
Reconstructing Algebraic Functions from Mixed Data

Sigal Ar� Richard J. Liptony Ronitt Rubinfeldz Madhu Sudanx
Abstract

We consider the task of reconstructing algebraic functions
given by black boxes. Unlike traditional settings, we are
interested in black boxes which represent several algebraic
functions - f1; : : : ; fk, where at each input x, the box arbi-
trarily chooses a subset of f1(x); : : : ; fk(x) to output. We
show how to reconstruct the functions f1; : : : ; fk from the
black box. This allows us to group the sample points into
sets, such that for each set, all outputs to points in the set are
from the same algebraic function. Our methods are robust
in the presence of errors in the black box. Our model and
techniques can be applied in the areas of computer vision,
machine learning, curve fitting and polynomial approxi-
mation, self-correcting programs and bivariate polynomial
factorization.

1 Introduction

Suppose you are given a large set of points in the plane and
you are told that an overwhelming majority of these points
lie on one of k different algebraic curves of degree boundd (but you are not told anything else about the curves).
Given the parameters k and d, your task is to determine
or “reconstruct” these algebraic curves, or alternatively, to
group the points into sets, each of which is on the same
degree d curve. Related versions of this problem are also
of interest, such as extensions to higher dimensions, and a
setting where instead of the points being given in advance,
one is allowed to make queries of the form “what is the�Princeton University, Supported by Dept. of Navy Grant#N00014-85-C-0456, by NSF PYI grant CCR-9057486 and a
grant from MITL.yPrinceton University. Part of this research was done while at
Matsushita Information Technology Labs.zCornell University. Part of this research was done while at
Hebrew University and Princeton University and supported by
DIMACS, NSF-STC88-09648.xU.C. Berkeley. Supported in part by NSF Grant No. CCR
88-96202.

value of one of the curves at point x?”1. This problem
seems to be fundamental and its solution has a variety of
applications:

Computer Vision Consider a computer vision system for
a robot that picks parts out of a bin. The input to the
system contains an intensity map of the scene. The robot
can distinguish between the parts by extracting edges from
the image. Current edge detection algorithms use discre-
tised differential operators to extract edges (e.g. [23][9]).
These algorithms produce output consisting of a bit map,
where for every image point (x; y), the bit value of the
point, e(x; y), is set to 1 if and only if this point lies on
an edge. For many vision applications it is then desired
to connect between neighboring points to achieve a more
compact representation of the edge map. This problem,
known as “the grouping problem”, is complicated by the
fact that the parts are cluttered, they may be nonconvex,
they may contain holes, and the edges are distributed along
the image creating noncontinuous sequences of curves. No
polynomial time algorithm has been found for this problem.

Under the assumption that the edges of the parts are given
by piecewise algebraic curves, and that the edge detection
process produces results which are free of precision error,
our algorithm transforms edge maps into piecewise polyno-
mial curves in polynomial time. The second assumption is
unrealistic in real computer vision applications. However,
we feel that it may be possible to make a simple modifica-
tion to our algorithm so that it works in a real setting.

Learning Our mechanism can be used to extend some
well-known results on learning boolean functions to the
setting of learning real-valued functions. Here, we present
two specific instances of such situations:� In the study of economics, the price-demand curve is

often considered to be well-described by an algebraic
function (e.g. f(x) = c=x or f(x) = �a � x + b).
However, it is also the case that this curve may change
[17]. In particular, there may be several unknown
price-demand curves which apply in various situa-
tions - one may correspond to the behavior found1The answer to such a query will not specify which of the k

curves was used to compute the value.

when the country is at war, another may correspond
to typical behavior on a Sunday, a third may apply af-
ter a stock market crash, and yet another behavior may
be found after a change in the tax structure. Some of
the factors that determine which curve applies may be
obvious, however others (such as a change in behav-
ior due to the day of the week) may occur because of
more subtle reasons. The task of learning the price-
demand relationship may be decomposed into the two
subtasks of first determining the unknown curves, and
then learning what determines the move from one
curve to another. Our algorithm gives a solution for
the first task.� A polynomial-valued decision list given by a list of
terms (conjuncts of literals), (Di)ki=1 over boolean
variables y1; : : : ; yn, and a list of univariate polyno-
mials, (fi)k+1i=1 in a real variable x, represents a real
valued function f as follows:f(x; y1; : : : ; yn) = fi(x)
(where i is the least index such that Di(y1; : : : ; yn) is
true)

If the terms are restricted to being conjuncts of at mostc literals, we call it a polynomial-valued c-decision
list. This is an extension of the boolean decision list
model defined by Rivest in [24], where the polyno-
mials fi are restricted to being the constants 0 or 1.

In [24], Rivest shows that the class of boolean c-
decision lists are learnable in polynomial time un-
der the Valiant model of PAC learning. Using our
techniques, in combination with Rivest’s algorithm,
we can extend this result to show that the class of
polynomial-valued c-decision lists can be learned in
polynomial time.

In general, our results imply that any function on inputx and
boolean attributes (y1; : : : ; ym)which uses (y1; : : : ; ym) to
select fi from a set of polynomial functions f1; : : : ; fk and
then computes and outputs fi(x), can be learned, as long
as the selector function can be learned.

