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Abstract

We investigate the number of samples required for testing the monotonicity of a distribu-
tion with respect to an arbitrary underlying partially ordered set. Our first result is a nearly
linear lower bound for the sample complexity of testing monotonicity with respect to the poset
consisting of a directed perfect matching. This is the first nearly linear lower bound known for
a natural non-symmetric property of distributions. Testing monotonicity with respect to the
matching reduces to testing monotonicity with respect to various other natural posets, showing
corresponding lower bounds for these posets also. Next, we show that whenever a poset has a
linear-sized matching in the transitive closure of its Hasse digraph, testing monotonicity with
respect to it requires Ω(

√
n) samples. Previous such lower bounds applied only to the total

order. We also give upper bounds to the sample complexity in terms of the chain decomposition
of the poset. Our results simplify the known tester for the two dimensional grid and give the
first sublinear bounds for higher dimensional grids and the Boolean cube.
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1 Introduction

We study the complexity of testing the monotonicity of a distribution over the elements of
a partially ordered set. Given a poset P = (V,�), a probability distribution p on the elements
of V is said to be monotone with respect to P if x � y implies p(x) ≤ p(y). Monotonicity is a
natural property of functions on posets and has been extensively studied in the context of property
testing (see [EKK+00, GGL+00, DGL+99, BRW99, AKNS99, FN01, Fis01]). Here, we examine the
testability of the monotonicity of distributions, where access to the distribution is given only via
samples independently generated according to the distribution. We would like to construct efficient
algorithms that take as input a poset P , samples of a distribution p and a parameter ε ∈ (0, 1),
and determine correctly with high probability whether p is monotone with respect to P or is ε-far
away in L1 distance from any such monotone distribution.

Monotonicity as a property of probability distributions is interesting for several reasons. First,
many naturally arising distributions are monotone or hold motivation for monotonicity testing. For
example, it may be hypothesized that the probability for suffering from back problems is monotone
increasing with the patient’s height. Second, monotone distributions have proven to be quite useful
algorithmically. Devroye [Dev91] used monotone distributions to more efficiently generate random
variables. In terms of testability, it is known that the testing of several distribution properties
becomes provably easier if the distribution is promised to be monotone; see Section 1.1 for more
details. Thus, monotonicity is often a desirable property for a distribution to have, and it would
be valuable to have efficient algorithms to determine whether a distribution is monotone or is far
from being monotone.

Here, we investigate how the sample complexity of testing monotonicity depends on the structure
of the underlying poset. Our results fall into two classes. The first set of results gives nearly tight
lower bounds on the sample complexity for some classes of posets, showing for example that there
are posets with respect to which testing monotonicity requires a nearly linear number of samples.
The second set of results provides efficient algorithms for testing monotonicity with respect to
certain classes of posets.

1.1 Previous Work

While classical statistical tests, such as the χ2-test, seem to require a number of samples at
least linear in the domain size, recent work motivated by property testing has shown that there are
many natural properties of distributions that can be tested with a sublinear sample complexity.
Such properties include testing whether a distribution is uniform, whether a joint distribution is
independent, and estimating the entropy [BFR+00, BFF+01, AAK+07, BDKR02, GMV06, BS07].

In [BKR04], the problem of testing whether a distribution is monotone is considered with respect
to totally ordered domains. It is shown there that testing uniformity can be reduced to testing
monotonicity with respect to the total order. Since testing uniformity is known to require Ω(

√
n)

samples [GR00, BFR+00, Pan08] for domains of size n, [BKR04] thus yields a sample complexity
lower bound of Ω(

√
n) for testing monotonicity over the total order. They also provide an algorithm

with sample complexity Õ(
√
n) for testing monotonicity over the total order on n elements. This

algorithm can be roughly viewed as a reduction from monotonicity testing to polylogarithmically
many uniformity testing problems. [BKR04] further shows an Õ(m3/2) sample complexity algorithm
for testing monotonicity over the m×m grid with the dominance partial order (the product order),
and conjectures that the algorithm can be extended to yield an Õ(md−1/2) sample complexity
algorithm for testing monotonicity over the grid [m]d with dominance order.
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As mentioned previously, monotonicity has also been studied because of its role as a natural
condition on distributions that makes other properties significantly easier to test. As an example of
this phenomenon, consider the problem of testing uniformity. Testing uniformity requires Ω(

√
n)

samples for arbitrary input distributions on n elements, as mentioned previously. On the other
hand, [BKR04] shows that O(1) samples suffice for distributions that are known to be monotone
with respect to a total order. [RS09] investigates distributions on the d-dimensional boolean cube
with the subset order (note that the domain size here is 2d) and shows that testing the uniformity of
monotone distributions over the cube requires only Õ(d) samples. Adamaszek, Czumaj and Sohler
in [ACS10] have recently extended this result to the continuous [0, 1]d cube with the dominance
order. There is no test with finite sample complexity for testing uniformity of arbitrary distributions
on [0, 1]d, but conditioning the input distribution to be monotone permits a tester with O(n) sample
complexity. Similar dramatic savings are also known for testing the closeness of two distributions
[BKR04, Val08], for testing the independence of a joint distribution [BKR04], and for estimating
the entropy [BDKR02].

Monotonicity, as a property of functions defined on posets, has been extensively studied in the
context of property testing [EKK+00, BRW99, GGL+00, DGL+99, FLN+02]. The complexity of
the testers in this setting is naturally quite different, as the value of the function at any given point
in the domain can be queried directly.

1.2 Our Results and Techniques

We address the issue of how sample complexity depends on the structure of the poset with
respect to which monotonicity is defined. Intuitively, one would imagine that, as the number of
edges in the transitive closure of a poset becomes larger, testing monotonicity with respect to the
poset requires fewer samples since there are more comparable elements, making it more likely for a
tester to detect violation of monotonicity. Although this intuition is not strictly true1, our results
can be viewed as making the intuition rigorous in several interesting special cases.

Reductions from the matching poset. The matching poset denotes the poset whose Hasse
digraph is a perfect matching with directed edges. One of our main contributions in this paper
is to show that testing monotonicity with respect to the matching poset on n elements requires
n1−o(1) samples. This result serves as a basis for a broad class of nearly linear sample complexity
bounds for more general posets. Such posets include the outward directed binary tree and all
bounded degree connected bipartite digraphs with all edges oriented towards the same color class.
More generally, the n1−o(1) lower bound applies to any poset containing an up-set (also known as
a monotone nondecreasing set; see Section 2.2 for the definition) consisting of a linear number of
disjoint bounded-degree outward-directed stars.

