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Abstract

A majority of the results on self-testing and correcting deal with programs which
purport to compute the correct results precisely. We relax this notion of correctness
and show how to check programs that compute only a numerical approximation to
the correct answer. The types of programs that we deal with are those computing
polynomials and functions defined by certain types of functional equations. We present
results showing how to perform approximate checking, self-testing, and self-correcting
of polynomials, settling in the affirmative a question raised by [20, 29, 30]. We obtain
this by first building approximate self-testers for linear and multilinear functions. We
then show how to perform approximate checking, self-testing, and self-correcting for

those functions that satisfy addition theorems, settling a question raised by [28]. In
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both cases, we show that the properties used to test programs for these functions
are both robust (in the approximate sense) and stable. Finally, we explore the use
of reductions between functional equations in the context of approximate self-testing.

Our results have implications for the stability theory of functional equations.



1 Introduction

Program checking was introduced by Blum and Kannan [7] in order to allow one to use a
program safely, without having to know apriori that the program is correct on all inputs.
Related notions of self-testing and self-correcting were further explored in [8, 24]. These
notions are seen to be powerful from a practical point of view (c.f., [9]) and from a theoretical
angle (c.f., [5, 4]) as well. The techniques used usually consist of tests performed at run-time
which compare the output of the program either to a predetermined value or to a function of
outputs of the same program at different inputs. In order to apply these powerful techniques
to programs computing real-valued functions, several issues dealing with precision need to
be dealt with. The standard model, which considers an output to be wrong even if it is off
by a very small margin, is too strong to make practical sense due to reasons such as the
following: (i) In many cases, the algorithm is only intended to compute an approximation,
e.g., Newton’s method. (ii) Representational limitations and round-off/truncation errors
are inevitable in real-valued computations. (iii) The representation of some fundamental
constants (e.g., 7 = 3.14159...) is inherently imprecise.

The framework presented by [20, 3] accommodates these inherently inevitable or accept-
ably small losses of information by overlooking small precision errors while detecting actual
“bugs”, which manifest themselves with greater magnitude. Given a function f, a pro-
gram P that purports to compute f, and an error bound A, if |P(x) — f(z)| < A (denoted
P(z) =a f(z)) under some appropriate notion of norm, we say P(z) is approzimately correct
on input x. Approximate result checkers test if P is approximately correct for a given input
x. Approximate self-testers are programs that test if P is approximately correct for most
inputs. Approximate self-correctors take programs that are approximately correct on most

inputs and turn them into programs that are approximately correct on every input.

DomaINs.  We work with finite subsets of fixed point arithmetic that we refer to as finite
rational domains. For n,s € Z", Dy, o {£: i <n,ieZ}. Usually, s =2' where [ is the
precision. We allow s and n to vary for generality. For a domain D, let DT and D~ denote

the positive and negative elements in D.

TESTING USING PROPERTIES. There are many approaches to building self-testers. We



illustrate one paradigm that has been particularly useful. In this approach, in order to test if
a program P computes a function f on most inputs, we test if P satisfies certain properties
of f.

As an example, consider the function f(z) = 2z and the property “f(z +1) = f(z) +2”
that f satisfies. One might pick random inputs z and verify that P(x + 1) = P(x) + 2.
Clearly, if for some z, P(x + 1) # P(x) 4+ 2, then P is incorrect. The program, however,
might be quite incorrect and still satisfy P(x + 1) = P(x) + 2 for most choices of random
inputs. In particular, there exists a P (for instance, P(z) = 2z mod K)' such that: (i) with
high probability, P satisfies the property at random z and hence will pass the test, and (ii)
there is no function that satisfies the property for all  such that P agrees with this function
on most inputs. Thus we see that this method, when used naively, does not yield a self-tester
that works according to our specifications. Nevertheless, this approach has been used as a
good heuristic to check the correctness of programs [13, 14, 35].