Independent of our work, Blum and Chalasani [6] also
consider a model of learning from examples where the
examples may be classified according to one of several
different concepts. In their model an adversary controls
the decision of which concept would be used to classify
the next example. Under this model they study the task
of learning boolean-valued concepts such as k-term DNF’s
and probabilistic decision lists.

Curve Fitting A typical curve fitting problem takes the
following form: Given a set of points f(xi; yi)gti=1 on the

plane, give a simple curve that “fits” the given points. De-
pending on the exact specification of the “fit” the problem
takes on different flavors: for instance, if the curve is to
pass close to all the points, then this becomes a uniform ap-
proximation problem [25], while if the curve is supposed
to pass through most of the points, then it resembles prob-
lems from coding theory. Here, we consider a problem that
unifies the above two instances over discrete domains. For
example, given a set of t points, with integral coordinates,
we consider the task of finding a polynomial with integer
coefficients, so that it is �-close to all but an � fraction of
the points (if such a polynomial exists), where � need only
be less than 1=2.

Self-Correcting Programs One motivation for this work
comes from the area of self-correcting programs introduced
independently in [7][21]. For many functions, one can take
programs that are known to be correct on most inputs and
apply a simple transformation to produce a program that
is correct with high probability on each input. But, how
bad can a program be, and still allow for such a transfor-
mation? There is previous work addressing this question
when the functions in question are polynomials (see for
example [21],[10],[11]). The results we achieve apply to
polynomials as well as to more general forms of algebraic
functions, and subsume the best previously known results.

One particular situation where this is useful is in the com-
putation of the permanent of a matrix, over a finite field.
Results of Cai and Hemachandra ([8]), when used in com-
bination with our results, imply that if there is an effi-
cient program which computes the permanent correctly on
a non-negligible fraction of the input and computes one of
a small number of other algebraic functions on the rest of
the inputs, then the permanent can be computed efficiently
everywhere.

Factoring Bivariate Polynomials In [4] Berlekamp gave
a randomized polynomial time algorithm for factoring uni-
variate polynomials over finite fields. In [18] and [13] it
is shown that the problem of bivariate factoring can also
be solved in polynomial time by reduction to univariate
factoring, using fairly deep methods from algebra. Our
techniques give a simple method to reduce the problem of
factoring bivariate polynomials to that of factoring univari-
ate polynomials over finite fields in the special case when
the bivariate polynomial splits into factors which are monic
and of constant degree in one of the variables. Though the
results are not new, nor as strong as existing results, the
methods are much simpler than those used to obtain the
previously known results.

The k-Algebraic Black Box Model

In most of the above situations, the difficulty is in grouping
the sample points, to determine which sample points are re-
lated - i.e. come from the same algebraic function. In order
to abstract this, we introduce a black box “reconstruction”
problem. The problem may be stated as follows.

Given a black box B, such that the input/output
pairs (x; y) of the black box always satisfy a
relationship of the form Q(x; y) = 0, whereQ is a bivariate polynomial of total degree k,
find an algebraic function2 which describes a
relationship between the input and the output on
a non-trivial fraction of the points.

We call this new model of a black box a k-algebraic black
box. This model captures situations where on any given
input, the black box may output one or more of the several
algebraic functions it represents. As a particular example,Q(x; y) = �1�i�l(y � fi(x)) would mean that the black
box chooses to output one (or more) of l different functionsf1(x); : : : ; fl(x) at every input x (though it is not specified
which ones). This is a generalization of the black box
model used in [3],[15],[16],[28] and [29], where on inputx, the black box outputs f(x) for f polynomial or rational
function. While the target we set for our analysis is that we
recover at least one function fi such that many of the y’s
satisfy y = fi(x), we can iterate this process, after stripping
off points from fi, to extract the remaining functions as
well.

The notion naturally extends to multivariate functions, and
we describe it in terms of polynomials and rational func-
tions. In the case of multivariate functions the description
of the target polynomial or rational function might be very
large. In order to prevent this from requiring too much
running time (to produce the output function), we instead
reconstruct the function implicitly by giving a mechanism
to compute it: we give an efficient algorithm, which is al-
lowed to make queries to the black box. Thus our problem
here is defined as follows:

Given a black box B, such that the inputx1; : : : ; xn and the output y of the black2We use the words “algebraic function” to describe either poly-
nomials or rational functions. Both the notion and our techniques
of reconstructing extend to the more general case of algebraic
relations where the (x; y) pairs satisfy an irreducible polynomial
identity.

box always satisfy a relationship of the formQ(x1; : : : ; xn; y) = 0, where Q is an (n + 1)-
variate polynomial of total degreek,find, or pro-
vide a mechanism to compute a polynomial or
rational function which describes a relationship
between the input and the output on a non-trivial
fraction of the points.

In addition, for both the univariate and the multivariate
cases, we consider extensions to noisy situations: �-noisyk-algebraic black boxes, where the black box is allowed
to output arbitrary answers on an � fraction of the inputs.

In the case that all the l functions, f1; : : : ; fl, represented by
the black box are polynomials of degree at most d, we call
the black boxes (l; d)-polynomial black boxes, or �-noisy(l; d)-polynomial black boxes.

