
Che
king Approximate Computations of

Polynomials and Fun
tional Equations

�

Funda Erg�un

y

S Ravi Kumar

z

Ronitt Rubinfeld

x

June 10, 2004

Abstra
t

A majority of the results on self-testing and 
orre
ting deal with programs whi
h

purport to 
ompute the 
orre
t results pre
isely. We relax this notion of 
orre
tness

and show how to 
he
k programs that 
ompute only a numeri
al approximation to

the 
orre
t answer. The types of programs that we deal with are those 
omputing

polynomials and fun
tions de�ned by 
ertain types of fun
tional equations. We present

results showing how to perform approximate 
he
king, self-testing, and self-
orre
ting

of polynomials, settling in the aÆrmative a question raised by [20, 29, 30℄. We obtain

this by �rst building approximate self-testers for linear and multilinear fun
tions. We

then show how to perform approximate 
he
king, self-testing, and self-
orre
ting for

those fun
tions that satisfy addition theorems, settling a question raised by [28℄. In

�
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both 
ases, we show that the properties used to test programs for these fun
tions

are both robust (in the approximate sense) and stable. Finally, we explore the use

of redu
tions between fun
tional equations in the 
ontext of approximate self-testing.

Our results have impli
ations for the stability theory of fun
tional equations.
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1 Introdu
tion

Program 
he
king was introdu
ed by Blum and Kannan [7℄ in order to allow one to use a

program safely, without having to know apriori that the program is 
orre
t on all inputs.

Related notions of self-testing and self-
orre
ting were further explored in [8, 24℄. These

notions are seen to be powerful from a pra
ti
al point of view (
.f., [9℄) and from a theoreti
al

angle (
.f., [5, 4℄) as well. The te
hniques used usually 
onsist of tests performed at run-time

whi
h 
ompare the output of the program either to a predetermined value or to a fun
tion of

outputs of the same program at di�erent inputs. In order to apply these powerful te
hniques

to programs 
omputing real-valued fun
tions, several issues dealing with pre
ision need to

be dealt with. The standard model, whi
h 
onsiders an output to be wrong even if it is o�

by a very small margin, is too strong to make pra
ti
al sense due to reasons su
h as the

following: (i) In many 
ases, the algorithm is only intended to 
ompute an approximation,

e.g., Newton's method. (ii) Representational limitations and round-o�/trun
ation errors

are inevitable in real-valued 
omputations. (iii) The representation of some fundamental


onstants (e.g., � = 3:14159 : : :) is inherently impre
ise.

The framework presented by [20, 3℄ a

ommodates these inherently inevitable or a

ept-

ably small losses of information by overlooking small pre
ision errors while dete
ting a
tual

\bugs", whi
h manifest themselves with greater magnitude. Given a fun
tion f , a pro-

gram P that purports to 
ompute f , and an error bound �, if jP (x)� f(x)j � � (denoted

P (x) �

�

f(x)) under some appropriate notion of norm, we say P (x) is approximately 
orre
t

on input x. Approximate result 
he
kers test if P is approximately 
orre
t for a given input

x. Approximate self-testers are programs that test if P is approximately 
orre
t for most

inputs. Approximate self-
orre
tors take programs that are approximately 
orre
t on most

inputs and turn them into programs that are approximately 
orre
t on every input.

Domains. We work with �nite subsets of �xed point arithmeti
 that we refer to as �nite

rational domains. For n; s 2 Z

+

, D

n;s

def

= f

i

s

: jij � n; i 2 Zg. Usually, s = 2

l

where l is the

pre
ision. We allow s and n to vary for generality. For a domain D, let D

+

and D

�

denote

the positive and negative elements in D.

Testing using Properties. There are many approa
hes to building self-testers. We
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illustrate one paradigm that has been parti
ularly useful. In this approa
h, in order to test if

a program P 
omputes a fun
tion f on most inputs, we test if P satis�es 
ertain properties

of f .

As an example, 
onsider the fun
tion f(x) = 2x and the property \f(x+ 1) = f(x) + 2"

that f satis�es. One might pi
k random inputs x and verify that P (x + 1) = P (x) + 2.

Clearly, if for some x, P (x + 1) 6= P (x) + 2, then P is in
orre
t. The program, however,

might be quite in
orre
t and still satisfy P (x + 1) = P (x) + 2 for most 
hoi
es of random

inputs. In parti
ular, there exists a P (for instan
e, P (x) = 2xmodK)

1

su
h that: (i) with

high probability, P satis�es the property at random x and hen
e will pass the test, and (ii)

there is no fun
tion that satis�es the property for all x su
h that P agrees with this fun
tion

on most inputs. Thus we see that this method, when used naively, does not yield a self-tester

that works a

ording to our spe
i�
ations. Nevertheless, this approa
h has been used as a

good heuristi
 to 
he
k the 
orre
tness of programs [13, 14, 35℄.

As an example of a property that does yield a good tester, 
onsider the linearity property

\f(x+ y) = f(x) + f(y)", satis�ed only by fun
tions mapping D

n;s

to R of the form f(x) =


x; 
 2 R. If, by random sampling, we 
on
lude that the program P satis�es this property for

most x; y, it 
an be shown that P agrees with a linear fun
tion g on most inputs [8, 28℄. We


all the linearity property, and any property that exhibits su
h behavior, a robust property.

We now des
ribe more formally how to build a self-tester for a 
lass F of fun
tions that


an be 
hara
terized by a robust property. The two-step approa
h, whi
h was introdu
ed

in [8℄, is: (i) test that P satis�es the robust property (property testing), and (ii) 
he
k if P

agrees with a spe
i�
 member of F (equality testing). The su

ess of this approa
h depends

on �nding robust properties whi
h are both easy to test and lead to eÆ
ient equality tests.

A property is a pair hI; E

�(n;s)

i, 
onsisting of an equation I

f

(x

1

; : : : ; x

k

) = 0 that relates

the values of fun
tion f at various tuples of lo
ations hx

1

; : : : ; x

k

i , and a distribution E

�(n;s)

over D

k

�(n;s)

from whi
h the lo
ations are pi
ked. The property hI; E

�(n;s)

i is said to 
har-

a
terize a fun
tion family F in the following way. A fun
tion f is a member of F if and

only if I

f

(x

1

; : : : ; x

k

) = 0 for every hx

1

; : : : ; x

k

i that has non-zero support under E

�(n;s)

. For

1

We naturally extend the mod fun
tion to D

n;s

by letting xmodK stand for

jmod k

s

, for x;K 2 D

n;s

, and

x =

j

s

, K =

k

s

.
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instan
e, the linearity property 
an be written as I

f

(x

1

; x

2

; x

3

) � f(x

1

)+ f(x

2

)� f(x

3

) = 0,

and E

Lin

�(n;s)

is a distribution on hx

1

; x

2

; x

1

+ x

2

i, where x

1

and x

2

are 
hosen randomly

from some distribution

2

over the domain D

�(n;s)

. In this 
ase hI; E

Lin

�(n;s)

i 
hara
terizes

F = ff(x) = 
x j 
 2 Rg, the set of all linear fun
tions over D

�(n;s)

. We will adhere to

this de�nition of a property throughout the paper; however, for simpli
ity of notation, when

appropriate, we will talk about the distribution and the equality together. For instan
e, we

express the linearity property as f(x+ y) = f(x) + f(y), giving the distributions of x; y.

We �rst 
onsider robust properties in more detail. Suppose we want to infer the 
orre
t-

ness of the program on inputs from the domain D

n;s

. Then we allow 
alls to the program on

a larger domain D

�(n;s)

, where � : Z

2

! Z

2

is a �xed fun
tion that depends on the stru
ture

of I. Ideally, we would like �(n; s) = (n; s), i.e., D

�(n;s)

= D

n;s

. But, for te
hni
al reasons,

we allow D

�(n;s)

to be a proper, but not too mu
h larger, superset of D

n;s

(in parti
ular, the

des
ription size of an element in D

�(n;s)

should be polynomial in the des
ription size of an

element in D

n;s

).

3

To use a property in a self-tester, one must prove that the property is robust. Informally,

the (Æ; �;D

�(n;s)

;D

n;s

)-robustness of the property hI; E

�(n;s)

i implies that if, for a program P ,

I

P

(x

1

; : : : ; x

k

) = 0 is satis�ed with probability at least 1�� when hx

1

; : : : ; x

k

i is 
hosen from

the distribution E

�(n;s)

, then there is a fun
tion g 2 F that agrees with P on 1� Æ fra
tion of

the inputs in D

n;s

. In the 
ase of linearity, it 
an be shown that there is a distribution E

Lin

11n;s

on hx

1

; x

2

; x

1

+ x

2

i where x

1

; x

2

2 D

11n;s

su
h that the property is (2�; �;D

11n;s

;D

n;s

)-robust

for all � < 1=48 [8, 28℄. Therefore, on
e it is tested that P satis�es P (x

1

)+P (x

2

) = P (x

1

+x

2

)

with large enough probability when the inputs are pi
ked randomly from E

Lin

11n;s

, it is possible

to 
on
lude that P agrees with some linear fun
tion on most inputs from D

n;s

. A somewhat

involved de�nition of robust is given in [28℄. Given a fun
tion � su
h that for all n; s, D

n;s

is a large enough subset of D

�(n;s)

, in this paper we say that a property is robust if: for all

0 < Æ < 1, there is an � su
h that for all n; s the property is (Æ; �;D

�(n;s)

;D

n;s

)-robust.

2

For example, 
hoosing x

1

and x

2

uniformly from D

�(n;s)

suÆ
es for 
hara
terizing linearity. To prove

robustness, however, [28℄ uses a more 
ompli
ated distribution that we do not des
ribe here.

3

Alternatively, one 
ould test the program over the domain D

n;s

and attempt to infer the 
orre
tness of

the program on most inputs from D

n

0

;s

0

, where D

n

0

;s

0

is a large subdomain of D

n;s

.
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We now 
onsider equality testing. Re
all that on
e it is determined that P satis�es

the robust property, then equality testing determines that P agrees on most inputs with a

spe
i�
 member of F . For instan
e, in the 
ase of linearity, to ensure that P 
omputes the

spe
i�
 linear fun
tion f(x) = x on most inputs, we perform the equality test whi
h ensures

that P (x+

1

s

) = P (x) +

1

s

for most x. Neither the property test nor the equality test on its

own is suÆ
ient for testing the program. However, sin
e f(x) = x is the only fun
tion that

satis�es both the linearity property and the above equality property, the 
ombination of the

property test and the equality test 
an be shown to be suÆ
ient for 
onstru
ting self-testers.

This 
ombined approa
h yields extremely eÆ
ient testers (that only make O(�

�1

log 1=Æ)


alls to the program for �xed Æ and �) for programs 
omputing homomorphisms (e.g., mul-

tipli
ation of integers and matri
es, exponentiation, logarithm). This idea is further gen-

eralized in [28℄, where the 
lass of fun
tional equations 
alled addition theorems is shown

to be useful for self-testing. An addition theorem is a mathemati
al identity of the form

8x; y; f(x+ y) = G[f(x); f(y)℄. Addition theorems 
hara
terize many useful and interesting

mathemati
al fun
tions [1, 11℄. When G is algebrai
, they 
an be used to 
hara
terize fami-

lies of fun
tions that are rational fun
tions of x, e


x

, and doubly periodi
 fun
tions (see Table

1 for examples of fun
tional equations and the families of fun
tions that they 
hara
terize

over the reals). Polynomials of degree d 
an be 
hara
terized via several di�erent robust

fun
tional equations (e.g., [6, 26, 4, 30℄).

Approximate Robustness and Stability. When the program works with �nite

pre
ision, the properties upon whi
h the testers are built will rarely be satis�ed, even by a

program whose answers are 
orre
t up to the required (or hardware-wise maximal) number

of digits, sin
e they involve stri
t equalities. Thus, when testing, one might be willing to

pass programs for whi
h the properties are only approximately satis�ed. This relaxation in

the tests, however, leads to some diÆ
ulties, for in the approximate setting: (i) it is harder

to analyze whi
h fun
tion families are solutions to the robust properties, and (ii) equality

testing is more diÆ
ult. For instan
e, it is not obvious whi
h family of fun
tions would satisfy

both P (x

1

)+P (x

2

) � P (x

1

+x

2

), for all x; y 2 D

�(n;s)

, (approximate linearity property) and

P (x+

1

s

) � P (x) +

1

s

for all x 2 D

�(n;s)

. (approximate equality property).
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G[f(x); f(y)℄ f(x) G[f(x); f(y)℄ f(x)

f(x) + f(y) Ax f(x)f(y)�

q

1� f(x)

2

q

1� f(y)

2


osAx

f(x)+f(y)

1�f(x)f(y)

tanAx

f(x)+f(y)�2f(x)f(y)

1�2f(x)f(y)

1

1+
otAx

f(x)f(y)�1

f(x)+f(y)


otAx

f(x)+f(y)�2f(x)f(y) 
os a

1�f(x)f(y)

sinAx

sinAx+a

f(x)+f(y)�1

2f(x)+2f(y)�2f(x)f(y)�1

1

1+tanAx

f(x)+f(y)�2f(x)f(y) 
osh a

1�f(x)f(y)

sinhAx

sinhAx+a

f(x)+f(y)�2f(x)f(y)

1�f(x)f(y)

�Ax

1�Ax

f(x)+f(y)+2f(x)f(y) 
osh a

1�f(x)f(y)

� sinhAx

sinhAx+a

f(x)+f(y)

1+[f(x)f(y)℄=A

2

A tanhBx

f(x)+f(y)+2f(x)f(y)

1�f(x)f(y)

Ax

1�Ax

f(x)f(y)

f(x)+f(y)

A

x

f(x)f(y) +

q

f(x)

2

� 1

q

f(y)

2

� 1 
oshAx

Table 1: Some Addition Theorems of the form f(x+ y) = G[f(x); f(y)℄.