As an example of a property that does yield a good tester, consider the linearity property
“flx+y) = f(x)+ f(y)”, satisfied only by functions mapping D, ; to R of the form f(z) =
cx,c € R 1If, by random sampling, we conclude that the program P satisfies this property for
most x, ¥y, it can be shown that P agrees with a linear function g on most inputs [8, 28]. We
call the linearity property, and any property that exhibits such behavior, a robust property.

We now describe more formally how to build a self-tester for a class F of functions that
can be characterized by a robust property. The two-step approach, which was introduced
in [8], is: (i) test that P satisfies the robust property (property testing), and (ii) check if P
agrees with a specific member of F (equality testing). The success of this approach depends
on finding robust properties which are both easy to test and lead to efficient equality tests.

A property is a pair (Z, &, (,,5)), consisting of an equation Z/(zy,...,x;) = 0 that relates
the values of function f at various tuples of locations (z1,...,z) , and a distribution &,
over Df(ms) from which the locations are picked. The property (Z,&;am,s)) is said to char-
acterize a function family F in the following way. A function f is a member of F if and

only if Z/ (1, ..., z)) = 0 for every (z1,..., ;) that has non-zero support under &, ). For

!'We naturally extend the mod function to Dp,s by letting  mod K stand for @, for z, K € Dy s, and

=i —k
r=1y, K=1.



instance, the linearity property can be written as 7/ (zy, 72, 73) = f(z1) + f(22) — f(z3) = 0,
and Ef(if;’s) is a distribution on (zy,xs,z; + x2), where z; and z, are chosen randomly
from some distribution® over the domain D.g, ). In this case (Z, Sf(ig,sﬁ characterizes
F = A{f(z) = cx | ¢ € R}, the set of all linear functions over D, ). We will adhere to
this definition of a property throughout the paper; however, for simplicity of notation, when
appropriate, we will talk about the distribution and the equality together. For instance, we
express the linearity property as f(z +vy) = f(z) + f(y), giving the distributions of x, y.

We first consider robust properties in more detail. Suppose we want to infer the correct-
ness of the program on inputs from the domain D,, ;. Then we allow calls to the program on
a larger domain D, ), where 7 : Z* — Z? is a fixed function that depends on the structure
of Z. Ideally, we would like 7(n,s) = (n,s), i.e., Dy, 5 = Dn,s. But, for technical reasons,
we allow D, ;) to be a proper, but not too much larger, superset of D,,  (in particular, the
description size of an element in D, ) should be polynomial in the description size of an
element in D, 5).?

To use a property in a self-tester, one must prove that the property is robust. Informally,
the (6, €, Dr(n,s), Dn,s)-robustness of the property (Z, £, (,,s)) implies that if, for a program P,
TP (xy,...,2) = 0 is satisfied with probability at least 1 —e when (z1,. .., ;) is chosen from
the distribution &, 4), then there is a function g € F that agrees with P on 1 — ¢ fraction of
the inputs in D, 5. In the case of linearity, it can be shown that there is a distribution f:Hg,s
on (xy,Ta, T1 + xTg) Where xy, 9 € Dyyy,s such that the property is (2, €, Dy1p s, Dy s)-robust
for all e < 1/48 [8, 28]. Therefore, once it is tested that P satisfies P(z1)+P(r2) = P(x1+x2)

with large enough probability when the inputs are picked randomly from SlLf;‘,s, it is possible
to conclude that P agrees with some linear function on most inputs from D,, ;. A somewhat
involved definition of robust is given in [28]. Given a function 7 such that for all n,s, D,
is a large enough subset of D, ,), in this paper we say that a property is robust if: for all

0 < 6 < 1, there is an € such that for all n, s the property is (6, €, Dr(n,s), Dp,s)-robust.

2For example, choosing x; and x» uniformly from Dr(n,s) suffices for characterizing linearity. To prove

robustness, however, [28] uses a more complicated distribution that we do not describe here.
3 Alternatively, one could test the program over the domain D,, s and attempt to infer the correctness of

the program on most inputs from D, s, where D, o is a large subdomain of Dy, 5.



