/9). This proves thay is
O(7'/9)-close tosgn(h), as desired. O

6.3 Overview of the testing algorithm

We are givere > 0 and black-box access to an unknoyn {—1,1}" — {—1,1}, and our goal is to test
whetherf is an LTF versusg-far from every LTF.

Our testing algorithmTest-LTF operates in three phases. The first two phases make queriks to
black-box functionf; the third phase is a deterministic test making no queries.

In the first phase the algorithm “isolates” a dethat consists of “influential” coordinates. Essentially,
this set.J consists of those coordinatésuch that f(i)| is large. We call this phassolate-Variables in
Sectio 6. 411 we present theolate-Variables algorithm and prove a theorem describing its behavior.

We note that one can show that it is possiblddentify a setJ as described above usirt®(logn)
gueries using an approach based on binary search. Howéweg, we want to use a humber of queries
that is independent of, we cannot actually afford to explicitly identify the sét(note that indeed this set
J is not part of the output thdsolate-Variables produces). The approach we use to “isolafeivithout
identifying it is based in part on ideas from [FKRZ].

In the second phase, the algorithm generates ar'set ., 7 of i.i.d. uniform random strings in
{—1,1}*; these strings will play the role of restrictions.foThe algorithm then uses the outputlsblate-
Variables to estimate various parameters of the restricted functjgns. . ., f... More specifically, for
each restrictionr?, the algorithm estimates the meRif,.], the sum of squares of degree-1 Fourier co-
efficients) _, f;(k)z, and the sum of fourth powers of degree-1 Fourier coeffisi@nf f;(k)‘*; and for
each pair of /rgstrictionsfi,wj, the algorithm estimates the inner product of degree-1iepuapefficients
> kg fxi(K) fri(k). We call this phaséstimate-Parameters-Of-Restrictions see Sectioi 6.4.2 where
we present this algorithm and prove a theorem describirtgeiavior.

After these two query phases have been performed, in thetheise the algorithm does some compu-
tation on the parameters that it has obtained for the réstiicr!, ..., 7, and either accepts or rejects. In
Sectior &b we give a description of the entire algoriffest-LTF and prove Theoreil 7.
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6.4 The querying portions of the algorithm

6.4.1 Isolating variables.

Isolate-Variableginputs arer, § > 0, and black-box access jo: {—1,1}" — {—1,1})

1. Let/ = [1/(7'%5)]. Randomly partition the séb] into ¢ “bins” (subsetsBy, . . ., By) by assign-
ing eachi € [n] to a uniformly selected;.

2. RunNon-Regular(r2,4/¢, B;) on each seB; and let] be the set of those binB; such that
Non-Regularaccepts. Let = |I|.

3. Output(By, ..., By, I).

We require the following:

Definition 39. Let By, ..., B, be a partition ofn] and be asubset of B, ..., By}. We say thatB;, . .., By, I)
is isolationistif the following conditions hold:

1. lfmaxep, |f(4)] > 7% thenB; € I
2. If Bj € I thenmaxep, |f(i)] > 72/4;
3. If B; € I then the second-largest value|gii)| for i B is less thanrt /32.

Given(By,..., By, I) we define the sef to be

= | {argmax|f(k)[} (35)
Bjel /

The following lemma is useful:

Lemma 40. Let f : {—1,1}" — {—1,1} be any function. With probability — O(6), the setsBy,...., B,
have the following property: for alj, the setB; contains at most one elemerguch that f (i)| > 7*/32.

Proof. Parseval’s identity gives us that there are at mi@s/r® many variables such that|f(i)| >
74/32. For each such variable, the probability that any other sactable is assigned to its bin is at most
(1024/78) /¢ < 1024785. A union bound over all (at mogi024/78 many) such variables gives that with
probability at least — O(#), each variable:; with | f(i)| > 74 /32 is the only variable that occurs in its bin.
This gives the lemma. O

Theorem 41. Let f : {~1,1}" — {-1,1}, and letr,§ > 0 be given. Defing,.x = 16/7* and ¢ =
[1/(7165)]. Then with probabilityl — O(6),

1. Algorithmlsolate-Variablesoutputs a list( B, . .., By, I) that is isolationist;

2. The corresponding set has|J| = |I| < smax, and J contains all coordinates € [n] such that

1f@) =72

The algorithm make®(1/(678)) queries tof.
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Proof. Part (1) of the theorem follows from Lemrhal40 and Lenimia 15.eNbat Lemm&40 contributes
0(0) to the failure probability, and since the algorithm riNen-Regular ¢ times with confidence parameter
set tod /¢, Lemme[Ib contributes anoth€xd) to the failure probability.
We now show that if part (1) holds then so does part (2). Olestirat sincg By, ..., By, I) is isola-
tionist, for eachB; € I there is precisely one element that achieves the maximuoe\al|f (k)|; thus
|J N B;| =1forall B; € I and|J| = |I|. Itis easy to see thay/| < 16/7*; this follows immediately from
Parseval’s identity and part 2 of Definitifnl 39.
For the query complexity, observe thalate-VariablesmakesO(1/(7164)) calls toNon-Regular(2, 6/¢, B;),
each of which require§(1/732) queries tof, for an overall query complexity of

~ 1
0 (5748 >
queries. ]

6.4.2 Estimating Parameters of Restrictions.

Estimate-Parameters-Of-Restrictions (inputs arer,n,6 > 0, M € Z7%, an isolationist list
(By,...,By¢, I)where|I| = s, and black-box access jo: {—1,1}" — {—1,1})

0. Letd’ := O(%% -log(%))-

1. Fori =1,..., M let=* be an i.i.d. uniform string frond—1,1}%.

2. Fori=1,..., M do the following:

(@) MakeN,, := O(log(1/48")/n?) calls toRandom-String(r*, I, ', f) to obtainN,, stringsw.
Let /i* be the average value ¢fw) over theN, strings.

(b) Make N, := O(log(1/4")/n?) calls to Correlated-4Tuple(n?, 7%, 1,4, f,n) to obtain
N, pairs of 4-tuples(w!, z!, 4!, 21), (w?, 22,92, 22). Run algorithmEstimate-Sum-Of-
Fourths on the output of these calls and Ftbe the value it returns. B < 0 or &' > 1
then set’ to 0 or 1 respectively.

3. Fori,j = 1,...,M do the following: MakeN, := O(log(1/4")/n*) calls to Correlated-
Pair(nt, 77, 1,8, f,n) to obtain N, pairs of pairs(w!, z!), (w?, z%). Run algorithmEstimate-
Inner-Product on the output of these calls and [gt' be the value it returns. [f*/| > 1 then
setphd to sgn(pt).