To 
onstru
t approximate self-testers, our approa
h is to �rst investigate a notion of

approximate robustness of the property to be used. We �rst require a notion of distan
e

between two fun
tions.

De�nition 1 (Chebyshev Norm) For a fun
tion f on a domain D, kfk

D

= kfk = sup

x2D

fjf(x)jg:

When the domain is obvious from the 
ontext, we drop it. Given fun
tions f; g, the distan
e

between them is kf � gk. Next, we de�ne the approximation of a fun
tion by another:

De�nition 2 The fun
tion P (�; �)-approximates f on domain D if kP � fk � � on at

least 1� � fra
tion of D.

Approximate robustness is a natural extension of the robustness of a property. We say that a

program satis�es a property approximately if the property is true of the program when exa
t

equalities are repla
ed by approximate equalities. On
e again 
onsider the linearity property

and a program P that satis�es the property approximately (i.e., P (x

1

+x

2

) �

�

P (x

1

)+P (x

2

))
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for all but an � fra
tion of the 
hoi
es of hx

1

; x

2

; x

1

+x

2

i 2 E

Lin

�(n;s)

. The approximate robustness

of linearity implies that there exists a fun
tion g and a 
hoi
e of �

0

;�

00

su
h that g(x+y) �

�

0

g(x) + g(y) for all inputs x; y 2 D

n;s

, and g (�

00

; 2�)-approximates P on D

n;s

[20, 28℄. In

general, we would like to de�ne approximate robustness of a property hI; E

�(n;s)

i as the

following: If a program P satis�es the equation I approximately on most 
hoi
es of inputs

a

ording to the distribution E

�(n;s)

, then there exists a fun
tion g that: (i) satis�es I

approximately on all inputs 
hosen a

ording to E

n;s

(ii) approximates P on most inputs in

D

n;s

, the support of E

�(n;s)

. The fun
tion � relates the distributions used for des
ribing the

behaviors of P and G and depends on I.

We now give a formal de�nition of approximate robustness:

De�nition 3 (Approximate Robustness) Let hI; E

�(n;s)

i 
hara
terize the family of fun
-

tions F over the domain D

�(n;s)

. Let F

0

be the family of fun
tions satisfying I approximately

on all inputs 
hosen a

ording to E

n;s

. Let �; Æ be absolute 
onstants independent of n. A

property hI; E

�(n;s)

i for a fun
tion family F

0

is (Æ; �;D

�(n;s)

;D

n;s

;�;�

0

;�

00

)-approximately

robust if 8P;Pr

hx

1

;:::;x

k

i�E

�(n;s)

[I

P

(x

1

; : : : ; x

k

) �

�

0℄ � 1 � � implies there is a g 2 F

0

that

(�

00

; Æ)-approximates P on D

n;s

and I

g

(x

1

; : : : ; x

k

) �

�

0

0 for all tuples hx

1

; : : : ; x

k

i with

non-zero support in E

n;s

.

On
e we know that the property is approximately robust, the se
ond step is to analyze the

stability of the property, i.e., to 
hara
terize the set of fun
tions F

0

that satisfy the property

approximately and 
ompare it to F , the set of fun
tions that satisfy the property exa
tly

(Hyers-Ulam stability [21℄). In our linearity example, the problem is the following: given g

satisfying g(x + y) �

�

g(x) + g(y) for all x; y in the domain, is there a homomorphism h

that (�

0

; 0)-approximates g with �

0

depending only on � and not on the size of the domain?

If the answer is aÆrmative, we say that the property is stable. In the following de�nition,

D

n

0

;s

0

� D

n;s

.

De�nition 4 (Stability) A property hI; E

n;s

i for a fun
tion family F is (D

n;s

;D

n

0

;s

0

;�;�

0

)-

stable if 8g that satis�es I

g

�

�

0 for all tuples with non-zero support a

ording to E

n;s

, there

is a fun
tion h that satis�es I

h

= 0 for all tuples with non-zero support a

ording to E

n

0

;s

0

with kh� gk

D

n

0

;s

0

� �

0

.
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If a property is both approximately robust and stable, then it 
an be used to determine

whether P approximates some fun
tion in the desired family. Furthermore, if we have a

method of doing approximate equality testing, then we 
an 
onstru
t an approximate self-

tester. Here, we assume that the distributions asso
iated with approximate robustness and

stability are samplable.

Previous Work. Previously, not many of the known 
he
kers have been extended to

the approximate 
ase. Often it is rather straightforward to extend the robustness results to

show approximate robustness. However, the diÆ
ulty with extending the 
he
kers appears

to lie in showing the stability of the properties. The issue is �rst mentioned in [20℄, where

approximate 
he
kers for mod, exponentiation, and logarithm are 
onstru
ted. The domain

is assumed to be 
losed in all of these results. A domain is said to be 
losed under an

operation if the range of the operation is a subset of the domain. For instan
e, a �nite

pre
ision rational domain is not 
losed under addition. In [3℄ approximate 
he
kers for sine,


osine, matrix multipli
ation, matrix inversion, linear system solving, and determinant are

given. The domain is assumed to be 
losed in the results on sine and 
osine. In [10℄ an

approximate 
he
ker for 
oating-point division is given. In [32℄, a te
hnique whi
h uses

approximation theory is presented to test univariate polynomials of degree at most 9. It

is left open in [20, 3, 30, 28℄ whether the properties used to test polynomial, hyperboli
,

and other trigonometri
 fun
tions 
an be used in the approximate setting. For instan
e,

showing the stability of su
h fun
tional equations is not obvious; if the fun
tional equation

involves division with a large numerator and a small denominator, a small additive error in

the denominator leads to a large additive error in the output.

There has been signi�
ant work on the stability of spe
i�
 fun
tional equations. The

stability of linearity and other homomorphisms is addressed in [21, 16, 18, 12℄. The te
hniques

used to prove the above results, however, 
ease to apply when the domain is not 
losed. The

stronger property of stability in a non-
losed spa
e, 
alled lo
al stability, is addressed by Skof

[31℄ who proves that Cau
hy fun
tional equations are lo
ally stable on a �nite interval in R.

The problem of stability of univariate polynomials over 
ontinuous domains is �rst addressed

in [2℄ and the problem of lo
al stability on R is solved in [19℄. See [17℄ for a survey. These
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results do not extend in an obvious way to �nite subsets of R, and thus 
annot be used

to show the 
orre
tness of self-testers. For those that 
an be extended, the error bounds

obtained by naive extensions are not optimal. Our di�erent approa
h allows us to operate

on D

n;s

and obtain tight bounds.

Results. In this paper, we answer the questions of [20, 3, 30, 28℄ in the aÆrmative, by

giving the �rst approximate versions of most of their testers. We �rst present an approximate

tester for linear and multilinear fun
tions with tight bounds. These results apply to several

fun
tions, in
luding multipli
ation, exponentiation, and logarithm, over non-
losed domains.

We next present the �rst approximate testers for multivariate polynomials. Finally, we show

how to approximately test fun
tions satisfying addition theorems. Our results apply to many

algebrai
 fun
tions of trigonometri
 and hyperboli
 fun
tions (e.g., sinh, 
osh). All of our

results apply to non-
losed dis
rete domains.

Sin
e a fun
tional equation over R has more 
onstraints than the same fun
tional equation

over D

n;s

, it may happen that the fun
tional equation over R 
hara
terizes a family of

fun
tions that is a proper subset of the fun
tions 
hara
terized by the same fun
tional

equation over D

n;s

. This does not limit the ability to 
onstru
t self-testers for programs

for these fun
tions, due to the equality testing performed by self-testers.

To show our results, we prove new lo
al stability results for dis
rete domains. Our te
h-

niques for showing the stability of multilinearity di�er from those used previously in that

(i) we do not require the domain to be dis
rete and (ii) we do not require the range to

be a 
omplete metri
 spa
e. This allows us to apply our results to multivariate polyno-

mial 
hara
terizations. In addition to new 
ombinatorial arguments, we employ tools from

approximation theory and stability theory. Our te
hniques appear to be more generally

appli
able and 
leaner to work with than those previously used.

Self-
orre
tors are built by taking advantage of the random self-redu
ibility of polyno-

mials and fun
tional equations [8, 24℄ in the exa
t 
ase. As in [20℄, we employ a similar

idea for the approximate 
ase by making several guesses at the answer and returning their

median as the output. We show that if ea
h guess is within � of the 
orre
t answer with

high probability, then the median yields a good answer with high probability. To build an

10



approximate 
he
ker for all of these fun
tions, we 
ombine the approximate self-tester and

approximate self-
orre
tor as in [8℄.

Subsequent to our work, our results have been extended to the 
ase of relative error in a

re
ent paper of [22℄.

Organization. Se
tion 2 addresses the stability of the properties used to test linear

and multilinear fun
tions. Using these results, Se
tion 3 
onsiders approximate self-testing

of polynomials. Se
tion 4 addresses the stability and robustness of fun
tional equations.

Se
tion 5 illustrates the a
tual 
onstru
tion of approximate self-testers and self-
orre
tors.

2 Linearity and Multilinearity

In this se
tion, we 
onsider the stability of the robust properties used to test linearity and

multilinearity over the �nite rational domain D

n;s

. The results in this se
tion, in addition

to being useful for the testing of linear and multilinear fun
tions, are 
ru
ial to our results

in Se
tion 3.

As in [20℄, approximate robustness is easy to show by appropriately modifying the proof

of robustness [28℄. This involves repla
ing ea
h exa
t equality by an approximate equality

and keeping tra
k of the error a

rued at ea
h step of the proof. To show stability, we use

two types of bootstrapping arguments: the �rst shows that an error bound on a small subset

of the domain implies the same error bound on a larger subset of the domain; the se
ond

shows that an error bound on the whole domain implies a tighter error bound over the same

domain. These results 
an be applied to give the �rst approximate self-testers for several

fun
tions over D

n;s

in
luding multipli
ation, exponentiation, and logarithm (Se
tion 2.2).

2.1 Approximate Linearity

The following de�nes formally what it means for a fun
tion to be approximately linear:

De�nition 5 (Approximate Linearity) A fun
tion g is �-approximately linear on D

n;s

if 8x; y 2 D

n;s

; g(x+ y) �

�

g(x) + g(y).

11



Hyers [21℄ and Skof [31℄ obtain a linear approximation to an approximately linear fun
tion

when the domain is R. (See Appendix A for their approa
h). Their methods are not

extendible to dis
rete domains.

Suppose we de�ne h su
h that h(

1

s

)

def

= g(

1

s

) and h is linear. In the 0-approximately linear


ase (exa
t linearity), sin
e g(

i

s

) = g(

i�1

s

) + h(

1

s

) and h(

i

s

) = h(

i�1

s

) + h(

1

s

), by indu
tion

on the elements in D

n;s

, we 
an show that h(x) = g(x); 8x. This approa
h is typi
ally used

to prove the suÆ
ien
y of the equality test. However, in the �-approximately linear 
ase

for � 6= 0, using the same indu
tive argument will only yield a linear fun
tion h su
h that

h(

i

s

) �

i��

g(

i

s

). This is quite unattra
tive sin
e the error bound depends on the domain size.

The problem of obtaining a linear fun
tion h whose dis
repan
y from g is independent of the

size of the domain is non-trivial.

In [20℄, a solution is given for when the domain is a �nite group. Their te
hnique requires

that the domain be 
losed under addition, and therefore does not work for D

n;s

. We give

a brief overview of the s
heme in [20℄ and point out where it breaks down for non-
losed

domains. The existen
e of a linear h that is 
lose to g is done in [20℄ by arguing that if D is

suÆ
iently large, then an error of at least � at the maximum error point x

�

would imply an

even bigger error at 2x

�

, 
ontradi
ting the maximality assumption about error at x

�

. Here,

the 
ru
ial assumption is that x 2 D implies 2x 2 D. This step fails for domains whi
h are

not 
losed under addition.

Instead, we employ a di�erent 
onstru
tive te
hnique to obtain a linear h on D

n;s

given a

�-approximately linear g. Our te
hnique yields a tight bound of 2� on the error e � h� g

(instead of 4� in [31℄) and does not require that the domain be 
losed under addition. It is

important to a
hieve the best (lowest) 
onstants possible on the error, be
ause these results

are used in Se
tion 3.2 where the 
onstants a�e
t the error in an exponential way.

The following lemma shows how to 
onstru
t a linear fun
tion h that is within 2� + �

of a �-approximately linear fun
tion g in D

+

n;s

.

Lemma 6 Let g be a �-approximately linear fun
tion on D

+

n;s

, and let h be linear on D

n;s

.

De�ne e(x) = h(x)� g(x). If je(

n

s

)j = �, then 8x 2 D

+

n;s

; je(x)j � 2� + �.

