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Abstrat

A majority of the results on self-testing and orreting deal with programs whih

purport to ompute the orret results preisely. We relax this notion of orretness

and show how to hek programs that ompute only a numerial approximation to

the orret answer. The types of programs that we deal with are those omputing

polynomials and funtions de�ned by ertain types of funtional equations. We present

results showing how to perform approximate heking, self-testing, and self-orreting

of polynomials, settling in the aÆrmative a question raised by [20, 29, 30℄. We obtain

this by �rst building approximate self-testers for linear and multilinear funtions. We

then show how to perform approximate heking, self-testing, and self-orreting for

those funtions that satisfy addition theorems, settling a question raised by [28℄. In

�
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both ases, we show that the properties used to test programs for these funtions

are both robust (in the approximate sense) and stable. Finally, we explore the use

of redutions between funtional equations in the ontext of approximate self-testing.

Our results have impliations for the stability theory of funtional equations.
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1 Introdution

Program heking was introdued by Blum and Kannan [7℄ in order to allow one to use a

program safely, without having to know apriori that the program is orret on all inputs.

Related notions of self-testing and self-orreting were further explored in [8, 24℄. These

notions are seen to be powerful from a pratial point of view (.f., [9℄) and from a theoretial

angle (.f., [5, 4℄) as well. The tehniques used usually onsist of tests performed at run-time

whih ompare the output of the program either to a predetermined value or to a funtion of

outputs of the same program at di�erent inputs. In order to apply these powerful tehniques

to programs omputing real-valued funtions, several issues dealing with preision need to

be dealt with. The standard model, whih onsiders an output to be wrong even if it is o�

by a very small margin, is too strong to make pratial sense due to reasons suh as the

following: (i) In many ases, the algorithm is only intended to ompute an approximation,

e.g., Newton's method. (ii) Representational limitations and round-o�/trunation errors

are inevitable in real-valued omputations. (iii) The representation of some fundamental

onstants (e.g., � = 3:14159 : : :) is inherently impreise.

The framework presented by [20, 3℄ aommodates these inherently inevitable or aept-

ably small losses of information by overlooking small preision errors while deteting atual

\bugs", whih manifest themselves with greater magnitude. Given a funtion f , a pro-

gram P that purports to ompute f , and an error bound �, if jP (x)� f(x)j � � (denoted

P (x) �

�

f(x)) under some appropriate notion of norm, we say P (x) is approximately orret

on input x. Approximate result hekers test if P is approximately orret for a given input

x. Approximate self-testers are programs that test if P is approximately orret for most

inputs. Approximate self-orretors take programs that are approximately orret on most

inputs and turn them into programs that are approximately orret on every input.

Domains. We work with �nite subsets of �xed point arithmeti that we refer to as �nite

rational domains. For n; s 2 Z

+

, D

n;s

def

= f

i

s

: jij � n; i 2 Zg. Usually, s = 2

l

where l is the

preision. We allow s and n to vary for generality. For a domain D, let D

+

and D

�

denote

the positive and negative elements in D.

Testing using Properties. There are many approahes to building self-testers. We
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illustrate one paradigm that has been partiularly useful. In this approah, in order to test if

a program P omputes a funtion f on most inputs, we test if P satis�es ertain properties

of f .

As an example, onsider the funtion f(x) = 2x and the property \f(x+ 1) = f(x) + 2"

that f satis�es. One might pik random inputs x and verify that P (x + 1) = P (x) + 2.

Clearly, if for some x, P (x + 1) 6= P (x) + 2, then P is inorret. The program, however,

might be quite inorret and still satisfy P (x + 1) = P (x) + 2 for most hoies of random

inputs. In partiular, there exists a P (for instane, P (x) = 2xmodK)

1

suh that: (i) with

high probability, P satis�es the property at random x and hene will pass the test, and (ii)

there is no funtion that satis�es the property for all x suh that P agrees with this funtion

on most inputs. Thus we see that this method, when used naively, does not yield a self-tester

that works aording to our spei�ations. Nevertheless, this approah has been used as a

good heuristi to hek the orretness of programs [13, 14, 35℄.

As an example of a property that does yield a good tester, onsider the linearity property

\f(x+ y) = f(x) + f(y)", satis�ed only by funtions mapping D

n;s

to R of the form f(x) =

x;  2 R. If, by random sampling, we onlude that the program P satis�es this property for

most x; y, it an be shown that P agrees with a linear funtion g on most inputs [8, 28℄. We

all the linearity property, and any property that exhibits suh behavior, a robust property.

We now desribe more formally how to build a self-tester for a lass F of funtions that

an be haraterized by a robust property. The two-step approah, whih was introdued

in [8℄, is: (i) test that P satis�es the robust property (property testing), and (ii) hek if P

agrees with a spei� member of F (equality testing). The suess of this approah depends

on �nding robust properties whih are both easy to test and lead to eÆient equality tests.

A property is a pair hI; E

�(n;s)

i, onsisting of an equation I

f

(x

1

; : : : ; x

k

) = 0 that relates

the values of funtion f at various tuples of loations hx

1

; : : : ; x

k

i , and a distribution E

�(n;s)

over D

k

�(n;s)

from whih the loations are piked. The property hI; E

�(n;s)

i is said to har-

aterize a funtion family F in the following way. A funtion f is a member of F if and

only if I

f

(x

1

; : : : ; x

k

) = 0 for every hx

1

; : : : ; x

k

i that has non-zero support under E

�(n;s)

. For

1

We naturally extend the mod funtion to D

n;s

by letting xmodK stand for

jmod k

s

, for x;K 2 D

n;s

, and

x =

j

s

, K =

k

s

.
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instane, the linearity property an be written as I

f

(x

1

; x

2

; x

3

) � f(x

1

)+ f(x

2

)� f(x

3

) = 0,

and E

Lin

�(n;s)

is a distribution on hx

1

; x

2

; x

1

+ x

2

i, where x

1

and x

2

are hosen randomly

from some distribution

2

over the domain D

�(n;s)

. In this ase hI; E

Lin

�(n;s)

i haraterizes

F = ff(x) = x j  2 Rg, the set of all linear funtions over D

�(n;s)

. We will adhere to

this de�nition of a property throughout the paper; however, for simpliity of notation, when

appropriate, we will talk about the distribution and the equality together. For instane, we

express the linearity property as f(x+ y) = f(x) + f(y), giving the distributions of x; y.

We �rst onsider robust properties in more detail. Suppose we want to infer the orret-

ness of the program on inputs from the domain D

n;s

. Then we allow alls to the program on

a larger domain D

�(n;s)

, where � : Z

2

! Z

2

is a �xed funtion that depends on the struture

of I. Ideally, we would like �(n; s) = (n; s), i.e., D

�(n;s)

= D

n;s

. But, for tehnial reasons,

we allow D

�(n;s)

to be a proper, but not too muh larger, superset of D

n;s

(in partiular, the

desription size of an element in D

�(n;s)

should be polynomial in the desription size of an

element in D

n;s

).

3

To use a property in a self-tester, one must prove that the property is robust. Informally,

the (Æ; �;D

�(n;s)

;D

n;s

)-robustness of the property hI; E

�(n;s)

i implies that if, for a program P ,

I

P

(x

1

; : : : ; x

k

) = 0 is satis�ed with probability at least 1�� when hx

1

; : : : ; x

k

i is hosen from

the distribution E

�(n;s)

, then there is a funtion g 2 F that agrees with P on 1� Æ fration of

the inputs in D

n;s

. In the ase of linearity, it an be shown that there is a distribution E

Lin

11n;s

on hx

1

; x

2

; x

1

+ x

2

i where x

1

; x

2

2 D

11n;s

suh that the property is (2�; �;D

11n;s

;D

n;s

)-robust

for all � < 1=48 [8, 28℄. Therefore, one it is tested that P satis�es P (x

1

)+P (x

2

) = P (x

1

+x

2

)

with large enough probability when the inputs are piked randomly from E

Lin

11n;s

, it is possible

to onlude that P agrees with some linear funtion on most inputs from D

n;s

. A somewhat

involved de�nition of robust is given in [28℄. Given a funtion � suh that for all n; s, D

n;s

is a large enough subset of D

�(n;s)

, in this paper we say that a property is robust if: for all

0 < Æ < 1, there is an � suh that for all n; s the property is (Æ; �;D

�(n;s)

;D

n;s

)-robust.

2

For example, hoosing x

1

and x

2

uniformly from D

�(n;s)

suÆes for haraterizing linearity. To prove

robustness, however, [28℄ uses a more ompliated distribution that we do not desribe here.

3

Alternatively, one ould test the program over the domain D

n;s

and attempt to infer the orretness of

the program on most inputs from D

n

0

;s

0

, where D

n

0

;s

0

is a large subdomain of D

n;s

.
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We now onsider equality testing. Reall that one it is determined that P satis�es

the robust property, then equality testing determines that P agrees on most inputs with a

spei� member of F . For instane, in the ase of linearity, to ensure that P omputes the

spei� linear funtion f(x) = x on most inputs, we perform the equality test whih ensures

that P (x+

1

s

) = P (x) +

1

s

for most x. Neither the property test nor the equality test on its

own is suÆient for testing the program. However, sine f(x) = x is the only funtion that

satis�es both the linearity property and the above equality property, the ombination of the

property test and the equality test an be shown to be suÆient for onstruting self-testers.

This ombined approah yields extremely eÆient testers (that only make O(�

�1

log 1=Æ)

alls to the program for �xed Æ and �) for programs omputing homomorphisms (e.g., mul-

tipliation of integers and matries, exponentiation, logarithm). This idea is further gen-

eralized in [28℄, where the lass of funtional equations alled addition theorems is shown

to be useful for self-testing. An addition theorem is a mathematial identity of the form

8x; y; f(x+ y) = G[f(x); f(y)℄. Addition theorems haraterize many useful and interesting

mathematial funtions [1, 11℄. When G is algebrai, they an be used to haraterize fami-

lies of funtions that are rational funtions of x, e

x

, and doubly periodi funtions (see Table

1 for examples of funtional equations and the families of funtions that they haraterize

over the reals). Polynomials of degree d an be haraterized via several di�erent robust

funtional equations (e.g., [6, 26, 4, 30℄).

Approximate Robustness and Stability. When the program works with �nite

preision, the properties upon whih the testers are built will rarely be satis�ed, even by a

program whose answers are orret up to the required (or hardware-wise maximal) number

of digits, sine they involve strit equalities. Thus, when testing, one might be willing to

pass programs for whih the properties are only approximately satis�ed. This relaxation in

the tests, however, leads to some diÆulties, for in the approximate setting: (i) it is harder

to analyze whih funtion families are solutions to the robust properties, and (ii) equality

testing is more diÆult. For instane, it is not obvious whih family of funtions would satisfy

both P (x

1

)+P (x

2

) � P (x

1

+x

2

), for all x; y 2 D

�(n;s)

, (approximate linearity property) and

P (x+

1

s

) � P (x) +

1

s

for all x 2 D

�(n;s)

. (approximate equality property).
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G[f(x); f(y)℄ f(x) G[f(x); f(y)℄ f(x)

f(x) + f(y) Ax f(x)f(y)�

q

1� f(x)

2

q

1� f(y)

2

osAx

f(x)+f(y)

1�f(x)f(y)

tanAx

f(x)+f(y)�2f(x)f(y)

1�2f(x)f(y)

1

1+otAx

f(x)f(y)�1

f(x)+f(y)

otAx

f(x)+f(y)�2f(x)f(y) os a

1�f(x)f(y)

sinAx

sinAx+a

f(x)+f(y)�1

2f(x)+2f(y)�2f(x)f(y)�1

1

1+tanAx

f(x)+f(y)�2f(x)f(y) osh a

1�f(x)f(y)

sinhAx

sinhAx+a

f(x)+f(y)�2f(x)f(y)

1�f(x)f(y)

�Ax

1�Ax

f(x)+f(y)+2f(x)f(y) osh a

1�f(x)f(y)

� sinhAx

sinhAx+a

f(x)+f(y)

1+[f(x)f(y)℄=A

2

A tanhBx

f(x)+f(y)+2f(x)f(y)

1�f(x)f(y)

Ax

1�Ax

f(x)f(y)

f(x)+f(y)

A

x

f(x)f(y) +

q

f(x)

2

� 1

q

f(y)

2

� 1 oshAx

Table 1: Some Addition Theorems of the form f(x+ y) = G[f(x); f(y)℄.

To onstrut approximate self-testers, our approah is to �rst investigate a notion of

approximate robustness of the property to be used. We �rst require a notion of distane

between two funtions.