Our proof of the lower bound for the matching poset uses the methods developed in [Val08] for
symmetric2 properties and adapts them to the analysis of the non-symmetric monotonicity prop-
erty. As far as we know, this is the first nearly linear lower bound for a non-symmetric distribution
property. Previous known nearly linear sample complexity lower bounds were for estimating the
L1 norm distance between two distributions [Val08] and for estimating the support size of a dis-
tribution [RRSS07, Val08], both of which can be regarded as distance estimation problems. Note
that in general, estimating distance to a distribution property can be a much harder task than
distinguishing those distributions that have the property from those that are far from having it

1The outward-directed star and the matching both have O(n) edges in the transitive closure, but as we show in
this paper, the former has sample complexity O(1) while the latter requires n1−o(1) samples.

2A distribution property is symmetric if it is preserved under arbitrary relabelings of the distribution domain.
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[Val08] – for the case of testing uniformity, the complexity is nearly linear for the estimation prob-
lem but only O(

√
n) for the standard property testing problem. On the other hand, our result for

monotonicity testing with respect to the matching indicates that even for some natural property
testing problems, a nearly linear number of samples is necessary.

Posets containing a large matching. The nearly linear lower bound does not hold if the poset
can be partitioned into a small number of long chains. Our next result applies to such posets. We
show that if a poset P contains a matching of size Ω(n) in its transitive closure, then for some
constant ε ∈ (0, 1), an ε-monotonicity tester with respect to P requires Ω(

√
n) samples. This result

subsumes the lower bound given in [BKR04] for testing monotonicity with respect to the total
order. Our lower bound is obtained by constructing two distributions, one monotone and the other
far from being monotone, that are statistically indistinguishable by a tester using o(

√
n) samples.

Sample complexity in terms of chain decomposition. A chain decomposition of a poset
is a partitioning of the poset into disjoint chains. We show that if a poset P can be decomposed
into w disjoint chains each of length at most `, then for any constant ε ∈ (0, 1) there exists an
ε-monotonicity tester for P requiring only Õ(w

√
`) samples. This result implies, for instance, that

testing monotonicity with respect to the poset [m]d (with the dominance order, where d is fixed
and m is growing) requires Õ(md−1/2) samples, settling a conjecture from [BKR04]. In the case of
d = 2, our results greatly simplify, and improve by polylogarithmic factors, the result of [BKR04].
We also obtain the first sublinear sample upper bounds for testing monotonicity with respect to
the hypercube.

1.3 Preliminaries

The notation P = (V,�) denotes the partial order P obtained by ordering the set V according
to a reflexive, antisymmetric, and transitive binary relation � over V . Probability distributions
p and q are said to be ε-far from each other if their L1-distance is at least ε, that is, ‖p − q‖1 =∑

x |p(x) − q(x)| ≥ ε. Recall that, given a poset P = (V,�), a distribution p on V is said to be
monotone with respect to P if for all x, y ∈ V , x � y implies p(x) ≤ p(y). p is ε-far from being
monotone with respect to P if p is ε-far from any distribution q on V that is monotone with respect
to P . Formally, our testing problem is defined as follows:

Definition 1 Given a poset P = (V,�), a positive integer k, and a constant ε ∈ (0, 1), an algorithm
T is said to be an ε-tester for monotonicity with respect to P with sample complexity k if for any
distribution p on V , the algorithm T , given k independent samples taken from p as input, (i) accepts
with probability at least 2

3 if p is monotone with respect to P , and (ii) accepts with probability at
most 1

3 if p is ε-far from being monotone with respect to P . The behavior of T is unspecified when
p is neither monotone nor ε-far from monotone.

Most of our mathematical notation is standard. Posets are often identified with the digraph
given by their Hasse diagram without any comment. In Section 2.1, we use some concepts from
[Val08]. For convenience, we reproduce the definition of the moments of a distribution here:

Definition 2 Given a positive integer k, positive integers a and b, and distributions p1, p2 over a
set V , the k-based (a, b)-moment of (p1, p2), denoted mk,p1,p2(a, b), equals kakb

∑
x∈V p1(x)ap2(x)b.

Observe that the k-based (a, b)-moment of (p1, p2) is the expected outcome of the following “col-
lision statistic” experiment. Get k independent samples x1, . . . , xk from the distribution p1 and k
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independent samples y1, . . . , yk from the distribution p2, and count the number of pairs of index
tuples i1, . . . , ia ∈ [k] and j1, . . . , jb ∈ [k] such that xi1 = · · · = xia = yj1 = · · · = yjb .

2 Lower Bounds

As discussed in Section 1.1, [BKR04] showed that testing monotonicity over the total order
requires Ω(

√
n) samples, which is known to be tight up to polylogarithmic factors. Here, our main

result is a nearly linear (and hence, nearly tight) lower bound for testing monotonicity with respect
to another natural poset, the matching. The nearly linear lower bound is also extended to other
natural posets. We also generalize the Ω(

√
n) lower bound to a much larger class of posets.

2.1 Testing monotonicity with respect to the matching

We begin by defining the matching poset formally.

Definition 3 For integer n ≥ 1, Mn = (V,�), the matching poset, is defined as follows. V is a
set of 2n elements, {xi : i ∈ [n]} ∪ {yi : i ∈ [n]}. The order relation � is given by xi ≺ yi for every
i ∈ [n]; any other two non-identical elements of V are incomparable.

A simple reduction from testing the identity of two distributions gives a Ω(n2/3) lower bound
for the sample complexity of testing monotonicity with respect to Mn. We provide it here as a
warm-up to what follows.

Claim 4 Let p be a probability distribution on the vertices of Mn. To test if p is monotone or ε-far
from being monotone with respect to Mn requires Ω(n2/3) samples.

Proof We show that if there is an ε-tester for monotonicity over Mn that makes o(n2/3) sam-
ples, then there is a tester making o(n2/3) samples that distinguishes identical distributions from
distributions that are Θ(ε) apart in statistical distance. This contradicts the sample complexity
lower bound for the latter problem that was proved in [Val08], thus showing that a tester as above
cannot exist.

Suppose that we have an ε-tester for monotonicity over Mn using q = o(n2/3) samples, and
we want to test whether a pair of distributions (p1, p2) are identical or are 4ε-far from each other.
Define the distribution p on Mn as follows: for all i ∈ [n], p(xi) = 1

2p1(xi) and p(yi) = 1
2p2(yi).

If p1 = p2, then clearly p is monotone on Mn. On the other hand, if there is statistical distance
greater than 4ε between p1 and p2, then

∑
i:p1(i)≥p2(i) p1(i) − p2(i) > 2ε. Hence, p is ε-far from

being monotone on Mn. Thus, we can use the ε-tester for monotonicity on Mn, where we sample
from p by tossing a fair coin and then sampling from p1 or p2 accordingly.

Next we prove a much stronger, nearly linear, lower bound.

Theorem 5 Let p be a probability distribution on V . There exists a constant ε0 such that for any
ε ∈ (0, ε0), every ε-tester for monotonicity with respect to Mn requires n1−o(1) samples.