4. Fori=1,..., M, set(c*)? to (p"*)2.

Theorem42.Letf : {—1,1}" — {-1,1},7,n,6 > 0, M € Z*, and let(By, ..., By, I) be an isolationist
list where|I| = s < smax = 16/7%. Then with probability at least — §, algorithm Estimate-Parameters-
Of-Restrictions outputs a list of tuplegr!, !, 54, &1), ..., (7™, g™ &M FM) and a matrix(p™7)1<; j<mr
with the following properties:

1. Eachr'is an element of —1, 1}*; further, the stringg7*);>, are i.i.d. uniform elements df-1,1}*.

2. The quantitieg’, 5/ are real numbers in the rande-1, 1], and the quantitie*, =¢, are real numbers
in the rangef0, 1].
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3. For the setJ corresponding tq By, ..., By, I) as in [3%), the following properties hold. (In (a)-(d)
below, f,.: denotes the restricted function obtained by substitutitig bits for the coordinates of as
follows: for eachk = 1, ..., s, the restriction assigns the valug to the (unique) variable i/ N By,.)

(@) Foreachi=1,..., M, ‘
n* = E[fx]l <.

(b) Foreachi=1,..., M, ' e

7= 3 fm(S)Y <.

|S|=1
(c) Forall1 <i,j < M, - —_ o~
‘ﬁl’j - Z f?TZ(S)fﬂ'J(S)’ <.
1S|=1

(d) Foreachi=1,...,M, ' -

(6°)2 = X2 fri(S)*[ <.

|5]=1

The algorithm make® <n§”%) queries tof.
The proof of Theoreni’32 uses the ideas from Sedflon 3 as wekrain ideas from [FKR0Z]. It
appears in Sectidn 6.4.3.

6.4.3 Proof of Theoren{ZP.

The proof of Theorerir42 follows as a sequence of lemmas. &isgird of terminology: for: € {—1,1}",
andr a restriction of the variables i, we say that: is compatible withr if for every j € J the value of
x; is the value assigned to variabidy .

The goal of Step 2(a) is to obtain estimafésf the meand|f,.:] of the restricted functiong,... Thus
to execute Step 2(a) dstimate-Parameters-Of-Restrictionswe would like to be able to draw uniform
stringsz € {—1,1}" conditioned on their being compatible with particular nesibns 7* of the variables
in J. Similarly, to estimate sums of squares, fourth powers,aéttegree-1 Fourier coefficients of restricted
functions, recalling Sectiof 3 we would like to be able tovdiairs, 4-tuples, etc. of bitwise correlated
strings subject to their being compatible with the restict

The subroutineCorrelated-4Tuple, described below, lets us achieve this. (The subroutResdom-
Pair and Correlated-Pair will be obtained as special cases@érrelated-4Tuple.) The basic approach,
which is taken froml[EKR0Z], is to work with each blockB; separately: for each block we repeatedly
draw correlated assignments until we find ones that agree tht restriction on the variable of in that
block. Once assignments have been independently obtaimedl blocks they are combined to obtain the
final desired 4-tuple of strings. (For technical reasors algorithm actually generates a pair of 4-tuples as
seen below.)
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Correlated-4Tuple (Inputs arer!, 7% € {-1,1}*, a setl of s bins, & > 0, black-box access tp
f:{-1,1}" — {-1,1}, andn > 0. Outputs are two 4-tupleguv’, z!, 4!, 21) and (w?, 22,42, 22),
eachin({-1,1}")%)

1. For eachB; € I, do the followingO(log(s/d")) times:

(a) Draw six independent uniform assignments (call thelh 27, 47 andw?/, 2%/, y27) to the
variables inB;. Let 21 be an assignment to the same variables obtained by indepgnde
assigning each variable iB; the same value it has in'/ © 2% © y% with probability
3 + 37 and the opposite value with probabilify— 37. Let 2% be obtained independently
exactly likez!'7 (in particular we usev’ © 2% © ¢y, notw? ® % ® y%, to obtainz%/).

P={ieB;: (wh); = (@) = (") = (:); = 7 for k = 1,2}.
i.e. Pis the set of thosé € B; such that fok = 1,2, assignmenta/*, 27% yi* and27* all
set biti the same way that restrictior’ setsr .

(b) RunNon-Regular(72 /4,8 /(slog(s/d")), P, f).
2. If any call ofNon-Regular above returned “accept,” l€tv'/, 219yl 219) (w? 2% y2, 22)

denote the pair of assignments corresponding to the caktitapted. If no call returned “accep
stop everything and FAIL.

3. Fork = 1,2 let (w*, z*, 4", 2*) be obtained as follows:

e For eachi ¢ Up,e1B;, set(w”);, (z*);, (y*); independently tat1. Similar to 1(a) above
set both(z!); and(z?); independently tav} ® z; ® y} with probability 3 + 1n.
e For each binB; € I, set the corresponding bits of according tow’; the corresponding
bits of 2 according tar/; the corresponding bits afaccording tay’; and the corresponding
bits of z according to:’.

Return the 4-tuplegw!, !, y', z') and(w?, 22, y?, 2?).

Lemma 43. Each timeCorrelated-4Tuple(r!, 72, I, ', f) is invoked byEstimate-Parameters-Of-Restrictions
with probability 1 —O(&') it outputs two 4-tuplegw!, 21, 4!, 21), (w?, 22, y?, 22), eachin({—1,1}")*, such
that:

e For k = 1,2 we have thaw*, z*, y* and z* are all compatible withr* on .J;

e For k = 1,2, for eachi ¢ J, the bits(w®);, (z¥);, (y*); are each independent uniforeml values
independent of everything else;

e For k = 1,2, for eachi ¢ .J, the bit(z*); is independently randomly equal to'); ® (z'); ® (y');
with probability £ + 17.

Proof. Fix any B; € I, and consider a particular execution of Step 1(a). :&tenote the unique element
of J N B;. By Definition[39 we have thaf(¢,)| > 72/4 and|f (k)| < 7%/32 for all k € B; such that
k # ;. Now consider the corresponding execution of Step 1(b).usésg thatNon-Regular does not
make an error, i¥; € P thenNon-Regular will accept by Lemm&l5, and #; ¢ P then by Lemm&5
we have thatNon-Regular will reject. It is not hard to see (using the fact that> 0) that the element;
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belongs toP with probability ©(1), so the probability tha©(log(s/d")) repetitions of 1(a) and 1(b) will
pass for a giverB; without any “accept” occurring is at mog?(1°8(s/9)) wherec is an absolute constant
less than 1. Thus the total failure probability resultingnfrstep 2 (“stop everything and fail”) is at most
52-0Uee(s/4")) < §. Since each invocation ddon-Regular errs with probability at mos#’ /(s log(s/d"))
and there ar®(slog(s/d)) invocations, the total failure probability from the invéicaas of Non-Regular
is at mostO(¢').