12



Proof. We prove by 
ontradi
tion that 8x 2 D

+

n;s

; e(x) � 2� + �. A symmetri
 argument


an be made to show that e(x) � �(2� + �).

Re
all that

n

s

is the greatest positive element of the domain, and note that e is a �-

approximately linear fun
tion. Assume that there exists a point in D

+

n;s

with error greater

than 2� + �. Let p be the maximal su
h element. p has to lie between

n

2s

and

n

s

, otherwise

2p 2 D

+

n;s

would have error greater than 2� + �, 
ontradi
ting the maximality of p. Let

q =

n

s

� p. Then, e(q) + e(p) �

�

e(

n

s

), therefore e(q) < ��. Also, for any x 2 (p;

n

s

℄ � D

+

n;s

,

by de�nition of p, e(x) � 2�+ �. Note that any su
h x 
an be written as x = x

0

+ p, where

x

0

2 (0; q℄. To satisfy the approximate linearity property that e(x

0

) + e(p) �

�

e(x), x

0

must

have error stri
tly less than � + �.

We now know that the points in the interval (0; q℄ have error stri
tly less than 2�+� (in

fa
t, less than � + �), and that the point q itself has error stri
tly less than ��. Putting

these two fa
ts and approximate linearity together, and sin
e any x 2 (q; 2q℄ 
an be written

as q + y where y 2 (0; q℄; we 
an 
on
lude that at any point in (q; 2q℄, the error is at most

2�+ �. Now we 
an repeat the same argument by taking y from (0; 2q℄ rather than (0; q℄ to

bound the error in the interval (0; 3q℄ by 2�+�. By 
ontinuing this argument, eventually the

interval 
ontains the point p, whi
h means that p has error at most 2�+�. This 
ontradi
ts

our initial assumption that e(p) was greater than 2� + �.

In addition, sin
e e(0) �

�

e(0) + e(0), je(0)j � �. We now generalize the error bound

on D

+

n;s

to D

n;s

.

Lemma 7 If a fun
tion g is �-approximately linear on D

n;s

, with h and e de�ned as in

Lemma 6, and if je(

n

s

)j = �, then 8x 2 D

n;s

; je(x)j � 2� + �.

Proof. Observe that if the error e(x) is upper bounded by � when x 2 [0;

n

s

℄, then je(x)j �

(� +�)=2 whenever 0 � x �

n

2s

, sin
e e(2x) � �. Also, if je(x)j � � then je(�x)j � �+ 2�

sin
e e(0) � �. By Lemma 6, e(x) � 2�+� for all x 2 D

+

n;s

. We will bound the error in D

�

n;s

�rst by 3� + � and then by 2� + �. From the above observations, we have e(x) � 4� + �

for x 2 D

�

n;s

, e(x) � (3� + �)=2 for x 2 [0;

n

2s

℄ and e(x) � (5� + �)=2 for x 2 [�

n

2s

; 0℄.

Assume that 9x 2 D

�

n;s

su
h that e(x) = 3�+�+ � > 3�+�. Let p be su
h a point with

minimal absolute value. su
h point. Then p < �

n

2s

, otherwise the error at 2p would ex
eed

13



3� + �. Let t be the point with the highest error in D

+

n;s

(the maximal su
h one if there is

a tie). We 
onsider the possible lo
ations for t to bound e(t): (i) if t �

n

2s

, then to ensure

that e(2t) � e(t), e(t) � �; (ii) if

n

2s

< t � jpj, then t+ p 2 [�

n

2s

; 0℄, therefore, to satisfy the

bound above on e(t + p), e(t) � �=2� � � �; (iii) if t > jpj, then t + p 2 (0;

n

2s

℄, therefore

to satisfy the bound above, e(t) � ��=2� � � �.

Regardless of where t lies, e(t) � � � �+�, hen
e the error in D

+

n;s

is bounded by �+�.

However, e(

n

s

+ p) � 3� + 2� + � � � > 2� + �. Sin
e

n

s

+ p 2 D

+

n;s

, this 
ontradi
ts the

bound we established before. Therefore, there 
annot be a point in D

�

n;s

with error greater

than 3� + �. A symmetri
 argument 
an be used to bound negative error.

Now we redu
e the error bound to 2� + �. Assume that p is the minimal point in D

�

n;s

with error at least 2� + �. The proof is similar to the previous stage, using the tighter

bound e(x) � 2� + �=2 for x 2 [�

n

2s

; 0℄. Cases (i) and (iii) stay the same; for 
ase (ii)

we have: e(t + p) � �� � �. Therefore, the error 
annot ex
eed � + � in D

+

n;s

: But

e(

n

s

+ p) � 2� + � + ���, whi
h is a 
ontradi
tion.

The following spe
ial 
ase proves the stability result for linearity:

Corollary 8 The linearity property is (D

n;s

;D

n;s

;�; 2�)-stable.

Proof. Suppose fun
tion g is �-approximately linear on D

n;s

. Set h(

n

s

) = g(

n

s

) in Lemma

7. This uniquely de�nes a linear h with � = 0.

The intuition that drives us to set h(

n

s

) = g(

n

s

) in the proof of Corollary 8 is as follows.

Consider the following fun
tion of n; s: g(

n

s

) = (

n

s

+

[(n�1)=3℄

s

)� ([x℄ denotes integer part of

x). It is easy to see that g(x+ y) �

�

g(x) + g(y). Note that setting h(

1

s

) = g(

1

s

) instead of

h(

n

s

) = g(

n

s

) does not work in general. If we set h(

1

s

) = g(

1

s

), then we obtain h(

n

s

) =

n

s

�.

But kg�hk is a growing fun
tion of n and so there is no way to bound the error at all points.

The following example shows that the error bound obtained in Corollary 8 using our

te
hnique is tight: we have shown how to 
onstru
t a linear fun
tion h so that kh � gk �

2�. We now show that there is a fun
tion g that, given our method of 
onstru
ting h,

asymptoti
ally approa
hes this bound from below. De�ne g as follows: g(n) = 0; g(x) =

(3x=n � 1)� for 0 � x � n � 1; g(�x) = �g(x) for 0 < x � n. It is easy to see that g

14



is �-approximately linear: If x + y < n, g(x + y) � g(x) � g(y) = �. If x + y = n, then

g(x+ y) = 0 and so g(x) + g(y) = �. Our 
onstru
tion sets h(n) = 0; thus, h � 0, the zero

fun
tion. However, kg�hk = jg(n� 1)�h(n� 1)j = (2� 3=n)� �! 2� for large enough n.

2.2 Approximate Multilinearity

In this se
tion we fo
us our attention on multilinear fun
tions. A multivariate fun
tion is

multilinear if it is linear in any one input when all the other inputs are �xed. A multilinear

fun
tion of k variables is 
alled a k-linear fun
tion. An example of a bilinear fun
tion is

multipli
ation, and bilinearity property 
an be stated 
on
isely as f(x

1

+ x

0

1

; x

2

+ x

0

2

) =

f(x

1

; x

2

) + f(x

0

1

; x

2

) + f(x

1

; x

0

2

) + f(x

0

1

; x

0

2

): Note that distributivity of multipli
ation over

addition is a spe
ial 
ase of multilinearity.

A natural extension of this 
lass of fun
tions is the 
lass of approximately multilinear

fun
tions, whi
h are formally de�ned below:

De�nition 9 (Approximate Multilinearity) A k-variate fun
tion g is �-approximately

k-linear on D

k

n;s

if it is �-approximately linear on D

n;s

in ea
h variable.

For instan
e, for k = 2, a fun
tion g is �-approximately bilinear if 8x

1

; x

0

1

; x

2

; x

0

2

2 D; g(x

1

+

x

0

1

; x

2

) �

�

g(x

1

; x

2

) + g(x

0

1

; x

2

) and g(x

1

; x

2

+ x

0

2

) �

�

g(x

1

; x

2

) + g(x

1

; x

0

2

).

Now we generalize Lemma 7 to �-approximately k-linear fun
tions. Let g be a �-

approximately k-linear fun
tion and h be the symmetri
 multilinear fun
tion uniquely de�ned

by the 
ondition h(

n

s

; : : : ;

n

s

) = g(

n

s

; : : : ;

n

s

). Let e � h� g. e is a �-approximately k-linear

fun
tion.

Sin
e g takes k inputs from D

n;s

, if we 
onsider ea
h input to g as a 
oordinate, the set

of all possible k-tuples of inputs of g form a (2n + 1)� � � � � (2n + 1) 
ube of dimension k.

We show that for any point (x

1

; : : : ; x

k

) in this 
ube, je(x

1

; : : : ; x

k

)j is bounded.

Theorem 10 The approximate k-linearity property is (D

k

n;s

;D

k

n;s

;�; 2k�)-stable. In other

words, if a fun
tion g is �-approximately k-linear on D

k

n;s

, then there exists a k-linear h on

D

k

n;s

su
h that kh� gk � 2k�.

15



Proof. With h de�ned as above, e(

n

s

; : : : ;

n

s

) = 0. First, we argue about points that have

one 
oordinate that is di�erent from

n

s

. Fix k � 1 of the inputs to be

n

s

(hard-wire into

g) and vary one (say x

i

). This operation transforms g from a �-approximately k-linear

fun
tion of x

1

; : : : ; x

k

to a �-approximately linear fun
tion of x

i

. By Lemma 7, this fun
tion


annot have an error of more than 2� in D

n;s

. Therefore, je(

n

s

; : : : ;

n

s

; x

i

;

n

s

; : : : ;

n

s

)j � 2�,

if jx

i

j <

n

s

. Next we 
onsider points whi
h have two 
oordinates that are di�erent from

n

s

.

Consider without loss of generality an input a; b;

n

s

; : : : ;

n

s

. By the result we just argued,

we know that e(

n

s

; b;

n

s

; : : : ;

n

s

) � 2�. By �xing inputs 2 through k to be b;

n

s

; : : : ;

n

s

and

varying the �rst input, by Lemma 7, we have je(a; b;

n

s

; : : : ;

n

s

)j � 4� for any a 2 D

n;s

. Via

symmetri
 arguments, we 
an bound the error by 4� if any two inputs are di�erent from

n

s

.

Continuing this way, it 
an be shown that for all inputs, the error is at most 2k�.

The following theorem shows that the error 
an be redu
ed to (1+�)� for any 
onstant � > 0

by imposing the multilinearity 
ondition on a larger domain D

0

and �tting the multilinear

fun
tion h on D, where jD

0

j=jDj = d2k=�e. Note that doubling the domain size only involves

adding one more bit to the representation of a domain element.

Theorem 11 For any � > 0, the approximate multilinearity property is (D

k

2kn=�;s

;D

k

n;s

;�; (1+

�)�)-stable.

Proof. By Theorem 10, g is 2k�-
lose to a k-linear h on D

2kn=�;s

. For any x = x

1

; : : : ; x

k

,

we �x all 
oordinates ex
ept x

i

and argue in the i-th 
oordinate as below.

For any D

m;s

, �rst we show that if je(x)j

D

m;s

� � then je(x)j

D

m=2;s

� (� + �)=2. To

observe this, note that if x 2 D

m=2;s

, then 2x 2 D

m;s

. Therefore the fun
tion should satisfy

e(x)+e(x) �

�

e(2x), whi
h implies that je(x)j � (�+�)=2. Thus, in general, the maximum

error in D

m=2

i

;s

is � �=2

i

+�(1� 1=2

i

). Sin
e the error in D

2kn=�;s

is at most 2k�, the error

in D

n;s

is at most (1 + �)� by our 
hoi
e of parameters. In the multilinear 
ase, we 
an

make a similar argument by using points whi
h have at least one 
oordinate x

i

within the

smaller half of the axis.

16



3 Polynomials

To test programs purportedly 
omputing polynomials, it is tempting to (i) interpolate the

polynomial from randomly 
hosen points, and then (ii) verify that the program is approxi-

mately equal to the interpolated polynomial for a large fra
tion of the inputs. Sin
e a degree

d k-variate polynomial 
an have (d + 1)

k

terms, this leads to exponential running times.

Furthermore, it is not obvious how error bounds that are independent of the domain size


an be obtained.

Our test uses the same \evenly spa
ed" interpolation identity as that in [30℄: f is a degree

d polynomial if and only if for all x; t 2 D,

d+1

X

i=0

(�1)

d+1�i

 

d+ 1

i

!

f(x+ it) = 0: This identity

is 
omputed by the method of su

essive di�eren
es whi
h never expli
itly interpolates the

polynomial 
omputed by the program, thus giving a parti
ularly simple and eÆ
ient (O(d

2

)

operations) test.

We 
an show that the interpolation identity is approximately robust by modifying the

robustness theorem in [29℄. (Se
tion 3.3). Our proof of stability of the interpolation identity

(Se
tion 3.2), however, uses a 
hara
terization of polynomials in terms of multilinear fun
-

tions that previously has not been applied to program 
he
king. This in turn allows us to

use our results on the stability of multilinearity (Se
tion 2.2) and other ideas from stability

theory. Se
tion 3.4 extends these te
hniques to multivariate polynomials.

3.1 Preliminaries

In this se
tion, we present the basi
 de�nitions and theorems that we will use. De�ne

r

t

f(x)

def

= f(x+ t)� f(x)

to be the standard forward di�eren
e operator. Let

r

d

t

f(x)

def

=

d

z }| {

r

t

� � �r

t

f(x) =

d

X

k=0

(�1)

d�k

 

d

k

!

f(x+ kt)

and r

t

1

;t

2

f(x)

def

= r

t

1

r

t

2

f(x). The following are simple fa
ts 
on
erning this operator.