Proof First, we present a simple structural claim that characterizes the distributions that are
ε-far from monotone with respect to the matching:
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Claim 6 A distribution p on V is ε-far from monotone if and only if∑
(xi,yi):p(xi)>p(yi)

(p(xi)− p(yi)) > ε

Next, for any constant α ∈ (0, 1), define the following property on pairs of distributions:

Pα = {(p1, p2) : p1, p2 are distributions on [n] and ∀i ∈ [n], p2(yi) ≥ α · p1(xi)}

Our overall strategy is the following. First, we show that when ε < 1/6, there is a reduction to
ε-testing monotonicity with respect to Mn from the problem of distinguishing between distribution
pairs that satisfy P1/2 and distribution pairs that are ε′-far3 from P1/4, where ε′ is only a function of
ε (notice that Pα ⊂ Pβ for α > β, so that the statement of the reduction makes sense). The reason
that the reduction is helpful is that Pα is a symmetric property: relabeling the elements of [n]
does not change whether (p1, p2) is a member of Pα or not. Therefore, the technology developed in
[Val08] is potentially applicable to lower bounding the sample complexity of distinguishing between
being in P1/2 and being ε′-far from P1/4. But there is still a problematic feature of the Pα property
due to which we cannot apply the results of [Val08] directly. Namely, the family of properties Pα
is not “continuous” enough. A distribution pair infinitesimally far from a distribution pair in Pα
might not, in fact, be in Pα′ for any α′ > 0. In general, for distribution property families that are
not continuous, it is known that the techniques from [Val08] do not yield tight bounds. However,
for the special case of Pα, we show that it is still possible to suitably modify the techniques from
[Val08] and get the desired lower bound.

The precise statement of the reduction is given by the following lemma:

Lemma 7 For any α ∈ (0, 1), there is a constant c > 1 such that for any ε < α
2(1+α) , if there is

an ε-tester for monotonicity with respect to Mn that makes q(n, ε) samples, then there is a tester
that, given distributions (p1, p2), makes q(n, ε/c) samples and distinguishes between the case that
(p1, p2) ∈ Pα and the case that (p1, p2) is ε-far from being in Pβ, where β = ( α

1+α−
ε
2)/( 1

1+α+ ε
2) < α.

Proof Given the distribution pair (p1, p2), we define a map Tα that takes (p1, p2) to a distribution
p on V . Specifically, for every i ∈ [n], p(xi) = α

1+αp1(i) and p(yi) = 1
1+αp2(i).

• If (p1, p2) ∈ Pα, then p is monotone on Mn because for every i ∈ [n], p(yi) = 1
1+αp2(i) ≥

α
1+αp1(i) = p(xi).

• Assume that p is ε-close to being monotone with respect to Mn. By the definition of Tα,∑
i p(xi) = α

1+α and
∑

i p(yi) = 1
1+α . Let p′ be a monotone distribution on Mn that is closest

in statistical distance to p. We construct our specific p′ along the lines of Claim 6: for each
edge (xi, yi) that was violated by p, we define p′(xi) = p′(yi) = 1

2(p(xi) + p(yi)), and keep the
original values of p everywhere else. Therefore,

∑
i p′(xi) ≥ α

1+α −
ε
2 and

∑
i p′(yi) ≤ 1

1+α + ε
2 .

Define a new pair of distributions (p′1, p
′
2) by p′1(i) = p′(xi)P

i p′(xi)
and p′2(i) = p′(yi)P

i p′(yi)
for each

i ∈ [n]. Note that

p′2(i)
p′1(i)

=
p′(yi)
p′(xi)

∑
i p′(xi)∑
i p′(yi)

≥
∑

i p′(xi)∑
i p′(yi)

≥
α

1+α −
ε
2

1
1+α + ε

2

3We define the distance between two distribution pairs (p1, p2) and (q1, q2) as ‖p1 − q1‖1 + ‖p2 − q2‖1. Farness
from Pα is measured using this notion of distance.
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so (p′1, p
′
2) ∈ Pβ. Moreover,

|p′1 − p1| =
∑

i:p2(i)≥αp1(i)

(
p(xi)
α

1+α −
ε
2

− p(xi)
α

1+α

)
+

∑
i:p2(i)<αp1(i)

∣∣∣∣∣p(xi)
α

1+α

− p′(xi)
α

1+α −
ε
2

∣∣∣∣∣
≤

ε
2

∑
i p(xi)

( α
1+α −

ε
2) α

1+α

+
∑

i:p2(i)<αp1(i)

p(xi)− p′(xi)
α

1+α −
ε
2

≤ 2
ε/2
α

1+α −
ε
2

Similarly,

|p′2 − p2| =
∑

i:p2(i)≥αp1(i)

(
p(yi)

1
1+α

− p(yi)
1

1+α + ε
2

)
+

∑
i:p2(i)<αp1(i)

∣∣∣∣∣p(yi)
1

1+α

− p′(yi)
1

1+α + ε
2

∣∣∣∣∣
≤

ε
2

∑
i p(yi)

( 1
1+α + ε

2) 1
1+α

+
∑

i:p2(i)<αp1(i)

p′(yi)− p(yi)
1

1+α

≤ 2
ε/2

1
1+α

Using the condition that ε < α
2(1+α) , we have that |p1−p′1|+ |p2−p′2| is cε-close to Pβ where

c depends only on α.

The lemma is now immediate. To sample from p, one can toss a coin that is biased to be heads
with probability α

1+α and then sample from p1 if the coin comes up heads and from p2 otherwise.

To prove this lemma, we leverage and extend machinery from [Val08], specifically, the following
corollary of the Wishful Thinking theorem stated in [Val07].

Theorem 8 (Corollary 1 in [Val07]) Suppose we are given two distribution pairs (p1, p2) and
(q1, q2) where the distributions are over [n], a real number ρ ∈

(
0, 1

10·2
√

logn

)
, and a positive integer

k such that the maximum probability assigned by any of the distributions p1, p2, q1, q2 to a single
element is at most ρ

k . If

40ρ+ 10
∑

a,b:2≤a+b≤
√

logn

|mk,p1,p2(a, b)−mk,q1,q2(a, b)| < .01

then it is impossible to test using k samples any property that is true for (p1, p2) and false for
(q1, q2).

The observation motivating the above theorem is that for symmetric properties, essentially all
that a tester can do to distinguish a distribution pair satisfying the property from a distribution pair
not satisfying the property, is to look at the collision statistics of samples from the two distribution
pairs. Although this observation was made explicitly in earlier work such as [BDKR02], [Val08]
made rigorous the connection between the collision statistics and the values of the moments for
distributions with no large weight. Thus, in order to show our lower bound, we need to describe a
distribution pair (p1, p2) ∈ P1/2 and a distribution pair (q1, q2) that is far from P1/4, such that the
following two conditions are met: (i) none of the distributions assigns large weight to any element,
and (ii) |mk,p1,p2(a, b)−mk,q1,q2(a, b)| is small for each (a, b) with 2 ≤ a+ b ≤

√
log n. Our strategy

will be to start from candidate distribution pairs (p1, p2) ∈ P1/2 and (q1, q2) that is far from P1/4,
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that satisfy condition (i), and then modify them by a small amount (relative to the L1 norm) so
that condition (ii) is satisfied. Note that the modification of (p1, p2) needs to be still in P1/2 and the
modification of (q1, q2) needs to be still far from P1/4. This is where the “delicacy” of monotonicity
becomes an issue: even a small change in the L1 norm to (p1, p2) could potentially make p2(i) = 0
for some i. However note that there is already a certain laxity inherent in P1/2; namely, we can
make p1(i) + p2(i) as small or as large as we want, as long as p2(i) stays at least p1(i)/2. These
issues are at the heart of the following lemma.