We now consider equality testing. Recall that once it is determined that P satisfies
the robust property, then equality testing determines that P agrees on most inputs with a
specific member of F. For instance, in the case of linearity, to ensure that P computes the
specific linear function f(x) = x on most inputs, we perform the equality test which ensures
that P(z + %) = P(x) + % for most z. Neither the property test nor the equality test on its
own is sufficient for testing the program. However, since f(z) = z is the only function that
satisfies both the linearity property and the above equality property, the combination of the
property test and the equality test can be shown to be sufficient for constructing self-testers.

This combined approach yields extremely efficient testers (that only make O(e!log1/6)
calls to the program for fixed § and ¢€) for programs computing homomorphisms (e.g., mul-
tiplication of integers and matrices, exponentiation, logarithm). This idea is further gen-
eralized in [28], where the class of functional equations called addition theorems is shown
to be useful for self-testing. An addition theorem is a mathematical identity of the form
Va,y, f(r+y) = G[f(z), f(y)]. Addition theorems characterize many useful and interesting
mathematical functions [1, 11]. When G is algebraic, they can be used to characterize fami-
lies of functions that are rational functions of z, e°®, and doubly periodic functions (see Table
1 for examples of functional equations and the families of functions that they characterize
over the reals). Polynomials of degree d can be characterized via several different robust

functional equations (e.g., [6, 26, 4, 30]).

APPROXIMATE ROBUSTNESS AND STABILITY. When the program works with finite
precision, the properties upon which the testers are built will rarely be satisfied, even by a
program whose answers are correct up to the required (or hardware-wise maximal) number
of digits, since they involve strict equalities. Thus, when testing, one might be willing to
pass programs for which the properties are only approximately satisfied. This relaxation in
the tests, however, leads to some difficulties, for in the approximate setting: (i) it is harder
to analyze which function families are solutions to the robust properties, and (ii) equality
testing is more difficult. For instance, it is not obvious which family of functions would satisfy
both P(z1) + P(z2) = P(x1+x3), for all 2,y € D;(n ), (approximate linearity property) and
P(z+ 1)~ P(z)+ L for all 2 € D,(, ). (approximate equality property).



Glf(x), f(y)] f(z) Glf(x), f(y)] f(x)
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Table 1: Some Addition Theorems of the form f(z +y) = G[f(z), f(y)].

To construct approximate self-testers, our approach is to first investigate a notion of
approximate robustness of the property to be used. We first require a notion of distance

between two functions.
Definition 1 (Chebyshev Norm) For a function f on a domain D, ||f||p = ||f|| = sup{|f(x)|}.
z€D

When the domain is obvious from the context, we drop it. Given functions f, g, the distance

between them is ||f — ¢||. Next, we define the approzimation of a function by another:

Definition 2 The function P (A, €)-approximates f on domain D if |P — f|| < A on at
least 1 — € fraction of D.

Approximate robustness is a natural extension of the robustness of a property. We say that a
program satisfies a property approrimately if the property is true of the program when exact
equalities are replaced by approximate equalities. Once again consider the linearity property

and a program P that satisfies the property approximately (i.e., P(x1+x2) ~a P(x1)+P(23))



for all but an € fraction of the choices of (x1, x9, z1+23) € Ef(iﬁ’s). The approximate robustness
of linearity implies that there exists a function g and a choice of A’; A" such that g(z+y) ~as
g(z) + g(y) for all inputs z,y € D, s, and g (A", 2¢)-approximates P on D, , [20, 28]. In
general, we would like to define approximate robustness of a property (Z,&-(ns) as the
following: If a program P satisfies the equation Z approximately on most choices of inputs
according to the distribution &£;(,), then there exists a function g that: (i) satisfies 7
approximately on all inputs chosen according to &, s (ii) approximates P on most inputs in
D, , the support of £, ). The function 7 relates the distributions used for describing the
behaviors of P and GG and depends on Z.