Previous Work and Our Results

The setting where the black box represents a single poly-
nomial or rational function, without noise, is the classic
interpolation problem and is well studied. Efficient algo-
rithms for sparse multivariate polynomial interpolation are
given in [28], [16], [3] and [29], and for sparse rational
functions in [15].

The case where the black box represents a single function
with some noise has also been studied previously. In [5] it
is shown how to reconstruct a univariate polynomial from a(12 � �)-noisy 1-polynomial black box and in [10] and [11]
it shown how to do the same for multivariate polynomials.
Reconstructing functions from a black box representing
more than one function seems to be a previously unexplored
subject.

Our algorithmic results include the following: We give an
efficient algorithm for explicitly reconstructing univariate
polynomials and rational functions, over finite fields, Z
and Q, from an �-noisy k-algebraic black box. The only
constraint imposed on � is that our algorithm is only guar-
anteed to find an fi if the fraction of inputs for which the
black box answers according to fi is more than �. This
result is described in Theorem 2 for the case of recon-
structing a polynomial, but applies essentially as it is to
the case of extracting a rational function. The result can
also be extended to the case of other algebraic functions
(e.g. y = pf=g, with f and g polynomials), while still
tolerating a non-negligible fraction of noise3.3The fraction of points from the good curve must outweigh
the fraction of noise by a multiplicative factor of d where d is the

To reconstruct a polynomial, we first construct a bivariate
polynomial Q0(x; y) which is zero at all the sample points
and then use bivariate polynomial factorization to find a
factor of the form (y�f(x)). If it exists,f(x) then becomes
our candidate for output. We then show that if the number
of points on f is large in the sample we see, then y � f(x)
has to be a factor of any Q0 which all the sample points
satisfy.

For the general problem of implicitly reconstructing mul-
tivariate polynomials, we show how to reconstruct multi-
variate polynomials (or rational functions) over sufficiently
large finite fields, under the same restrictions on noise as
in the univariate case. Our technique here is to reduce the
multivariate reconstruction problem into a univariate re-
construction problem using a careful sampling technique.
We then use the univariate technique described earlier to
solve the new univariate problem.

A note about the specific representation of the output in
the case of multivariate polynomials: The fact that we only
reconstruct the output implicitly should not be considered
a weakness, but rather a strength. In the particular case
that the target function is a sparse multivariate polynomial,
this allows for the reconstruction of a small set of explicitly
represented multivariate polynomials, by the interpolation
mechanisms of [16],[3],[28] or [15]. On the other hand, by
using the techniques of [19] we can also continue to manip-
ulate the black boxes as they are for whatever purposes4.

Organization The rest of this paper is organized as fol-
lows. In Section 2, we describe our results for univariate
polynomials. These results, although presented in terms
of polynomials, can be applied directly to rational func-
tions and other algebraic functions. In Section 3, we show
how to extend our results to multivariate functions. Here
too, the results are presented in terms of polynomials. Fi-
nally, in Section 4, we describe in more detail some of the
applications of our work.

maximum degree of y in the algebraic relation relating x and y -Q(x; y).4The mechanism of manipulating multivariate polynomials
and rational functions represented by black boxes was proposed
by Kaltofen and Trager in [19]. They show that it is possible
to factor and compute g.c.d.’s for polynomials given by such a
representation and to separate the numerator from the denominator
of rational functions given by such a representation.

2 Univariate Black Boxes

In this section, we consider the problem of explicitly re-
constructing the univariate polynomials f1; : : : ; fk, each
of degree at most d, from a (k; d)-polynomial black box for
them. As mentioned earlier, these results apply to rational
functions and extend to algebraic functions.

2.1 An Intermediate Model

As an intermediate step towards solution, we assume that
the black box outputs all of f1(x); : : : ; fk(x) on any in-
put x. These are output in arbitrary order, which is not
necessarily the same for each x. We further assume that
there are no errors in the output. We reduce the problem of
extracting the polynomials to that of bivariate polynomial
factorization.

If on x the black box outputs fy1; : : : ; ykg, we know that8i; 1 � i � k; 9j; 1 � j � k such that yi = fj(x).
Therefore, one relation satisfied by the input/output of the
black box is:8(x; y1; : : : ; yk) �i�j (yi � fj(x)) = 0
We can construct a related polynomial which will enable
us to recover the fj’s.

Consider the functions �i : F 7! F , i 2 [k] defined as�i(x) � XS�[k];jSj=i Yj2S fj(x)
(these are the primitive symmetric functions of f1; : : : ; fk).

Observe that �i(x) can be evaluated at any input x using
the given (k; d)-polynomial black box (inO(k logk) time).
Observe further that �i is a polynomial of degree at mostid. Hence evaluating it at id + 1 points suffices to find all
the coefficients of this polynomial (if the black box outputs
every fi(x) for every x).