De�nition 1 (Chebyshev Norm) For a funtion f on a domain D, kfk

D

= kfk = sup

x2D

fjf(x)jg:

When the domain is obvious from the ontext, we drop it. Given funtions f; g, the distane

between them is kf � gk. Next, we de�ne the approximation of a funtion by another:

De�nition 2 The funtion P (�; �)-approximates f on domain D if kP � fk � � on at

least 1� � fration of D.

Approximate robustness is a natural extension of the robustness of a property. We say that a

program satis�es a property approximately if the property is true of the program when exat

equalities are replaed by approximate equalities. One again onsider the linearity property

and a program P that satis�es the property approximately (i.e., P (x

1

+x

2

) �

�

P (x

1

)+P (x

2

))
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for all but an � fration of the hoies of hx

1

; x

2

; x

1

+x

2

i 2 E

Lin

�(n;s)

. The approximate robustness

of linearity implies that there exists a funtion g and a hoie of �

0

;�

00

suh that g(x+y) �

�

0

g(x) + g(y) for all inputs x; y 2 D

n;s

, and g (�

00

; 2�)-approximates P on D

n;s

[20, 28℄. In

general, we would like to de�ne approximate robustness of a property hI; E

�(n;s)

i as the

following: If a program P satis�es the equation I approximately on most hoies of inputs

aording to the distribution E

�(n;s)

, then there exists a funtion g that: (i) satis�es I

approximately on all inputs hosen aording to E

n;s

(ii) approximates P on most inputs in

D

n;s

, the support of E

�(n;s)

. The funtion � relates the distributions used for desribing the

behaviors of P and G and depends on I.

We now give a formal de�nition of approximate robustness:

De�nition 3 (Approximate Robustness) Let hI; E

�(n;s)

i haraterize the family of fun-

tions F over the domain D

�(n;s)

. Let F

0

be the family of funtions satisfying I approximately

on all inputs hosen aording to E

n;s

. Let �; Æ be absolute onstants independent of n. A

property hI; E

�(n;s)

i for a funtion family F

0

is (Æ; �;D

�(n;s)

;D

n;s

;�;�

0

;�

00

)-approximately

robust if 8P;Pr

hx

1

;:::;x

k

i�E

�(n;s)

[I

P

(x

1

; : : : ; x

k

) �

�

0℄ � 1 � � implies there is a g 2 F

0

that

(�

00

; Æ)-approximates P on D

n;s

and I

g

(x

1

; : : : ; x

k

) �

�

0

0 for all tuples hx

1

; : : : ; x

k

i with

non-zero support in E

n;s

.

One we know that the property is approximately robust, the seond step is to analyze the

stability of the property, i.e., to haraterize the set of funtions F

0

that satisfy the property

approximately and ompare it to F , the set of funtions that satisfy the property exatly

(Hyers-Ulam stability [21℄). In our linearity example, the problem is the following: given g

satisfying g(x + y) �

�

g(x) + g(y) for all x; y in the domain, is there a homomorphism h

that (�

0

; 0)-approximates g with �

0

depending only on � and not on the size of the domain?

If the answer is aÆrmative, we say that the property is stable. In the following de�nition,

D

n

0

;s

0

� D

n;s

.

De�nition 4 (Stability) A property hI; E

n;s

i for a funtion family F is (D

n;s

;D

n

0

;s

0

;�;�

0

)-

stable if 8g that satis�es I

g

�

�

0 for all tuples with non-zero support aording to E

n;s

, there

is a funtion h that satis�es I

h

= 0 for all tuples with non-zero support aording to E

n

0

;s

0

with kh� gk

D

n

0

;s

0

� �

0

.
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If a property is both approximately robust and stable, then it an be used to determine

whether P approximates some funtion in the desired family. Furthermore, if we have a

method of doing approximate equality testing, then we an onstrut an approximate self-

tester. Here, we assume that the distributions assoiated with approximate robustness and

stability are samplable.

Previous Work. Previously, not many of the known hekers have been extended to

the approximate ase. Often it is rather straightforward to extend the robustness results to

show approximate robustness. However, the diÆulty with extending the hekers appears

to lie in showing the stability of the properties. The issue is �rst mentioned in [20℄, where

approximate hekers for mod, exponentiation, and logarithm are onstruted. The domain

is assumed to be losed in all of these results. A domain is said to be losed under an

operation if the range of the operation is a subset of the domain. For instane, a �nite

preision rational domain is not losed under addition. In [3℄ approximate hekers for sine,

osine, matrix multipliation, matrix inversion, linear system solving, and determinant are

given. The domain is assumed to be losed in the results on sine and osine. In [10℄ an

approximate heker for oating-point division is given. In [32℄, a tehnique whih uses

approximation theory is presented to test univariate polynomials of degree at most 9. It

is left open in [20, 3, 30, 28℄ whether the properties used to test polynomial, hyperboli,

and other trigonometri funtions an be used in the approximate setting. For instane,

showing the stability of suh funtional equations is not obvious; if the funtional equation

involves division with a large numerator and a small denominator, a small additive error in

the denominator leads to a large additive error in the output.

There has been signi�ant work on the stability of spei� funtional equations. The

stability of linearity and other homomorphisms is addressed in [21, 16, 18, 12℄. The tehniques

used to prove the above results, however, ease to apply when the domain is not losed. The

stronger property of stability in a non-losed spae, alled loal stability, is addressed by Skof

[31℄ who proves that Cauhy funtional equations are loally stable on a �nite interval in R.

The problem of stability of univariate polynomials over ontinuous domains is �rst addressed

in [2℄ and the problem of loal stability on R is solved in [19℄. See [17℄ for a survey. These

9



results do not extend in an obvious way to �nite subsets of R, and thus annot be used

to show the orretness of self-testers. For those that an be extended, the error bounds

obtained by naive extensions are not optimal. Our di�erent approah allows us to operate

on D

n;s

and obtain tight bounds.

Results. In this paper, we answer the questions of [20, 3, 30, 28℄ in the aÆrmative, by

giving the �rst approximate versions of most of their testers. We �rst present an approximate

tester for linear and multilinear funtions with tight bounds. These results apply to several

funtions, inluding multipliation, exponentiation, and logarithm, over non-losed domains.

We next present the �rst approximate testers for multivariate polynomials. Finally, we show

how to approximately test funtions satisfying addition theorems. Our results apply to many

algebrai funtions of trigonometri and hyperboli funtions (e.g., sinh, osh). All of our

results apply to non-losed disrete domains.

Sine a funtional equation over R has more onstraints than the same funtional equation

over D

n;s

, it may happen that the funtional equation over R haraterizes a family of

funtions that is a proper subset of the funtions haraterized by the same funtional

equation over D

n;s

. This does not limit the ability to onstrut self-testers for programs

for these funtions, due to the equality testing performed by self-testers.

To show our results, we prove new loal stability results for disrete domains. Our teh-

niques for showing the stability of multilinearity di�er from those used previously in that

(i) we do not require the domain to be disrete and (ii) we do not require the range to

be a omplete metri spae. This allows us to apply our results to multivariate polyno-

mial haraterizations. In addition to new ombinatorial arguments, we employ tools from

approximation theory and stability theory. Our tehniques appear to be more generally

appliable and leaner to work with than those previously used.

Self-orretors are built by taking advantage of the random self-reduibility of polyno-

mials and funtional equations [8, 24℄ in the exat ase. As in [20℄, we employ a similar

idea for the approximate ase by making several guesses at the answer and returning their

median as the output. We show that if eah guess is within � of the orret answer with

high probability, then the median yields a good answer with high probability. To build an

10



approximate heker for all of these funtions, we ombine the approximate self-tester and

approximate self-orretor as in [8℄.

Subsequent to our work, our results have been extended to the ase of relative error in a

reent paper of [22℄.

Organization. Setion 2 addresses the stability of the properties used to test linear

and multilinear funtions. Using these results, Setion 3 onsiders approximate self-testing

of polynomials. Setion 4 addresses the stability and robustness of funtional equations.

Setion 5 illustrates the atual onstrution of approximate self-testers and self-orretors.

2 Linearity and Multilinearity

In this setion, we onsider the stability of the robust properties used to test linearity and

multilinearity over the �nite rational domain D

n;s

. The results in this setion, in addition

to being useful for the testing of linear and multilinear funtions, are ruial to our results

in Setion 3.

As in [20℄, approximate robustness is easy to show by appropriately modifying the proof

of robustness [28℄. This involves replaing eah exat equality by an approximate equality

and keeping trak of the error arued at eah step of the proof. To show stability, we use

two types of bootstrapping arguments: the �rst shows that an error bound on a small subset

of the domain implies the same error bound on a larger subset of the domain; the seond

shows that an error bound on the whole domain implies a tighter error bound over the same

domain. These results an be applied to give the �rst approximate self-testers for several

funtions over D

n;s

inluding multipliation, exponentiation, and logarithm (Setion 2.2).

2.1 Approximate Linearity

The following de�nes formally what it means for a funtion to be approximately linear:

De�nition 5 (Approximate Linearity) A funtion g is �-approximately linear on D

n;s

if 8x; y 2 D

n;s

; g(x+ y) �

�

g(x) + g(y).

11



Hyers [21℄ and Skof [31℄ obtain a linear approximation to an approximately linear funtion

when the domain is R. (See Appendix A for their approah). Their methods are not

extendible to disrete domains.

Suppose we de�ne h suh that h(

1

s

)

def

= g(

1

s

) and h is linear. In the 0-approximately linear

ase (exat linearity), sine g(

i

s

) = g(

i�1

s

) + h(

1

s

) and h(

i

s

) = h(

i�1

s

) + h(

1

s

), by indution

on the elements in D

n;s

, we an show that h(x) = g(x); 8x. This approah is typially used

to prove the suÆieny of the equality test. However, in the �-approximately linear ase

for � 6= 0, using the same indutive argument will only yield a linear funtion h suh that

h(

i

s

) �

i��

g(

i

s

). This is quite unattrative sine the error bound depends on the domain size.

The problem of obtaining a linear funtion h whose disrepany from g is independent of the

size of the domain is non-trivial.

In [20℄, a solution is given for when the domain is a �nite group. Their tehnique requires

that the domain be losed under addition, and therefore does not work for D

n;s

. We give

a brief overview of the sheme in [20℄ and point out where it breaks down for non-losed

domains. The existene of a linear h that is lose to g is done in [20℄ by arguing that if D is

suÆiently large, then an error of at least � at the maximum error point x

�

would imply an

even bigger error at 2x

�

, ontraditing the maximality assumption about error at x

�

. Here,

the ruial assumption is that x 2 D implies 2x 2 D. This step fails for domains whih are

not losed under addition.

Instead, we employ a di�erent onstrutive tehnique to obtain a linear h on D

n;s

given a

�-approximately linear g. Our tehnique yields a tight bound of 2� on the error e � h� g

(instead of 4� in [31℄) and does not require that the domain be losed under addition. It is

important to ahieve the best (lowest) onstants possible on the error, beause these results

are used in Setion 3.2 where the onstants a�et the error in an exponential way.

The following lemma shows how to onstrut a linear funtion h that is within 2� + �

of a �-approximately linear funtion g in D

+

n;s

.

Lemma 6 Let g be a �-approximately linear funtion on D

+

n;s

, and let h be linear on D

n;s

.

De�ne e(x) = h(x)� g(x). If je(

n

s

)j = �, then 8x 2 D

+

n;s

; je(x)j � 2� + �.

12



Proof. We prove by ontradition that 8x 2 D

+

n;s

; e(x) � 2� + �. A symmetri argument

an be made to show that e(x) � �(2� + �).

Reall that

n

s

is the greatest positive element of the domain, and note that e is a �-

approximately linear funtion. Assume that there exists a point in D

+

n;s

with error greater

than 2� + �. Let p be the maximal suh element. p has to lie between

n

2s

and

n

s

, otherwise

2p 2 D

+

n;s

would have error greater than 2� + �, ontraditing the maximality of p. Let

q =

n

s

� p. Then, e(q) + e(p) �

�

e(

n

s

), therefore e(q) < ��. Also, for any x 2 (p;

n

s

℄ � D

+

n;s

,

by de�nition of p, e(x) � 2�+ �. Note that any suh x an be written as x = x

0

+ p, where

x

0

2 (0; q℄. To satisfy the approximate linearity property that e(x

0

) + e(p) �

�

e(x), x

0

must

have error stritly less than � + �.