Once Step 3 is reached, we have that for each

e Each ofw’*, 27* yi* is a uniform independent assignment to the variable® jrconditioned on
(W), (27%),,, (y7*),, each being set according to the restrictidh

e Each bitz%€ is compatible withzrj?. For each variable # ¢, in Bj, the bitz{k is independently set to
wl' © 22 © yI* with probability 3 + 17

By independence of the successive iterations of Step 1 fierelnt 5;'s, it follows that the final output
strings(w?, 2!, ', 1) and(w?, 22, 32, 22) are distributed as claimed in the lemma. O

Remark 44. The overall algorithmTest-LTF is nonadaptive because the calls Kmn-Regular (which
involve queries tgf) in Correlated-4Tuple are only performed for thosg; which belong ta/, and the set

I was determined by the outcomes of earlier calliNtsm-Regular (and hence earlier queries tf). The
algorithm could be made nonadaptive by modify@dgrrelated-4Tuple to always perform Step 1 on all
blocksBs, ..., By. Once all these queries were completed for all call€twrelated-4Tuple (and thus all
queries tof for the entire algorithm were done), the algorithm could glynignore the results of Step 1
for those setd3; that do not belong td. Thus, as claimed earlier, there is an nonadaptive versiothe
algorithm with somewhat — but only polynomially — higher gueomplexity (because of the extra calls to
Non-Regularfor setsB; ¢ I).

The subroutineRandom-String(«, I, &', f) can be implemented simply by invoking the subroutine
Correlated-4Tuple(r®, 7, I, 6, f,0) to obtain a paifw!,z!,y!, z!), (w? 22,4?%, %) and then discarding
all components buty!'. This stringw! is uniform conditioned on being consistent with the resigic «*.
We then easily obtain:

Lemmad5. If (By,..., By, I) isisolationist, then with probability at least-9] (whered] := O(MN,¢")),
each of theM/ valuesyi', ...,z obtained in Step 2(a) dEstimate-Parameters-Of-Restrictionsatisfies

" = E[fu]] < n.

Proof. Step 2(a) makes a total @/ N, many calls toCorrelated-4Tuple, each of which incurs failure
probability O(¢"). Assuming the calls t€orrelated-4Tuple all succeed, by the choice &, each of the

M applications of the Chernoff bound contributes anotfieo the failure probability, for an overall failure
probability as claimed. O

Now we turn to part 3(b) of TheoremM}2, corresponding to Sty af Estimate-Parameters-Of-
Restrictions. We have:

Lemma 46. There is an algorithmEstimate-Sum-Of-Fourths with the following property: Suppose the
algorithm is given as input valueg 6 > 0, black-box access tg¢, and the output ofV, many calls to
Correlated-4Tuple(r, 7, 1,9, f,n). Then with probabilityl — ¢ the algorithm outputs a value such that

- Y fk)Y<n

ke€n],k¢J
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Proof. The algorithm is essentially that of Lemiid 12. Consider tleofoof LemmdIPR in the case where
there is only one functiory, andp = 4. For the LHS of [[1), we would like to empirically estimate
E[f: (o) fr(a®) fr(a?) fr(a?)] whereal, ..., o* are independent uniform strings conditioned on being
compatible withr. Such strings can be obtained by taking eatéh= w', o? = w?,a? = z! anda* = 22
where(w!, 2t yt, 21), (w?, 22,42, 2?) is the output of a call t€orrelated-4Tuple(r, 7, I, 3, f, 7).

For the RHS of[{lL), we would like to empirically estimd®f, (a') fr(a?) fr(a?) fr(a*)] where each
of a', a2, 0 is independent and uniform conditioned on being compatidte 7, ando* is compatible
with = and has each bin*); for i ¢ J independently set equal to! ® a2 ® a3); with probability 2 + 7.
By Lemmal4B, such strings can be obtained by takihg= w', a? = 2!, o® = y!, anda* = 2'. The
corollary now follows from LemmB12. O

Observing that the two restrictions that are argumentSdoelated-4Tuple in Step 2(b) are both?,
Lemmd48 directly gives us part 3(b) of TheorEnh 42:

Lemmad47.If (By,..., By, I)isisolationist, then with probability at least- o/, (whered,, := O(M N,.d")),
each of theM valuesr® obtained in Step 2(b) dEstimate-Parameters-Of-Restrictionssatisfies|x’ —

st Fi (S)Y < .

Now we turn to parts 3(c)-(d) of Theordml42, correspondingteps 3 and 4 of the algorithm. The sub-
routineCorrelated-Pair(r, 77, I, ', f,n) works simply by invokingCorrelated-4Tuple(=?, 7/, I, &, f,n)
to obtain a paifw!, z',y!, 2'), (w?, 22, 4%, 22) and outputtingu', 1), (u?, 22) where each/* = (w* ©
zF © y*). The following corollary of Lemmd_12 describes the behavibralgorithm Estimate-Inner-
Product:

Lemma 48. There is an algorithnEstimate-Inner-Product with the following property: Suppose the al-
gorithm is given as input valueg § > 0, black-box access t$, and the output ofV, many successful calls
to Correlated-Pair (7!, 72, 1,4, f,n). Then with probabilityl — § the algorithm outputs a valuesuch that

o= Y Falk) k) <.

ke€[n],k¢J

Proof. Again the algorithm is essentially that of Lemid 12. Consttie proof of Lemm&12 in the case
where there are = 2 functions f,:» and f,2. For the LHS of [(1), we would like to empirically esti-
mateE[f,, (o) fr2(a?)] wherea!, o? are independent uniform strings conditioned on being cdilipa
with restrictionsm! and 72 respectively. Such strings can be obtained by taking edcto be u* where
(u', zY), (u?, 22) is the output of a call t€orrelated-Pair (7!, 72, 1,5, fn).