Lemma 9 For any positive integer n, integer k ∈ [100
√

logn, n− 1] and weight w ∈ (1/n, 1), there
exist {ma,b : (a, b) ∈ {0, 1, . . . ,

√
log n}2}, such that given any distribution pair p = (p1, p2) on n

elements such that pi(j) < 1
k for all i ∈ {1, 2} and j ∈ [n], there is a distribution pair p̄ = (p̄1, p̄2)

on n elements with the following properties:

1. If p ∈ P1/2 then p̄ ∈ P1/2 also.

2. |p1 − p̄1|+ |p2 − p̄2| ≤ w.

3. For any a, b ≤
√

log n, setting k̄ = kw
100·221

√
logn

, each k̄-based (a, b)-moment
∑

i p̄a1(i)p̄b2(i)k̄a+b

is within a 1
6000 logn difference of ma,b,

4. p̄1(i), p̄2(i) ≤ (214
√

logn · k̄)−1 for all i ∈ [n], for k̄ as defined above

Proof The proof of this lemma is similar to the Matching Moments Theorem of [Val08]. The
difference is condition (1) above which requires that the transformation from p to p̄ preserves
membership in P1/2. This condition introduces more technical difficulties. For completeness, we
will give all the details. Here are the steps of the transformation from p to p̄, along with explanations
of why do they work and why are they well-defined.

1. Set w′ = w
7 . Define I to be the set of bw′nc columns4 i with the smallest value of p1(i)+p2(i).

For each i ∈ I, set p1(i) and p2(i) to 0. For the remaining columns, modify p such that:

(i) For each j ∈ {1, 2},
∑

i 6∈I pj(i) = 1− w′

(ii) p changes by at most 3w′ in L1 distance

(iii) If p ∈ P1/2 before the modification, then after the modification also, for i 6∈ I, p2(i) ≥
1
2p1(i)

(iv) For each j ∈ {1, 2} and i 6∈ I, pj(i) < 1/k.

We explain how this can be achieved. Assume that p ∈ P1/2. The columns of p not in I have
weight at least (2−2w′) by Markov’s inequality, so each row has weight at least 1−2w′ (and at
most 1) in the columns not in I. First modify p1 in the following way. If

∑
i 6∈I p1(i) < 1−w′,

then for indices i such that p1(i) < 1
n , increase their weights, maintaining p1(i) ≤ 1

n , until∑
i 6∈I p1(i) = 1 − w′. Otherwise, if

∑
i 6∈I p1(i) > 1 − w′, decrease weights from arbitrary

columns until
∑

i 6∈I p1(i) = 1 − w′. In this process, we could have added weight at most w′

to this row, and it is still true that p1(i) < 1
k for all i ∈ [n]. Now, for each i 6∈ I such that

p2(i) < 1
2p1(i), make p2(i) = p1(i)/2; this adds weight at most w′/2 to p2. If

∑
i 6∈I p2(i) >

4The ith column of p refers to the two-element vector 〈p1(i), p2(i)〉.
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1 − w′, remove weight from the columns i such that p2(i) > p1(i) subject to the restriction
p2(i) ≥ p1(i), until

∑
i 6∈I p2(i) = 1− w′. Otherwise, if

∑
i 6∈I p2(i) < 1− w′, for indices i such

that p2(i) < 1
n , increase their weights, maintaining p2(i) ≤ 1

n , until
∑

i 6∈I p2(i) = 1 − w′. p1

moves by at most w′ while p2 moves by at most 2w′ in the L1 distance.

This stage ensures that now there are bw′nc columns of zeros, corresponding to I, and outside
of them both the entries of p1 and the entries of p2 sum up to 1− w′.

2. Let µ = 1 + b
√

log nc and λ = kw′

6µ5·60µ
. For integers 0 ≤ a, b ≤ µ− 1 such that a+ b ≥ 2, let

σa,b =
∑

i 6∈I pa1(i)pb2(i)λa+b; additionally, set σa,b = 0 for a+ b < 2.

For an interval in the integers [u, v], let `[u,v] be defined as the matrix with entries ji for
columns indexed by j ∈ [u, v] and rows indexed by i ∈ [0, v − u]. For an integer µ > 1, let
Lµ = `[1,µ]⊗ `[µ+1,2µ], where ⊗ denotes the tensor product operation5 Define c to be (Lµ)−1σ
(note that here we refer to σ as a vector whose coordinates are indexed by number pairs, and
multiply it by a matrix whose columns are indexed by pairs). The coordinates of this vector
are indexed by pairs (γ, δ) where γ ∈ [1, µ] and δ ∈ [µ+ 1, 2µ].

3. Let σ̄a,b have value 0 when a + b < 2 and value λ2

k otherwise. Note that σ̄a,b is an upper
bound on σa,b for each value of a, b, because each entry of p is bounded by 1

k , and so σa,b
is maximized when k columns of p equal 1

k 〈1, 1〉. Let L̄µ be an element-by-element upper
bound on the magnitudes of the elements in (Lµ)−1; by the claim below, all its entries can
be 60µ. Let c̄ = L̄µ · σ̄ be a vector that upper bounds each entry of c. Each entry of c̄ equals
(µ2 − 3) · 60µ · λ2

k .

Claim 10 Each element of (Lµ)−1 is at most 60µ in absolute value.

Proof Matrix inversion and tensor product commute: (Lµ)−1 = (`[1,µ])−1 ⊗ (`[µ+1,2µ])−1.
`[1,µ] and `[µ+1,2µ] are Vandermonde matrices and the entries of their inverses can be bounded
by a formula from [Kli67], cited in [Val08]. Using this, we find that each entry of (`[1,µ])−1 ⊗
(`[µ+1,2µ])−1 is at most (2e)µ · (4e)µ ≤ 60µ in magnitude.

4. For each γ ∈ [1, µ] and δ ∈ [µ+ 1, 2µ], choose bc̄γ,δ − cγ,δc many of the zeroed-out columns of
p (those supported by I) and make all of them 〈γλ ,

δ
λ〉. Note that p2(i) > p1(i) for any such

column i, and hence membership in P1/2 is not affected.