Fa
ts 12 The following are true for the di�eren
e operator r:
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1. r is linear: r(f + g) = rf +rg,

2. r is 
ommutative: r

t

1

;t

2

= r

t

2

;t

1

, and

3. r

t

1

+t

2

�r

t

1

�r

t

2

= r

t

1

;t

2

= r

t

2

;t

1

.

Let x

[k℄

denote

k

z }| {

x; : : : ; x. For any k-ary symmetri
 f , let f

�

(x) = f(x

[k℄

) denote its diagonal

restri
tion. We use three di�erent 
hara
terizations of polynomials [27, 15℄.

Fa
t 13 Let D be a ring. The following are equivalent:

1. there exist a

0

; : : : ; a

d

2 D su
h that 8x 2 D; f(x) =

d

X

k=0

a

k

x

k

,

2. 8x; t 2 D;r

d+1

t

f(x) = 0,

3. there exist symmetri
 k-linear fun
tions F

k

, 0 � k � d su
h that 8x 2 D; f(x) =

d

X

k=0

F

�

k

(x).

The above fa
t remains true for non-
losed domains so long as we insist that the arguments

to f are from the domain.

The following de�nitions are motivated by the notions of using evenly and unevenly

spa
ed points in interpolation.

De�nition 14 (Strong Approximate Polynomial) A fun
tion g is 
alled strongly �-

approximately degree d polynomial on D if 8x; t

1

; : : : ; t

d+1

2 D su
h that x+t

1

+ � � �+t

d+1

2

D, jr

t

1

;:::;t

d+1

g(x)j � �.

De�nition 15 (Weak Approximate Polynomial) A fun
tion g is 
alled weakly �-approximately

degree d polynomial on D if 8x; t 2 D su
h that x + t(d+ 1) 2 D, jr

d+1

t

g(x)j � �.

3.2 Stability for Polynomials

First, we prove that if a fun
tion is strongly �-approximately polynomial then there is a

polynomial that (2

d lg d

�; 0)-approximates it. Next, we show that if a fun
tion is weakly

approximately polynomial on a domain, then there is a 
oarser subdomain on whi
h the

fun
tion is strongly approximately polynomial. Combining these two, we 
an show that if

18



a fun
tion is weakly approximately polynomial on a domain, then there is a subdomain on

whi
h the fun
tion approximates a polynomial. By using Theorem 11, we 
an bring the

above error arbitrarily 
lose to � by assuming the hypothesis on a large enough domain. In

order to pass programs that err by at most �

0

, we need to set � � (d+ 1) � 2

d

�

0

.

Strongly Approximate Case. One must be 
areful in de�ning polynomial h that is


lose to g. For instan
e, de�ning h based on the values of g at some d + 1 points will not

work. We pro
eed by modifying te
hniques in [2, 19℄, using the following fa
t:

Fa
t 16 If a fun
tion f is symmetri
 and k-linear, then r

t

1

;:::;t

d

f

�

(x) = k!f(t

1

; : : : ; t

k

) if

k = d and 0 if k < d.

The following theorem shows the stability of the strong approximate polynomial property.

Theorem 17 The strong approximate polynomial property is (D

n(d+2);s

;D

n;s

;�; O(2

d lg d

)�)-

stable. In other words, if g is a strongly �-approximately degree d polynomial on D

n(d+2);s

,

then there is a degree d polynomial h

d

su
h that kg � h

d

k

D

n;s

� O(2

d lg d

)�.

Proof. Note that if x; t

1

; : : : ; t

d+1

2 D

n;s

, then x + t

1

+ � � � + t

d+1

2 D

(d+2)n;s

. Now, the

hypothesis that g is a strongly �-approximately degree d polynomial on D

n(d+2);s

guarantees

that 8x; t

1

; : : : ; t

d+1

2 D

n;s

, jr

t

1

;:::;t

d+1

g(x)j � �. The rest of the proof uses this \modi�ed

hypothesis" and works with D

n;s

.

We indu
t on the degree. Let e

d

def

= jg � h

d

j. When d = 0, by the modi�ed hypothesis,

we have 8x; t 2 D

n;s

; jr

t

g(x)j � � i.e., jr

t

g(0)j = jg(t)� g(0)j � � for all t 2 D

n;s

. Setting

h

0

= g(0), a 
onstant, we are done.

Suppose the lemma holds when the degree is stri
tly less than d + 1. Now, by the

modi�ed hypothesis, we have 8t

1

; : : : ; t

d+1

2 D

n;s

, jr

t

1

;:::;t

d+1

g(x)j � �. Using Fa
t 12 and

then our modi�ed hypothesis, we have jr

t

1

+t

0

1

;t

2

;:::;t

d

g(x)�r

t

1

;t

2

;:::;t

d

g(x)�r

t

0

1

;t

2

;:::;t

d

g(x)j =

jr

t

1

;t

0

1

;:::;t

d

g(x)j � �. By symmetry of the di�eren
e operator, we have a �-approximate

symmetri
 d-linear fun
tion on D

n;s

, say G(t

1

; : : : ; t

d

)

def

= r

t

1

;:::;t

d

g(0). Theorem 10 on mul-

tilinearity guarantees a symmetri
 d-linear H with kG � Hk � 2d�. Let H

d

(x

1

; : : : ; x

d

) =

H(x

1

; : : : ; x

d

)=d!. Let g

0

(x) = g(x)�H

�

d

(x) for x 2 D

n;s

.
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Now, we have 8x; t

1

; : : : ; t

d

2 D

n;s

,

jr

t

1

;:::;t

d

g

0

(x)j = jr

t

1

;:::;t

d

(g(x)�H

�

d

(x))j (de�nition of g

0

)

� jr

t

1

;:::;t

d

g(x)�r

t

1

;:::;t

d

g(0)j+ jr

t

1

;:::;t

d

g(0)�r

t

1

;:::;t

d

H

�

d

(x)j (triangle inequality)

= jr

t

1

;:::;t

d

;x

g(0)j+ jr

t

1

;:::;t

d

g(0)�r

t

1

;:::;t

d

H

�

d

(x)j (de�nition of r)

= jr

t

1

;:::;t

d

;x

g(0)j+ jG(t

1

; : : : ; t

d

)�r

t

1

;:::;t

d

H

�

d

(x)j (de�nition of G)

= jr

t

1

;:::;t

d

;x

g(0)j+ jG(t

1

; : : : ; t

d

)� d!H

d

(t

1

; : : : ; t

d

)j (Fa
t 16)

= jr

t

1

;:::;t

d

;x

g(0)j+ jG(t

1

; : : : ; t

d

)�H(t

1

; : : : ; t

d

)j (de�nition of H

d

)

� �+ jG(t

1

; : : : ; t

d

)�H(t

1

; : : : ; t

d

)j (modi�ed hypothesis on g)

� (2d+ 1)� (sin
e kG�Hk � 2d�).

Now we apply the indu
tion hypothesis. g

0

satis�es the hypothesis above for d and larger

error �

0

= (2d+1)� and so by indu
tion, we are guaranteed the existen
e of a degree d� 1

polynomial h

d�1

su
h that kg

0

� h

d�1

k � e

d�1

�

0

. Set h

d

= h

d�1

+H

�

d

. By Fa
t 13(3) about

the 
hara
terization of polynomials, h

d

is a degree d polynomial. Now, e

d

= kg � h

d

k =

kg � h

d�1

�H

�

d

k = kg

0

� h

d�1

k � e

d�1

�

0

= e

d�1

(2d+ 1)�.

Unwinding the re
urren
e, the �nal error kg � h

d

k = �

Q

d

i=1

(2i + 1):

Weakly Approximate Case. We �rst need the following useful fa
t [15℄ whi
h helps

us to go from equally spa
ed points to unequally spa
ed points:

Fa
t 18 For any �

1

; : : : ; �

d

2 f0; 1g, if t

0

�

1

;:::;�

d

= �

d

X

i=1

�

i

t

i

=i and t

00

�

1

;:::;�

d

=

d

X

i=1

�

i

t

i

then

r

t

1

;:::;t

d

f(x) =

X

�

1

;:::;�

d

2f0;1g

(�1)

�

1

+���+�

d

r

d

t

0

�

1

;:::;�

d

f(x + t

00

�

1

;:::;�

d

):

Using this fa
t, we obtain the following theorem. Let �(d) = l
mf1; 2; : : : ; dg.

Theorem 19 If g is weakly (�=2

d+1

)-approximately degree d polynomial on D

n(d+1);s�(d+1)

,

then g is strongly �-approximately degree d polynomial on D

n;s

.

Proof. For t

1

; : : : ; t

d+1

2 D

n;s

, and for any �

1

; : : : ; �

d+1

2 f0; 1g, we have by our 
hoi
e of

parameters that t

0

�

1

;:::;�

d+1

; t

00

�

1

;:::;�

d+1

2 D

n(d+1);s�(d+1)

. Therefore, for x 2 D

n;s

,

jr

t

1

;:::;t

d+1

g(x)j �

X

�

1

;:::;�

d+1

2f0;1g

jr

d+1

t

0

�

1

;:::;�

d+1

g(x+ t

00

�

1

;:::;�

d+1

)j � 2

d+1

(�=2

d+1

) � �:
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3.3 Approximate Robustness for Polynomials

This se
tion shows that the interpolation equation for degree d polynomials is in some

sense, approximately robust. All the results in this subse
tion are modi�
ations of the

exa
t robustness of polynomials given in [29℄. Let �

k

= (�1)

d+1�k

�

d+1

k

�

. To self-test P on

D

n;s

, we use the following domains. These domains are used for te
hni
al reasons that will

be
ome apparent in the proofs of the theorems in this se
tion.

1. D

(d+2)n;s

2. T = D

K

n

;L

s

where K

n

= n(d+ 2)(n(d+ 1)!)

3

and L

s

= s((d+ 1)!)

3

3. T

j

= fjx : x 2 T g for 0 � j � d+ 1

4. T

i;j

= fix : x 2 T

j

g for 0 � i; j � d+ 1

All T

j

; T

i;j


ontain D

(d+2)n;s

. Now, assume that P satis�es the following properties, whi
h are

similar to the low-degree test in an approximate setting and over di�erent domains. Note

that these properties 
an be tested by sampling. We use Pr

x2D

[�℄ to denote the probability

of an event when x is 
hosen uniformly from domain D.

1. Pr

0�k�d+1;x2D

n;s

;t2T

k

[

d+1

X

i=0

�

i

P (x+ it) �

�

0℄ � 1� �,

2. for ea
h 0 � j � d+ 1, Pr

0�k;l�d+1;x2T

k;j

;t2T

l

[

d+1

X

i=0

�

i

P (x+ it) �

�

0℄ � 1� �, and

3. for ea
h 0 � i; j � d+ 1, Pr

0�k�d+1;x2T

i;j

;t2T

k

[

d+1

X

l=0

�

l

P (x+ lt) �

�

0℄ � 1� �.

De�ne g(x) = median

0�k�d+1;t2T

k

f

d+1

X

i=1

�

i

P (x+ it)g: We obtain the following theorem that shows the

approximate robustness of polynomials. Let E

�(n;s)

be the distribution that 
ips a fair three-

sided die and on out
ome i 2 f1; 2; 3g, 
hooses inputs a

ording to distribution given in the

i-th property above. Let D

�(n;s)

be the union of the domains used in the above properties.

Theorem 20 The interpolation equation, where inputs are pi
ked a

ording to the distribu-

tion E

�(n;s)

, is (2�; �;D

�(n;s)

;D

n;s

;�; 2

d+3

�;�)-approximately robust.
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The rest of this se
tion is devoted to proving the above theorem.

By Markov's inequality, g's de�nition, and properties (1) and (3) of P , it is easy to show

that P (�; 2�)-approximates g:

Theorem 21 If program P satis�es the above three properties, then, for all i; j 2 f0; : : : ; d+

1g, Pr

x2T

i;j

[P (x) �

�

g(x)℄ � 1� 2� and Pr

x2D

n;s

[P (x) �

�

g(x)℄ � 1� 2�.

Now, we set out to prove that g is a weakly approximate polynomial. Let Æ(p

1

; p

2

) = p

1

if p

1

= p

2

and 0 otherwise. For two domains A;B, subsets of a universe X , let Æ(A;B) =

P

s2X

Æ(Pr

x2A

[x = s℄;Pr

y2B

[y = s℄) and 
all the domains �-
lose if Æ(A;B) is at least 1� �.

Using the de�nitions of T ; T

j

; T

i;j

, the following fa
t 
an be shown:

Fa
t 22 For any x 2 D

(d+2)n;s

, the domains T

j

and fx+ t : t 2 T

j

g are �

1

= O(1=n

3

)-
lose.

For any x, the domains T

i;j

and fx+ t : t 2 T

i;j

g are �

2

= O(1=n

3

)-
lose.

The following lemma shows that, in some sense, g is well-de�ned, and links it to an interpo-

lation obtained from P :

Lemma 23 For all x 2 D

(d+2)n;s

, Pr

0�k�d+1;t2T

k

[g(x) �

2

d+2

�

d+1

X

j=1

�

j

P (x+ jt)℄ � 1� �

3

and

8i; Pr

t2T

i

[g(x) �

2

d+2

�

d+1

X

j=1

�

j

P (x+ jt)℄ � 1� �

4

where �

3

= 2(d+ 1)(�+ �

2

) and �

4

= (d+ 1)�

3

.