For the RHS of[{lL), we would like to empirically estimalf,, (a!)f.2(a?)] wherea! is uniform
conditioned on being compatible with' anda? is compatible withr? and has each bita?); for i ¢ J
independently set equal fe!); with probability 3 + 7. By LemmaZB and the definition @orrelated-
Pair, such strings can be obtained by taking = «! anda® = 22. The corollary now follows from
LemmaTR. O

Lemmd48B gives us parts 3(c)-(d) of Theorem 42:

Lemma49. If (By,..., By, I) isisolationist, then with probability at least-d4 (whered} := O(M?N,¢"))
both of the following events occur: each of th€ values(5*/)? obtained in Step 3 d&stimate-Parameters-
Of-Restrictions satisfies|p™ — 3°,5_; fxi(S)fr(S)| < 1, and each of thel/ values(5*)* obtained in

Step 4 satisfie§5")* — 3 51— fxi(S)*| < -
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This essentially concludes the proof of parts 1-3 of Thed®m The overall failure probability is
O(0} + 65 + 0%); by our initial choice oy’ this isO(6).

It remains only to analyze the query complexity. It is notchtar see that the query complexity is domi-
nated by Step 3. This step make€ N, = O(M? /%) invocations taCorrelated-4Tuple(r’, 7/, I, &', f,7);
at each of these invocatio®@orrelated-4Tuple makes at most

O(Smax 108 ($max/3") = O(1/7)
many invocations tdlon-Regular(72 /4, ’, P, f), each of which requires
O(10g(Smax 10g(smax/0')/8') /732)) = 5(1/732)

gueries by LemmBgZ5. Thus the overall number of queries isoat m

~ ( M?
O( 2 36) :
n°T
This concludes the proof of Theoréml 42. O

6.5 The full algorithm

We are given black-box access fo: {—1,1}" — {—1, 1}, and also a “closeness parameter> 0. Our
goal is to distinguish betweefi being an LTF andf beinge-far from every LTF, usingoly(1/e) many
queries. For simplicity of exposition, we will end up diglirishing from being)(¢)-far from every LTF.
The algorithm for the test is given below, followed by a higkiel conceptual explanation of the various
steps it performs.
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Test-LTF (inputs are: > 0 and black-box access i: {—1,1}" — {—1,1})

0. Letr = X, a “regularity parameter”, wher& is a large universal constant to be specified Bter.
Let  be a sufficiently small absolute constant.

We will also taken = 7 (the error parameter f@stimate-Parameters-Of-Restriction$, sy.x =
16/74, andM = poly(smax) log(1/6) /€.

1. Runlsolate-Variables(r, ) to obtain output(B, ..., By, I). This implicitly defines some set
J C [n] and explicitly defines its cardinality (the same as the ceity of I), somes with
5 < Smax-

2. RunEstimate-Parameters-Of-Restriction$r, n, d, M, (B, ..., By, I), f). This produces a list
of restrictionsr? € {—1,1}* and real valueg’, (¢*)%, k¢, p*/ wherel <i,j < M.

3. At this point there are two cases depending on whethertahedraction ofi’s for which |z¢| >
1 —eis atleastl — e:

(@) (The case that for at least a- ¢ fraction ofi’s, ‘| > 1 — e.)
In this case, enumerate all possible lengtinteger vectorsy with entries up ta@©(slogs)
in absolute value, and also all possible integer threshbidghe same range. For each pair
(w, 0), check whetheggn(w - 7" — ) = sgn(p") holds for at least & — 20¢ fraction of the
valuesl < i < M. If this ever holds, ACCEPT. If it fails for allw, ), REJECT.

(b) (The case that for at least affraction ofi’s, |i’| < 1 — ¢.)
In this case, pick any* such thaizi" | < 1 — e. Then:

i. Check that’ < 27. If this fails, REJECT.

ii. Checkthat|(c%")2 — W ("")| < 2712, If this fails, REJECT.

iii. Check that both|(5""")2 — W (i )W (ii*)| < 2712 and 5" > —7 hold for all
1 < < M. Ifthis fails, REJECT.

iv. Enumerate all possible lengthvectorsw whose entries are integer multiples\df /s,
up to20(1°25) /In(1/7) in absolute value, and also all possible threshéldsth the
same properties. For each péir, #), check thatfi — 1(f — w - 7*)| < 51/7 holds for
all 7¥’s. If this ever happens, ACCEPT. If it fails for dlv, §), REJECT.

#We will eventually takeX = 108.

Note that all parameters described in the test are fixed poljals ine. Further, the query complexity
of bothIsolate-Variables and Estimate-Parameters-Of-Restrictionsis polynomial in all parameters (see
Theoremd41~42). Thus the overall query complexitpady(1/¢). As given, the test is adaptive, since
Estimate-Parameters-Of-Restrictionsdepends on the output tsfolate-Variables. However, in remark44
we discuss how the test can easily be made nonadaptive witla @olynomial blowup in query complexity.

In Sectio &6 we will show that indeed this test correctlstidguishes (with probability at leagy3)
LTFs from functions that ar@(e)-far from being LTFs. Thus our main testing result, Theof&intlds as
claimed.

6.5.1 Conceptual explanation of the test.

Here we provide a high-level description of the ideas unyilaglthe various stages of the test. The following
discussion should not be viewed in the light of mathemastaements but rather as narrative exposition
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to aid in understanding the test and its analysis. (It mag bés useful to refer back to the sketch at the
beginning of Sectiohl6.)

In Step 1, the idea is that s (roughly) the set of variableissuch that f(i)| > 72.

In Step 2, eachr® is an i.i.d. uniform randorg\restriction of the variables.n Eagb value/ji is an
estimate ofE[f,:], each(c*)? is an estimate 0f_, f.:(k)?, eachs' is an estimate of_, f.:(k)*, and each
77 is an estimate of,, f: (k) f (k).

The idea of Step 3(a) is that in this case, almost every céistnim of the variables in/ causesf, to be
very close to a constant functiadnor —1. If this is the case, thelf is close to an LTF if and only if it is
close to an LTF which is a junta over the variableg/inStep 3(a) enumerates over every possible LTF over
the variables in/ and checks each one to see if it is closg to

If the algorithm reaches Step 3(b), then a non-negligildetfon of restrictionsr have| E|[f,]| bounded
away from 1. We claim that whefiis an LTF, this implies that at least one of those restrigishould be
T-regular, and moreover all restrictions should\e-regular (these claims are argued using Propodifidn 62
and TheorerfL26, respectively). Step 3(b)(i) verifies that such restrictiom’” is indeed,/7-regular.

Step 3(b)(ii) checks that the sum of squares of degree-lidgtocwefficients) , fﬂ (k)? is close to
the “correct” valueW (E[f,.<]) that the sum should take ff .~ were a,/7-regular LTF (see the first in-
equality in the conclusion of Theorem]37). If this check passStep 3(b)(iii) checks that every other
restriction f..; is such that the inner product of its degree-1 Fourier caeffts with those off,..«, namely
kaf;(k)ﬁ;(k), is close to the “correct” valu&l (E[f.:])W (E[f,:+]) that it should take iff,; and
[+ were LTFs with the same linear part (see Theofein 37 again).