Now to find the functions fj from the functions �i, we
construct the following polynomial, in x and a new inde-
terminate y: Q(x; y) = kYj=1(y + fi(x))
Observe that Q can also be written asQ(x; y) = yk + �1(x)yk�1 + � � �+ �k(x)

Thus we can describe Q explicitly (in terms of its coeffi-
cients). To recover the fj’s now all we have to do is find
the factors of the bivariate polynomial Q. Bivariate fac-
torization can be done efficiently over the rationals ([13],
[18], [22]), and can be done efficiently (probabilistically)
over finite fields [12],[18].

We have shown the following:

Theorem 1 Let f1; : : : ; fk be degree d polynomials overQ, Z or a finite field. Given a black box which on in-
put x outputs ff1(x); : : : ; fk(x)g in arbitrary order, we
can reconstruct all the polynomials that it computes withO(kd+ 1) queries.

2.2 Noisy (k; d)-Polynomial Black Boxes

We build on the methods of the previous section to re-
construct information from a (k; d)-polynomial black box
which outputs the value of one of k univariate polynomialsf1; : : : ; fk, on every input. Our method extends imme-
diately to the case where the black box sometimes out-
puts a value corresponding to none of the fi’s, an �-noisy(k; d)-polynomial black box, and we present this result di-
rectly. The technique used to achieve this also builds on
a procedure of Berlekamp and Welch [5], which (in our
notation) reconstructs a polynomial from a (12 � �)-noisy(1; d)-polynomial black box, where � can be arbitrarily
small.

Given an �-noisy (k; d)-polynomial black box B for the
polynomials f1; : : : ; fk, each of degree at most d, over a
finite field F , let pi be defined aspi � Prx2F [B outputs fi(x) on input x]:
We show that with high probability, we can reconstruct
a polynomial fi from the �-noisy black box B, in time
polynomial in k, d and 1pi�� provided pi > �.
Theorem 2 Let B be an �-noisy (k; d)-polynomial black
box representing the polynomials f1; : : : ; fk in x over a
finite field F (jF j > O(maxfk2d2; 1(p1��)2 g)). If p1 > �
then (with high probability) a set of at most k polynomials
of degree d can be reconstructed from B, such that f1 is
amongst them, withO(maxfk2d2; 1(p1��)2 g) queries.

Our problem of reconstructing f1; : : : ; fk reduces to the
following problem:

Problem 1
Given: t pairs of points f(x1; y1); : : : ; (xt; yt)g, such that

there exist polynomials f1; : : : ; fk satisfying8 i deg(fi) � d, and for all but l values of j 2 [t], 9 i 2 [k]
s.t. fi(xj) = yj .
(l is the number of noise points in our sample.)

Problem: Find f1; : : : ; fk.

Let Si be the subset of the indices j 2 [t] such that yj =fi(xj) and let E be the set of indices of the error points,
i.e., E = [t] n ([ki=1Si). (By our definition jEj = l.)
For every index j 2 Si, we have yj � fi(xj) = 0 . Thus
for indices j 62 E we have(yj � f1(xj)) � � � � � (yj � fk(xj)) = 0
We can construct a polynomialW , of degree at most l, such
that W 6� 0, but for all indices j 2 E, W (xj) = 0. W is
simply the polynomial W (x) = Qj2E(x� xj).
Thus we get8j 2 [t]; W (xj)� (yj�f1(xj))� � � �� (yj�fk(xj)) = 0
Expanding the product above to represent it as a polynomial
in y, we see that there are polynomials in x, A0; : : : ; Ak,deg(Am) � l +m � d, A0 6� 0, s.t.8 j 2 [t]; A0(xj)�ykj +A1(xj)�yk�1j +� � �+Ak(xj) = 0
We now consider the following problem:

Problem 2
Given: t pairs of points f(x1; y1); : : : ; (xt; yt)g, and givend, and l, such that there exist polynomials A0; : : : ; Ak,A0 6� 0, deg(Am) � l +m � d, and8 j 2 [t]; kXm=0Am(xj) � yk�mj = 0
Problem: Find A0; : : : ; Ak.

We can obtain a solution to Problem 2 by substituting un-
knowns for the coefficients of the Am’s and solving the
linear system of equations that is obtained by the con-
straints of the problem statement above. If the solution to
Problem 2 were known to be unique, then by factoring the
bivariate polynomial Q(x; y), defined asQ(x; y) � kXm=0Am(x) � yk�m (1)

we could get a solution to problem 1. (Notice that Q(x; y)
is effectively the same here as in Section 2.1 except that it
is multiplied by a factor of W (x) here.)

Unfortunately, the solution to Problem 2 might not be
unique and the particular solution to Problem 2 that we may
end up finding could be one that will not yield a solution
to Problem 1. The following lemma guarantees that under
certain constraints on the sizes of the sets S1; : : : ; Sk, the
solution to Problem 2 satisfies invariants which guarantee
a unique solution to Problem 1.