Proof. Consider 0 � k; l � d + 1 and t

1

2 T

k

; t

2

2 T

l

. For a �xed 0 � j � d + 1,

using properties of P , and sin
e T

j;k

and fx + jt

1

: t

1

2 T

k

g are �

2

-
lose (Fa
t 22), we get

Pr[P (x+ jt

1

) �

�

P

d+1

i=1

�

i

P (x+ jt

1

+ it

2

)℄ � 1� �� �

2

and Pr[P (x+ it

2

) �

�

P

d+1

j=1

�

j

P (x+

jt

1

+ it

2

)℄ � 1����

2

. Summing over all 0 � i; j � d+1 and noting that

P

d+1

i=1

�

j

� � 2

d+1

�,

Pr[

P

d+1

j=1

�

j

P (x+jt

1

) �

2

d+1

�

P

d+1

i=1

�

i

P (x+ it

2

)℄ � 1�2(d+1)(�+�

2

) = 1��

3

. Using Lemma

43 (see Se
tion 4.3), we 
an show that with a relaxation of twi
e the error, this probability

lower bounds the probability in the �rst part of the lemma. The se
ond part of the lemma

follows from the �rst via a simple averaging argument.

Now, the following theorem 
ompletes the proof that g is a weakly approximate degree d

polynomial.
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Theorem 24 For all x 2 D

(d+2)n;s

, 8i 2 f0; : : : ; d+ 1g; Pr

t2T

i

[g(x) �

2

d+3

�

d+1

X

j=1

�

j

g(x+ jt)℄ � 1� �

5

where �

5

= �

4

+(d+1)(2�+�

2

) and 8x; t 2 D

n;s

; Pr

t

1

2T

[jr

d+1

t

g(x)j � 2

d+3

�℄ � 1� (d+ 1)(2�

5

+ �

1

)

Proof. It is implied by Theorem 21, Lemma 23 and the 
loseness of the domains T

i;j

and fx + t : t 2 T

i;j

g that 8x 2 D

(d+2)n;s

; 8i; Pr

t2T

i

[g(x) �

2

d+2

�

d+1

X

j=1

�

j

P (x+ jt)℄ � 1� �

4

and

Pr

t2T

i

[g(x+ jt) �

�

P (x+ jt)℄ � 1� 2�� �

2

: Summing the latter expression and putting them

together, we have the �rst part of the lemma. The se
ond part follows from the �rst part

and the fa
t that T

j

and ft + jt

1

: t

1

2 T g are �

1

-
lose (Fa
t 22).

For an appropriate 
hoi
e of �; �

1

; �

2

, we have a g that is a weakly (2

d+3

�)-approximately

degree d polynomial on D

n;s

with g (�; 2�)-approximating P on D

n;s

.

3.4 Multivariate Polynomials

The following approa
h is illustrated for bivariate polynomials. We 
an easily generalize this

to multivariate polynomials. It is easy to show that the approximate robustness holds when

the interpolation equation [30℄ is used as in Se
tion 3.3, i.e., for any k-variate polynomial P

of total degree d, the following interpolation equation is satis�ed for all �x;

�

t 2 D

k

n;s

:

d+1

X

i=0

�

i

P (�x+ i

�

t) = 0:

An horizontal axis parallel line for a �xed y is the set of points l

x;h

= f(x + kh; y) : k 2

Zg. A verti
al axis parallel line is de�ned analogously. As a 
onsequen
e of approximate

robustness, we have a bivariate fun
tion g(x; y) that is a strongly approximately degree

d polynomial along every horizontal and verti
al line. We use this 
onsequen
e to prove

stability.

The 
hara
terization we will use is: f(x; y) is a bivariate polynomial (assume degree in

both x and y is d) if and only if there are d+1 symmetri
 k-linear fun
tions F

k

(y

1

; : : : ; y

k

) :

D

k

! P

D

[x℄ where the range is the spa
e of all degree d univariate polynomials in x.

For ea
h value of y, g

y

(x) is a strongly approximately degree d polynomial. Using the

univariate 
ase (Theorem 17), there is an exa
t degree d polynomial P

y

(x) su
h that for

all x, g(x; y) �

2

d lg d

�

P

y

(x). Constru
t the fun
tion g

0

(x; y) = P

y

(x). Let �

0

= 2

d lg d

�.
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Now, for a �xed x (i.e., on verti
al line) for any y, using r

t

1

;:::;t

d+1

g(x; y) �

�

0, we have

r

t

1

;:::;t

d+1

g

0

(x; y) �

�

0

0. Thus, g

0

(x; y) is a bivariate fun
tion where along every horizontal

line, it is an exa
t degree d polynomial and along every verti
al line, it is a strongly �

0

-

approximate degree d polynomial. Interpreting g

0

(x; y) as g

0

x

(y) and using the same idea

as in univariate 
ase, we 
an 
on
lude that r(t

1

; : : : ; t

d

) : D

d

! P

D

[x℄ is a symmetri


approximate d-linear fun
tion (here, we used the fa
t that g

0

x

(y) 2 P

D

[x℄). The rest of the

argument in Theorem 17 goes through be
ause our proofs of approximate linearity (Lemma

7) and multilinearity (Theorem 10) assume that the range is a metri
 spa
e (whi
h is true for

P

D

[x℄ with, say, the Chebyshev norm). The result follows from the above 
hara
terization

of bivariate polynomials.

4 Fun
tional Equations

Extending the te
hnique in Lemma 7 to addition theorems f(x + y) = G[f(x); f(y)℄ is not

straightforward, sin
e G 
an be an arbitrary fun
tion. In order to prove approximate robust-

ness (Se
tion 4.3) and stability (Se
tion 4.2), several related properties of G are required.

Proving that G satis�es ea
h individual one is tedious; however, the notion of modulus of


ontinuity from approximation theory gives a general approa
h to this problem. We show

that bounds on the modulus of 
ontinuity imply bounds on all of the quantities of G that we

require. The stability of G is shown by a 
areful indu
tive te
hnique based on a 
anoni
al

generation of the elements in D

n;s

(Se
tion 4.2). The s
ope of our te
hniques is not only

limited to addition theorems; we also show that Jensen's equation is approximately robust

and stable. (Se
tion 4.2.4)

4.1 Preliminaries

For addition theorems, we 
an assume that G is algebrai
 and a symmetri
 fun
tion (the

latter is true in general under some te
hni
al assumptions as in [28℄). We need a notion of

\smoothness" of G. The following notions are well-known in approximation theory [25, 33℄.
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De�nitions 25 (Moduli of Continuity) The modulus of 
ontinuity of the fun
tion f :

D ! R is the following fun
tion of Æ 2 [0;1) :

!(f ; Æ) = sup

jx

1

�x

2

j�Æ

x

1

;x

2

2D

fjf(x

1

)� f(x

2

)jg:

The modulus of 
ontinuity of the fun
tion f : D

2

! R is the following fun
tion of Æ

x

; Æ

y

2

[0;1)

2

:

!(f ; Æ

x

; Æ

y

) = sup

jx

1

�x

2

j�Æ

x

;jy

1

�y

2

j�Æ

y

x

1

;y

1

;x

2

;y

2

2D

fjf(x

1

; y

1

)� f(x

2

; y

2

)jg:

The partial moduli of 
ontinuity of the fun
tion f : D

2

! R are the following fun
tions of

Æ 2 [0;1) :

!(f ; Æ; 0) = sup

y2D

sup

jx

1

�x

2

j�Æ

x

1

;x

2

2D

fjf(x

1

; y)�f(x

2

; y)jg and !(f ; 0; Æ) = sup

x2D

sup

jy

1

�y

2

j�Æ

y

1

;y

2

2D

fjf(x; y

1

)�f(x; y

2

)jg:

We now present some fa
ts whi
h are easily proved.

Fa
ts 26 The following are true of the modulus of 
ontinuity:

1. 0 � !(f ; Æ) � !(f ; Æ

0

) if Æ � Æ

0

;

2. If f

0

, the derivative of f exists, and is bounded in D, then !(f ; Æ) � Ækf

0

k

D

;

3. !(f ; Æ; Æ) � !(f ; 0; Æ)+!(f ; Æ; 0), and if f(�; �) is symmetri
, then !(f ; Æ; Æ) � 2!(f ; Æ; 0);

and

4. If f

0

x

is the partial derivative of f with respe
t to x, then !(f ; Æ; 0) � Ækf

0

x

k

D

.

We need a notion of an \inverse" of G. If G[x; y℄ = z, denote G

�1

1

[z; y℄ = x;G

�1

2

[x; z℄ = y.

Sin
e G is symmetri
, G

�1

1

� G

�1

2

and we denote G

�1

[z; y℄ = x.

An Example. Wherever ne
essary, we will illustrate our s
heme using the fun
tional

equation f(x+ y) =

f(x)f(y)

f(x) + f(y)

, i.e., G[x; y℄ = xy=(x+ y). The solution to this fun
tional

equation is f(x) = C=x for some 
onstant C. The following fa
t [34℄ is useful in lo
ating the

maxima of analyti
 fun
tions.

Fa
t 27 (Maximum Modulus Prin
iple) If f is analyti
 in a 
ompa
t set D, then f

attains extremum only on the boundary of D.
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Over a bounded re
tangle D = [L; U ℄

2

, where 0 < L � U , G is analyti
 and hen
e by

Fa
t 27, attains its maximum on the boundary. G 2 C

1

[L; U ℄ in D (i.e., is 
ontinuously

di�erentiable). We have G

0

x

[x; y℄ = y

2

=(x+ y)

2

whi
h is a de
reasing fun
tion of x. By Fa
t

27, kG

0

x

k attains a maximum when x = L, giving

b

G = kG

0

x

(�; y)k = y

2

=(L + y)

2

. Therefore,

using Fa
t 26(4), !(G; Æ; 0) � sup

y2[L;U ℄

Æy

2

(L + y)

2

=

ÆU

2

(L + U)

2

:

4.2 Stability for Fun
tional Equations

In this se
tion, we prove (under some assumptions) that, if a fun
tion g satis�es a fun
-

tional equation approximately everywhere, then it is 
lose to a fun
tion h that satis�es

the fun
tional equation exa
tly everywhere. Our fun
tional equations are of the form

g(x+ y) = G[g(x); g(y)℄, where G is a symmetri
 algebrai
 fun
tion.

Example. If g satis�es g(x+ y) �

�

g(x)g(y)

g(x) + g(y)

for some � > 0 and for all valid x; y, then

there is a fun
tion h su
h that h(x + y) =

h(x)h(y)

h(x) + h(y)

for all valid x; y, and h(x) �

�

0

g(x)

for some �

0

> 0 and all valid x. The domains for the valid values of x, y, as well as the

relationship between � and �

0

will be dis
ussed later.

In the following se
tions we show how to 
onstru
t the fun
tion h that is 
lose to g,

satisfying a parti
ular fun
tional equation. Given su
h an h, let e(x) denote jh(x) � g(x)j,

i.e., h(x) �

e(x)

g(x). For simpli
ity, let H

1

(x)

def

= G[x; x℄. Note that H

1

(h(x)) = h(2x).

We assume that !(H

1

; Æ) � 
Æ; our results thus hold for fun
tions where the modulus of


ontinuity is linear in Æ. We will be making this assumption for our moduli of 
ontinuity

when appropriate.

We 
onsider the 
ases when 
 < 1, 
 = 1, and 
 > 1, �rst show how to obtain h, and

then obtain bounds on e(x). Then, we 
an 
on
lude that h, whi
h satis�es the fun
tional

equation everywhere, also approximates g; i.e., the fun
tional equation is stable.

Call

x

s

even (resp. odd) if x is even (resp. odd).

4.2.1 When 
 < 1

We begin by assuming that n is a power of 2, i.e., let n = 2

k

in D

n;s

. We �rst 
onstru
t h

by setting h(

1

s

) = g(

1

s

). This determines h for all values in D by the fa
t that h satis�es the
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fun
tional equation.

We obtain a relationship between the error at x and 2x using the fun
tional equation.

Lemma 28 e(2x) � 
e(x) + �.

Proof. e(2x) = jg(2x)� h(2x)j � �+ jG[g(x); g(x)℄�G[h(x); h(x)℄j. But, rewriting, and

using the de�nition of the modulus of 
ontinuity, jH

1

(g(x))�H

1

(h(x))j � !(H

1

; e(x)) � 
e(x)

We explore the relationship between e(x+

1

s

) and e(x). For simpli
ity, letH

2

(x)

def

= G[x; g(

1

s

)℄.

Note that H

2

(h(x)) = h(x+1). We again 
onsider fun
tions where the modulus of 
ontinuity

is bounded by a linear fun
tion in Æ; i.e., !(H

2

; Æ) = jH

0

2

(�; g(

1

s

))j � dÆ for some 
onstant d.

Now,

Lemma 29 e(x +

1

s

) � de(x) + �.

Proof. e(x +

1

s

) = jg(x +

1

s

) � h(x +

1

s

)j � � + jG[g(x); g(

1

s

)℄ � G[h(x); h(

1

s

)℄j. But,

jG[g(x); g(

1

s

)℄�G[h(x); h(

1

s

)℄ = jH

2

[g(x)℄�H

2

[h(x)℄j � !(H

2

; e(x)) � de(x).