At this point in Step 3(b), if all these checks have passed @éwery restrictionf;: is close to a function
of the formsgn(¢(x) — 0,) with the same linear part (that is based on the degree-1 dtauoefficients of
f.i+, see TheoreriB8). Finally, Step 3(b)(iv) exhaustively &se@ll” possible weight vectorsy for the
variables inJ to see if there is any weight vector that is consistent withestrictionsf,.:. The idea is that
if f passes this final check as well, then combiningith ¢ we obtain an LTF thaf must be close to.

6.6 Proving correctness of the test

In this section we prove that the algorithifast-LTF is both complete and sound. At many points in these
arguments we will need that our large sample. .., 7 of i.i.d. uniform restrictions is representative of
the whole set of alR® restrictions, in the sense that empirical estimates obuarprobabilities obtained
from the sample are close to the true probabilities overealirictions. The following proposition collects
the various statements of this sort that we will need. Allgfsaare straightforward Chernoff bounds.

Proposition 50. After running Steps 0,1 and 2 ®&st-LTF, with probability at leastl — O(4) (with re-
spect to the choice of the i.i.d!, ..., 7’s in Estimate-Parameters-Of-Restriction$ the following all
simultaneously hold:

1. The true fraction of restrictions to .J for which |E[f,]| > 1 — 2¢ is within an additivee/2 of the
fraction of ther”’s for which this holds. Further, the same is true about ocences off E[f,]| >
1—¢/2.

2. For every paifw*, 6*), wherew* is a lengths integer vector with entries at moz?(*1°2 %) in absolute
value and¥* is an integer in the same range, the true fraction of reswits 7 to J for which

| E[fz] —sgn(w* -7 —0%)| < 3/5
is within an additivee of the fraction ofri’s for which this holds. Further, the same is true about

occurrences ofgn(E[f;]) = sgn(w* - m — 0*).
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3. For every fixed restrictiom™ to J, the true fraction of restrictions to J for which we have

(" 7 ()72 (S))2 = W(ELfr- )W (ELf])] < 37/12

|S|=1
is within ane fraction of the true fraction of*’s for which this holds.

4. For every fixed pai{w*, 6*), wherew* is a lengths vector with entries that are integer multiples of
V/7/s at most29(s1og9) | /In(1/7) in absolute value and* is an integer multiple of/7 /s in the same
range, the true fraction of restrictions to J for which

|E[fa] = p(0" —w™ - m)| <61
is within an additivee of the fraction ofr?’s for which this holds.

Proof. All of the claimed statements can be proved simply by usingr@bif bounds (using the fact that the
7"s are i.i.d. andM is large enough) and union bounds. For example, regardingfdt for any particular
(w*,0*), a Chernoff bound implies that the true fraction and the eicgdifraction differ by more tham
with probability at mostxp(—Q(e2M)) < §/2P°¥(), using the fact thab/ > poly(s)log(1/5)/e. Thus
we may union bound over aP°V(s) possible(w*, 6*) to get that the statement of itdfh 4 holds except with
probability at most. The other statement and the other items follow by similarasier considerations.[]

6.6.1 Completeness of the test.

Theorem 51. Let f : {—1,1}" — {—1,1} be any LTF. Therf passeslest-LTF with probability at least
2/3.

Proof. Steps 1 and 2 of the test, where querying 'toccurs, are the places where the test has randomness.
We have that Step 1 succeeds except with probability at masésuming it succeeds, the sebecomes
implicitly defined according td{35). Step 2 also succeedspikwith probability at most; assuming it
succeeds, we obtain restrictionsand estimateg’, (5%)?, &, 5/ that satisfy the conclusion of Theor&m 42,
with » := 7. Finally, in Propositiof. 30 (which relates the empiricabperties of the restrictions to the
true properties), all conclusions hold except with proligbat mostO(d). Thus all of these assumptions
together hold with probability at least— O(¢), which is at leas/3 when we take) to be a sufficiently
small constant. Note that we have not yet used the factftigan LTF.

We will now show that given that all of these assumptions htild fact thatf is an LTF implies that
the deterministic part of the test, Step 3, returns ACCEPRg c@hsider the two cases that can occur:

Case 3(a): for at least a —e¢ fraction of i's, |i] > 1—e. Since Theorerfid2 implies thgt! —E[f.:]| < 7,
and sincen < ¢, in this case we have that for at least a ¢ fraction of thei’s it holds that| E[f,.:]| >
1—e—n>1-2e. Applying Propositior .50 iteriil1, we get thgE[f]| > 1 — 2¢ for at least al — 2¢
fraction of all2® restrictionsr on J. It follows that f is 2¢ - % + (1 — 2¢) - € < 2e-close to being a junta on
J. Thus by Propositiof 3 we have thats 2¢-close to being an LTF od.

Write this LTF onJ asg(w) = sgn(w* - m — 6*), wherew* is an integer vector with entries at most
20(slogs) in absolute value and* is also an integer in this range. (SincH < s, any LTF on.J can be
expressed thus by the well-known result of Muragiaal. [MTT61].) Since f is 2¢-close tog, we know
that for at least & — 10e fraction of the restrictionsr to J, f-(z) takes the valug(7) on at least at/5
fraction of inputse. l.e.,| E[f,] — sgn(w* - m — 6*)| < 3/5 for at least a — 10e fraction of all7’s. Using
Propositior[ 5D iterf]2 we conclude tHdE[f,.i] — sgn(w* - ¢ — 6*)| < 3/5 for at least al — 20¢ fraction
of the 7’s. But for theser’’s we additionally haves’ — sgn(w* - ©* — 6*)| < 3/5 4+ n < 1 and hence
sgn(pt) = sgn(w* - 7w — 0*). Thus Step 3(a) returns ACCEPT once it tries’, 6*).
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Case 3(b): for at least ane fraction of i’s, |[i'| < 1 —e. In this case we need to show that Steps i.—iv.
pass.

To begin, sincdii’ — E[f,i]| < n < ¢/2 for all i, we have that for at least anfraction of thei’s,
|E[f]| <1—¢/2. Thus by Propositio %0 itefd 1, we know that amonga&ltestrictionsr to .J, the true
fraction of restrictions for whichE[f ]| < 1 — ¢/2 is at leask/2.