We now know that the points in the interval (0; q℄ have error stritly less than 2�+� (in

fat, less than � + �), and that the point q itself has error stritly less than ��. Putting

these two fats and approximate linearity together, and sine any x 2 (q; 2q℄ an be written

as q + y where y 2 (0; q℄; we an onlude that at any point in (q; 2q℄, the error is at most

2�+ �. Now we an repeat the same argument by taking y from (0; 2q℄ rather than (0; q℄ to

bound the error in the interval (0; 3q℄ by 2�+�. By ontinuing this argument, eventually the

interval ontains the point p, whih means that p has error at most 2�+�. This ontradits

our initial assumption that e(p) was greater than 2� + �.

In addition, sine e(0) �

�

e(0) + e(0), je(0)j � �. We now generalize the error bound

on D

+

n;s

to D

n;s

.

Lemma 7 If a funtion g is �-approximately linear on D

n;s

, with h and e de�ned as in

Lemma 6, and if je(

n

s

)j = �, then 8x 2 D

n;s

; je(x)j � 2� + �.

Proof. Observe that if the error e(x) is upper bounded by � when x 2 [0;

n

s

℄, then je(x)j �

(� +�)=2 whenever 0 � x �

n

2s

, sine e(2x) � �. Also, if je(x)j � � then je(�x)j � �+ 2�

sine e(0) � �. By Lemma 6, e(x) � 2�+� for all x 2 D

+

n;s

. We will bound the error in D

�

n;s

�rst by 3� + � and then by 2� + �. From the above observations, we have e(x) � 4� + �

for x 2 D

�

n;s

, e(x) � (3� + �)=2 for x 2 [0;

n

2s

℄ and e(x) � (5� + �)=2 for x 2 [�

n

2s

; 0℄.

Assume that 9x 2 D

�

n;s

suh that e(x) = 3�+�+ � > 3�+�. Let p be suh a point with

minimal absolute value. suh point. Then p < �

n

2s

, otherwise the error at 2p would exeed

13



3� + �. Let t be the point with the highest error in D

+

n;s

(the maximal suh one if there is

a tie). We onsider the possible loations for t to bound e(t): (i) if t �

n

2s

, then to ensure

that e(2t) � e(t), e(t) � �; (ii) if

n

2s

< t � jpj, then t+ p 2 [�

n

2s

; 0℄, therefore, to satisfy the

bound above on e(t + p), e(t) � �=2� � � �; (iii) if t > jpj, then t + p 2 (0;

n

2s

℄, therefore

to satisfy the bound above, e(t) � ��=2� � � �.

Regardless of where t lies, e(t) � � � �+�, hene the error in D

+

n;s

is bounded by �+�.

However, e(

n

s

+ p) � 3� + 2� + � � � > 2� + �. Sine

n

s

+ p 2 D

+

n;s

, this ontradits the

bound we established before. Therefore, there annot be a point in D

�

n;s

with error greater

than 3� + �. A symmetri argument an be used to bound negative error.

Now we redue the error bound to 2� + �. Assume that p is the minimal point in D

�

n;s

with error at least 2� + �. The proof is similar to the previous stage, using the tighter

bound e(x) � 2� + �=2 for x 2 [�

n

2s

; 0℄. Cases (i) and (iii) stay the same; for ase (ii)

we have: e(t + p) � �� � �. Therefore, the error annot exeed � + � in D

+

n;s

: But

e(

n

s

+ p) � 2� + � + ���, whih is a ontradition.

The following speial ase proves the stability result for linearity:

Corollary 8 The linearity property is (D

n;s

;D

n;s

;�; 2�)-stable.

Proof. Suppose funtion g is �-approximately linear on D

n;s

. Set h(

n

s

) = g(

n

s

) in Lemma

7. This uniquely de�nes a linear h with � = 0.

The intuition that drives us to set h(

n

s

) = g(

n

s

) in the proof of Corollary 8 is as follows.

Consider the following funtion of n; s: g(

n

s

) = (

n

s

+

[(n�1)=3℄

s

)� ([x℄ denotes integer part of

x). It is easy to see that g(x+ y) �

�

g(x) + g(y). Note that setting h(

1

s

) = g(

1

s

) instead of

h(

n

s

) = g(

n

s

) does not work in general. If we set h(

1

s

) = g(

1

s

), then we obtain h(

n

s

) =

n

s

�.

But kg�hk is a growing funtion of n and so there is no way to bound the error at all points.

The following example shows that the error bound obtained in Corollary 8 using our

tehnique is tight: we have shown how to onstrut a linear funtion h so that kh � gk �

2�. We now show that there is a funtion g that, given our method of onstruting h,

asymptotially approahes this bound from below. De�ne g as follows: g(n) = 0; g(x) =

(3x=n � 1)� for 0 � x � n � 1; g(�x) = �g(x) for 0 < x � n. It is easy to see that g
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is �-approximately linear: If x + y < n, g(x + y) � g(x) � g(y) = �. If x + y = n, then

g(x+ y) = 0 and so g(x) + g(y) = �. Our onstrution sets h(n) = 0; thus, h � 0, the zero

funtion. However, kg�hk = jg(n� 1)�h(n� 1)j = (2� 3=n)� �! 2� for large enough n.

2.2 Approximate Multilinearity

In this setion we fous our attention on multilinear funtions. A multivariate funtion is

multilinear if it is linear in any one input when all the other inputs are �xed. A multilinear

funtion of k variables is alled a k-linear funtion. An example of a bilinear funtion is

multipliation, and bilinearity property an be stated onisely as f(x

1

+ x

0

1

; x

2

+ x

0

2

) =

f(x

1

; x

2

) + f(x

0

1

; x

2

) + f(x

1

; x

0

2

) + f(x

0

1

; x

0

2

): Note that distributivity of multipliation over

addition is a speial ase of multilinearity.

A natural extension of this lass of funtions is the lass of approximately multilinear

funtions, whih are formally de�ned below:

De�nition 9 (Approximate Multilinearity) A k-variate funtion g is �-approximately

k-linear on D

k

n;s

if it is �-approximately linear on D

n;s

in eah variable.

For instane, for k = 2, a funtion g is �-approximately bilinear if 8x

1

; x

0

1

; x

2

; x

0

2

2 D; g(x

1

+

x

0

1

; x

2

) �

�

g(x

1

; x

2

) + g(x

0

1

; x

2

) and g(x

1

; x

2

+ x

0

2

) �

�

g(x

1

; x

2

) + g(x

1

; x

0

2

).

Now we generalize Lemma 7 to �-approximately k-linear funtions. Let g be a �-

approximately k-linear funtion and h be the symmetri multilinear funtion uniquely de�ned

by the ondition h(

n

s

; : : : ;

n

s

) = g(

n

s

; : : : ;

n

s

). Let e � h� g. e is a �-approximately k-linear

funtion.

Sine g takes k inputs from D

n;s

, if we onsider eah input to g as a oordinate, the set

of all possible k-tuples of inputs of g form a (2n + 1)� � � � � (2n + 1) ube of dimension k.

We show that for any point (x

1

; : : : ; x

k

) in this ube, je(x

1

; : : : ; x

k

)j is bounded.

Theorem 10 The approximate k-linearity property is (D

k

n;s

;D

k

n;s

;�; 2k�)-stable. In other

words, if a funtion g is �-approximately k-linear on D

k

n;s

, then there exists a k-linear h on

D

k

n;s

suh that kh� gk � 2k�.
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Proof. With h de�ned as above, e(

n

s

; : : : ;

n

s

) = 0. First, we argue about points that have

one oordinate that is di�erent from

n

s

. Fix k � 1 of the inputs to be

n

s

(hard-wire into

g) and vary one (say x

i

). This operation transforms g from a �-approximately k-linear

funtion of x

1

; : : : ; x

k

to a �-approximately linear funtion of x

i

. By Lemma 7, this funtion

annot have an error of more than 2� in D

n;s

. Therefore, je(

n

s

; : : : ;

n

s

; x

i

;

n

s

; : : : ;

n

s

)j � 2�,

if jx

i

j <

n

s

. Next we onsider points whih have two oordinates that are di�erent from

n

s

.

Consider without loss of generality an input a; b;

n

s

; : : : ;

n

s

. By the result we just argued,

we know that e(

n

s

; b;

n

s

; : : : ;

n

s

) � 2�. By �xing inputs 2 through k to be b;

n

s

; : : : ;

n

s

and

varying the �rst input, by Lemma 7, we have je(a; b;

n

s

; : : : ;

n

s

)j � 4� for any a 2 D

n;s

. Via

symmetri arguments, we an bound the error by 4� if any two inputs are di�erent from

n

s

.

Continuing this way, it an be shown that for all inputs, the error is at most 2k�.

The following theorem shows that the error an be redued to (1+�)� for any onstant � > 0

by imposing the multilinearity ondition on a larger domain D

0

and �tting the multilinear

funtion h on D, where jD

0

j=jDj = d2k=�e. Note that doubling the domain size only involves

adding one more bit to the representation of a domain element.

Theorem 11 For any � > 0, the approximate multilinearity property is (D

k

2kn=�;s

;D

k

n;s

;�; (1+

�)�)-stable.

Proof. By Theorem 10, g is 2k�-lose to a k-linear h on D

2kn=�;s

. For any x = x

1

; : : : ; x

k

,

we �x all oordinates exept x

i

and argue in the i-th oordinate as below.

For any D

m;s

, �rst we show that if je(x)j

D

m;s

� � then je(x)j

D

m=2;s

� (� + �)=2. To

observe this, note that if x 2 D

m=2;s

, then 2x 2 D

m;s

. Therefore the funtion should satisfy

e(x)+e(x) �

�

e(2x), whih implies that je(x)j � (�+�)=2. Thus, in general, the maximum

error in D

m=2

i

;s

is � �=2

i

+�(1� 1=2

i

). Sine the error in D

2kn=�;s

is at most 2k�, the error

in D

n;s

is at most (1 + �)� by our hoie of parameters. In the multilinear ase, we an

make a similar argument by using points whih have at least one oordinate x

i

within the

smaller half of the axis.
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3 Polynomials

To test programs purportedly omputing polynomials, it is tempting to (i) interpolate the

polynomial from randomly hosen points, and then (ii) verify that the program is approxi-

mately equal to the interpolated polynomial for a large fration of the inputs. Sine a degree

d k-variate polynomial an have (d + 1)

k

terms, this leads to exponential running times.

Furthermore, it is not obvious how error bounds that are independent of the domain size

an be obtained.

Our test uses the same \evenly spaed" interpolation identity as that in [30℄: f is a degree

d polynomial if and only if for all x; t 2 D,

d+1

X

i=0

(�1)

d+1�i

 

d+ 1

i

!

f(x+ it) = 0: This identity

is omputed by the method of suessive di�erenes whih never expliitly interpolates the

polynomial omputed by the program, thus giving a partiularly simple and eÆient (O(d

2

)

operations) test.

We an show that the interpolation identity is approximately robust by modifying the

robustness theorem in [29℄. (Setion 3.3). Our proof of stability of the interpolation identity

(Setion 3.2), however, uses a haraterization of polynomials in terms of multilinear fun-

tions that previously has not been applied to program heking. This in turn allows us to

use our results on the stability of multilinearity (Setion 2.2) and other ideas from stability

theory. Setion 3.4 extends these tehniques to multivariate polynomials.

3.1 Preliminaries

In this setion, we present the basi de�nitions and theorems that we will use. De�ne

r

t

f(x)

def

= f(x+ t)� f(x)

to be the standard forward di�erene operator. Let

r

d

t

f(x)

def

=

d

z }| {

r

t

� � �r

t

f(x) =

d

X

k=0

(�1)

d�k

 

d

k

!

f(x+ kt)

and r

t

1

;t

2

f(x)

def

= r

t

1

r

t

2

f(x). The following are simple fats onerning this operator.

Fats 12 The following are true for the di�erene operator r:
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1. r is linear: r(f + g) = rf +rg,

2. r is ommutative: r

t

1

;t

2

= r

t

2

;t

1

, and

3. r

t

1

+t

2

�r

t

1

�r

t

2

= r

t

1

;t

2

= r

t

2

;t

1

.

Let x

[k℄

denote

k

z }| {

x; : : : ; x. For any k-ary symmetri f , let f

�

(x) = f(x

[k℄

) denote its diagonal

restrition. We use three di�erent haraterizations of polynomials [27, 15℄.