We will show a s
heme to bound e(x) for all x when d < 1. This s
heme 
an be thought of

as an enumeration s
heme, where at ea
h step of the pro
ess, 
ertain 
onstraint equations

have to be satis�ed. We 
onstru
t a binary tree T

k

with nodes labeled with elements from

D

+

n;s

where 2

k

= n. The root is labeled

1

s

. If x is the label of a node, then 2x is the label

of its left 
hild (if 2x is not already in the tree). and x +

1

s

is the label of its right 
hild (if

x+

1

s

is not already in the tree). It is easy to see that, if x is even (ex
ept root), then x is a

left 
hild; if x is odd, then x is a right 
hild.

Lemma 30 Let !(H

1

; Æ) � 
Æ; !(H

2

; Æ) � dÆ with 
; d < 1. For all x 2 D

+

n;s

, if x is even,

then e(x) �

1+


1�


� and if x is odd, then e(x) �

2

1�


�.

Proof. We will prove this by indu
tion on the preorder enumeration of T

k

. Let x be the

next element to be enumerated. By preorder listing, its parent has already been enumerated

and hen
e, its error is known. If x = 2y is even, it is a left 
hild, and hen
e generated by a 2y

operation. e(y) �

2

1�


� by the indu
tion hypothesis. This together with Lemma 28 yields

e(x) � 
e(y) + � � 


2

1�


� + � �

1+


1�


�, preserving the indu
tion hypothesis. If x = y +

1

s
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is odd, it is a right 
hild, and hen
e generated by a y + 1 operation. But, y is even, so

e(y) �

1+


1�


� by the indu
tion hypothesis. This together with Lemma 29 and d � 1 yields

e(x) � de(y) + � � e(y) + � �

1+


1�


�+� �

2

1�


�, preserving the indu
tion hypothesis.

This yields the following theorem:

Theorem 31 Let !(H

1

; Æ) � 
Æ; !(H

2

; Æ) � dÆ with 
; d < 1 and let n be a power of 2.

Then, the addition theorem is (D

+

n;s

;D

+

n;s

;�;

2

1�


�)-stable.

With our example, we have H

1

(x) = G[x; x℄ = x=2 and so 
 = 1=2. Also, H

2

(x) =

G[x; g(

1

s

)℄ from whi
h H

0

2

(x) � 1 as 0 < L � x; g(

1

s

). Thus, d � 1. By Theorem 4.2.1, we

have e(x) � 4� for all x 2 D

+

n;s

.

When n is not a power of 2, we 
an argue in the following manner. From our proof, we

see that we use very spe
i�
 values of x; y in the approximate fun
tional equation. Let i be

su
h that 2

i�1

� n � 2

i

and let D

0

= D

2

i

;s

. We extend D

+

n;s

to D

0

and de�ne values of g at

D

0

nD: at even x (= 2y) let g(x) = H

1

(g(y)) and at odd x (= y + 1) let g(x) = H

2

(g(y)).

These 
an be thought of new assumptions on g whi
h are satis�ed \exa
tly" (i.e., without

error �). We 
an use Lemma 30 to 
on
lude that there is a linear h on D

0

that is

2

1�


� 
lose

to g. Hen
e, h is 
lose to g even on D

+

n;s

. To argue about D

�

n;s

, we pi
k a \pivot" point in

D

n;s

(0 for simpli
ity). Now, we have h(�x) = G

�1

[h(x); h(0)℄. Therefore, as in Theorem ,

we have e(�x) � !(G

�1

;

2


1�


).

When d � 1, the error 
an no longer be bounded. In this 
ase, we have 
 � 1 < d. Let

r = 
d. We 
an see from the stru
ture of T

k

that the maximum error 
an o

ur at

2

k

�1

s

.

By simple indu
tion on the depth of the tree, the error is given by e(

2

k

�1

s

) �

P

k�2

i=0

(d

i+1

+

d

i

)


i

� = (d + 1)

P

k�2

i=0

r

i

� = (d + 1)

r

k�1

�1

r�1

�. If r < 1, we obtain a 
onstant error bound of

e(x) � (d+ 1)

1

1�r

� by geometri
 summation. Otherwise, we obtain e(x) = O(r

lgn

).

4.2.2 When 
 > 1

In this 
ase, we require additional assumptions. We de�ne the quantity

!

�1

(f ; Æ) = sup

jf(x

1

)�f(x

2

)j�Æ

x

1

;x

2

2D

fjx

1

� x

2

jg:
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Note that !(f ; Æ) � 
Æ implies !

�1

(f ; Æ) � Æ=
. Now, we assume that !

�1

(f ; Æ) � Æ=


0

, for

some 


0

> 1.

Set h(

2

k

s

) = g(

2

k

s

). Sin
e h satis�es the addition theorem, this 
an be used to �x all of h,

if H

�1

1

is well-de�ned. Let e(x) = jg(x)� h(x)j as before.

As before, we �rst obtain a relationship between the error at x and at 2x using the

addition theorem.

Lemma 32 e(x) � (e(2x) + �)=


0

.

Proof. We have as in Lemma 28, jH

1

(g(x))�H

1

(h(x))j � e(2x)+�. By de�nition of !

�1

and our assumption, we get e(x) � !

�1

(H

1

; e(2x) + �) � (e(2x) + �)=


0

.

For simpli
ity, let H

3

(x)

def

= G

�1

[g(

2

k

s

);

2

k

s

� x℄. We assume that !(H

3

; Æ) � dÆ for some


onstant d. The following lemma 
an be proved easily.

Lemma 33 e(x) � de(

2

k

s

� x) + �.

e(

2

k

s

) = 0 by our 
onstru
tion. We adopt a s
heme similar to the one in the previous se
tion.

Constru
t a binary tree T

k

with nodes labeled with elements from D

+

n;s

. The root is labeled

2

k

s

. If x is the label of a node and x is even, then x=2 is the label of its left 
hild (if x=2 is

not already in the tree). and

2

k

s

� x is the label of its right 
hild (if

2

k

s

� x is not already

in the tree). It is easy to see that if x �

2

k�1

s

(ex
ept the root), then x is a left 
hild and if

x >

2

k�1

s

, then x is a right 
hild. We use the preorder enumeration of D

+

n;s

using T

k

to prove

the following lemma, in the spirit of the proof of Lemma 30.

Lemma 34 For all x 2 D

+

n;s

, if x �

2

k�1

s

and d � 1, then e(x) �

2


0

1�


0

� and if x >

2

k�1

s

then

e(x) �

1+


0

1�


0

�.

This yields (under the assumptions on !

�1

(H

1

; Æ) and !(H

3

; Æ)), the following theorem:

Theorem 35 Let !

�1

(H

1

; Æ) � Æ=


0

; !(H

3

; Æ) � dÆ with d � 1 and let n be a power of 2.

Then, the addition theorem is (D

+

n;s

;D

+

n;s

;�;

1+


0

1�


0

�)-stable.

This 
ase arises for linearity where H

1

(x) = G[x; x℄ = 2x and so 


0

= 2. Using the above

theorem, we get a weaker bound of e(x) � 3� (as opposed to � 2� by Corollary 8). Similar
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te
hniques as in previous se
tion 
an be used to argue about D

�

n;s

and when n is not a power

of 2.

The 
ase when d > 1 
an be handled by s
hemes as in the previous se
tion.

4.2.3 When 
 = 1

In this 
ase, it means that !(H

1

; Æ) = Æ or in other words, by Fa
t 26(2), kH

0

1

k = 1. By

Fa
t 27, the maximum o

urs only at the boundary of the domain. Hen
e, we 
an test by

looking at a subdomain in whi
h the maximum is less than 1.

4.2.4 Jensen's Equation

Jensen's equation is the following: 8x; y 2 D

n;s

; f(

x+y

2

) =

f(x)+f(y)

2

. The solution to this

fun
tional equation is the set of aÆne linear fun
tions i.e., f(x) = ax+ b for some 
onstants

a; b. Jensen's equation 
an be proved approximately robust by modifying the proof of its

robustness in [28℄. We will show a modi�ed version of our te
hnique for proving its stability.

As before, we have 8x; y 2 D

n;s

; g(

x+y

2

) �

�

g(x)+g(y)

2

. To prove the stability of this equation,

we 
onstru
t an aÆne linear h. Note that two points are ne
essary and suÆ
ient to fully

determine h. We set h(

n

s

) = g(

n

s

) and h(0) = g(0).

Lemma 36 e(

x+y

2

) � e(x)=2 + e(y)=2 + �.

Proof. e(

x+y

2

) = jg(

x+y

2

)�h(

x+y

2

)j � �+ j

g(x)+g(y)

2

�

h(x)+h(y)

2

j. But, j

g(x)�h(x)

2

+

g(y)�h(y)

2

j =

e(x)=2 + e(y)=2.

The following 
orollary is immediate.

Corollary 37 e(

x

2

) � �+ e(x)=2 and e(

x+

n

s

2

) � �+ e(x)=2.

Proof. Sin
e for y = 0 and y =

n

s

, e(y) = 0 in Lemma 36.

We 
onstru
t a slightly di�erent tree T

k

in this 
ase. The root of T

k

is labeled by

n

s

and if x

is the label of a node, then x=2 (if integral and not already present) is label of its left 
hild

and (

n

s

+ x)=2 (if integral and not already present) is the label of its right 
hild.

Theorem 38 The Jensen equation is (D

+

n;s

;D

+

n;s

;�; 2�)-stable.
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Proof. The proof is by indu
tion on an enumeration order of T

k

given by, say, a breadth-

�rst traversal. Clearly, at the root, e(

n

s

) = 0 � 2�. Now, if e(x) � 2�, then, 
onsider its


hildren. Its left (resp. right) 
hild (if exists) is x=2 (resp. (x +

n

s

)=2). Thus, by Corollary

37, we have e(

x

2

) � �+ e(x)=2 � 2� (resp. e(

x+

n

s

2

) � �+ e(x)=2 � 2�).

4.3 Approximate Robustness for Fun
tional Equations

As in [20, 29℄, we test the program on D

2p;s

and make 
on
lusions about its 
orre
tness on

D

n;s

. The relationship between p and n will be determined later. The domain has to be su
h

that G is analyti
 in it. Therefore, we 
onsider the 
ase when f is bounded on D

2p;s

, i.e.,

0 < L � f(x) � U . Let G be the family of fun
tions f that satisfy the following 
onditions:

1. Pr

x2D

2p;s

[f(x) � L℄ � 1� �,

2. Pr

x2D

2p;s

[f(x) � U ℄ � 1� �,

3. Pr

x;y2D

2p;s

[G[f(x); f(y)℄ � L℄ � 1� �, and

4. Pr

x;y2D

2p;s

[G[f(x); f(y)℄ � U ℄ � 1� �.

Note that the membership in G is easy to determine by sampling. We 
an de�ne a distribution

E

�(n;s)

su
h that if P satis�es the fun
tional equation on E

�(n;s)

with probability at least 1��,

then P also satis�es the following four properties.

1. Pr

x;y2D

p;s

[P (x+ y) �

�

G[P (x); P (y)℄℄ � 1� �,

2. Pr

x;y2D

p;s

[P (x) �

�

G[P (x� y); P (y)℄℄ � 1� �,

3. Pr

x;y2D

p;s

[P (x) �

�

G[P (y); P (x� y)℄℄ � 1� �, and

4. Pr

x2D

n;s

;y2D

p;s

[P (x) �

�

G[P (x� y); P (y)℄℄ � 1� �.

E

�(n;s)

is de�ned by 
ipping a fair four-sided die and on out
ome i 2 f1; 2; 3; 4g, 
hoosing

inputs a

ording to the distribution given in the i-th property above. Let

b

G = kG

0

x

k

D

: We


an then show the following:
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Theorem 39 The addition theorem with the distribution E

�(n;s)

is (2�; �;D

2p;s

;D

n;s

;�; (9

b

G

2

+

5

b

G)�;�)-approximately robust.

De�ne for x 2 D

p;s

, g(x) = median

y2D

p;s

fG[P (x� y); P (y)℄g: By Markov's inequality, de�nition

of g, and the properties of P , it is easy to show the following:

Lemma 40 Pr

x2D

n;s

[g(x) �

�

P (x)℄ > 1� 2�.

Proof. Consider the set of elements x 2 D

n;s

su
h that Pr

y2D

p;s

[P (x) �

�

G[P (x �

y); P (y)℄℄ <

1

2

. If the fra
tion of su
h elements is more than 2�, then it 
ontradi
ts hy-

pothesis (4) on P that Pr

x2D

n;s

;y2D

p;s

[P (x) �

�

G[P (x� y); P (y)℄℄ � 1� �. For the rest, for

at least half of the y's, P (x) �

�

G[P (x� y); P (y)℄. By de�ning g to be the median (over y's

in D

p;s

), we have for these elements g(x) �

�

P (x).

For simpli
ity of notation, let P

x

denote P (x) for any x 2 D

p;s

and G

x;y

denote G[P (x); P (y)℄

for any x; y 2 D

p;s

. Sin
e G is �xed, we will drop G from the modulus of 
ontinuity.

A distribution U

0

on D is said to be �-uniform on D if

P

x2D

jU

0

(x) � 1=jDjj � �. Let


 = n=2p.