On the other hand, sincé contains all coordinateg with | f(j)| > 72, we know from Propositioh 62
that /. is not-regular for at most a fraction of the2* restrictionsr to J. Sincer < ¢/2, we conclude
that there must exist some restrictiof to the coordinates id for which both| E[f,]| <1 —¢/2 and fx,
is T-regular.

Expressf asf(w,x) = sgn(w’ -7+ ¢-2—6"), wherer denotes the inputs i, 2 denotes the inputs not
in J, and/ is normalized so thd}/|| = 1. We've established that the LTk, (z) = sgn(¢-z — (0’ —w’ - mp))
has|E[fr,]| <1 —¢€/2 andisT-regular. Applying Theoref 26, we conclude that all coedfits in¢ are, in
absolute value, at mog)(7/(e%log(1/¢))) < Q(\/7); here use the fact thdt > 12.. In particular, we've
established:

Claim 52. There is a linear forn? with ||¢|| = 1 and all coefficients of magnitude at mdst,/7), such
that the following two statements hold: 1. For every resimic 7 to J, the LTF f; is expressed ag,(z) =
sgn(f -z — (0" —w'-7)). 2. For every restrictionr to .J, f is y/7-regular.

The second statement in the claim follows immediately frown first statement and Propositibnl 64,
taking the constant in th@(-) to be sufficiently small.

We now show that Steps 3b(i)—(iv) all pass. Sirfgds \/7-regular for allr, in particular f i is \/7-
regular. Hencezw‘:1 f/,ri\*(S)4 < 7 (see Propositioi14) and $86° < 7+ n < 2r. Thus Step 3b(i)
passes.

Regarding Step 3b(ii), Claifib2 implies in particular thfat- is \/7-regular. Hence we may apply
the first part of Theorerl 37 to conclude thal_, ﬁ;(S)Q is within 7/12 of W (E[f,+]). The former
quantity is withiny of (%")2; the latter quantity is withim of W (‘") (using |W’| < 1). Thus indeed
(57)% is within 71/12 4 5 + 5 < 271/12 of W(ji'"), and Step 3b(ii) passes.

The fact that the first condition in Step 3b(iii) passes foovery similarly, using the second part of
Theoren33 (a small difference being that we can only sayWhdE[f ..« ])W (E[f:]) is within, say,3n of
W (" )W (11%)). As for the second condition in Step 3b(iii), singés an LTF, for any pair of restrictions
m, 7 to J, the functionsf, and f,. are LTFs expressible using the same linear form. This imghat
and f,» are both unate functions with the same orientation, a cmmdwhich easily yields thaf,(;) and
ﬁ/(j) never have opposite sign for alyWe thus have tha} ¢, ﬁ(S)E;(S) > 0 and so indeed the

conditionp®” ¥ > —n holds for alli. Thus Step 3b(iii) passes.

Finally we come to Step 3b(iv). Clailib2 tells us that for gvegstriction !, we havef,.:(z) =
sgn(f -z — (0" —w' - %)), where/ is a linear form with 2-norm 1 and all coefficients of magnéuat
mostQ (/7). Applying Propositiori 57 we conclude thaE|[f.] — u(¢' — w' - 7%)| < /7 holds for alli
(again, ensuring the constant in t¢) is small enough). Using the technical Lemin& 53 below, werinfe
that there is a vectar* whose entries are integer multiples\gF /s at mos2©(s1°25), /In(1/7) in absolute
value, and an integer multiplé® of /7 /s, also at mose®¢s), /In(1/7) in absolute value, such that
| E[fri] — u(0* —w* - 7%)| < 4,/7 holds for allz®. By increasing thel,/7 to 4\/7 + 1 < 5,/7, we can
make the same statement wjihin place ofE[f,:]. Thus Step 3(b)(iv) will return ACCEPT once it tries
(w*,0%). O

Lemma 53. Suppose thatE[f,] — u(6' — v’ - 7)| < /7 holds for some sdi of 7’s. Then there is a vector
w* whose entries are integer multiplesg¥ /s at mos29(s1°25) | /In(1/7) in absolute value, and an integer
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multipled* of \/7 /s, also at mosg®(#1°25) | /In(1/n) in absolute value, such thaE[f,] — u(0* —w*-7)| <
4n'/6 also holds for allr e II.

Proof. Let us express the given estimates as
{Blfs] = V7T <0 —w' - 7) <E[fa] +V7} (36)

We would prefer all of the upper boun#i§ /] + /7 and lower bound¥[f.| — /7 in these double inequal-
ities to have absolute value either equal f@r at mostl — /7. It is easy to see that one can get this after
introducing some quantities < K, K. < 2 and writing instead

{E[fﬂ'] _KTI'\/FS N(el_w/'ﬂ-) < E[fﬂ] +K7/T\/;}7TEH' (37)
Using the fact that: is a monotone function, we can apply ! and further rewrite[{37) as

{cﬂ SH’—w'-wgCﬂ} (38)

mell?

where eachc,|, |Cr| is eitherco (meaning the associated inequality actually drops out)scaitimost
p (=14 /7) < O(y/In(1/7)). Now (38) may actually be thought of as a “linear program” fe t
entries ofw’ and inf’ — one which we know is feasible.

By standard results in linear programming [Chv83] we knoat thsuch a linear program is feasible, it
has a feasible solution in which the variables take valuatsate not too large. In particular, we can take as
an upper bound for the variables

_ |max det(A)]

| mingdet(B)|’
where B ranges over all nonsingular square submatrices of the radmistmatrix andA ranges over all
square submatrices of the constraint matrix with a portibthe “right-side vector” substituted in as a
column. Note that the constraint matrix from¥38) containk/at-1's and that the right-side vector contains
numbers at mos(+/In(1/7)) in magnitude. Thus the minimum in the denominatoiLof (39} Isa@st1 and
the maximum in the numerator ¢f{39) is at m6¥t,/In(1/7)) - (s + 1)!; hencel < 20G1o8s), /In(1/7).

Having made this conclusion, we may recast and slightly wedBT) by saying that there exist a pair
(w”,6"), with entries all at mos£ in absolute value, such that

{Elfz] —2vT < p(0" =" - 7) S B[fa] +2V7}
Finally, suppose we round the entrieswdf to the nearest integer multiples ofr /s forming w*, and we
similarly roundd” to #*. Then|(¢” — w" - w) — (0* — w* - 7)| < 24/7 for everyr. Since|y/| < /2/m <1
we can thus conclude that the inequalities

{E[fw] - 4\/7_— S /L(@* —w" - 7T) S E[f?T] + 4\/7_—}7r61_l

also hold, completing the proof. O

(39)

6.6.2 Soundness of the test.

Theorem 54. Let f : {—1,1}" — {—1,1} be a function that passé&st-LTF with probability more than
1/3. Thenf is O(e)-close to an LTF.