We now give a formal definition of approximate robustness:

Definition 3 (Approximate Robustness) Let (Z,E:(n)) characterize the family of func-
tions F over the domain D,q, 5). Let F' be the family of functions satisfying I approzimately
on all inputs chosen according to &, . Let €,6 be absolute constants independent of n. A
property (I,Ex(n,s)) for a function family F' is (0,€, Drm,s), Dnys, A, A, A")-approximately
robust if VP, Pria, apy~e, [ZF (21, ...,71) ~a 0] > 1 — € implies there is a g € F' that
(A",0)-approzimates P on D, and I9(xy,...,xx) ~=ar 0 for all tuples (xy,...,xx) with

non-zero support in &, s.

Once we know that the property is approximately robust, the second step is to analyze the
stability of the property, i.e., to characterize the set of functions F' that satisfy the property
approximately and compare it to F, the set of functions that satisfy the property exactly
(Hyers-Ulam stability [21]). In our linearity example, the problem is the following: given g
satisfying g(z + y) ~a g(x) + g(y) for all z,y in the domain, is there a homomorphism A
that (A’, 0)-approximates g with A" depending only on A and not on the size of the domain?
If the answer is affirmative, we say that the property is stable. In the following definition,

Dn’ ,s! g Dn,s .

Definition 4 (Stability) A property (Z,&,.s) for a function family F is (Dy s, Dpr sy A, A)-
stable if Vg that satisfies 79 ~a 0 for all tuples with non-zero support according to &, s, there
is a function h that satisfies I" = 0 for all tuples with non-zero support according to E, g

with [[h —g|p,, , <A



If a property is both approximately robust and stable, then it can be used to determine
whether P approximates some function in the desired family. Furthermore, if we have a
method of doing approximate equality testing, then we can construct an approximate self-
tester. Here, we assume that the distributions associated with approximate robustness and

stability are samplable.

PrREVIOUS WORK. Previously, not many of the known checkers have been extended to
the approximate case. Often it is rather straightforward to extend the robustness results to
show approximate robustness. However, the difficulty with extending the checkers appears
to lie in showing the stability of the properties. The issue is first mentioned in [20], where
approximate checkers for mod, exponentiation, and logarithm are constructed. The domain
is assumed to be closed in all of these results. A domain is said to be closed under an
operation if the range of the operation is a subset of the domain. For instance, a finite
precision rational domain is not closed under addition. In [3] approximate checkers for sine,
cosine, matrix multiplication, matrix inversion, linear system solving, and determinant are
given. The domain is assumed to be closed in the results on sine and cosine. In [10] an
approximate checker for floating-point division is given. In [32], a technique which uses
approximation theory is presented to test univariate polynomials of degree at most 9. It
is left open in [20, 3, 30, 28] whether the properties used to test polynomial, hyperbolic,
and other trigonometric functions can be used in the approximate setting. For instance,
showing the stability of such functional equations is not obvious; if the functional equation
involves division with a large numerator and a small denominator, a small additive error in
the denominator leads to a large additive error in the output.

There has been significant work on the stability of specific functional equations. The
stability of linearity and other homomorphisms is addressed in [21, 16, 18, 12]. The techniques
used to prove the above results, however, cease to apply when the domain is not closed. The
stronger property of stability in a non-closed space, called local stability, is addressed by Skof
[31] who proves that Cauchy functional equations are locally stable on a finite interval in R.
The problem of stability of univariate polynomials over continuous domains is first addressed

in [2] and the problem of local stability on R is solved in [19]. See [17] for a survey. These



results do not extend in an obvious way to finite subsets of R, and thus cannot be used
to show the correctness of self-testers. For those that can be extended, the error bounds
obtained by naive extensions are not optimal. Our different approach allows us to operate

on D,, s and obtain tight bounds.

REsuLTSs.  In this paper, we answer the questions of [20, 3, 30, 28] in the affirmative, by
giving the first approximate versions of most of their testers. We first present an approximate
tester for linear and multilinear functions with tight bounds. These results apply to several
functions, including multiplication, exponentiation, and logarithm, over non-closed domains.
We next present the first approximate testers for multivariate polynomials. Finally, we show
how to approximately test functions satisfying addition theorems. Our results apply to many
algebraic functions of trigonometric and hyperbolic functions (e.g., sinh, cosh). All of our
results apply to non-closed discrete domains.