Lemma 1 If jSij > kd+ l then (y � fi(x)) j Q(x; y)
Proof: Consider the univariate polynomial Qi(x) �Q(x; fi(x)).
For all indices j 2 Si we have that Qi(xj) = 0. ButQi(x)
is a polynomial of degree at most kd+ l in x and hence if
it is zero at jSij > kd+ l places, then it must be identically
zero, implying that (y � fi(x))jQ(x; y) 2
The lemma above guarantees that under certain circum-
stances, the factors ofQ(x; y) do give us useful information
about the fi’s, leading us to the proof of the theorem:

Proof: [of Theorem 2] We sample from the black boxt = O(maxfk2d2; 1(p1��)2 g) times and then solve for the
polynomial Q as defined in Equation 1. We find all the
factors ofQ that are linear and monic factors in y and output
the set of polynomials g(x) such that (y � g(x))jQ(x; y).
By Lemma 1 the output set will include f1 if jS1j > kd+jEj. By using Chernoff bounds we can show that, if thexj’s are picked independently and at random thenPr �(jS1j < p1t� cpt) or jEj > �t+ cpt� < 2e�c2=2
Thus if t = �(maxfk2d2; 1(p1��)2 g), we have that with
high probability jS1j > kd+ jEj and hence our algorithm
performs correctly. 2
3 Multivariate Black Boxes

In this section, we extend Theorem 2 to multivariate poly-
nomial black boxes over finite fields. Once again, we note
that this extends to more general cases. The methods of
Section 2 do not seem to extend directly to the general
multivariate case. This is due to the possibly large explicit
representation of the function extracted from the black box,
which makes it inefficient to work with. Instead, we use
techniques of pairwise independent sampling to reduce the
problem to a univariate situation and then apply Theorem 2
to the new univariate problem.

Theorem 3 Given an �-noisy (k; d)-polynomial black box
inn variablesx1; : : : ; xn over a sufficiently large finite field

F (jF j > maxf4k2d2; 1(p��)2 g) a black box representation
of a polynomial f , which describes the output of the black
box on a fraction p (p > �) of the input space, can be
constructed in time polynomial in k; d; n and 1p�� , if such
a polynomial exists.

Proof (sketch): Fix any candidate polynomial f which
describes the output of the black box on a fraction p of the
input space. We show how to reconstruct a small set of
polynomials which includes f .

We use the techniques of [1] and [11] to probabilistically
construct a small subdomain D of Fn, parameterized by x,
such that the following properties hold:

1. D contains any two given points â and b̂. (In particu-
lar, we can ensure D(0) = â and D(1) = b̂.)

2. Over the domainD, the polynomialQ(x1; : : : ; xn; y)
can be expressed as a bivariate polynomial in x; y i.e.,
the function QD(x; y) = Q(D(x); y) is a bivariate
polynomial.

3. D resembles a randomly and independently chosen
sample of Fn of size jDj. In particular, with high
probability, the fraction of points from D where the
black box responds with f(x1; : : : ; xn), is very close
to the fraction of points from Fn where the black box
responds with f .D can be constructed by substituting random cubic equa-

tions in x for each variable, xi. The construction works
for large finite fields. The details of such constructions
are standard and omitted here. A description of a similar
construction appears for example in [11].

Claim 2 For any two points â; b̂ 2 Fn, given a domainD
containing â and b̂ with properties (2) and (3) listed above,
a set f(f1(â); f1(b̂)); : : : ; (fl(â); fl(b̂))g of values can be
reconstructed efficiently such that for some i, 1 � i � l,fi(â) = f(â) and fi(b̂) = f(b̂).
Proof: Reconstruct l (l � k) univariate polynomialsfD1 ; : : : ; fDl , in x, that represent all the candidates for f
restricted to the domain D. Due to Property (3) and Theo-
rem 2, this is possible in time polynomial in k, d and 1p�� .
Evaluating these l polynomials at D(0) and D(1) gives the
desired set of values. 2
We are not quite done yet because we wish to some-
how select the correct value from this set so as to
always output the value of the polynomial f . We
would like a method to consistently order the valuesf(f1(â); f1(b̂)); : : : ; (fl(â); fl(b̂))g so that the ith value in

the ordering always comes from fi. In order to achieve a
global ordering of this form we pick a reference point r̂,
such that fi(r̂) 6= fj(r̂) if i 6= j. The following definition
and claim show that such a point exists.

DEFINITION 3.1 For a multivariate polynomialQ(x1; : : : ; xn; y) of degree k in y, and total degree kd, with
no repeated factors, a reference point is a point r̂ =<r1; : : : ; rn > such that the polynomial fr̂(y) given by Q
restricted to x̂ = r̂ has no repeated factors5.

Claim 3 A random point in Fn is a reference point with
probability� 1=2.

Proof (sketch): Let �(x1; : : : ; xn) be the discriminant
(see [26], for instance, for a definition of discriminant) of
the polynomialQ(x1; : : : ; xn; y)when viewed as a polyno-
mial in y with coefficients that are degree kd polynomials
in x1; : : : ; xn. Observe that the discriminant satisfies the
following properties:� � is not identically zero, because Q has no repeated

factors.� � is a polynomial in x1; : : : ; xn of total degree at
most 2k2d (since it is a polynomial in the coefficients
of y of total degree at most 2k).