Proof. As mentioned at the beginning of the proof of Theoleth 51, for A, with probability at least

1 — O(9) Step 1 of the algorithm succeeds (implicitly producifiy Step 2 of the algorithm succeeds
(producing ther'’s, etc.), and all of the items in Propositi@n] 50 hold. So if Apasses the test with
probability more thari/3 > O(9), it must be the case thgtpasses the deterministic portion of the test,
Step 3, despite the above three conditions holding. We tillsthat in this cas¢ must beO(¢)-close to
an LTF. We now divide into two cases according to whethgasses the test in Step 3(a) or Step 3(b).
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Case 3(a). In this case we have that for at least a e fraction of r'’s, || > 1 — e and hence E[f,.:]| >
1 —€e—mn>1— 2e By Propositior 5D iteril1we conclude:

For at least & — 2¢ fraction of all restrictionsr to J, | E[f:]| > 1 — 2e. (40)

Also, since the test passed, there is some (pair 6*) such thasgn(w* - 7° — 6*) = sgn(ji’) for at least a
1 — 20e fraction of ther?’s. Now except for at most anfraction of ther'’s we have| E[f,:]| > 1 —2¢ > 2
and|i’ — E[f]| <n < & whencesgn(zi') = sgn(E[f,.]). Hencesgn(w* - 7 — %) = sgn(E[f,]) for at
least al — 20e — € > 1 — 21e¢ fraction of ther"'s. By Propositiorf 50 iterfil2 we conclude:

For at least d — 22¢ fraction of all restrictionsr to J, sgn(E[f]) = sgn(w™ - 7 — 6%). (41)

Combining [4D) and{41), we conclude that except fa2a+ 2¢ < 24e fraction of restrictionsr to J, f is
e-close, as a function of the bits outsideto the constantgn (w* -7 —60*). Thusf is 24e+ (1—24¢)e < 25¢-
close to the/-junta LTF7 — sgn(w* - # — 6*). This completes the proof in Case 3(a).

Case 3(b). In this case, writer* for 7. Since|’ | < 1—e¢, we have thatE[f+]| < 1—e+n < 1—¢/2.
Once we pass Step 3(b)(i) we hav&€ < 27 which impIiesZwlzlﬁr\*(S)4 < 27 +n < 37. This
in turn implies thatf,- is (37)'/4 < 2r/4-regular. Once we pass Step 3(b)(ii), we additionally have
1221511 Fee(9)2 = W(E[fr+])| < 2712 + 5+ < 37112, where we've also used thet (") is within
n of W (E[fz<]) (since|W’| < 1).

Summarizing:

mz Foe(S)? = W(E[fr])| <3712, (42)
=1

fre is 274 regular and satisfies] f,]

<1l—¢/2,

Since Step 3(b)(iii) passes we have that b *)? — W (' )W (i*)| < 2712 andp®™* > —n hold for
all i's. These conditions imply(>> gy fr+ (S) fri (5))* = W (E[fr- )W (B[ fi])| < 27112 +4n < 371/12
and}" g —; ﬁ(S)ﬁ}(S) > —2n hold for alli. Applying Propositio 50 iterfil 3 we conclude:

For at least d — ¢ fraction of the restrictiong to .J, both

<372 and 3 fe(9)f(S) > —2n. (43)
1S|=1

2
(z ﬁl(S)ﬁ(S)) — W(E[fr]))W (E[fx])

We can use[{42) an@{#3) in Theorén 38, wjth playing the role off, the goodf,’s from (@3) playing

[T 1]

the roles ofy and the % parameter of TheoreliB8 set3a!/!2. (This requires us to ensuf€ > 54.) We
conclude:

There is a fixed vectof with ||¢]| = 1 and|¢;| < O(r"/1%%) for eachj
such that for at least h— ¢ fraction of restrictionsr to .J,

fr(2) is O(71/1%)-close to the LTRy,(z) = sgn(¢ - = — 0;). (44)
We now finally use the fact that Step 3(b)(iv) passes to geirdpd, 6*) such thatp’ —p(0* —w* )| <
5T = | E[fi] — p(6* — w* - 7t)| < 6/7 holds for allr®’s. By Propositio 5D iterfll4 we may conclude
that:

For at least d — ¢/2 fraction of restrictionsr to J, | E[f] — u(0* — w* - 7)| < 6/7. (45)
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Define the LTFh : {—1,1}" — {—1,1} by h(m, x) = sgn(w* - 7+ £ - x — 6*). We will complete the proof
by showing thatf is O(r'/1%%)-close toh.

We have that the conclusions &f144) ahdl(45) hold simultasigofor at least al — 2¢ fraction of
restrictionsr; call these the “good” restrictions. For the remaining “begbtrictions#’ we will make no
claim on how close to each othégr, and i, may be. However, these bad restrictions contribute at most
2¢ to the distance betweefand h, which is negligible compared t©(71/19). Thus it suffices for us to
show that for any good restrictian, we have thaff, andh,. are oh-so-close, namel@(7'/1%%)-close. So
assumer is a good restriction. In that case we have thats O(7!/19)-close tog,, so it suffices to show
that g, is O(7'/1%%)-close toh,. We haveh,(z) = sgn(¢ - z — (§* — w* - 7)), and since|¢|| = 1 and

7/108

|£;] < O(a7/198) for eachj, Propositior 57 implies thaE[h,] ~~ u(0* — w* - ). Sincer is a good

T o1/108 .
restriction, usingl{45) we have thBf{h | Gfg E[fz]. This certainly implieE[h,] ~ E[g.]sincef, and

gr areO(a/1%8)-close. But now it follows that indeeg; is O(a!/1%%)-close toh, because the functions
are both LTFs expressible with the same linear form and thiberey, > h, pointwise orh, > g, point-
wise, either of which implies that the distance betweenwweftinctions is proportional to the difference of
their means.

Finally, we've shown thaf is O('/19%)-close to an LTF. Takindd = 108 completes the proof. [
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A Basic Theorems about Gaussians and LTFs

A.1 Gaussian basics.

We will often require the Berry-Esseen theorem, a versioth@fCentral Limit Theorem with error bounds
(see, e.g.[1Fel68)):
Theorem 55. Let/(x) = c1x1 + -+ - + ¢, be a linear form over the randont1 bits ;. Assume that

lei| < 7 for all i, and writeo = /> ¢2. Write F' for the c.d.f. oft(z)/c; i.e., F(t) = Pr[l(x)/o < t].