Fat 13 Let D be a ring. The following are equivalent:

1. there exist a

0

; : : : ; a

d

2 D suh that 8x 2 D; f(x) =

d

X

k=0

a

k

x

k

,

2. 8x; t 2 D;r

d+1

t

f(x) = 0,

3. there exist symmetri k-linear funtions F

k

, 0 � k � d suh that 8x 2 D; f(x) =

d

X

k=0

F

�

k

(x).

The above fat remains true for non-losed domains so long as we insist that the arguments

to f are from the domain.

The following de�nitions are motivated by the notions of using evenly and unevenly

spaed points in interpolation.

De�nition 14 (Strong Approximate Polynomial) A funtion g is alled strongly �-

approximately degree d polynomial on D if 8x; t

1

; : : : ; t

d+1

2 D suh that x+t

1

+ � � �+t

d+1

2

D, jr

t

1

;:::;t

d+1

g(x)j � �.

De�nition 15 (Weak Approximate Polynomial) A funtion g is alled weakly �-approximately

degree d polynomial on D if 8x; t 2 D suh that x + t(d+ 1) 2 D, jr

d+1

t

g(x)j � �.

3.2 Stability for Polynomials

First, we prove that if a funtion is strongly �-approximately polynomial then there is a

polynomial that (2

d lg d

�; 0)-approximates it. Next, we show that if a funtion is weakly

approximately polynomial on a domain, then there is a oarser subdomain on whih the

funtion is strongly approximately polynomial. Combining these two, we an show that if
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a funtion is weakly approximately polynomial on a domain, then there is a subdomain on

whih the funtion approximates a polynomial. By using Theorem 11, we an bring the

above error arbitrarily lose to � by assuming the hypothesis on a large enough domain. In

order to pass programs that err by at most �

0

, we need to set � � (d+ 1) � 2

d

�

0

.

Strongly Approximate Case. One must be areful in de�ning polynomial h that is

lose to g. For instane, de�ning h based on the values of g at some d + 1 points will not

work. We proeed by modifying tehniques in [2, 19℄, using the following fat:

Fat 16 If a funtion f is symmetri and k-linear, then r

t

1

;:::;t

d

f

�

(x) = k!f(t

1

; : : : ; t

k

) if

k = d and 0 if k < d.

The following theorem shows the stability of the strong approximate polynomial property.

Theorem 17 The strong approximate polynomial property is (D

n(d+2);s

;D

n;s

;�; O(2

d lg d

)�)-

stable. In other words, if g is a strongly �-approximately degree d polynomial on D

n(d+2);s

,

then there is a degree d polynomial h

d

suh that kg � h

d

k

D

n;s

� O(2

d lg d

)�.

Proof. Note that if x; t

1

; : : : ; t

d+1

2 D

n;s

, then x + t

1

+ � � � + t

d+1

2 D

(d+2)n;s

. Now, the

hypothesis that g is a strongly �-approximately degree d polynomial on D

n(d+2);s

guarantees

that 8x; t

1

; : : : ; t

d+1

2 D

n;s

, jr

t

1

;:::;t

d+1

g(x)j � �. The rest of the proof uses this \modi�ed

hypothesis" and works with D

n;s

.

We indut on the degree. Let e

d

def

= jg � h

d

j. When d = 0, by the modi�ed hypothesis,

we have 8x; t 2 D

n;s

; jr

t

g(x)j � � i.e., jr

t

g(0)j = jg(t)� g(0)j � � for all t 2 D

n;s

. Setting

h

0

= g(0), a onstant, we are done.

Suppose the lemma holds when the degree is stritly less than d + 1. Now, by the

modi�ed hypothesis, we have 8t

1

; : : : ; t

d+1

2 D

n;s

, jr

t

1

;:::;t

d+1

g(x)j � �. Using Fat 12 and

then our modi�ed hypothesis, we have jr

t

1

+t

0

1

;t

2

;:::;t

d

g(x)�r

t

1

;t

2

;:::;t

d

g(x)�r

t

0

1

;t

2

;:::;t

d

g(x)j =

jr

t

1

;t

0

1

;:::;t

d

g(x)j � �. By symmetry of the di�erene operator, we have a �-approximate

symmetri d-linear funtion on D

n;s

, say G(t

1

; : : : ; t

d

)

def

= r

t

1

;:::;t

d

g(0). Theorem 10 on mul-

tilinearity guarantees a symmetri d-linear H with kG � Hk � 2d�. Let H

d

(x

1

; : : : ; x

d

) =

H(x

1

; : : : ; x

d

)=d!. Let g

0

(x) = g(x)�H

�

d

(x) for x 2 D

n;s

.
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Now, we have 8x; t

1

; : : : ; t

d

2 D

n;s

,

jr

t

1

;:::;t

d

g

0

(x)j = jr

t

1

;:::;t

d

(g(x)�H

�

d

(x))j (de�nition of g

0

)

� jr

t

1

;:::;t

d

g(x)�r

t

1

;:::;t

d

g(0)j+ jr

t

1

;:::;t

d

g(0)�r

t

1

;:::;t

d

H

�

d

(x)j (triangle inequality)

= jr

t

1

;:::;t

d

;x

g(0)j+ jr

t

1

;:::;t

d

g(0)�r

t

1

;:::;t

d

H

�

d

(x)j (de�nition of r)

= jr

t

1

;:::;t

d

;x

g(0)j+ jG(t

1

; : : : ; t

d

)�r

t

1

;:::;t

d

H

�

d

(x)j (de�nition of G)

= jr

t

1

;:::;t

d

;x

g(0)j+ jG(t

1

; : : : ; t

d

)� d!H

d

(t

1

; : : : ; t

d

)j (Fat 16)

= jr

t

1

;:::;t

d

;x

g(0)j+ jG(t

1

; : : : ; t

d

)�H(t

1

; : : : ; t

d

)j (de�nition of H

d

)

� �+ jG(t

1

; : : : ; t

d

)�H(t

1

; : : : ; t

d

)j (modi�ed hypothesis on g)

� (2d+ 1)� (sine kG�Hk � 2d�).

Now we apply the indution hypothesis. g

0

satis�es the hypothesis above for d and larger

error �

0

= (2d+1)� and so by indution, we are guaranteed the existene of a degree d� 1

polynomial h

d�1

suh that kg

0

� h

d�1

k � e

d�1

�

0

. Set h

d

= h

d�1

+H

�

d

. By Fat 13(3) about

the haraterization of polynomials, h

d

is a degree d polynomial. Now, e

d

= kg � h

d

k =

kg � h

d�1

�H

�

d

k = kg

0

� h

d�1

k � e

d�1

�

0

= e

d�1

(2d+ 1)�.

Unwinding the reurrene, the �nal error kg � h

d

k = �

Q

d

i=1

(2i + 1):

Weakly Approximate Case. We �rst need the following useful fat [15℄ whih helps

us to go from equally spaed points to unequally spaed points:

Fat 18 For any �

1

; : : : ; �

d

2 f0; 1g, if t

0

�

1

;:::;�

d

= �

d

X

i=1

�

i

t

i

=i and t

00

�

1

;:::;�

d

=

d

X

i=1

�

i

t

i

then

r

t

1

;:::;t

d

f(x) =

X

�

1

;:::;�

d

2f0;1g

(�1)

�

1

+���+�

d

r

d

t

0

�

1

;:::;�

d

f(x + t

00

�

1

;:::;�

d

):

Using this fat, we obtain the following theorem. Let �(d) = lmf1; 2; : : : ; dg.

Theorem 19 If g is weakly (�=2

d+1

)-approximately degree d polynomial on D

n(d+1);s�(d+1)

,

then g is strongly �-approximately degree d polynomial on D

n;s

.

Proof. For t

1

; : : : ; t

d+1

2 D

n;s

, and for any �

1

; : : : ; �

d+1

2 f0; 1g, we have by our hoie of

parameters that t

0

�

1

;:::;�

d+1

; t

00

�

1

;:::;�

d+1

2 D

n(d+1);s�(d+1)

. Therefore, for x 2 D

n;s

,

jr

t

1

;:::;t

d+1

g(x)j �

X

�

1

;:::;�

d+1

2f0;1g

jr

d+1

t

0

�

1

;:::;�

d+1

g(x+ t

00

�

1

;:::;�

d+1

)j � 2

d+1

(�=2

d+1

) � �:
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3.3 Approximate Robustness for Polynomials

This setion shows that the interpolation equation for degree d polynomials is in some

sense, approximately robust. All the results in this subsetion are modi�ations of the

exat robustness of polynomials given in [29℄. Let �

k

= (�1)

d+1�k

�

d+1

k

�

. To self-test P on

D

n;s

, we use the following domains. These domains are used for tehnial reasons that will

beome apparent in the proofs of the theorems in this setion.

1. D

(d+2)n;s

2. T = D

K

n

;L

s

where K

n

= n(d+ 2)(n(d+ 1)!)

3

and L

s

= s((d+ 1)!)

3

3. T

j

= fjx : x 2 T g for 0 � j � d+ 1

4. T

i;j

= fix : x 2 T

j

g for 0 � i; j � d+ 1

All T

j

; T

i;j

ontain D

(d+2)n;s

. Now, assume that P satis�es the following properties, whih are

similar to the low-degree test in an approximate setting and over di�erent domains. Note

that these properties an be tested by sampling. We use Pr

x2D

[�℄ to denote the probability

of an event when x is hosen uniformly from domain D.

1. Pr

0�k�d+1;x2D

n;s

;t2T

k

[

d+1

X

i=0

�

i

P (x+ it) �

�

0℄ � 1� �,

2. for eah 0 � j � d+ 1, Pr

0�k;l�d+1;x2T

k;j

;t2T

l

[

d+1

X

i=0

�

i

P (x+ it) �

�

0℄ � 1� �, and

3. for eah 0 � i; j � d+ 1, Pr

0�k�d+1;x2T

i;j

;t2T

k

[

d+1

X

l=0

�

l

P (x+ lt) �

�

0℄ � 1� �.

De�ne g(x) = median

0�k�d+1;t2T

k

f

d+1

X

i=1

�

i

P (x+ it)g: We obtain the following theorem that shows the

approximate robustness of polynomials. Let E

�(n;s)

be the distribution that ips a fair three-

sided die and on outome i 2 f1; 2; 3g, hooses inputs aording to distribution given in the

i-th property above. Let D

�(n;s)

be the union of the domains used in the above properties.

Theorem 20 The interpolation equation, where inputs are piked aording to the distribu-

tion E

�(n;s)

, is (2�; �;D

�(n;s)

;D

n;s

;�; 2

d+3

�;�)-approximately robust.

21



The rest of this setion is devoted to proving the above theorem.

By Markov's inequality, g's de�nition, and properties (1) and (3) of P , it is easy to show

that P (�; 2�)-approximates g:

Theorem 21 If program P satis�es the above three properties, then, for all i; j 2 f0; : : : ; d+

1g, Pr

x2T

i;j

[P (x) �

�

g(x)℄ � 1� 2� and Pr

x2D

n;s

[P (x) �

�

g(x)℄ � 1� 2�.

Now, we set out to prove that g is a weakly approximate polynomial. Let Æ(p

1

; p

2

) = p

1

if p

1

= p

2

and 0 otherwise. For two domains A;B, subsets of a universe X , let Æ(A;B) =

P

s2X

Æ(Pr

x2A

[x = s℄;Pr

y2B

[y = s℄) and all the domains �-lose if Æ(A;B) is at least 1� �.

Using the de�nitions of T ; T

j

; T

i;j

, the following fat an be shown:

Fat 22 For any x 2 D

(d+2)n;s

, the domains T

j

and fx+ t : t 2 T

j

g are �

1

= O(1=n

3

)-lose.

For any x, the domains T

i;j

and fx+ t : t 2 T

i;j

g are �

2

= O(1=n

3

)-lose.

The following lemma shows that, in some sense, g is well-de�ned, and links it to an interpo-

lation obtained from P :

Lemma 23 For all x 2 D

(d+2)n;s

, Pr

0�k�d+1;t2T

k

[g(x) �

2

d+2

�

d+1

X

j=1

�

j

P (x+ jt)℄ � 1� �

3

and

8i; Pr

t2T

i

[g(x) �

2

d+2

�

d+1

X

j=1

�

j

P (x+ jt)℄ � 1� �

4

where �

3

= 2(d+ 1)(�+ �

2

) and �

4

= (d+ 1)�

3

.