Thus if jF j � 4k2d, thenPrr̂2RFn [�(r̂) 6= 0] � 12
But this implies that the polynomial fr̂(y) = Q(r̂; y) has
a non-zero discriminant, implying fr̂(y) has no repeated
factors, and r̂ is a reference point. 2
The values of the k polynomials on r̂, fs1; : : : ; skg, can
now be used to fix a “global” ordering of the candidate
polynomials f1; : : : ; fk as follows: Fix an arbitrary order-
ing s1; : : : ; sk and let fi be the (unique) polynomial that
evaluates to si at r̂. Now, on input b̂ 2 Fn, the black box
for fi does the following:� Construct a domain D, such that D(0) = r̂ andD(1) = b̂ and properties (2) and (3) hold.� Use the univariate reconstruction technique to recon-

struct the univariate polynomials fD1 ; : : : ; fDk .� Find j such that fDj (0) = si.5Note that if Q(x̂; y) = �ki=1 (y � fi(x)), this is equivalent
to the condition that fi(r̂) 6= fj(r̂) when i 6= j.

� Output fDj (1). 2
4 Applications

In this section, we describe the application of our techniques
to some of the areas mentioned in the introduction. The
other applications are more straightforward, and we will
give the complete details in a later version.

4.1 (�;�) Interpolation Problems over Discrete
Domains

Consider the task of fitting a low degree polynomial on
a given set of points, so that the majority of the points
are “close” to the polynomial, while some fraction of the
points can be very far away. We look at such computations
over discrete domains. For example, over Zp (or over the
integers) the problem can be formulated as:

Problem 3
Given: t pairs of points, f(x1; y1); : : : ; (xt; yt)g, and �,
such that there exists a polynomial f , of degree at most d,
so that

for all but �t values of j in [t]9i 2 [��;�] s.t. yj = f(xj) + i
Problem: Find f .

This is exactly a (2� + 1; d)-polynomial black box re-
construction problem and the reconstruction procedure of
Section 2.2 can be used to find one of the polynomialsfi(x) � f(x) + i (or a small set of polynomials which
includes f).

We know that there exists a bivariate polynomial Q(x; y)
such that Q(xi; yi) = 0 for all i = 1; : : : ; t. This is the
polynomial: Q(x; y) =W (x) ��i (y� fi(x)), where fi is
the polynomial given by fi(x) = f(x) + i, i 2 [��;�],
andW (x) is defined by all the points where the y coordinate
is more than � away from f(x) (as in Section 2.2), so thatdeg(W) � �t.
From Theorem 2 we get the following claim:

Claim 4 If there exists an i such that the fraction of points
for which y = fi(x) is bigger than �, then we can find fi.

A small set of polynomials that is guaranteed to contain f ,
is ffi + j : j 2 [��;�]g where the fi’s are the outputs
of the reconstruction algorithm.

We want to be able to handle situationswhere � is arbitrarily
close to 1=2. Using our mechanism directly means that the� that our algorithm can handle depends on �. This is
because there must be an i 2 [��;�] such that more than�t of the points are on f(x)+ i. An important point to note
is that we can artificially decrease the influence of the bad
points. This is due to the role of these points in definingQ(x; y).
To do this, we look at the following set of points:f(xij; yij)gt; 2�j=1;i=0, where xij = xj and yij = yj ��+ i.
(From each point in the original sample, we generate 2�
additional points, by adding and subtracting up to � to they coordinate of each point.)

Observe that the following conditions hold for the (2�+1)t
points so constructed:� There exists a polynomial Q(x; y) of degree at most�t+(4�+1)d such thatQ(x; y) = 0 for all the points.

This is the polynomial: Q(x; y) = W (x) ��4�i=0 (y�fi(x)), where W (x) is as before, and fi(x) = f(x)+i� 2�.� At least (1 � �)t of the points satisfy y = f(x). This
is because for every point in the original (xj; yj) such
that yj is within � of f(xj) (and there were (1 � �)t
such points), one of the new (xij ; yij) pairs satisfiesyij = f(xij).

Claim 5 If � < 12 then we can find all functionsf such thatf is �-close to all but an � fraction of the points, providedt > (4�+1)d1�2� .

Proof: Find a polynomialQ0(x; y) such thatQ0(x; y) = 0
for all the points and degree ofQ0 is at most �t+(4�+1)d.
If �t+(4�+1)d < (1��)t then by Lemma 1 we know that
for every candidate function f which forms an (�;�) fit on
the given points, (y� f(x)) dividesQ0. Thus factoring Q0
will give us all the candidates. 2
4.2 Reducing Bivariate Factoring to Univariate

Factoring

In Section 2.1, we saw how to reduce the problem of recon-
structing polynomial black boxes to the problem of factor-
ing bivariate polynomials. In the specific case of univariate
polynomial black boxes, we can also reduce the reconstruc-
tion problem to that of factoring univariate polynomials to

their irreducible factors. As an interesting consequence, we
find a simple way of showing that over finite fields, factor-
ing special bivariate polynomials is reducible to factoring
univariate polynomials. There are known methods to re-
duce factoring of bivariate polynomials to that of univariate
polynomials [18], however this result is interesting in the
sense that the reduction, as well as the proof of its cor-
rectness, are extremely simple and use very basic algebraic
tools.