For this modification to make sense, we need to make sure that the total number of columns
changed is less than |I| = bw′nc and the total weight added to each of the two rows is less
than w′. The total weight added to the p1 row is

∑
γ,δbc̄γ,δ − cγ,δc

γ
λ . Note that

∑
γ,δ cγ,δγ =

(Lµc)1,0 = σ1,0 = 0. Therefore:∑
γ,δ

bc̄γ,δ−cγ,δc
γ

λ
≤
∑
γ,δ

c̄γ,δ
γ

λ
≤ (µ2−3)60µ

λ2

k

∑
γ,δ

γ

λ
≤ (µ2 − 3)w′

6µ5

µ2(µ+ 1)
2

≤ (µ2 − 3)w′

6µ2
≤ w′

6
.

Similarly for the p2 row,
∑

γ,δbc̄γ,δ − cγ,δc
δ
λ ≤

(µ2−3)w′

4µ2 ≤ w′

4 . The total number of columns
changed is at most

∑
γ,δ(c̄γ,δ − cγ,δ). Observe that

∑
γ,δ cγ,δ = (Lµc)0,0 = σ0,0 = 0. Then,∑

γ,δ(c̄γ,δ − cγ,δ) =
∑

γ,δ c̄γ,δ = (µ2 − 3)60µ λ
2

k µ
2 = (µ2−3)w′λ

6µ3 = w′ kw′

36µ660µ
≤ w′ n36 ≤ bw

′nc.
5Given a real matrix X with rows and columns indexed respectively by i and j, and a real matrix Y indexed by

k and l, the tensor product X ⊗ Y is defined to be the matrix with rows indexed by pairs (i, k), columns indexed by
pairs (j, l), and the entry at ((i, k), (j, l)) given by X(i, j) · Y (k, l).
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5. Make
∑

i p1(i) = 1 by filling in the columns that were not assigned in the previous step with
equal weights. Do the same for p2.

We show that for any column i filled in during this step, p2(i) > 1
2p1(i). Let x = µ2−3

µ2 w′.
Redoing the calculations in the above part to take account of the floors, we find that the
weight added to the p1 row in step 4 is in the interval [x6 −

µ3

λ ,
x
6 ] and that the weight

added to the p2 row is in the interval [x4 −
2µ3

λ , x4 ]. So, the weight that the current step
adds to p1 is in the interval [(5

6 + 3
6µ2 )w′, (5

6 + 3
6µ2 )w′ + µ3

λ ], while that added to p2 is in

[(3
4 + 3

4µ2 )w′, (3
4 + 3

4µ2 )w′+ 2µ3

λ ]. Also, the number of columns filled in step 4 is in the interval
[xλ6µ − µ

2, xλ6µ ], and the current step fills the rest of the bw′nc columns. So, the minimum ratio
between p2(i) and p1(i) for a column i filled during this step is at least:

(3
4 + 3

µ2 )w′

(5
6 + 3

µ2 )w′ + µ3

λ

≥ 9
10
− o(1) >

1
2

We define p̄ to be the distribution pair that results after these five modification steps to p. It
remains to show that all four claims made in the lemma hold. If originally p ∈ P1/2, then p̄ ∈ P1/2

also for the reasons explained above. To bound the distance that p moves during the modifications,
note that p changes by at most 5w′ during step 1 (2w′ when the columns in I are zeroed-out and
3w′ for making the rest of the columns in each row add up to 1 − w′) and by 2w′ in the rest of
the steps (since that much weight is added to the zeroed-out columns), making the total distance
moved at most 7w′ = w.

Now, as for the k̄-based moments of p̄, observe that the (0, 0) moment is exactly n and the (0, 1)
and (1, 0) moments are exactly k̄. There is however some variation in the k̄-based (a, b) moments
for a+ b ≥ 2. For ease of analysis, we first bound the variation in the λ-based moments and then
scale to k̄-based moments.

We define now Lµa,b to be the (a, b)-row of Lµ, and set ma,b = Lµa,b · c̄.
6 Observe that the (a, b)-

moment contributed by the indices not in I is exactly σa,b, while the (a, b)-moment contributed
by the columns set in the fourth step is Lµa,b · bc̄ − cc ∈ [Lµa,b · (c̄ − 1) − σa,b, L

µ
a,b · c̄ − σa,b].7

To analyze the moments contributed by the weights added in the fifth step, recall that in this
step, the number of entries allocated is [bw′nc − xλ

6µ , bw
′nc − xλ

6µ + µ2] and the weight added is

[(3
4 + 3

4µ2 )w′, (3
4 + 3

4µ2 )w′ + 2µ3

λ ] for p2 and [(5
6 + 3

6µ2 )w′, (5
6 + 3

6µ2 )w′ + µ3

λ ] for p1. The ratio between
the minimum and maximum contributions of step 5 to the (a, b) λ-based moment can then be lower-
bounded by 1− (a+ b) 6µ3

w′λ .8 On the other hand, the maximum (a, b) λ-based moment contribution

can be upper-bounded by (0.9w′)a+b

(w
′n
2

)a+b−1
λa+b ≤ 2a+bw′λ

(
λ
n

)a+b−1
. Then, for a+b ∈ [2, µ], the difference

between the maximum and minimum contributions to the (a, b) λ-based moments contributed by the
weights added in step 5 can be upper-bounded by (a+ b) 6µ3

w′λ ·2
a+bw′λ

(
λ
n

)a+b−1 ≤ 6µ42µ 1
6µ560µ

≤ 1.
So in total, the difference between the maximum and minimum values of

∑
i p̄a1(i)p̄b2(i)k̄a+b is

within 1 + |Lµa,b|1 ≤ 1 + µ2µa(2µ)b ≤ (3µ)a+b+2. We are interested in k̄-based moments; since

6Note that here again we use vector multiplication where the vectors are indexed by pairs of numbers.
7bvc, where v is a vector, denotes the vector whose components are the floors of the components of v. Also, 1 as

a vector denotes the vector with every entry equal 1.
8We use here ( α

α+β
)t = (1− β

α+β
)t ≥ (1− β

α
)t ≥ 1− t β

α
.
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k̄
λ = 6kwµ560µ

kw′·100·221
√

logn
≤ µ560µ

2·221µ ≤ 1
20000µ4 , the bound on the variation of

∑
i p̄a1(i)p̄

b

2(i)k̄a+b is at most

(3µ)a+b+2
(

1
20000µ4

)a+b
≤ 1

6000µ2 for a+ b ≥ 2.

Finally, for the last claim, note that the largest weight in p is bounded by 2µ
λ < 12µ626µ

kw′ <
.84µ6

215µ · 100·221µ

kw < 1
214µ 1/k̄.

Theorem 8 and Lemma 9 together implies the following.

Lemma 11 For constant 0 < α < 1 and constant c > 1, any tester that distinguishes distribution
pairs on [n] that are in P1/2 from pairs that are 3

8 -far from P1/4 requires making n1−o(1) samples.