Fa
t 41 (1) For all x 2 D

2n;s

, the distribution of x+ y is 
-uniform on D

p;s

.

(2) For any event E(x) and for an �-uniform distribution U

0

on D, jPr

x�U

0

[E(x)℄ �

Pr

x2D

[E(x)℄j � �.

Lemma 42 For x 2 D

2n;s

, Pr

y;z2D

p;s

[G

x�y;y

�

2!(�;0)

G

x�z;z

℄ � 1� 12�� 4
:

Proof. Pr

y;z2D

p;s

[G

x�y;y

�

!(�;0)

G[G

x�z;z�y

; P

y

℄ = G[P

x�z

; G

z�y;y

℄ �

!(0;�)

G

x�z;z

℄ > 1� 12�� 4
:

The error in the �rst step (due to 
omputation of P

x�y

) is !(�; 0) and the equation holds

with probability at least 1 � � � 
 by property (3) and Fa
t 41. The bounds on G

x�z;z�y

also hold with probability at least 1 � 2� � 2
 by properties (3), (4) and Fa
t 41 and so

the error is just !(�; 0). The next line is just rewriting. In a similar manner, the �nal

equation holds with probability at least 1� �� 
 by property (2) and Fa
t 41 and the error

bound is !(0;�) The bounds on random points P

y

; P

z

; P

x�z

; P

z�y

hold with probability at

least 1� 8� by properties (1), (2) on P to make the error !(0;�). Hen
e, the total error is
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!(�; 0) + !(0;�) = 2!(�; 0) by Fa
t 26(3) and the equality holds with probability at least

1� 12�� 4
.

The following lemma, whi
h helps us to bound the error, is from [23℄. The proof uses the

observation that the 
lique number of G

2

is at least as big as the maximum degree in G.

Hen
e, for a random node x, probability that x is present in the largest 
lique in G

2

is more

than the probability that x is 
onne
ted to the maximum degree vertex (say y) in G.

Lemma 43 ([23℄) If G = hV;Ei is a random graph with edges inserted with probability

1 � �, then G

2

= hV; f(x; y) : 9z 2 V; (x; z) 2 E ^ (z; y) 2 Egi is a graph where the largest


lique is of size at least (1� �)jV j.

The following shows, in some sense, that g is well-de�ned:

Lemma 44 For all x 2 D

2n;s

, Pr

y2D

p;s

[g(x) �

2�

0

G

x�y;y

℄ � 1 � 12� � 4
, where �

0

=

2!(�; 0).

Proof. We have the following: for all x 2 D

2n;s

, Pr

y;z2D

p;s

[G

x�y;y

�

�

0

G

x�z;z

℄ � 1�12��4
.

Now, we use Lemma 43. If G denotes a graph in whi
h (y; z) is an edge i� G

x�y;y

�

�

0

G

x�z;z

then G

2

denotes the graph in whi
h (y; z) is an edge i� G

x�y;y

�

2�

0

G

x�z;z

. Now, using

Lemma 43, we have that number of elements that are 2�

0

away from the largest 
lique is at

most 2�. Thus, at least 1� 2� of elements are within 2�

0

of ea
h other. If � < 1=2 and sin
e

g(x) is the median, the lemma follows.

Now, the following theorem 
ompletes the proof that g satis�es the addition theorem ap-

proximately.

Theorem 45 For all x; y 2 D

n;s

, g(x + y) �

�

00

G[g(x); g(y)℄ with probability at least 1 �

56�� 14
, where �

00

= (9

b

G

2

+ 5

b

G)�.

Proof. Pr

u;v2D

p;s

[G[g(x); g(y)℄ �

!(2�

0

;2�

0

)

G[G

u;x�u

; G

v;y�v

℄

= G[P

u

; G[P

x�u

; G

v;y�v

℄℄

= G[P

u

; G[G

x�u;v

; P

y�v

℄℄

�

!(0;!(�;0))

G[P

u

; G

x�u+v;y�v

℄

�

!(0;�)

G

u;x+y�u

�

2�

0

g(x+ y)℄ � 1� 56�� 14
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By Lemma 44, the �rst equality holds with probability 1�24��8
 and error !(2�

0

; 2�

0

). By

property (4), the bounds on G

u;x�u

; G

v;y�v

hold with probability at least 1� 4� to make the

error !(2�

0

; 2�

0

) � 2!(2�

0

; 0) = 4!(�

0

; 0) = 8!(!(�; 0); 0) by Fa
t 26(3). The se
ond and

third equalities are always true. The fourth equality holds with probability at least 1� ��


by property (1) and Fa
t 41 on P and the error a

rued is !(0; !(�; 0)). The bounds on

P

u

; P

x�u

; P

v

; P

y�v

; G

x�u;v

hold with probability at least 1�10� by properties (1)-(4) to make

the error !(0; !(�; 0)) = !(!(�; 0); 0). The �fth equality also holds with probability at least

1 � � � 
 by property (1) on P and the error a

rued is !(0;�) = !(�; 0), after bounds

on P

u

; P

x+y�u

(with probability at least 1 � 4�). The �nal equality holds with probability

at least 1 � 12� � 4
 by Lemma 44 and error is 2�

0

= 4!(�; 0). Thus, the total error is

9!(!(�; 0); 0) + 5!(�; 0). But, !(�; 0) � �

b

G by Fa
t 26(4). Hen
e, !(!(�; 0); 0) � �

b

G

2

.

If � < 1=112; p > 14n, we have 1 � 56� � 14
 > 0 and so the above lemma is true with

probability 1. In the 
ase of our example fun
tion, we already 
al
ulated

b

G = U

2

=(L+ U)

2

.

Hen
e, �

00

= �

 

9U

4

(L+ U)

4

+

5U

2

(L + U)

2

!

:

5 Approximate Self-Testing and Self-Corre
ting

In this se
tion we brie
y show how to apply our te
hniques that we developed in this paper to


onstru
t approximate self-tester and self-
orre
tors. The approa
hes in this se
tion follow

[8, 20℄.

5.1 De�nitions

The following modi�
ations of de�nitions from [20℄ 
apture the idea of approximate 
he
king,

self-testing, and self-
orre
ting in a formal manner. Let P be a program for f , x 2 D

n;s

an

input to P , and � the 
on�den
e parameter.

De�nition 46 A (�

1

;�

2

;D

�(n;s)

;D

n;s

)-approximate result 
he
ker for f is a probabilisti


ora
le program T that, given P , x 2 D

n;s

, and �, satis�es the following:

(1) P (�

1

; 0)-approximates f on D

�(n;s)

) Pr[T

P

outputs \PASS"℄ � 1� �.
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(2) P (x) 6�

�

2

f(x) ) Pr[T

P

outputs \FAIL"℄ � 1� �.

De�nition 47 A (�

1

;�

2

; �;D

�(n;s)

;D

n;s

)-approximate self-tester for f is a probabilisti
 or-

a
le program T that, given P and �, satis�es the following:

(1) P (�

1

; 0)-approximates f on D

�(n;s)

) Pr[T

P

outputs \PASS"℄ � 1� �.

(2) P does not (�

2

; �)-approximate f on D

n;s

) Pr[T

P

outputs \FAIL"℄ � 1� �.

Observe that if a property is (Æ; �;D

�(n;s)

;D

n;s

;�

1

;�

2

;�

3

)-approximately robust, (D

n;s

;D

n

0

;s

0

;�

2

;�

4

)-

stable, and it is possible to do equality testing for the fun
tion family satisfying the property,

then it is possible to 
onstru
t a (�

1

;�

3

+�

4

; �;D

n;s

;D

n

0

;s

0

)-approximate self-tester.

De�nition 48 A (�; �;�

0

;D

�(n;s)

;D

n;s

)-approximate self-
orre
tor for f is a probabilisti


ora
le program SC

P

f

that, given P that (�; �)-approximates f on D

�(n;s)

, x 2 D

n;s

, and �,

outputs SC

P

f

(x) su
h that Pr[SC

P

f

(x) �

�

0

f(x)℄ � 1� �.

Note that a (�

1

;�

2

; �;D

�(n;s)

;D

n;s

)-approximate self-tester and (�

2

; �;�

3

;D

�(n;s)

;D

n;s

)-approximate

self-
orre
tor yield a (�

1

;�

3

;D

�(n;s)

;D

n;s

)-approximate result 
he
ker [8℄.

5.2 Constru
ting Approximate Self-Corre
tors

We illustrate how to build approximate self-
orre
tors for fun
tional equations. Suppose P

(�; �)-approximates f for � < 1=8 and f(x+y) = G[f(x); f(y)℄. Then the self-
orre
tor SC

P

f

at input x is 
onstru
ted as follows. To obtain a 
on�den
e of �:

1. 
hoose random points y

1

; y

2

; : : : ; y

N

(N = O(ln 1=�)),

2. let SC

P

f

(x) be the median of G[P (x� y

1

); P (y

1

)℄; : : : ; G[P (x� y

N

); P (y

N

)℄.

By the assumption on �, both the 
alls to P on x�y

i

and y

i

are within � of f with probability

greater than 3=4. In this 
ase, the value of G[P (x� y

i

); P (y

i

)℄ is �

0

= 2�

b

G away from f(x)

(see Se
tion 4.1 for

b

G). Using Cherno� bounds, we 
an see that at least half of the values

G[P (x � y

i

); P (y

i

)℄ are at most �

0

away from f(x). Thus, their median SC

P

f

(x) is also at

most �

0

away from f(x).
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For degree d polynomials, a similar self-
orre
tor works with �

0

= O((d + 1)2

d

�). In

order to pass good programs, this is almost the best �

0

possible using the evenly spa
ed

interpolation equation sin
e the 
oeÆ
ients of the interpolation equation are 
(2

d

). Using

interpolation equations that do not use evenly spa
ed points seem to require �

0

that is

dependent on the size of the domain.

5.3 Constru
ting Approximate Self-Testers

The following is a self-tester for any fun
tion satisfying an addition theorem f(x + y) =

G[f(x); f(y)℄ 
omputing the fun
tion family F over D

n;s

. We use the notation from Se
-

tion 4.1. To obtain a 
on�den
e of �, we 
hoose random points x

1

; y

1

; : : : ; x

N

; y

N

(N =

O(1=� ln 1=�)) and verify the assumptions on program P in the beginning of Se
tion 4.3. If

P passes the test, then using Cherno� bounds, approximate robustness, and stability of the

property, we are guaranteed that P approximates some fun
tion in F . We next perform the

equality test to ensure that P approximates the given f 2 F . Assume that f(

1

s

) when 
 < 1

(resp. f(

n

s

) when 
 > 1) is given. Using the proofs in Se
tion 4.2, one 
an show that if there

is a 
onstant � su
h that SC

P

f

(

1

s

) �

�

f(

1

s

) when 
 < 1 ( SC

P

f

(

n

s

) �

�

f(

n

s

) when 
 > 1),

the error between SC

P

f

and f 
an be bounded by a 
onstant on the rest of D

n;s

. Sin
e SC

P

f

approximates P , the 
orre
tness of the self-tester follows.

For polynomials, we use random sampling to verify the 
onditions on program P required

for approximate robustness that are given in the beginning of Se
tion 3.3. If P satis�es

the 
onditions then using the approximate robustness and stability of the evenly spa
ed

interpolation equation, P is guaranteed to approximate some degree d polynomial h. To

perform the equality test that determines if P approximates the 
orre
t polynomial f , we

assume that the tester is given the 
orre
t value of the polynomial f at ` = (d+1)=� evenly

spa
ed points x

1

= �

n

s

; : : : ; x

`

=

n

s

2 D

n;s

. Using the self-
orre
tor SC

P

f

from Se
tion 5.2,

we have kSC

P

f

� hk � �

0

= (d + 1)2

d

2

d lg d

�. The equality tester now tests that for all x

i

,

jf(x

i

)�SC

P

f

(x

i

)j � (d+1)2

d

�. Call an input x bad if jf(x)�h(x)j > �

00

= �

0

+(d+1)2

d

�.

If x is bad then jf(x) � SC

P

f

(x)j > (d + 1)2

d

�. If x is a sample point, and x is bad, then

the test would have failed. De�ne a bad interval to be a sequen
e of 
onse
utive bad points.
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If the test passes, then any bad interval in the domain 
an be of length at most (2n+ 1)=`,

be
ause any longer interval would 
ontain at least one sample point. The two sample points

immediately pre
eding and following the bad interval satisfy jf(x)�h(x)j � �

00

. This implies

that there must be a lo
al maximum of f�h (a degree d polynomial) inside the bad interval.

Sin
e there are only d extrema of f�h, there 
an be at most d bad intervals, and so the total

number of bad points is at most d(2n+ 1)=`. Thus, on 1� � fra
tion of D

n;s

, SC

P

f

's error is

at most �

0

+�

00

. These arguments 
an be generalized to the k-variate 
ase by partitioning

the k-dimensional spa
e into ((d+ 1)=�)

k


ubes.

We have thus shown how to 
onstru
t approximate self-testers and self-
orre
tors. It is

straightforward to 
onstru
t approximate result-
he
kers using these.