Suppose, as in Section 2.1, we want to know f1; : : : ; fk,
univariate polynomials, each of degree at mostd. However,
all we have is a black box - B, that at any given point - x
- outputs the unordered set ffi(x)g. Sampling from the
black box, and interpolating, we can find the polynomialt(x) = Qki=1 fi(x) explicitly (in terms of its coefficients).
If somehow we could guarantee that at least one of the fi’s
is irreducible, we could factor t to find fi. Such a guarantee
is not available, but we simulate it via randomization.

Let �(x) 2 F [x] be a random degree d polynomial.
We can convert the given set of sample points so
that on each input x we have the (still unordered) setfg1(x); : : : ; gk(x) : gi(x) = fi(x) + �(x)g. Each of
the polynomials gi is a random degree d polynomial (but
they are not necessarily independent). We then use the fact
that random polynomials over finite fields have a reason-
able chance of being irreducible.

Lemma 6 ([20], p.84) The probability Pq(d) that a ran-
dom polynomial, of degree d, is irreducible over Fq, is at
least 1d (1� 1q�1).
We can thus interpolate (after sampling at enough - kd+ 1
- points) and explicitly compute t0(x) = Qki=1 gi(x). We
factor t0 into irreducible factors r1 � � � � � rl. For each factorrj of t0, we verify whether or not rj � � is a candidate for
one of the fi’s by checking that it evaluates to one of the
outputs of the black box B on all the sampled points. By
Lemma 6 we know that with non-negligible probability gi
is irreducible and if this happens, we find gi as one of the
factors of t0 (one of the rj’s). Subtracting � from gi gives
us fi, which will pass the candidacy verification.

Lemma 7 If a degree d polynomial p agrees with one of
the outputs of the black box on kd+ 1 different x’s, then p
agrees with one of the outputs of the black box on all x’s.

Proof: If p agrees with one of the outputs of the black box
on kd + 1 different x’s, then by the pigeonhole principle
there is a polynomial fi which agrees with p on at leastd+ 1 different x’s. Thus p � fi. 2
Thus, no rj which is not equal to one of the gi’s will pass the
candidacy verification. By repeating this procedure enough

times and outputting all the candidates, we can reconstruct
all the polynomials ff1; : : : ; fkg. Straightforward analysis
shows that the expected number of times that we need to
repeat the process (choose random �) is O(k=Pq(d)) to
be able to reconstruct all of the fi’s. Refining the analysis,
we can show that O(lnk=Pq(d)) times suffice.

From the above, we get the following algorithm for finding
the monic linear factors of a bivariate polynomial Q(x; y).
program Simple Factor
repeat O(lnk=Pq(d)) times

pick a random degree d polynomial�(x) over F
factor Q(x; �(x))
for every factor g(x) of Q(x; �(x))

if (y + g(x) � �(x)) divides Q(x; y)
output (y + g(x)� �(x))

end

Claim 8 Given a bivariate polynomial Q(x; y), over a fi-
nite fieldF , of total degree at mostkd, the algorithm Simple
Factor finds all the linear and monic factors of Q(x; y).
We next extend this mechanism, and apply the reconstruc-
tion mechanism of Section 2.2 to the problem of finding the
factors of Q(x; y) which are monic and of constant degree
in y. Our mechanism tries to isolate some factor A(x; y)
of Q(x; y) of the formA(x; y) = yc + a1(x)yc�1 + � � �+ ac(x)
where the ai’s are polynomials in x of degree at most d
(and c is a constant).

For each i 2 [c] we construct a program Pi for ai, such
that the output of this program on any x is from a small set
of polynomials, and is guaranteed to contain ai(x). This
program can be thought of as a black box for ai. We then
use our reconstruction procedure (Theorem 2) to produce,
for each i 2 [c], a small list of polynomials which containsai. This, in turn, gives a small set of polynomials in x and y
which contains A(x; y). A(x; y) can be isolated from this
set by exhaustive search.

The program Pi for ai works as follows on input x1:� Pi constructs the polynomial Qx1(y) � Q(x1; y)
(which is a polynomial in y) and factors Qx1 .� Let S be the set of factors of Qx1 . (S contains poly-
nomials in y.)� Let Sc be the set of polynomials of degree c obtained
by taking products of polynomials in S.

� Pi picks a random polynomial f in Sc and outputs the
coefficient of yi in f .

To see that Pi computes ai on some inputs, observe thatAx1(y) = A(x1; y) divides Qx1 and hence appears in the
set Sc (which is the set of all degree c factors ofQx1). Thus
with non-negligible probability, when Pi picks a random
element of Sc, it is likely to be Ax1(y) and hence when Pi
outputs the coefficient of yi from this polynomial, it outputsai(x1) correctly.

On the remaining inputs, Pi’s output is in error, but is the
value of some polynomial, so that the value output in this
case is obtained from an algebraic combination of elementsyi which satisfy Q(x1; yi) = 0, and this corresponds to
situations for which we can solve.

Acknowledgments

We are very grateful to Avi Wigderson for asking a question
that started us down this line of research and for helpful
discussions. We are very grateful to Umesh Vazirani for
his enthusiasm, his valuable opinion and suggestions and
the time that he spent with us discussing this work. We
thank Ronen Basri, Oded Goldreich and Mike Kearns for
their comments on the writeup of this paper. We would
like to thank Joel Friedman for technical discussions about
questions related to the topics of this paper.