Proof Consider the following two pairs of distributions p = (p1, p1) and q = (p2, p3) where p1 is
the distribution that is uniform on [n], p2 is the distribution that is uniform on {1, . . . , n/2} and
zero elsewhere, and p3 is the distribution that is uniform on {n/2 + 1, . . . , n} and zero elsewhere.
Clearly, p ∈ P1/2. But q is 1

2 -far from P1/4 because the closest distribution to q in P1/4 is the
pair (p4, p3) where p4 is the distribution that has weight 3

4 uniformly on {1, . . . , n/2} and weight 1
4

uniformly on {n/2 + 1, . . . , n} and this pair of distributions is 1
2 far from q.

Distributions p1, p2, and p3 all assign each element of [n] weight at most 2
n . Therefore, we can

apply Lemma 9 with k = n/2 and w = 1/8, transforming the distribution pairs p and q to p̄ and q̄
respectively. From the lemma, k̄ = kw

100·221
√

logn
. By (1) in Lemma 9, p̄ ∈ P1/2. By (2), q̄ is 3/8-far

from P1/4. We know from (3) of Lemma 9 that |mk̄,p̄(a, b) −mk̄,q̄(a, b)| ≤ 1
3000 logn . Then, setting

ρ = 1
214
√

logn
and applying Theorem 8 implies that any tester that distinguishes between P1/2 and

3/8-far from P1/4 with probability at least 2/3 requires k̄ = n1−o(1) many samples.

Now, we are nearly done. For ε < 1/6, Lemma 7 shows that an ε-tester for monotonicity
with respect to Mn making q(n, ε) queries would result in an algorithm making q(n, ε/c) queries
that would distinguish between instances in P1/2 and instances ε-far from P1/4 where c > 1 is an
absolute constant. But since Lemma 11 rules out testers with n1−o(1) queries for distinguishing
between being in P1/2 and being 3/8-far from P1/4, there must be no ε-tester for monotonicity with
respect to Mn using less than n1−o(1) samples when ε < 1/6.

2.2 Applications of the lower bound for the matching

The lower bound for the matching can be used as a building block for showing lower bounds
for several other natural posets. To do so, the following straightforward lemma will be useful. An
up-set in a poset P = (V,�) is a subset U ⊆ V which is monotone nondecreasing. That is, if
u ∈ U, v ∈ V and u � v, then v ∈ U . An up-set itself is a poset with the ordering given by �. The
next lemma shows that if Q is an up-set of P , then testing monotonicity with respect to Q is not
harder than testing it with respect to P .

Lemma 12 Suppose that a poset P with n elements contains an up-set Q. Then, testing mono-
tonicity with respect to Q reduces to testing monotonicity with respect to P .

Proof Any distribution p on Q can be viewed as a distribution on P , by setting q(x) = 0 for all
x ∈ P \Q. We now show that the distance to monotonicity is unchanged.

10



Suppose that the distance of p from being monotone as a distribution on Q is ε, and that p′ is
a monotone distribution that is ε-close to p. Then p′ can be extended to P just as p was extended,
and it will still be monotone because Q is an up-set, showing that the distance to monotonicity
over P is no more than ε.

Now suppose that the distance of p from being monotone as a distribution on P is δ ≤ ε,
and let p̄ be the distribution witnessing this. We now construct a distribution p′ over Q. Let
α =

∑
x∈P\Q p̄, and first construct p̃ as the vector that is the truncation of p′ to Q. If α > 0 then

this is not a probability vector, but clearly it is monotone and its L1 distance from p is δ − α.

To finish the construction, we take a top-most element z of Q, that is an element of Q for which
z � y implies z = y. Clearly p̃(z) ≤ 1− α, so to construct p′ from p̃ we just increase the value on
z by α. This is now a monotone distribution, and by the triangle inequality its L1 distance from p
is not more than δ, showing that ε = δ.

Lemma 12 already shows that testing monotonicity with respect to a poset consisting of a linear
number of disjoint chains requires n1−o(1) samples. The next corollary substantially generalizes the
class of posets to which the nearly linear lower bounds apply. An outward-directed star of degree d
refers to a directed graph with vertex set c, v1, . . . , vd and edge set {(c, vi) : i ∈ [d]}.

Corollary 13 Suppose that a poset P on n elements contains an up-set Q, which consists of
n1−o(1) disjoint outward-directed stars of constant maximum degree. Then, testing monotonicity
with respect to P requires n1−o(1) samples.

Proof By Lemma 12, we only need to show the nearly linear lower bound for testing monotonicity
with respect to Q. We do so by providing a reduction from testing monotonicity with respect to the
matching poset Mr, where r = n1−o(1) is the number of disjoint outward-directed stars of constant
degree that Q is composed of, and then applying Theorem 5.

Suppose that we have a distribution p on Mr. We arbitrarily map each edge in Mr to a distinct
star in Q. Now, for an edge (x, y) in Mr mapped to the star with edges {(c, v1), . . . , (c, vd)} with
d ≥ 1, let q(c) = p(x)/d, q(v1) = p(y)/d, and for all i ∈ [2, d], let q(vi) = (p(x) + p(y))/d. q as
defined is clearly a probability distribution on Q. If p is monotone, then q is also monotone. On
the other hand, if p is ε-far from monotone with respect to Mr, then q is ε/d∗-far from monotone
with respect to Q, where d∗ is the maximum degree of a star in Q. This is because in any star with
edges {(c, v1), . . . , (c, vd)}, the only edge that could have monotonicity violated by q is (c, v1) and
the closest monotone distribution to q will not change the values of q(v2), . . . , q(vd). Furthermore,
observe that given the ability to sample from p, we can generate a sample from q as follows. For
an edge (x, y) in Mr mapped to the star {(c, vi) : i ∈ [d]} in Q, if p generates x, choose uniformly
at random among the vertices {c, v2, v3, . . . , vd} and if p generates y, choose uniformly at random
among the vertices {v1, v2, . . . , vd}.

Corollary 13 implies, for example, that testing monotonicity with respect to the outward directed
binary tree, or the fence poset (given by x1 ≺ x2 � x3 ≺ x4 � x5 ≺ · · · � xn), or, in fact, any
poset described by a connected bipartite graph with bounded degree and all edges directed left to
right, requires n1−o(1) samples. Regarding the last class of posets described, note that it is perhaps
surprising that other structural properties of the bipartite graph (such as expansion) do not play
any role at all in determining the sample complexity.
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2.3 Testing Monotonicity with Respect to a Poset Containing a Large Matching

The lower bounds from the previous section do not apply when the poset contains long chains.
Our next result shows that for such posets, Ω(

√
n) samples are necessary.

Theorem 14 If a poset P contains a matching of size Ω(n) in its transitive closure, then any
monotonicity tester with respect to P requires Ω(

√
n) samples.