Proof. Consider 0 � k; l � d + 1 and t

1

2 T

k

; t

2

2 T

l

. For a �xed 0 � j � d + 1,

using properties of P , and sine T

j;k

and fx + jt

1

: t

1

2 T

k

g are �

2

-lose (Fat 22), we get

Pr[P (x+ jt

1

) �

�

P

d+1

i=1

�

i

P (x+ jt

1

+ it

2

)℄ � 1� �� �

2

and Pr[P (x+ it

2

) �

�

P

d+1

j=1

�

j

P (x+

jt

1

+ it

2

)℄ � 1����

2

. Summing over all 0 � i; j � d+1 and noting that

P

d+1

i=1

�

j

� � 2

d+1

�,

Pr[

P

d+1

j=1

�

j

P (x+jt

1

) �

2

d+1

�

P

d+1

i=1

�

i

P (x+ it

2

)℄ � 1�2(d+1)(�+�

2

) = 1��

3

. Using Lemma

43 (see Setion 4.3), we an show that with a relaxation of twie the error, this probability

lower bounds the probability in the �rst part of the lemma. The seond part of the lemma

follows from the �rst via a simple averaging argument.

Now, the following theorem ompletes the proof that g is a weakly approximate degree d

polynomial.
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Theorem 24 For all x 2 D

(d+2)n;s

, 8i 2 f0; : : : ; d+ 1g; Pr

t2T

i

[g(x) �

2

d+3

�

d+1

X

j=1

�

j

g(x+ jt)℄ � 1� �

5

where �

5

= �

4

+(d+1)(2�+�

2

) and 8x; t 2 D

n;s

; Pr

t

1

2T

[jr

d+1

t

g(x)j � 2

d+3

�℄ � 1� (d+ 1)(2�

5

+ �

1

)

Proof. It is implied by Theorem 21, Lemma 23 and the loseness of the domains T

i;j

and fx + t : t 2 T

i;j

g that 8x 2 D

(d+2)n;s

; 8i; Pr

t2T

i

[g(x) �

2

d+2

�

d+1

X

j=1

�

j

P (x+ jt)℄ � 1� �

4

and

Pr

t2T

i

[g(x+ jt) �

�

P (x+ jt)℄ � 1� 2�� �

2

: Summing the latter expression and putting them

together, we have the �rst part of the lemma. The seond part follows from the �rst part

and the fat that T

j

and ft + jt

1

: t

1

2 T g are �

1

-lose (Fat 22).

For an appropriate hoie of �; �

1

; �

2

, we have a g that is a weakly (2

d+3

�)-approximately

degree d polynomial on D

n;s

with g (�; 2�)-approximating P on D

n;s

.

3.4 Multivariate Polynomials

The following approah is illustrated for bivariate polynomials. We an easily generalize this

to multivariate polynomials. It is easy to show that the approximate robustness holds when

the interpolation equation [30℄ is used as in Setion 3.3, i.e., for any k-variate polynomial P

of total degree d, the following interpolation equation is satis�ed for all �x;

�

t 2 D

k

n;s

:

d+1

X

i=0

�

i

P (�x+ i

�

t) = 0:

An horizontal axis parallel line for a �xed y is the set of points l

x;h

= f(x + kh; y) : k 2

Zg. A vertial axis parallel line is de�ned analogously. As a onsequene of approximate

robustness, we have a bivariate funtion g(x; y) that is a strongly approximately degree

d polynomial along every horizontal and vertial line. We use this onsequene to prove

stability.

The haraterization we will use is: f(x; y) is a bivariate polynomial (assume degree in

both x and y is d) if and only if there are d+1 symmetri k-linear funtions F

k

(y

1

; : : : ; y

k

) :

D

k

! P

D

[x℄ where the range is the spae of all degree d univariate polynomials in x.

For eah value of y, g

y

(x) is a strongly approximately degree d polynomial. Using the

univariate ase (Theorem 17), there is an exat degree d polynomial P

y

(x) suh that for

all x, g(x; y) �

2

d lg d

�

P

y

(x). Construt the funtion g

0

(x; y) = P

y

(x). Let �

0

= 2

d lg d

�.
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Now, for a �xed x (i.e., on vertial line) for any y, using r

t

1

;:::;t

d+1

g(x; y) �

�

0, we have

r

t

1

;:::;t

d+1

g

0

(x; y) �

�

0

0. Thus, g

0

(x; y) is a bivariate funtion where along every horizontal

line, it is an exat degree d polynomial and along every vertial line, it is a strongly �

0

-

approximate degree d polynomial. Interpreting g

0

(x; y) as g

0

x

(y) and using the same idea

as in univariate ase, we an onlude that r(t

1

; : : : ; t

d

) : D

d

! P

D

[x℄ is a symmetri

approximate d-linear funtion (here, we used the fat that g

0

x

(y) 2 P

D

[x℄). The rest of the

argument in Theorem 17 goes through beause our proofs of approximate linearity (Lemma

7) and multilinearity (Theorem 10) assume that the range is a metri spae (whih is true for

P

D

[x℄ with, say, the Chebyshev norm). The result follows from the above haraterization

of bivariate polynomials.

4 Funtional Equations

Extending the tehnique in Lemma 7 to addition theorems f(x + y) = G[f(x); f(y)℄ is not

straightforward, sine G an be an arbitrary funtion. In order to prove approximate robust-

ness (Setion 4.3) and stability (Setion 4.2), several related properties of G are required.

Proving that G satis�es eah individual one is tedious; however, the notion of modulus of

ontinuity from approximation theory gives a general approah to this problem. We show

that bounds on the modulus of ontinuity imply bounds on all of the quantities of G that we

require. The stability of G is shown by a areful indutive tehnique based on a anonial

generation of the elements in D

n;s

(Setion 4.2). The sope of our tehniques is not only

limited to addition theorems; we also show that Jensen's equation is approximately robust

and stable. (Setion 4.2.4)

4.1 Preliminaries

For addition theorems, we an assume that G is algebrai and a symmetri funtion (the

latter is true in general under some tehnial assumptions as in [28℄). We need a notion of

\smoothness" of G. The following notions are well-known in approximation theory [25, 33℄.
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De�nitions 25 (Moduli of Continuity) The modulus of ontinuity of the funtion f :

D ! R is the following funtion of Æ 2 [0;1) :

!(f ; Æ) = sup

jx

1

�x

2

j�Æ

x

1

;x

2

2D

fjf(x

1

)� f(x

2

)jg:

The modulus of ontinuity of the funtion f : D

2

! R is the following funtion of Æ

x

; Æ

y

2

[0;1)

2

:

!(f ; Æ

x

; Æ

y

) = sup

jx

1

�x

2

j�Æ

x

;jy

1

�y

2

j�Æ

y

x

1

;y

1

;x

2

;y

2

2D

fjf(x

1

; y

1

)� f(x

2

; y

2

)jg:

The partial moduli of ontinuity of the funtion f : D

2

! R are the following funtions of

Æ 2 [0;1) :

!(f ; Æ; 0) = sup

y2D

sup

jx

1

�x

2

j�Æ

x

1

;x

2

2D

fjf(x

1

; y)�f(x

2

; y)jg and !(f ; 0; Æ) = sup

x2D

sup

jy

1

�y

2

j�Æ

y

1

;y

2

2D

fjf(x; y

1

)�f(x; y

2

)jg:

We now present some fats whih are easily proved.

Fats 26 The following are true of the modulus of ontinuity:

1. 0 � !(f ; Æ) � !(f ; Æ

0

) if Æ � Æ

0

;

2. If f

0

, the derivative of f exists, and is bounded in D, then !(f ; Æ) � Ækf

0

k

D

;

3. !(f ; Æ; Æ) � !(f ; 0; Æ)+!(f ; Æ; 0), and if f(�; �) is symmetri, then !(f ; Æ; Æ) � 2!(f ; Æ; 0);

and

4. If f

0

x

is the partial derivative of f with respet to x, then !(f ; Æ; 0) � Ækf

0

x

k

D

.

We need a notion of an \inverse" of G. If G[x; y℄ = z, denote G

�1

1

[z; y℄ = x;G

�1

2

[x; z℄ = y.

Sine G is symmetri, G

�1

1

� G

�1

2

and we denote G

�1

[z; y℄ = x.

An Example. Wherever neessary, we will illustrate our sheme using the funtional

equation f(x+ y) =

f(x)f(y)

f(x) + f(y)

, i.e., G[x; y℄ = xy=(x+ y). The solution to this funtional

equation is f(x) = C=x for some onstant C. The following fat [34℄ is useful in loating the

maxima of analyti funtions.

Fat 27 (Maximum Modulus Priniple) If f is analyti in a ompat set D, then f

attains extremum only on the boundary of D.
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Over a bounded retangle D = [L; U ℄

2

, where 0 < L � U , G is analyti and hene by

Fat 27, attains its maximum on the boundary. G 2 C

1

[L; U ℄ in D (i.e., is ontinuously

di�erentiable). We have G

0

x

[x; y℄ = y

2

=(x+ y)

2

whih is a dereasing funtion of x. By Fat

27, kG

0

x

k attains a maximum when x = L, giving

b

G = kG

0

x

(�; y)k = y

2

=(L + y)

2

. Therefore,

using Fat 26(4), !(G; Æ; 0) � sup

y2[L;U ℄

Æy

2

(L + y)

2

=

ÆU

2

(L + U)

2

:

4.2 Stability for Funtional Equations

In this setion, we prove (under some assumptions) that, if a funtion g satis�es a fun-

tional equation approximately everywhere, then it is lose to a funtion h that satis�es

the funtional equation exatly everywhere. Our funtional equations are of the form

g(x+ y) = G[g(x); g(y)℄, where G is a symmetri algebrai funtion.

Example. If g satis�es g(x+ y) �

�

g(x)g(y)

g(x) + g(y)

for some � > 0 and for all valid x; y, then

there is a funtion h suh that h(x + y) =

h(x)h(y)

h(x) + h(y)

for all valid x; y, and h(x) �

�

0

g(x)

for some �

0

> 0 and all valid x. The domains for the valid values of x, y, as well as the

relationship between � and �

0

will be disussed later.

In the following setions we show how to onstrut the funtion h that is lose to g,

satisfying a partiular funtional equation. Given suh an h, let e(x) denote jh(x) � g(x)j,

i.e., h(x) �

e(x)

g(x). For simpliity, let H

1

(x)

def

= G[x; x℄. Note that H

1

(h(x)) = h(2x).

We assume that !(H

1

; Æ) � Æ; our results thus hold for funtions where the modulus of

ontinuity is linear in Æ. We will be making this assumption for our moduli of ontinuity

when appropriate.

We onsider the ases when  < 1,  = 1, and  > 1, �rst show how to obtain h, and

then obtain bounds on e(x). Then, we an onlude that h, whih satis�es the funtional

equation everywhere, also approximates g; i.e., the funtional equation is stable.

Call

x

s

even (resp. odd) if x is even (resp. odd).

4.2.1 When  < 1

We begin by assuming that n is a power of 2, i.e., let n = 2

k

in D

n;s

. We �rst onstrut h

by setting h(

1

s

) = g(

1

s

). This determines h for all values in D by the fat that h satis�es the
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funtional equation.

We obtain a relationship between the error at x and 2x using the funtional equation.

Lemma 28 e(2x) � e(x) + �.

Proof. e(2x) = jg(2x)� h(2x)j � �+ jG[g(x); g(x)℄�G[h(x); h(x)℄j. But, rewriting, and

using the de�nition of the modulus of ontinuity, jH

1

(g(x))�H

1

(h(x))j � !(H

1

; e(x)) � e(x)

We explore the relationship between e(x+

1

s

) and e(x). For simpliity, letH

2

(x)

def

= G[x; g(

1

s

)℄.

Note that H

2

(h(x)) = h(x+1). We again onsider funtions where the modulus of ontinuity

is bounded by a linear funtion in Æ; i.e., !(H

2

; Æ) = jH

0

2

(�; g(

1

s

))j � dÆ for some onstant d.

Now,

Lemma 29 e(x +

1

s

) � de(x) + �.

Proof. e(x +

1

s

) = jg(x +

1

s

) � h(x +

1

s

)j � � + jG[g(x); g(

1

s

)℄ � G[h(x); h(

1

s

)℄j. But,

jG[g(x); g(

1

s

)℄�G[h(x); h(

1

s

)℄ = jH

2

[g(x)℄�H

2

[h(x)℄j � !(H

2

; e(x)) � de(x).

We will show a sheme to bound e(x) for all x when d < 1. This sheme an be thought of

as an enumeration sheme, where at eah step of the proess, ertain onstraint equations

have to be satis�ed. We onstrut a binary tree T

k

with nodes labeled with elements from

D

+

n;s

where 2

k

= n. The root is labeled

1

s

. If x is the label of a node, then 2x is the label

of its left hild (if 2x is not already in the tree). and x +

1

s

is the label of its right hild (if

x+

1

s

is not already in the tree). It is easy to see that, if x is even (exept root), then x is a

left hild; if x is odd, then x is a right hild.