References

[1] D. Beaver and J. Feigenbaum. Hiding Instance in
Multioracle Queries. In STACS 1990

[2] M. Ben-Or. Probabilistic Algorithms in Finite Fields
In Proc. 22nd IEEE Symposium on Foundations of
Computer Science, pages 394–398, 1981.

[3] M. Ben-Or and P. Tiwari. A Deterministic Algorithm
for Sparse Multivariate Polynomial Interpolation. In
Proc. 20th STOC, pages 301-309, 1988.

[4] E. Berlekamp. Factoring Polynomials over Large Fi-
nite Fields. Mathematics of Computation, page 713,
vol. 24, no. 111, 1970.

[5] E. Berlekamp and L. Welch. Error Correction of Al-
gebraic Block Codes. US Patent Number 4,633,470

[6] A. Blum and P. Chalasani. Learning Switching Con-
cepts. In Proc. 5th Annual Workshop on Computa-
tional Learning Theory, pages 231–242, 1992.

[7] M. Blum, M. Luby and R. Rubinfeld. Self-
Testing/Correcting with Applications to Numerical
Problems. In Proc. 22nd ACM Symposium on Theory
of Computing, 1990.

[8] J.Y. Cai and L. Hemachandra. A note on enumerative
counting. Information Processing Letters 38 (1991)
pp. 215-219.

[9] Canny J., 1983. Finding edges and lines in images.
M.I.T., Arificial Intelligence Laboratory Report, AI-
TR-720.

[10] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan and
A. Wigderson. Self-Testing/Correcting for Polyno-
mials and for Approximate Functions. In Proc. 23rd
ACM Symposium on Theory of Computing, 1991.

[11] P. Gemmell and M. Sudan. Highly resilient correctors
for polynomials. To appear in Information Processing
Letters.

[12] D. Grigoriev. Factorization of Polynomials over a Fi-
nite Field and the Solution of Systems of Algebraic
Equations. Translated from Zapiski Nauchnykh Sem-
inarov Lenningradskogo Otdeleniya Matematich-
eskogo Instituta im. V. A. Steklova AN SSSR, Vol.
137, pp. 20-79, 1984.

[13] D. Grigoriev and A. Chistov. Fast decomposition of
polynomials into irreducible ones and the solution of
systems of algebraic equations. Soviet Math. Doklady
, 29 (1984) 380–383.

[14] D. Grigoriev and M. Karpinski. Algorithms for Sparse
Rational Interpolation. ICSI Tech. Report, TR-91-
011, January 1991.

[15] D. Grigoriev, M. Karpinski, M.F. Singer. Interpola-
tion of Sparse Rational Functions Without Knowing
Bounds on Exponents. Institut für Informatik der
Universität Bonn, Report No. 8539-CS, Nov. 1989.

[16] D. Grigoriev, M. Karpinski, M.F. Singer. Fast Par-
allel Algorithms for Sparse Multivariate Polynomial
Interpolation over Finite Fields. SIAM J. Comput.,
Vol. 19, No. 6, pp 1059-1063, Dec. 1990.

[17] J. Henderson and R. Quandt. Microeconomic The-
ory, McGraw Hill Book Company, 1958, 1971.

[18] E. Kaltofen. A Polynomial-Time Reduction from Bi-
variate to Univariate Integral Polynomial Factoriza-
tion. In 23rd Annual Symposium on Foundations of
Computer Science, pages 57-64, 1982.

[19] E. Kaltofen and B. Trager. Computing with Polyno-
mials Given by Black Boxes for Their Evaluations:
Greatest Common Divisors, Factorization, Separa-
tion of Numerators and Denominators. In 29th An-
nual Symposium on Foundations of Computer Sci-
ence, pages 296–305, 1988.

[20] R. Lidl and H. Niederreiter. Introduction to finite
fields and their applications. Cambridge University
Press, 1986

[21] R. Lipton. New directions in testing. In Distrib-
uted Computing and Cryptography, DIMACS Series
on Discrete Mathematics and Theoretical Computer
Science, pages 191–202, v. 2, 1991.

[22] A. K. Lenstra, H. W. Lenstra and L. Lovasz. Factoring
polynomials with rational coefficients. Math. Ann.,
261 (1982), 515–534.

[23] Marr D. & Hildreth E., 1980. “Theory of Edge Detec-
tion”. Proceeding of the Royal Society London, B207,
pp. 187-217.

[24] R. Rivest. Learning Decision Lists. Machine Learn-
ing, 2(3), pages 229-246, 1987.

[25] T.J. Rivlin. An Introduction of the Approximation of
Functions. Dover Publications, 1969.

[26] Van der Waerden. Algebra, Volume 1. Frederick
Ungar Publishing Co., Inc., page 82.

[27] R. J. Walker. Algebraic Curves. Dover Publications,
1962

[28] R.E. Zippel. Probabilistic Algorithms for Sparse
Polynomials. In Proc. EUROSAM ’79, Springer Ver-
lag LNCS, pages 216-226, v. 72, 1979.

[29] R.E. Zippel. Interpolating Polynomials from their
Values. J. Symbolic Computation 9, pages 375-403,
1990.