Since a functional equation over R has more constraints than the same functional equation
over D, s, it may happen that the functional equation over R characterizes a family of
functions that is a proper subset of the functions characterized by the same functional
equation over D,, ;. This does not limit the ability to construct self-testers for programs
for these functions, due to the equality testing performed by self-testers.

To show our results, we prove new local stability results for discrete domains. Our tech-
niques for showing the stability of multilinearity differ from those used previously in that
(i) we do not require the domain to be discrete and (ii) we do not require the range to
be a complete metric space. This allows us to apply our results to multivariate polyno-
mial characterizations. In addition to new combinatorial arguments, we employ tools from
approximation theory and stability theory. Our techniques appear to be more generally
applicable and cleaner to work with than those previously used.

Self-correctors are built by taking advantage of the random self-reducibility of polyno-
mials and functional equations [8, 24] in the exact case. As in [20], we employ a similar
idea for the approximate case by making several guesses at the answer and returning their
median as the output. We show that if each guess is within A of the correct answer with

high probability, then the median yields a good answer with high probability. To build an

10



approximate checker for all of these functions, we combine the approximate self-tester and
approximate self-corrector as in [8].
Subsequent to our work, our results have been extended to the case of relative error in a

recent paper of [22].

ORGANIZATION. Section 2 addresses the stability of the properties used to test linear
and multilinear functions. Using these results, Section 3 considers approximate self-testing
of polynomials. Section 4 addresses the stability and robustness of functional equations.

Section 5 illustrates the actual construction of approximate self-testers and self-correctors.

2 Linearity and Multilinearity

In this section, we consider the stability of the robust properties used to test linearity and
multilinearity over the finite rational domain D,, ;. The results in this section, in addition
to being useful for the testing of linear and multilinear functions, are crucial to our results
in Section 3.

As in [20], approximate robustness is easy to show by appropriately modifying the proof
of robustness [28]. This involves replacing each exact equality by an approximate equality
and keeping track of the error accrued at each step of the proof. To show stability, we use
two types of bootstrapping arguments: the first shows that an error bound on a small subset
of the domain implies the same error bound on a larger subset of the domain; the second
shows that an error bound on the whole domain implies a tighter error bound over the same
domain. These results can be applied to give the first approximate self-testers for several

functions over D, ; including multiplication, exponentiation, and logarithm (Section 2.2).

2.1 Approximate Linearity

The following defines formally what it means for a function to be approximately linear:

Definition 5 (Approximate Linearity) A function g is A-approximately linear on D,

if Vo, € Dy, g(x +y) =a g(x) + g(y).

11



Hyers [21] and Skof [31] obtain a linear approximation to an approximately linear function
when the domain is R (See Appendix A for their approach). Their methods are not
extendible to discrete domains.

Suppose we define h such that h(1) o g(+

) and h is linear. In the O-approximately linear
case (exact linearity), since g(%) = g(=1) + h(1) and A(%) = h(=L) + h(1), by induction
on the elements in D, , we can show that h(x) = g(x), V. This approach is typically used
to prove the sufficiency of the equality test. However, in the A-approximately linear case
for A # 0, using the same inductive argument will only yield a linear function h such that
h(%) ~i.a g(%). This is quite unattractive since the error bound depends on the domain size.
The problem of obtaining a linear function A whose discrepancy from g is independent of the
size of the domain is non-trivial.

In [20], a solution is given for when the domain is a finite group. Their technique requires
that the domain be closed under addition, and therefore does not work for D,, ;. We give
a brief overview of the scheme in [20] and point out where it breaks down for non-closed
domains. The existence of a linear h that is close to ¢ is done in [20] by arguing that if D is
sufficiently large, then an error of at least A at the maximum error point z* would imply an
even bigger error at 2z*, contradicting the maximality assumption about error at x*. Here,
the crucial assumption is that x € D implies 2x € D. This step fails for domains which are
not closed under addition.

Instead, we employ a different constructive technique to obtain a linear h on D,, ; given a
A-approximately linear g. Our technique yields a tight bound of 2A on the errore = h — g
(instead of 4A in [31]) and does not require that the domain be closed under addition. It is
important to achieve the best (lowest) constants possible on the error, because these results
are used in Section 3.2 where the constants affect the error in an exponential way.