Lemma 30 Let !(H

1

; Æ) � Æ; !(H

2

; Æ) � dÆ with ; d < 1. For all x 2 D

+

n;s

, if x is even,

then e(x) �

1+

1�

� and if x is odd, then e(x) �

2

1�

�.

Proof. We will prove this by indution on the preorder enumeration of T

k

. Let x be the

next element to be enumerated. By preorder listing, its parent has already been enumerated

and hene, its error is known. If x = 2y is even, it is a left hild, and hene generated by a 2y

operation. e(y) �

2

1�

� by the indution hypothesis. This together with Lemma 28 yields

e(x) � e(y) + � � 

2

1�

� + � �

1+

1�

�, preserving the indution hypothesis. If x = y +

1

s
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is odd, it is a right hild, and hene generated by a y + 1 operation. But, y is even, so

e(y) �

1+

1�

� by the indution hypothesis. This together with Lemma 29 and d � 1 yields

e(x) � de(y) + � � e(y) + � �

1+

1�

�+� �

2

1�

�, preserving the indution hypothesis.

This yields the following theorem:

Theorem 31 Let !(H

1

; Æ) � Æ; !(H

2

; Æ) � dÆ with ; d < 1 and let n be a power of 2.

Then, the addition theorem is (D

+

n;s

;D

+

n;s

;�;

2

1�

�)-stable.

With our example, we have H

1

(x) = G[x; x℄ = x=2 and so  = 1=2. Also, H

2

(x) =

G[x; g(

1

s

)℄ from whih H

0

2

(x) � 1 as 0 < L � x; g(

1

s

). Thus, d � 1. By Theorem 4.2.1, we

have e(x) � 4� for all x 2 D

+

n;s

.

When n is not a power of 2, we an argue in the following manner. From our proof, we

see that we use very spei� values of x; y in the approximate funtional equation. Let i be

suh that 2

i�1

� n � 2

i

and let D

0

= D

2

i

;s

. We extend D

+

n;s

to D

0

and de�ne values of g at

D

0

nD: at even x (= 2y) let g(x) = H

1

(g(y)) and at odd x (= y + 1) let g(x) = H

2

(g(y)).

These an be thought of new assumptions on g whih are satis�ed \exatly" (i.e., without

error �). We an use Lemma 30 to onlude that there is a linear h on D

0

that is

2

1�

� lose

to g. Hene, h is lose to g even on D

+

n;s

. To argue about D

�

n;s

, we pik a \pivot" point in

D

n;s

(0 for simpliity). Now, we have h(�x) = G

�1

[h(x); h(0)℄. Therefore, as in Theorem ,

we have e(�x) � !(G

�1

;

2

1�

).

When d � 1, the error an no longer be bounded. In this ase, we have  � 1 < d. Let

r = d. We an see from the struture of T

k

that the maximum error an our at

2

k

�1

s

.

By simple indution on the depth of the tree, the error is given by e(

2

k

�1

s

) �

P

k�2

i=0

(d

i+1

+

d

i

)

i

� = (d + 1)

P

k�2

i=0

r

i

� = (d + 1)

r

k�1

�1

r�1

�. If r < 1, we obtain a onstant error bound of

e(x) � (d+ 1)

1

1�r

� by geometri summation. Otherwise, we obtain e(x) = O(r

lgn

).

4.2.2 When  > 1

In this ase, we require additional assumptions. We de�ne the quantity

!

�1

(f ; Æ) = sup

jf(x

1

)�f(x

2

)j�Æ

x

1

;x

2

2D

fjx

1

� x

2

jg:
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Note that !(f ; Æ) � Æ implies !

�1

(f ; Æ) � Æ=. Now, we assume that !

�1

(f ; Æ) � Æ=

0

, for

some 

0

> 1.

Set h(

2

k

s

) = g(

2

k

s

). Sine h satis�es the addition theorem, this an be used to �x all of h,

if H

�1

1

is well-de�ned. Let e(x) = jg(x)� h(x)j as before.

As before, we �rst obtain a relationship between the error at x and at 2x using the

addition theorem.

Lemma 32 e(x) � (e(2x) + �)=

0

.

Proof. We have as in Lemma 28, jH

1

(g(x))�H

1

(h(x))j � e(2x)+�. By de�nition of !

�1

and our assumption, we get e(x) � !

�1

(H

1

; e(2x) + �) � (e(2x) + �)=

0

.

For simpliity, let H

3

(x)

def

= G

�1

[g(

2

k

s

);

2

k

s

� x℄. We assume that !(H

3

; Æ) � dÆ for some

onstant d. The following lemma an be proved easily.

Lemma 33 e(x) � de(

2

k

s

� x) + �.

e(

2

k

s

) = 0 by our onstrution. We adopt a sheme similar to the one in the previous setion.

Construt a binary tree T

k

with nodes labeled with elements from D

+

n;s

. The root is labeled

2

k

s

. If x is the label of a node and x is even, then x=2 is the label of its left hild (if x=2 is

not already in the tree). and

2

k

s

� x is the label of its right hild (if

2

k

s

� x is not already

in the tree). It is easy to see that if x �

2

k�1

s

(exept the root), then x is a left hild and if

x >

2

k�1

s

, then x is a right hild. We use the preorder enumeration of D

+

n;s

using T

k

to prove

the following lemma, in the spirit of the proof of Lemma 30.

Lemma 34 For all x 2 D

+

n;s

, if x �

2

k�1

s

and d � 1, then e(x) �

2

0

1�

0

� and if x >

2

k�1

s

then

e(x) �

1+

0

1�

0

�.

This yields (under the assumptions on !

�1

(H

1

; Æ) and !(H

3

; Æ)), the following theorem:

Theorem 35 Let !

�1

(H

1

; Æ) � Æ=

0

; !(H

3

; Æ) � dÆ with d � 1 and let n be a power of 2.

Then, the addition theorem is (D

+

n;s

;D

+

n;s

;�;

1+

0

1�

0

�)-stable.

This ase arises for linearity where H

1

(x) = G[x; x℄ = 2x and so 

0

= 2. Using the above

theorem, we get a weaker bound of e(x) � 3� (as opposed to � 2� by Corollary 8). Similar
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tehniques as in previous setion an be used to argue about D

�

n;s

and when n is not a power

of 2.

The ase when d > 1 an be handled by shemes as in the previous setion.

4.2.3 When  = 1

In this ase, it means that !(H

1

; Æ) = Æ or in other words, by Fat 26(2), kH

0

1

k = 1. By

Fat 27, the maximum ours only at the boundary of the domain. Hene, we an test by

looking at a subdomain in whih the maximum is less than 1.

4.2.4 Jensen's Equation

Jensen's equation is the following: 8x; y 2 D

n;s

; f(

x+y

2

) =

f(x)+f(y)

2

. The solution to this

funtional equation is the set of aÆne linear funtions i.e., f(x) = ax+ b for some onstants

a; b. Jensen's equation an be proved approximately robust by modifying the proof of its

robustness in [28℄. We will show a modi�ed version of our tehnique for proving its stability.

As before, we have 8x; y 2 D

n;s

; g(

x+y

2

) �

�

g(x)+g(y)

2

. To prove the stability of this equation,

we onstrut an aÆne linear h. Note that two points are neessary and suÆient to fully

determine h. We set h(

n

s

) = g(

n

s

) and h(0) = g(0).

Lemma 36 e(

x+y

2

) � e(x)=2 + e(y)=2 + �.

Proof. e(

x+y

2

) = jg(

x+y

2

)�h(

x+y

2

)j � �+ j

g(x)+g(y)

2

�

h(x)+h(y)

2

j. But, j

g(x)�h(x)

2

+

g(y)�h(y)

2

j =

e(x)=2 + e(y)=2.

The following orollary is immediate.

Corollary 37 e(

x

2

) � �+ e(x)=2 and e(

x+

n

s

2

) � �+ e(x)=2.

Proof. Sine for y = 0 and y =

n

s

, e(y) = 0 in Lemma 36.

We onstrut a slightly di�erent tree T

k

in this ase. The root of T

k

is labeled by

n

s

and if x

is the label of a node, then x=2 (if integral and not already present) is label of its left hild

and (

n

s

+ x)=2 (if integral and not already present) is the label of its right hild.

Theorem 38 The Jensen equation is (D

+

n;s

;D

+

n;s

;�; 2�)-stable.
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Proof. The proof is by indution on an enumeration order of T

k

given by, say, a breadth-

�rst traversal. Clearly, at the root, e(

n

s

) = 0 � 2�. Now, if e(x) � 2�, then, onsider its

hildren. Its left (resp. right) hild (if exists) is x=2 (resp. (x +

n

s

)=2). Thus, by Corollary

37, we have e(

x

2

) � �+ e(x)=2 � 2� (resp. e(

x+

n

s

2

) � �+ e(x)=2 � 2�).

4.3 Approximate Robustness for Funtional Equations

As in [20, 29℄, we test the program on D

2p;s

and make onlusions about its orretness on

D

n;s

. The relationship between p and n will be determined later. The domain has to be suh

that G is analyti in it. Therefore, we onsider the ase when f is bounded on D

2p;s

, i.e.,

0 < L � f(x) � U . Let G be the family of funtions f that satisfy the following onditions:

1. Pr

x2D

2p;s

[f(x) � L℄ � 1� �,

2. Pr

x2D

2p;s

[f(x) � U ℄ � 1� �,

3. Pr

x;y2D

2p;s

[G[f(x); f(y)℄ � L℄ � 1� �, and

4. Pr

x;y2D

2p;s

[G[f(x); f(y)℄ � U ℄ � 1� �.

Note that the membership in G is easy to determine by sampling. We an de�ne a distribution

E

�(n;s)

suh that if P satis�es the funtional equation on E

�(n;s)

with probability at least 1��,

then P also satis�es the following four properties.

1. Pr

x;y2D

p;s

[P (x+ y) �

�

G[P (x); P (y)℄℄ � 1� �,

2. Pr

x;y2D

p;s

[P (x) �

�

G[P (x� y); P (y)℄℄ � 1� �,

3. Pr

x;y2D

p;s

[P (x) �

�

G[P (y); P (x� y)℄℄ � 1� �, and

4. Pr

x2D

n;s

;y2D

p;s

[P (x) �

�

G[P (x� y); P (y)℄℄ � 1� �.

E

�(n;s)

is de�ned by ipping a fair four-sided die and on outome i 2 f1; 2; 3; 4g, hoosing

inputs aording to the distribution given in the i-th property above. Let

b

G = kG

0

x

k

D

: We

an then show the following:
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Theorem 39 The addition theorem with the distribution E

�(n;s)

is (2�; �;D

2p;s

;D

n;s

;�; (9

b

G

2

+

5

b

G)�;�)-approximately robust.

De�ne for x 2 D

p;s

, g(x) = median

y2D

p;s

fG[P (x� y); P (y)℄g: By Markov's inequality, de�nition

of g, and the properties of P , it is easy to show the following:

Lemma 40 Pr

x2D

n;s

[g(x) �

�

P (x)℄ > 1� 2�.

Proof. Consider the set of elements x 2 D

n;s

suh that Pr

y2D

p;s

[P (x) �

�

G[P (x �

y); P (y)℄℄ <

1

2

. If the fration of suh elements is more than 2�, then it ontradits hy-

pothesis (4) on P that Pr

x2D

n;s

;y2D

p;s

[P (x) �

�

G[P (x� y); P (y)℄℄ � 1� �. For the rest, for

at least half of the y's, P (x) �

�

G[P (x� y); P (y)℄. By de�ning g to be the median (over y's

in D

p;s

), we have for these elements g(x) �

�

P (x).

For simpliity of notation, let P

x

denote P (x) for any x 2 D

p;s

and G

x;y

denote G[P (x); P (y)℄

for any x; y 2 D

p;s

. Sine G is �xed, we will drop G from the modulus of ontinuity.

A distribution U

0

on D is said to be �-uniform on D if

P

x2D

jU

0

(x) � 1=jDjj � �. Let

 = n=2p.

Fat 41 (1) For all x 2 D

2n;s

, the distribution of x+ y is -uniform on D

p;s

.

(2) For any event E(x) and for an �-uniform distribution U

0

on D, jPr

x�U

0

[E(x)℄ �

Pr

x2D

[E(x)℄j � �.