Proof We show two distributions, DP and DN , on positive (distributions monotone with respect
to P ) and negative (distributions ε-far from being monotone with respect to P for a constant
ε) inputs respectively, such that any tester making o(

√
n) samples cannot distinguish, with high

probability, between the case where the input is drawn from DP and the case where it is drawn
from DN . We let DP be always the input which is the uniform distribution over P (this is clearly
a monotone distribution over P ). To define DN , we use the following lemma:

Lemma 15 A uniformly chosen random boolean function g : P → {0, 1} is, with high probability,
Ω(1)-far (in L1) from being monotone with respect to P , and furthermore has Ω(n) violated edges
within a fixed in advance matching M of size Ω(n) in P .

Proof Let M be the matching of size cn contained in the transitive closure of P . A random
function g violates each edge of the matching with probability 1/4, and so a uniformly chosen
random function g has at least cn/10 edges violated with high probability, by Chernoff bounds.
Since these edges are disjoint, g is also c/10-far from monotone with high probability.

DN will be the distribution space chosen at random as follows. First, choose a uniformly
random boolean function g : P → {0, 1}. Now define DN to be the distribution obtained, when
with probability 1/3, one of the zeros of g is uniformly chosen, and with probability 2/3, one of the
ones of g is uniformly chosen.

Note that if g has Ω(n) violated edges in M and has between 5n/12 and 7n/12 zeros (both
of which happen with high probability), then the resulting DN is indeed Ω(1)-far (in L1 distance)
from being a monotone distribution. This is because such a number of zeros implies that for every
violated edge of M we must change the distribution by at least 2

3 ·
12
7n −

1
3 ·

12
5n = 12

35n .

To finish the proof, note that as long as the samples provided to the algorithm contain no
collision (duplicate element), there is no way to distinguish DP from a randomly chosen DN . This
is since, over both DP and DN , the distribution of the sequence of samples x1, . . . , xq conditioned
on the event of having no collision is identical to a uniformly random choice of a non-repetitive
sequence of q elements from P .

Now let α be the probability that the algorithm accepts a sample sequence chosen by a uniformly
random choice of a non-repetitive sequence of q elements from P . If we are only allowed q = o(

√
n)

samples, then the probability for a collision in our sample sequence is o(1), and therefor over both
DP and DN the algorithm will accept with probability α±o(1). Hence no algorithm can distinguish
DP from DN using this many queries.

12



3 Monotonicity testers via path decomposition

In [BKR04], Batu, Kumar and Rubinfeld give a testing algorithm that shows that in the case
of the total order on a domain of size n, the lower bound of Ω(

√
n) samples from Theorem 14

is indeed tight to within polylogarithmic factors. They also consider distributions over the d-
dimensional grid poset, which is the set [m]d ordered according to the dominance order, i.e., the
relation (x1, . . . , xd) � (y1, . . . , yd) if and only if xi ≤ yi for all i ∈ [d]. Our next result gives a
general bound that applies to any poset with a known chain decomposition. We then use this to
settle the conjecture in [BKR04] regarding the sample complexity for monotonicity testing with
respect to grid posets [m]d, as well as to give sublinear sample complexity testers for distributions
over other posets such as the Boolean hypercube.

Theorem 16 Given a poset P that can be decomposed into a union of w disjoint chains of length
at most c, there exists an ε-tester for monotonicity with respect to P with sample complexity
Õ(w
√
c poly(1/ε)).

Proof We use as a blackbox the following result from [BKR04].

Theorem 17 (Theorem 10 in [BKR04]) There exists a randomized algorithm ChainPartition
that, given a totally ordered set L of size n, parameters ε, δ ∈ (0, 1) and a random sample S of size
Ω(ε−4√n log n log 1/δ) from a probability distribution p on L, acts as follows:

• With probability at least 1 − δ, ChainPartition outputs either FAIL or a distribution q =
ChainPartition(L, ε, δ, S) on L such that ‖q− p‖1 < ε (probabilities are taken over the internal
coin tosses of ChainPartition and the guaranteed randomness of S as a sample taken from p).

• In particular, if p is ε-far from being monotone with respect to L, then ChainPartition outputs
FAIL with probability at least 1− δ.

• If p is monotone with respect to L, then ChainPartition does not output FAIL with probability
at least 1− δ.

Our tester works as specified below. For a sample set S from a domain D and a subset R ⊆ D,
we denote by S|R the set of samples that lie in R.
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1. Set m = Θ(w
√
c log(w) log(c) poly(1/ε)), and µ = εm

20w to be the sample size required by
ChainPartition for |L| = w, ε/4 and δ = w

200

2. Draw m samples from p. Call the sample sequence S.

3. For each chain C of the chain decomposition do:

(a) Let SC denote the subsequence of S consisting only of members of C. If |SC | < µ, let qC
be the uniform distribution on the vertices of C.

(b) Otherwise, run the algorithm ChainPartition(C, ε/4, δ, SC), and output FAIL and termi-
nate if it fails. Otherwise, let qC be the conditional distribution on C output by the
algorithm.

4. Define a distribution q̃ on P by setting the weight of a vertex v on a chain C to qC(v)SCm .

5. Output PASS if q̃ is ε/2-close to monotone with respect to P , and output FAIL otherwise.

The sample complexity claim is immediate. It remains to show completeness and soundness.

Lemma 18 If p is a monotone distribution on P , then the above algorithm outputs PASS with
probability at least 2/3.

Proof Call a chain C light if
∑

v∈C p(v) < ε
10w , and heavy otherwise. We claim first that there are

at least µ samples in S from every heavy chain, with constant probability. To see this, note that the
expected number of samples in S from some given heavy chain C is at least εm

10w . Using the Chernoff
bound, the probability that |SC | < µ = εm

20w is at most exp(−Ω(log(w)
√
c log(c) poly(1/ε))) <

1
100w . By the union bound, then, with probability at least 0.99, each heavy chain is hit at least
µ = Ω(

√
c log(c) log(w) poly(1/ε)) many times by the samples in S.

If p is monotone, then it is monotone on each chain. Now, if each heavy chain C is sampled
Ω(
√
c log(c) log(w) poly(1/ε)) many times, one can apply Theorem 17 to say that, with probability

at least 1− 1
100w , the algorithm ChainPartition finds a distribution qC that is within ε/4 in L1-distance

of p|C (the conditional distribution of p on the vertices of C). Also, for each light chain C, with
probability at least 1 − 1

100w , |SC |m < ε
5w by another application of the Chernoff bound. So, by the

union bound and the triangle inequality, with probability at least 0.98, the distribution q̃ is within
ε/2 in L1-distance of p.

Taking the union bound with the event that the heavy chains are sampled sufficiently many
times, we see that the algorithm outputs PASS in the last step, with probability at least 2/3.

Lemma 19 If p is a distribution on P such that the algorithm outputs PASS with probability at
least 1

3 , then p is ε-close to a monotone distribution on P .