Then for allt € R,
1

1+ ¢3’
where® denotes the c.d.f. ok, a standard Gaussian random variable. In particular,4f C R is any
interval thenPr[{(x)/o € A] Y Pr[X € A].

[F'(t) = ®(t)] < O(r/o) -

A special case of this theorem, with a sharper constantniesmes useful (the following can be found
in [Pef95]):

Theorem 56. In the setup of Theorem15, for any> 7 and anyd € R it holds thatPr[|¢(z) — 0] < \] <
6M/o.

We will use the following proposition:

Proposition 57. Let f(z) = sgn(c -« — u) be an LTF such tha}_, ¢ = 1 and|¢;| < 7 for all i. Then we
haveE[f] ~ u(u).

This is an almost immediate consequence of the Berry-Edbeenem. Next we prove the following
more difficult statement, which gives an approximation fer ¢xpected magnitude of the linear fofm —u
itself:

Proposition 58. Let {(z) = > ¢;z; be a linear form ove{—1,1}" and assuméc;| < 7 for all . let
o =4/> c?and letu € R. Then

E[|( — u|] # E[loX — ul,
whereX is a standard Gaussian random variable.

Proof. The result is certainly true i = 0, so we may assume > 0. Using the fact thalE[R] =
Jo" Pr[R > s] ds for any nonnegative random variabiefor which E[R] < oo, we have that

B[l —u] = / Pr{|t — u| > 5] ds
0
= / Pri¢ >u+s|+Prj{ <u—s|ds
0
= [T P+ s)/o) + Plu-9)/o)ds (46)
0
where we have writtefi for the c.d.f. of/(z)/o. We shall apply Berry-Esseenttr). Sinced ! E[|cz;[*] =
S el < 730, 2 = 102, Berry-Esseen tells us that for all € R we have|F(z) — ®(z)| <
O(7/0)/(1 + |z]?). It follows that [46)< (A) + (B), where

(4) = /Oool—<I><<u+s>/a>+¢><<u—s>/a>ds
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and

0 1 1
(B) = 0<T/“>'/0 <1+|<u+s>/a|3+1+|<u—s>/0|3>ds'

It is easy to see that
& 1

(B) = O(r/o) - / ().

oo L+ [zjoP T
For (A), observe thatA) can be re-expressed as

o0

/OO Pr[X > (u+s)/o] + Pr[X < (u—s)/o]ds :/ Pr[lc X —u| > s]ds.
0 0

Again using the fact thaE[R] = [;*Pr[R > s]ds for any nonnegative random variabie for which
E[R] < oo, this equal€E[|c X — ul]. This gives the desired bound. O

Proposition 59. Using the notation abov&[|c X — u|] = o -2¢(u/o) —up(u/o). (This remains sensible
even foro = 0.)

Proof.
E[[cX —u| = E[sgn(c X —u)(c X —u)] =0g(1) — uE[g],

whereg : R — R is the functiong(X) = sgn(X — u/0). ButE[g] = pu(u/o) andg(1) = 2¢(u/o) (see
Definition[1T). O
A.2 LTF basics.

We collect here some easy propositions about LTFs. Firsthees to recall the general notion of “influ-
ences” for Boolean functions:

Definition 60. Given f : {—1,1}" — {—1,1} and: € [n], theinfluenceof variable i is defined as
Inf;(f) = Pr.[f(2'") # f(z*7)], wherez’~ andz**" denoter with thei’'th bit set to—1 or 1 respectively.

It is well-known that if f is a unate function theif;(f) = |f(i)|. In particular, this holds for LTFs
(which are unate).

The next proposition, relating the rank of the weights to ridwek of the influences/degraeFourier
coefficients, is very elementary; an explicit proof appeéase.g., [FP04].

Proposition 61. Let f = sgn(wiz1 + -+ + wypx, — 0) be an LTF such thatw;| > |w;| for all i € [n].
Then|Inf(f)| > [Inf;(f)| for all i € [n].

Next, we show that LTFs typically become regular when thaistinfluential coordinates are restricted:

Proposition 62. Let f : {—1,1}" — {—1,1} be an LTF and let/ > {j : |f(i)| > 3}. Thenf, is not
(8/n)-regular for at most am fraction of all restrictionsr to .J.

Proof. Sincef is an LTF,|f‘(j)| = Inf;(f); thus every coordinate outsidehas influence at mogt on f.
Let k& be a coordinate outside dfof maximum influence. Note that singeis an LTF,k is a coordinate of
maximum influence forf,, under every restrictionr to .J; this follows from Propositiof 81. Buinf,(f) =

Avg, (Infy(fx)) = Ave,(|f~(k)|) and so

B > Infy(f) = Avg, (regularity of ).

The result now follows by Markov’s inequality. O
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Next, a proposition on LTFs that are close to juntas:

Proposition 63. Let f = sgn(wix1 + - - - + wypz, — 6) be an LTF which ig-close to being some junta on
the set/. Thenf is in facte-close to being the LTF o given bysgn( ;. ; wiz; — 0).

Proof. Assume without loss of generality thét= {1,...,r}. Given any values fat, ..., z,, let f, ..
denote the restricted version ¢f a function of the remaining variables i, ..., z,. Now without even
using the fact thaf is an LTF, we know that the junta ovér-1, 1}" to which f is closest is given by mapping
x1,...,x, to the more common value ¢f;, . ., . Butthis more common value is certainlyn(w;x; +
-+ w,x, — 0), by the symmetry of the variables 1, ..., z,. This completes the proof. O

Finally, we show a partial converse to our Theofem 26:

Proposition 64. Supposef (z) = sgn(ajx1 + - -+ + apxy, — 0) is an LTF withY """ ; a? = 1 and|a;| < §
for all i. Thenf is O(d)-regular; i.e.,Inf;(f) < O(9) for all .

Proof. Without loss of generality we may assume that |a;| > |a;| for all . By Propositior &l we need
to show thafinf; (f) < O(d). Now observe that

Infy(f) = Pr[lagzs + -+ + anz, — 0] < 6].

If 6 > 1/2 then clearlyInf;(f) < 2§ so we may assumé < 1/2. By the Berry-Esseen theorem, the
probability [6) above is within an additiv@(5/v/1 — §2) = O(4) of the probability thatX — 0| < ¢, where
X is a mean-zero Gaussian with variarice §2. This latter probability is at mogd(§/v/1 — 62) = O(9),
so indeed we havif;(f) < O(9). O
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