Lemma 42 For x 2 D

2n;s

, Pr

y;z2D

p;s

[G

x�y;y

�

2!(�;0)

G

x�z;z

℄ � 1� 12�� 4:

Proof. Pr

y;z2D

p;s

[G

x�y;y

�

!(�;0)

G[G

x�z;z�y

; P

y

℄ = G[P

x�z

; G

z�y;y

℄ �

!(0;�)

G

x�z;z

℄ > 1� 12�� 4:

The error in the �rst step (due to omputation of P

x�y

) is !(�; 0) and the equation holds

with probability at least 1 � � �  by property (3) and Fat 41. The bounds on G

x�z;z�y

also hold with probability at least 1 � 2� � 2 by properties (3), (4) and Fat 41 and so

the error is just !(�; 0). The next line is just rewriting. In a similar manner, the �nal

equation holds with probability at least 1� ��  by property (2) and Fat 41 and the error

bound is !(0;�) The bounds on random points P

y

; P

z

; P

x�z

; P

z�y

hold with probability at

least 1� 8� by properties (1), (2) on P to make the error !(0;�). Hene, the total error is
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!(�; 0) + !(0;�) = 2!(�; 0) by Fat 26(3) and the equality holds with probability at least

1� 12�� 4.

The following lemma, whih helps us to bound the error, is from [23℄. The proof uses the

observation that the lique number of G

2

is at least as big as the maximum degree in G.

Hene, for a random node x, probability that x is present in the largest lique in G

2

is more

than the probability that x is onneted to the maximum degree vertex (say y) in G.

Lemma 43 ([23℄) If G = hV;Ei is a random graph with edges inserted with probability

1 � �, then G

2

= hV; f(x; y) : 9z 2 V; (x; z) 2 E ^ (z; y) 2 Egi is a graph where the largest

lique is of size at least (1� �)jV j.

The following shows, in some sense, that g is well-de�ned:

Lemma 44 For all x 2 D

2n;s

, Pr

y2D

p;s

[g(x) �

2�

0

G

x�y;y

℄ � 1 � 12� � 4, where �

0

=

2!(�; 0).

Proof. We have the following: for all x 2 D

2n;s

, Pr

y;z2D

p;s

[G

x�y;y

�

�

0

G

x�z;z

℄ � 1�12��4.

Now, we use Lemma 43. If G denotes a graph in whih (y; z) is an edge i� G

x�y;y

�

�

0

G

x�z;z

then G

2

denotes the graph in whih (y; z) is an edge i� G

x�y;y

�

2�

0

G

x�z;z

. Now, using

Lemma 43, we have that number of elements that are 2�

0

away from the largest lique is at

most 2�. Thus, at least 1� 2� of elements are within 2�

0

of eah other. If � < 1=2 and sine

g(x) is the median, the lemma follows.

Now, the following theorem ompletes the proof that g satis�es the addition theorem ap-

proximately.

Theorem 45 For all x; y 2 D

n;s

, g(x + y) �

�

00

G[g(x); g(y)℄ with probability at least 1 �

56�� 14, where �

00

= (9

b

G

2

+ 5

b

G)�.

Proof. Pr

u;v2D

p;s

[G[g(x); g(y)℄ �

!(2�

0

;2�

0

)

G[G

u;x�u

; G

v;y�v

℄

= G[P

u

; G[P

x�u

; G

v;y�v

℄℄

= G[P

u

; G[G

x�u;v

; P

y�v

℄℄

�

!(0;!(�;0))

G[P

u

; G

x�u+v;y�v

℄

�

!(0;�)

G

u;x+y�u

�

2�

0

g(x+ y)℄ � 1� 56�� 14
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By Lemma 44, the �rst equality holds with probability 1�24��8 and error !(2�

0

; 2�

0

). By

property (4), the bounds on G

u;x�u

; G

v;y�v

hold with probability at least 1� 4� to make the

error !(2�

0

; 2�

0

) � 2!(2�

0

; 0) = 4!(�

0

; 0) = 8!(!(�; 0); 0) by Fat 26(3). The seond and

third equalities are always true. The fourth equality holds with probability at least 1� ��

by property (1) and Fat 41 on P and the error arued is !(0; !(�; 0)). The bounds on

P

u

; P

x�u

; P

v

; P

y�v

; G

x�u;v

hold with probability at least 1�10� by properties (1)-(4) to make

the error !(0; !(�; 0)) = !(!(�; 0); 0). The �fth equality also holds with probability at least

1 � � �  by property (1) on P and the error arued is !(0;�) = !(�; 0), after bounds

on P

u

; P

x+y�u

(with probability at least 1 � 4�). The �nal equality holds with probability

at least 1 � 12� � 4 by Lemma 44 and error is 2�

0

= 4!(�; 0). Thus, the total error is

9!(!(�; 0); 0) + 5!(�; 0). But, !(�; 0) � �

b

G by Fat 26(4). Hene, !(!(�; 0); 0) � �

b

G

2

.

If � < 1=112; p > 14n, we have 1 � 56� � 14 > 0 and so the above lemma is true with

probability 1. In the ase of our example funtion, we already alulated

b

G = U

2

=(L+ U)

2

.

Hene, �

00

= �

 

9U

4

(L+ U)

4

+

5U

2

(L + U)

2

!

:

5 Approximate Self-Testing and Self-Correting

In this setion we briey show how to apply our tehniques that we developed in this paper to

onstrut approximate self-tester and self-orretors. The approahes in this setion follow

[8, 20℄.

5.1 De�nitions

The following modi�ations of de�nitions from [20℄ apture the idea of approximate heking,

self-testing, and self-orreting in a formal manner. Let P be a program for f , x 2 D

n;s

an

input to P , and � the on�dene parameter.

De�nition 46 A (�

1

;�

2

;D

�(n;s)

;D

n;s

)-approximate result heker for f is a probabilisti

orale program T that, given P , x 2 D

n;s

, and �, satis�es the following:

(1) P (�

1

; 0)-approximates f on D

�(n;s)

) Pr[T

P

outputs \PASS"℄ � 1� �.
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(2) P (x) 6�

�

2

f(x) ) Pr[T

P

outputs \FAIL"℄ � 1� �.

De�nition 47 A (�

1

;�

2

; �;D

�(n;s)

;D

n;s

)-approximate self-tester for f is a probabilisti or-

ale program T that, given P and �, satis�es the following:

(1) P (�

1

; 0)-approximates f on D

�(n;s)

) Pr[T

P

outputs \PASS"℄ � 1� �.

(2) P does not (�

2

; �)-approximate f on D

n;s

) Pr[T

P

outputs \FAIL"℄ � 1� �.

Observe that if a property is (Æ; �;D

�(n;s)

;D

n;s

;�

1

;�

2

;�

3

)-approximately robust, (D

n;s

;D

n

0

;s

0

;�

2

;�

4

)-

stable, and it is possible to do equality testing for the funtion family satisfying the property,

then it is possible to onstrut a (�

1

;�

3

+�

4

; �;D

n;s

;D

n

0

;s

0

)-approximate self-tester.

De�nition 48 A (�; �;�

0

;D

�(n;s)

;D

n;s

)-approximate self-orretor for f is a probabilisti

orale program SC

P

f

that, given P that (�; �)-approximates f on D

�(n;s)

, x 2 D

n;s

, and �,

outputs SC

P

f

(x) suh that Pr[SC

P

f

(x) �

�

0

f(x)℄ � 1� �.

Note that a (�

1

;�

2

; �;D

�(n;s)

;D

n;s

)-approximate self-tester and (�

2

; �;�

3

;D

�(n;s)

;D

n;s

)-approximate

self-orretor yield a (�

1

;�

3

;D

�(n;s)

;D

n;s

)-approximate result heker [8℄.

5.2 Construting Approximate Self-Corretors

We illustrate how to build approximate self-orretors for funtional equations. Suppose P

(�; �)-approximates f for � < 1=8 and f(x+y) = G[f(x); f(y)℄. Then the self-orretor SC

P

f

at input x is onstruted as follows. To obtain a on�dene of �:

1. hoose random points y

1

; y

2

; : : : ; y

N

(N = O(ln 1=�)),

2. let SC

P

f

(x) be the median of G[P (x� y

1

); P (y

1

)℄; : : : ; G[P (x� y

N

); P (y

N

)℄.

By the assumption on �, both the alls to P on x�y

i

and y

i

are within � of f with probability

greater than 3=4. In this ase, the value of G[P (x� y

i

); P (y

i

)℄ is �

0

= 2�

b

G away from f(x)

(see Setion 4.1 for

b

G). Using Cherno� bounds, we an see that at least half of the values

G[P (x � y

i

); P (y

i

)℄ are at most �

0

away from f(x). Thus, their median SC

P

f

(x) is also at

most �

0

away from f(x).
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For degree d polynomials, a similar self-orretor works with �

0

= O((d + 1)2

d

�). In

order to pass good programs, this is almost the best �

0

possible using the evenly spaed

interpolation equation sine the oeÆients of the interpolation equation are 
(2

d

). Using

interpolation equations that do not use evenly spaed points seem to require �

0

that is

dependent on the size of the domain.

5.3 Construting Approximate Self-Testers

The following is a self-tester for any funtion satisfying an addition theorem f(x + y) =

G[f(x); f(y)℄ omputing the funtion family F over D

n;s

. We use the notation from Se-

tion 4.1. To obtain a on�dene of �, we hoose random points x

1

; y

1

; : : : ; x

N

; y

N

(N =

O(1=� ln 1=�)) and verify the assumptions on program P in the beginning of Setion 4.3. If

P passes the test, then using Cherno� bounds, approximate robustness, and stability of the

property, we are guaranteed that P approximates some funtion in F . We next perform the

equality test to ensure that P approximates the given f 2 F . Assume that f(

1

s

) when  < 1

(resp. f(

n

s

) when  > 1) is given. Using the proofs in Setion 4.2, one an show that if there

is a onstant � suh that SC

P

f

(

1

s

) �

�

f(

1

s

) when  < 1 ( SC

P

f

(

n

s

) �

�

f(

n

s

) when  > 1),

the error between SC

P

f

and f an be bounded by a onstant on the rest of D

n;s

. Sine SC

P

f

approximates P , the orretness of the self-tester follows.

For polynomials, we use random sampling to verify the onditions on program P required

for approximate robustness that are given in the beginning of Setion 3.3. If P satis�es

the onditions then using the approximate robustness and stability of the evenly spaed

interpolation equation, P is guaranteed to approximate some degree d polynomial h. To

perform the equality test that determines if P approximates the orret polynomial f , we

assume that the tester is given the orret value of the polynomial f at ` = (d+1)=� evenly

spaed points x

1

= �

n

s

; : : : ; x

`

=

n

s

2 D

n;s

. Using the self-orretor SC

P

f

from Setion 5.2,

we have kSC

P

f

� hk � �

0

= (d + 1)2

d

2

d lg d

�. The equality tester now tests that for all x

i

,

jf(x

i

)�SC

P

f

(x

i

)j � (d+1)2

d

�. Call an input x bad if jf(x)�h(x)j > �

00

= �

0

+(d+1)2

d

�.

If x is bad then jf(x) � SC

P

f

(x)j > (d + 1)2

d

�. If x is a sample point, and x is bad, then

the test would have failed. De�ne a bad interval to be a sequene of onseutive bad points.
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If the test passes, then any bad interval in the domain an be of length at most (2n+ 1)=`,

beause any longer interval would ontain at least one sample point. The two sample points

immediately preeding and following the bad interval satisfy jf(x)�h(x)j � �

00

. This implies

that there must be a loal maximum of f�h (a degree d polynomial) inside the bad interval.

Sine there are only d extrema of f�h, there an be at most d bad intervals, and so the total

number of bad points is at most d(2n+ 1)=`. Thus, on 1� � fration of D

n;s

, SC

P

f

's error is

at most �

0

+�

00

. These arguments an be generalized to the k-variate ase by partitioning

the k-dimensional spae into ((d+ 1)=�)

k

ubes.

We have thus shown how to onstrut approximate self-testers and self-orretors. It is

straightforward to onstrut approximate result-hekers using these.