Proof Let X be the event that there exists a chain C sampled at least µ times by the algorithm
such that the distribution qC output by ChainPartition is ε/4-far from p|C . Let Y be the event that
there exists a chain D sampled less than µ times by the algorithm such that

∑
v∈D p(v) > 3ε

20w .
Let us upper-bound Pr[X|algorithm outputs PASS] and Pr[Y ], where the probabilities are over
the randomness of the algorithm and the sample. For the first, notice that since the event is
conditioned on the algorithm passing, step (3b) never fails; hence, using Theorem 17 and the
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union bound, Pr[X|algorithm outputs PASS] ≤ w · 1
100w = 0.01. For the second, observe that the

probability that a chain D is hit less than µ times by S while having over 3ε
20w weight under p is at

most 1
100w by Chernoff bounds; so, by the union bound, Pr[Y ] < 0.01.

Now, using the union bound again, we have:

Pr[Algorithm outputs PASS ∧ ¬X ∧ ¬Y ]
≥ Pr[Algorithm outputs PASS]− Pr[X ∧Algorithm outputs PASS]− Pr[Y ]
≥ Pr[Algorithm outputs PASS]− Pr[X|Algorithm outputs PASS]− Pr[Y ]

≥ 1
3
− 0.01− 0.01 > 0 (1)

So, there exists a distribution q̃ on P such that q̃ is ε/2-close to a monotone distribution (because
the algorithm accepts). Furthermore, ‖q̃− p‖1 ≤ ε/2, because ‖q̃− p‖1 ≤ ε

4 +w( ε
10w + 3ε

20w ), where
the first term is the contribution of chains with at least µ samples and the second term is from the
rest of the chains. By the triangle inequality, p is ε-close to a monotone distribution on P .

The above concludes the proof of Theorem 16.

The following corollary is immediate:

Corollary 20 For any finite poset P on n elements with width w, there exists a monotonicity
tester with respect to P with sample complexity Õ(w

√
n poly(1/ε).

Proof Dilworth’s theorem states that if w is the width of P (i.e., size of the longest antichain),
then P can be decomposed into a union of w disjoint chains. Each chain is clearly of length at
most n.

The next corollary gives a sublinear sample tester for monotonicity with respect to the d-
dimensional cube, resolving the conjecture in [BKR04]. In the following, note that the size of the
domain is n = md.

Corollary 21 Let Cm,d be the d-dimensional grid poset with elements [m]d. Then, there exists
an ε-monotonicity tester with respect to Cd with sample complexity Õ(md−1/2poly(1/ε)), where the
asymptotic notation refers to a fixed d where m is growing.

Proof Consider the following chain decomposition of Cm,d. For σ ∈ [m]d−1, let Cσ = {(σ1, . . . , σd−1, i) :
i ∈ [m]}. It is clear that each Cσ is a chain and that they partition Cm,d. Moreover, each chain is
of length m. So, applying Theorem 16 yields the sample complexity bound.

The next result achieves the first sublinear time monotonicity tester for the Boolean hypercube.
In the following note that the size of the domain is n = 2d.

Corollary 22 Let Hd denote the poset on {0, 1}d induced by the usual subset order. Then, there
exists an ε-monotonicity tester with respect to Hd with sample complexity Õ

(
2d

(d/ log d)1/4
poly(1/ε)

)
.

Proof We use the main result of [HLST03] that states that Hd can be decomposed into
(

d
bd/2c

)
chains, each of size O(

√
d log d). Using the Stirling approximation, and applying Theorem 16,

immediately gives the desired bound.
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3.1 About the optimality of the tester.

Theorem 16 is not tight. For example, consider the outward-directed star graph on n vertices.
There is a simple O(1/ε) sample monotonicity tester with respect to this poset. To see this, observe
that any monotone distribution places weight at most 1/n at the center vertex, and any distribution
ε-far from monotone places weight at least ε on the center vertex. Hence, checking whether the
center vertex appears in a random sample of O(1/ε) samples suffices to distinguish between the
two cases, with high probability. However, for the chain decomposition of the outward-directed
star, the antichain size is linear in n, and hence, the resulting tester from Theorem 16 is far from
optimal. Another example of a poset with a large chain-antichain decomposition but requiring only
a small number of samples for monotonicity testing is given by the inward-directed star.

Theorem 23 There exists a monotonicity tester with respect to the inward-directed star with sam-
ple complexity Õ(1/ε2).

Proof Here is our tester. Given an input distribution p on the inward-directed star:

1. Assume that ε is smaller than some global constant ε̂. Otherwise, perform the rest of the
algorithm for ε̂ instead of ε.

2. Sample m = O(1/ε2 log 1/ε) samples from p.

3. Let u denote the center vertex of the poset, and for every v let count(v) denote the number
of times that v appeared in the sample sequence.

4. Accept if and only if count(u) ≥ maxv 6=u count(v)− εm/4.

For the analysis, let u denote the center vertex of the star, while v1, . . . , vn denote the outside
vertices. For a vertex x, we will call the fraction of times that x is sampled among the m samples
as the algorithm’s estimate of the probability weight of x.

We first observe that with probability at least 5
6 , for each vertex x whose actual weight is at

least ε5, the algorithm estimates the probability weight of x to within an additive error of ε/8. This
is because for any given vertex, the probability that the algorithm’s estimate of its weight differs
from its actual weight by more than ε/8 is at most O(ε5) by Chernoff bounds. Since there are at
most O(1/ε5) vertices with such weights, we can ensure that the probability of being off by more
than ε/8 in the estimate of any such vertex is at most 5

6 .

After we set the coefficient in the number of samples to be used as per the above paragraph,
we take care of setting ε̂. Let U be the set of vertices whose weight is at most ε5, and m = C ·
(1/ε2 log 1/ε) be the number of samples (with C the constant fixed by the above). The probability of
any of the vertices from U to appear more than once in the sample is bounded by

∑
x∈U

(
m
2

)
(p(x))2 ≤(

m
2

)
maxx∈U p(x) ≤ 1

2C
2(1/ε2 log 1/ε)2ε5. A proper choice of ε̂ makes this smaller than 1

6 , and so
with proability at least 5

6 none of the elements with weight less than ε5 will appear in more than
one sample. We also make sure that ε5 ≤ ε/8.

From now on we suppose that both of the above events occur (which they do with probability
at least 2

3). In particular they mean that no vertex received an estimation that is more than ε/8
away from its actual weight in any direction.
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Now, suppose that p is a monotone distribution. This means that the weight of u is at least the
maximum weight of any other vertex in the poset. At the most, the algorithm has mis-estimated
both the weight of u and the maximum weight of the other vertices by at most ε/8. This means
that the algorithm accepts, since the estimated weight of u will be not less than the maximum
estimated weight of the other vertices minus ε/4.

On the other hand, suppose now that p is ε-far from monotone. In particular this means that
the weight of u is less than the maximum weight of the other vertices minus ε/2, as otherwise we
just decrease the weight of u by ε/2 at the expense of the other vertices and obtain a monotone
ε-close distribution. As both count(u) and maxv 6=u count(v) reflect the actual weights with up on
an ε/8 error, the algorithm rejects.
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