5.4 Redu
tions Between Fun
tional Equations

This se
tion explores the idea of using redu
tions among fun
tions (as in [7, 3℄) to obtain

approximate self-testers for new fun
tions. Consider any pair of fun
tions f

1

; f

2

that are

interredu
ible via fun
tional equations. Suppose we have an approximate self-tester for f

1

and let there exist 
ontinuous 
omputable fun
tions F; F

�1

su
h that f

2

(x) = F [f

1

(x)℄ and

f

1

(x) = F

�1

(f

2

(x)). Given a program P

2


omputing f

2

, 
onstru
t program P

1


omputing

f

1

via F

�1

. We 
an then self-test P

1

. Suppose P

1

is �-
lose to f

1

on a large portion of the

domain. Then for every x for whi
h P

1

(x) is �-
lose to f

1

(x), we bound the deviation of

P

2

(x) from f

2

(x) by �

0

= F [f

1

(x)+�℄�f

2

(x). Then �

0

= F [f

1

(x)+�℄�F [f

1

(x)℄ � !(F ; �).

If we 
an bound the right-hand side by a 
onstant (at least for a portion of the domain), we


an bound the maximum deviation �

0

of P

2

from f

2

. This idea 
an be used to give simple

and alternative approximate self-testers for fun
tions like sin x; 
os x; sinh x; 
osh x whi
h 
an

be redu
ed to e

x

.

For example, suppose we are given a (Æ

1

; �

1

; Æ

2

; �

2

;D;D

0

)- approximate self-tester for

f

1

(x) = e

x

and we want an approximate self-tester for the fun
tion f

2

given by f

2

(x) = 
os x.

By the Euler identity, f

1

(ix) = f

2

(x) + if

2

(x + 3�=2). Given a program P

2

that supposedly


omputes f

2

, we 
an build a program P

1

(for e

ix

) out of the given P

2

(for 
os x) and self-test

P

1

. P

1

(ix) = P

2

(x) + iP

2

(x + 3�=2).
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Let the range of f

1

be equipped with the following metri
: jP

1

(x)� f

1

(x)j = j<(P

1

(x)�

f

1

(x))j + j=(P

1

(x) � f

1

(x))j. In other words, in our 
ase, we have jP

1

(x) � e

ix

j = jP

2

(x) �


os xj+ jP

2

(x+3�=2)� 
os(x+3�=2)j. This metri
 ensures that P

1

is erroneous on x if and

only if P

2

is erroneous on at least one of x; x+3�=2. Alternatively, there is no \
an
ellation"

of errors.

Suppose P

1

is (Æ

1

; �

1

)-good. Then, what 
an we say about P

2

? For Æ

1

fra
tion of the

\bad" domain for P

1

, the errors 
an o

ur in both the pla
es where P

2

is invoked. Hen
e, at

most 2Æ

1

fra
tion of the domain for P

2

is bad. The rest of the domain for P

1

is �

1

-
lose to

f

1

, whi
h by our metri
 implies P

2

is also �

1

-
lose to f

2

. Thus, P

2

is (2Æ

1

; �

1

)-good.

Similarly, suppose P

1

is not (Æ

2

; �

2

)-good. P

1

is not good on at least Æ

2

fra
tion of the

domain, where P

1

is not �

2

-
lose to f

1

. Thus, at these points in the domain, at least one of

points where P

2

is 
alled is de�nitely not �

2

=2-
lose to f

2

. Thus, P

2

is not (Æ

1

; �

2

=2)-good.

Therefore, we have an (2Æ

1

; �

1

; Æ

2

; �

2

=2;D;D

0

)- approximate self-tester for f

2

from a (Æ

1

; �

1

; Æ

2

; �

2

;D;D

0

)-

approximate self-tester for f

1

, given by [20℄.
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A Proofs of Some Theorems for Linearity

Theorem 49 (Hyers' Theorem) Let S be an Abelian semigroup and B be a Bana
h spa
e

and let g : S ! B be su
h that for some � > 0, g is �-approximately linear on S, then, for

every x 2 S; h(x) = lim

n!1

g(2

n

x)=2

n

exists, h is linear, and kg � hk � �.

Proof. ([17℄) By indu
tion on n, jg(x)=2

n

� g(x=2

n

)j < �(1 � 1=2

n

). Let q

n

(x) =

g(2

n

x)=2

n

. Then, q

n

(x) � q

m

(x) = (g(2

m�n

2

n

x) � 2

m�n

g(2

n

x))=2

m

. If m < n, we 
an

obtain jq

n

(x) � q

m

(x)j < �(1 � 2

m�n

)=2

m

. Thus, for x 2 S, fq

n

(x)g is a Cau
hy sequen
e

and by 
ompleteness of B, it has a limit fun
tion h(x) = lim

n!1

g(2

n

x)=2

n

. The properties

of h are easily proved.

Theorem 50 (Skof's Theorem) Let n > 0 and let g : [0; n) ! R be su
h that for some

� � 0, jg(x+ y)� g(x)� g(y)j � � for all 0 � x; y < n (su
h that x + y < n), then, there

exists a linear h : R ! R su
h that kg � hk

[0;n)

� 3�.
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Proof. For any x 2 R

+

, write x = p(n=2) + q where 0 � q < n=2. De�ne g

0

: R

+

! R

su
h that g

0

(x) = pg(n=2)+ g(q). Clearly, kg

0

� gk

[0;n)

� �. Now, the 
laim is g

0

(x+ y) �

2�

g

0

(x) + g

0

(y). As before, x = p(n=2) + q; y = r(n=2) + s with 0 � q; s < n=2.

0 � q + s < n=2. We have, g

0

(x+ y) = g(q + s) + (p+ r)g(n=2) �

�

g(q) + g(s) + pg(n=2) +

rg(n=2) = g

0

(x) + g

0

(y).

n=2 � q + s < n. Let q+s = t+n=2. We have g

0

(x+y) = g(t)+(p+r)g(n=2)+g(n=2) �

2�

g(q) + g(s) + pg(n=2) + rg(n=2) = g

0

(x) + g

0

(y).

To extend g

0

to R, de�ne for x < 0, g

0

(x) = �g

0

(�x). Thus, 8x; y 2 R; g

0

(x + y) �

2�

g

0

(x) + g

0

(y). By Theorem 49, there is a linear h su
h that kg

0

� hk � 2�. Therefore,

kg � hk

[0;n)

� kg � g

0

k

[0;n)

+ kg

0

� hk

[0;n)

� 3�.

B Proofs of Some Theorems for Polynomials

B.1 Stability for Polynomials

Fa
t 12 (r

t

1

+t

2

�r

t

1

�r

t

2

)f(x) = r

t

1

;t

2

= r

t

2

;t

1

.

Proof. (r

t

1

+t

2

�r

t

1

�r

t

2

)f(x) = f(x+t

1

+t

2

)�f(x)�f(x+t

1

)+f(x)�f(x+t

2

)+f(x) =

f(x+t

1

+t

2

)�f(x+t

1

)�f(x+t

2

)+f(x) = r

t

1

f(x+t

2

)�r

t

1

f(x) = r

t

1

(f(x+t

2

)�f(x)) =

r

t

1

;t

2

f(x) = r

t

2

;t

1

f(x).

Di�eren
e operators a
t on multilinear fun
tions in a ni
e manner, whi
h is 
aptured in the

following fa
t.

Fa
t 51 If f is a k-linear fun
tion, then r

t

1

;:::;t

d

f

�

(x) = k!f(t

1

; : : : ; t

k

) if k = d and 0 if

k < d.

Proof. Re
all that, due to multilinearity, f is also symmetri
. By indu
tion on k. Chasing

de�nitions, we haver

t

1

;:::;t

d

f

�

(x) = r

t

1

;:::;t

d�1

(f

�

(x+t

d

)�f

�

(x)) = r

t

1

;:::;t

d�1

(f((x+ t

d

)

[d�1℄

; x)+

f((x+ t

d

)

[d�1℄

; t

d

) � f(x

[d℄

)), whi
h by linearity of r yields r

t

1

;:::;t

d�1

f((x+ t

d

)

[d�1℄

; t

d

) +
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r

t

1

;:::;t

d�1

(f((x+ t

d

)

[d�1℄

; x) � f(x

[d℄

)). Observe that for any 
onstant t, the restri
tion of

k-linear f to any of its arguments being t (denoted f

t

) results in a (k � 1)-linear fun
tion.

By indu
tion, the �rst term in the above expression evaluates to (d � 1)!f

t

d

(t

1

; : : : ; t

d�1

) =

(d � 1)!f(t

1

; : : : ; t

d

). Now, using the symmetry and linearity (in ea
h variable) of f , we


an write the se
ond term as r

t

1

;:::;t

d�1

(

P

d�1

i=0

�

d�1

i

�

f(x

[i+1℄

; t

d

[d�i�1℄

)� f(x

[d℄

)) whi
h is (d�

1)r

t

1

;:::;t

d�1

f(x

[d�1℄

; t

d

) +

P

d�3

i=0

r

t

1

;:::;t

d�1

�

d�1

i

�

f(x

[i+1℄

; t

d

[d�i�1℄

). By indu
tion, the �rst term

evaluates to (d � 1)(d � 1)!f

t

d

(t

1

; : : : ; t

d�1

) = (d � 1)(d � 1)!f(t

1

; : : : ; t

d

), whi
h 
ombined

with the earlier result yields d!f(t

1

; : : : ; t

d

). The se
ond term evaluates to 0 sin
e ea
h of

the terms inside the sum are restri
tions of f to more than 1 variable, whi
h evaluates to 0

after applying r

t

1

;:::;t

d�1

.

Fa
t 13 Let D be a ring. The following 
hara
terizations of polynomials, are equivalent:

1. 8x 2 D; f(x) =

d

X

k=0

a

k

x

k

,

2. 8x; t 2 D;r

d+1

t

f(x) = 0

3. there exists symmetri
 k-linear fun
tions F

k

, 0 � k � d su
h that 8x 2 D; f(x) =

d

X

k=0

F

�

k

(x).

Proof. (1) , (2) follows from Lagrangian interpolation. We �rst prove (1) ) (3).

Given (1), just set F

k

(x

1

; : : : ; x

k

) = a

k

Q

k

i=0

x

i

. It is easy to see that F

k

's are symmet-

ri
, k-linear. We now prove (3) ) (2). Given (3), r

t

1

;:::;t

d+1

f(x) = r

t

1

;:::;t

d+1

P

d

k=0

F

�

k

(x) =

P

d

k=0

r

t

1

;:::;t

d+1

F

�

k

(x) = 0 by Fa
t 16 about di�eren
e operators.

Fa
t 18 For any �

1

; : : : ; �

d

2 f0; 1g, if

t

0

�

1

;:::;�

d

= �

d

X

i=1

�

i

t

i

=i; t

00

�

1

;:::;�

d

=

d

X

i=1

�

i

t

i

then

r

t

1

;:::;t

d

f(x) =

X

�

1

;:::;�

d

2f0;1g

(�1)

�

1

+���+�

d

r

d

t

0

�

1

;:::;�

d

f(x + t

00

�

1

;:::;�

d

):
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� t

0

�

t

00

�

term

00 0 0 0

01 �t

2

=2 t

2

�[f(x)� 2f(x+ t

2

=2) + f(x+ t

2

)℄

10 �t

1

t

1

�[f(x� t

1

)� 2f(x) + f(x+ t

1

)℄

11 �t

1

� t

2

=2 t

1

+ t

2

+[f(x� t

1

)� 2f(x+ t

2

=2) + f(x+ t

1

+ t

2

)℄

Table 2: An Illustration of Fa
t 18

Proof. By a pairing argument. First, it is easy to prove that the left-hand side 
an be

expressed as r

h

1

;:::;h

d

=

P

�

1

;:::;�

d

2f0;1g

(�1)

d+�

1

+���+�

d

f(x+ t

00

�

1

;:::;�

d

). Now, we 
an expand the

right-hand side as

X

�

1

;:::;�

d

2f0;1g

(�1)

�

1

+���+�

d

d

X

k=0

(�1)

d�k

 

d

k

!

f(x+ t

00

�

1

;:::;�

d

+ kt

0

�

1

;:::;�

d

):When k = 0, left-hand side

is obtained. So, we have to prove that for k > 0, the right-hand side vanishes. The terms

inside f(�) are linear 
ombinations of t

i

's by our 
onstru
tion. Note that for ea
h k >

0, ea
h term inside f(�) on the right-hand side has exa
tly one t

i

absent be
ause of its


an
ellation between t

0

and t

00

. So, for ea
h �

1

; : : : ; �

d

2 f0; 1g, 
onstru
t its 
onjugate

�

0

1

; : : : ; �

0

d

2 f0; 1g with �

0

i

= 1� �

i

and �

0

j

= �

j

otherwise. It is easy to see that the terms

(�1)

�

1

+���+�

d

f(x+ t

00

�

1

;:::;�

d

+kt

0

�

1

;:::;�

d

) and (�1)

�

0

1

+���+�

0

d

f(x+ t

00

�

0

1

;:::;�

0

d

+kt

0

�

0

1

;:::;�

0

d

) 
an
el. An

illustration of this fa
t is given below.

To illustrate with an example, 
onsider the 
ase when d = 2. Then, the left-hand side is

given by r

t

1

;t

2

f(x) = f(x + t

1

+ t

2

) � f(x + t

1

) � f(x + t

2

) + f(x). The right-hand side is

given by the sum of the entries in the last 
olumn of Table B.1.

It is easy to see that appropriate 
an
ellations take pla
e so that left-hand side equals

the right-hand side.
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