5.4 Redutions Between Funtional Equations

This setion explores the idea of using redutions among funtions (as in [7, 3℄) to obtain

approximate self-testers for new funtions. Consider any pair of funtions f

1

; f

2

that are

interreduible via funtional equations. Suppose we have an approximate self-tester for f

1

and let there exist ontinuous omputable funtions F; F

�1

suh that f

2

(x) = F [f

1

(x)℄ and

f

1

(x) = F

�1

(f

2

(x)). Given a program P

2

omputing f

2

, onstrut program P

1

omputing

f

1

via F

�1

. We an then self-test P

1

. Suppose P

1

is �-lose to f

1

on a large portion of the

domain. Then for every x for whih P

1

(x) is �-lose to f

1

(x), we bound the deviation of

P

2

(x) from f

2

(x) by �

0

= F [f

1

(x)+�℄�f

2

(x). Then �

0

= F [f

1

(x)+�℄�F [f

1

(x)℄ � !(F ; �).

If we an bound the right-hand side by a onstant (at least for a portion of the domain), we

an bound the maximum deviation �

0

of P

2

from f

2

. This idea an be used to give simple

and alternative approximate self-testers for funtions like sin x; os x; sinh x; osh x whih an

be redued to e

x

.

For example, suppose we are given a (Æ

1

; �

1

; Æ

2

; �

2

;D;D

0

)- approximate self-tester for

f

1

(x) = e

x

and we want an approximate self-tester for the funtion f

2

given by f

2

(x) = os x.

By the Euler identity, f

1

(ix) = f

2

(x) + if

2

(x + 3�=2). Given a program P

2

that supposedly

omputes f

2

, we an build a program P

1

(for e

ix

) out of the given P

2

(for os x) and self-test

P

1

. P

1

(ix) = P

2

(x) + iP

2

(x + 3�=2).
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Let the range of f

1

be equipped with the following metri: jP

1

(x)� f

1

(x)j = j<(P

1

(x)�

f

1

(x))j + j=(P

1

(x) � f

1

(x))j. In other words, in our ase, we have jP

1

(x) � e

ix

j = jP

2

(x) �

os xj+ jP

2

(x+3�=2)� os(x+3�=2)j. This metri ensures that P

1

is erroneous on x if and

only if P

2

is erroneous on at least one of x; x+3�=2. Alternatively, there is no \anellation"

of errors.

Suppose P

1

is (Æ

1

; �

1

)-good. Then, what an we say about P

2

? For Æ

1

fration of the

\bad" domain for P

1

, the errors an our in both the plaes where P

2

is invoked. Hene, at

most 2Æ

1

fration of the domain for P

2

is bad. The rest of the domain for P

1

is �

1

-lose to

f

1

, whih by our metri implies P

2

is also �

1

-lose to f

2

. Thus, P

2

is (2Æ

1

; �

1

)-good.

Similarly, suppose P

1

is not (Æ

2

; �

2

)-good. P

1

is not good on at least Æ

2

fration of the

domain, where P

1

is not �

2

-lose to f

1

. Thus, at these points in the domain, at least one of

points where P

2

is alled is de�nitely not �

2

=2-lose to f

2

. Thus, P

2

is not (Æ

1

; �

2

=2)-good.

Therefore, we have an (2Æ

1

; �

1

; Æ

2

; �

2

=2;D;D

0

)- approximate self-tester for f

2

from a (Æ

1

; �

1

; Æ

2

; �

2

;D;D

0

)-

approximate self-tester for f

1

, given by [20℄.
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A Proofs of Some Theorems for Linearity

Theorem 49 (Hyers' Theorem) Let S be an Abelian semigroup and B be a Banah spae

and let g : S ! B be suh that for some � > 0, g is �-approximately linear on S, then, for

every x 2 S; h(x) = lim

n!1

g(2

n

x)=2

n

exists, h is linear, and kg � hk � �.

Proof. ([17℄) By indution on n, jg(x)=2

n

� g(x=2

n

)j < �(1 � 1=2

n

). Let q

n

(x) =

g(2

n

x)=2

n

. Then, q

n

(x) � q

m

(x) = (g(2

m�n

2

n

x) � 2

m�n

g(2

n

x))=2

m

. If m < n, we an

obtain jq

n

(x) � q

m

(x)j < �(1 � 2

m�n

)=2

m

. Thus, for x 2 S, fq

n

(x)g is a Cauhy sequene

and by ompleteness of B, it has a limit funtion h(x) = lim

n!1

g(2

n

x)=2

n

. The properties

of h are easily proved.

Theorem 50 (Skof's Theorem) Let n > 0 and let g : [0; n) ! R be suh that for some

� � 0, jg(x+ y)� g(x)� g(y)j � � for all 0 � x; y < n (suh that x + y < n), then, there

exists a linear h : R ! R suh that kg � hk

[0;n)

� 3�.
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Proof. For any x 2 R

+

, write x = p(n=2) + q where 0 � q < n=2. De�ne g

0

: R

+

! R

suh that g

0

(x) = pg(n=2)+ g(q). Clearly, kg

0

� gk

[0;n)

� �. Now, the laim is g

0

(x+ y) �

2�

g

0

(x) + g

0

(y). As before, x = p(n=2) + q; y = r(n=2) + s with 0 � q; s < n=2.

0 � q + s < n=2. We have, g

0

(x+ y) = g(q + s) + (p+ r)g(n=2) �

�

g(q) + g(s) + pg(n=2) +

rg(n=2) = g

0

(x) + g

0

(y).

n=2 � q + s < n. Let q+s = t+n=2. We have g

0

(x+y) = g(t)+(p+r)g(n=2)+g(n=2) �

2�

g(q) + g(s) + pg(n=2) + rg(n=2) = g

0

(x) + g

0

(y).

To extend g

0

to R, de�ne for x < 0, g

0

(x) = �g

0

(�x). Thus, 8x; y 2 R; g

0

(x + y) �

2�

g

0

(x) + g

0

(y). By Theorem 49, there is a linear h suh that kg

0

� hk � 2�. Therefore,

kg � hk

[0;n)

� kg � g

0

k

[0;n)

+ kg

0

� hk

[0;n)

� 3�.

B Proofs of Some Theorems for Polynomials

B.1 Stability for Polynomials

Fat 12 (r

t

1

+t

2

�r

t

1

�r

t

2

)f(x) = r

t

1

;t

2

= r

t

2

;t

1

.

Proof. (r

t

1

+t

2

�r

t

1

�r

t

2

)f(x) = f(x+t

1

+t

2

)�f(x)�f(x+t

1

)+f(x)�f(x+t

2

)+f(x) =

f(x+t

1

+t

2

)�f(x+t

1

)�f(x+t

2

)+f(x) = r

t

1

f(x+t

2

)�r

t

1

f(x) = r

t

1

(f(x+t

2

)�f(x)) =

r

t

1

;t

2

f(x) = r

t

2

;t

1

f(x).

Di�erene operators at on multilinear funtions in a nie manner, whih is aptured in the

following fat.

Fat 51 If f is a k-linear funtion, then r

t

1

;:::;t

d

f

�

(x) = k!f(t

1

; : : : ; t

k

) if k = d and 0 if

k < d.

Proof. Reall that, due to multilinearity, f is also symmetri. By indution on k. Chasing

de�nitions, we haver

t

1

;:::;t

d

f

�

(x) = r

t

1

;:::;t

d�1

(f

�

(x+t

d

)�f

�

(x)) = r

t

1

;:::;t

d�1

(f((x+ t

d

)

[d�1℄

; x)+

f((x+ t

d

)

[d�1℄

; t

d

) � f(x

[d℄

)), whih by linearity of r yields r

t

1

;:::;t

d�1

f((x+ t

d

)

[d�1℄

; t

d

) +
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r

t

1

;:::;t

d�1

(f((x+ t

d

)

[d�1℄

; x) � f(x

[d℄

)). Observe that for any onstant t, the restrition of

k-linear f to any of its arguments being t (denoted f

t

) results in a (k � 1)-linear funtion.

By indution, the �rst term in the above expression evaluates to (d � 1)!f

t

d

(t

1

; : : : ; t

d�1

) =

(d � 1)!f(t

1

; : : : ; t

d

). Now, using the symmetry and linearity (in eah variable) of f , we

an write the seond term as r

t

1

;:::;t

d�1

(

P

d�1

i=0

�

d�1

i

�

f(x

[i+1℄

; t

d

[d�i�1℄

)� f(x

[d℄

)) whih is (d�

1)r

t

1

;:::;t

d�1

f(x

[d�1℄

; t

d

) +

P

d�3

i=0

r

t

1

;:::;t

d�1

�

d�1

i

�

f(x

[i+1℄

; t

d

[d�i�1℄

). By indution, the �rst term

evaluates to (d � 1)(d � 1)!f

t

d

(t

1

; : : : ; t

d�1

) = (d � 1)(d � 1)!f(t

1

; : : : ; t

d

), whih ombined

with the earlier result yields d!f(t

1

; : : : ; t

d

). The seond term evaluates to 0 sine eah of

the terms inside the sum are restritions of f to more than 1 variable, whih evaluates to 0

after applying r

t

1

;:::;t

d�1

.

Fat 13 Let D be a ring. The following haraterizations of polynomials, are equivalent:

1. 8x 2 D; f(x) =

d

X

k=0

a

k

x

k

,

2. 8x; t 2 D;r

d+1

t

f(x) = 0

3. there exists symmetri k-linear funtions F

k

, 0 � k � d suh that 8x 2 D; f(x) =

d

X

k=0

F

�

k

(x).

Proof. (1) , (2) follows from Lagrangian interpolation. We �rst prove (1) ) (3).

Given (1), just set F

k

(x

1

; : : : ; x

k

) = a

k

Q

k

i=0

x

i

. It is easy to see that F

k

's are symmet-

ri, k-linear. We now prove (3) ) (2). Given (3), r

t

1

;:::;t

d+1

f(x) = r

t

1

;:::;t

d+1

P

d

k=0

F

�

k

(x) =

P

d

k=0

r

t

1

;:::;t

d+1

F

�

k

(x) = 0 by Fat 16 about di�erene operators.

Fat 18 For any �

1

; : : : ; �

d

2 f0; 1g, if

t

0

�

1

;:::;�

d

= �

d

X

i=1

�

i

t

i

=i; t

00

�

1

;:::;�

d

=

d

X

i=1

�

i

t

i

then

r

t

1

;:::;t

d

f(x) =

X

�

1

;:::;�

d

2f0;1g

(�1)

�

1

+���+�

d

r

d

t

0

�

1

;:::;�

d

f(x + t

00

�

1

;:::;�

d

):
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� t

0

�

t

00

�

term

00 0 0 0

01 �t

2

=2 t

2

�[f(x)� 2f(x+ t

2

=2) + f(x+ t

2

)℄

10 �t

1

t

1

�[f(x� t

1

)� 2f(x) + f(x+ t

1

)℄

11 �t

1

� t

2

=2 t

1

+ t

2

+[f(x� t

1

)� 2f(x+ t

2

=2) + f(x+ t

1

+ t

2

)℄

Table 2: An Illustration of Fat 18

Proof. By a pairing argument. First, it is easy to prove that the left-hand side an be

expressed as r

h

1

;:::;h

d

=

P

�

1

;:::;�

d

2f0;1g

(�1)

d+�

1

+���+�

d

f(x+ t

00

�

1

;:::;�

d

). Now, we an expand the

right-hand side as

X

�

1

;:::;�

d

2f0;1g

(�1)

�

1

+���+�

d

d

X

k=0

(�1)

d�k

 

d

k

!

f(x+ t

00

�

1

;:::;�

d

+ kt

0

�

1

;:::;�

d

):When k = 0, left-hand side

is obtained. So, we have to prove that for k > 0, the right-hand side vanishes. The terms

inside f(�) are linear ombinations of t

i

's by our onstrution. Note that for eah k >

0, eah term inside f(�) on the right-hand side has exatly one t

i

absent beause of its

anellation between t

0

and t

00

. So, for eah �

1

; : : : ; �

d

2 f0; 1g, onstrut its onjugate

�

0

1

; : : : ; �

0

d

2 f0; 1g with �

0

i

= 1� �

i

and �

0

j

= �

j

otherwise. It is easy to see that the terms

(�1)

�

1

+���+�

d

f(x+ t

00

�

1

;:::;�

d

+kt

0

�

1

;:::;�

d

) and (�1)

�

0

1

+���+�

0

d

f(x+ t

00

�

0

1

;:::;�

0

d

+kt

0

�

0

1

;:::;�

0

d

) anel. An

illustration of this fat is given below.

To illustrate with an example, onsider the ase when d = 2. Then, the left-hand side is

given by r

t

1

;t

2

f(x) = f(x + t

1

+ t

2

) � f(x + t

1

) � f(x + t

2

) + f(x). The right-hand side is

given by the sum of the entries in the last olumn of Table B.1.

It is easy to see that appropriate anellations take plae so that left-hand side equals

the right-hand side.
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