The following lemma shows how to construct a linear function A that is within 2A + p

of a A-approximately linear function g in D _.

+

Lemma 6 Let g be a A-approzimately linear function on D, ,

Define e(x) = h(z) — g(z). If |e(2)| = p, then Y € D;f

n,s?

and let h be linear on D, ;.

e(x)] <22+ p.

12



Proof. We prove by contradiction that Vz € D} ., e(r) < 2A + p. A symmetric argument

can be made to show that e(z) > —(2A + p).

Recall that 2 is the greatest positive element of the domain, and note that e is a A-

+

ms With error greater

approximately linear function. Assume that there exists a point in D

than 2A + p. Let p be the maximal such element. p has to lie between - and %, otherwise

2p € D;, would have error greater than 2A + p, contradicting the maximality of p. Let

q =" —p. Then, e(q) + e(p) =a e(%), therefore e(q) < —A. Also, for any = € (p, 2] C D/,
by definition of p, e(z) < 2A + p. Note that any such z can be written as x = ' + p, where
x' € (0,q]. To satisfy the approximate linearity property that e(z') + e(p) ~a e(z), ' must
have error strictly less than A + p.

We now know that the points in the interval (0, ¢] have error strictly less than 2A + p (in
fact, less than A + p), and that the point ¢ itself has error strictly less than —A. Putting
these two facts and approximate linearity together, and since any = € (g, 2¢| can be written
as ¢ + y where y € (0, ¢], we can conclude that at any point in (g, 2¢|, the error is at most
2A + p. Now we can repeat the same argument by taking y from (0, 2¢] rather than (0, ¢ to
bound the error in the interval (0, 3¢] by 2A+ p. By continuing this argument, eventually the

interval contains the point p, which means that p has error at most 2A + p. This contradicts

our initial assumption that e(p) was greater than 2A + p. O

In addition, since e(0) ~a €(0) + €(0), |e(0)] < A. We now generalize the error bound

on D} to Dy,

Lemma 7 If a function g is A-approzimately linear on D, s, with h and e defined as in

Lemma 6, and if |e(%)| = p, then Vx € Dy, |e(z)| < 2A + p.

Proof. Observe that if the error e(z) is upper bounded by o when = € [0, 2], then [e(z)| <
(0 4+ A)/2 whenever 0 < 2 < 2, since e(2z) < 0. Also, if |e(x)| < p then |e(—x)| < p+ 2A
since e(0) < A. By Lemma 6, e(x) < 2A+p for all z € D, ;. We will bound the error in D
first by 3A 4 p and then by 2A + p. From the above observations, we have e(z) < 4A + p
for v € D, ,, e(x) < (BA+p)/2 for v € [0, 52| and e(x) < (BA + p)/2 for v € [~F,0].

Assume that 3z € D, such that e(z) = 3A+p+e > 3A+p. Let p be such a point with

minimal absolute value. such point. Then p < —3-, otherwise the error at 2p would exceed

13



3A + p. Let ¢ be the point with the highest error in D, | (the maximal such one if there is
a tie). We consider the possible locations for ¢ to bound e(t): (i) if ¢ < -, then to ensure
that e(2t) < e(t), e(t) < A; (ii) if & < ¢ < |p[, then t +p € [—3-,0], therefore, to satisfy the
bound above on e(t +p), e(t) < A/2 —e < A; (iii) if £ > |p|, then ¢ +p € (0, 3], therefore
to satisfy the bound above, e(t) < —A/2 —e < A.

Regardless of where ¢ lies, e(t) < A < A+ p, hence the error in D/, is bounded by A+ p.
However, e(2 +p) > 3A +2p+¢€ —A > 2A + p. Since T +p € D, , this contradicts the

bound we established before. Therefore, there cannot be a point in D, ; with error greater

s
than 3A + p. A symmetric argument can be used to bound negative error.

Now we reduce the error bound to 2A + p. Assume that p is the minimal point in D,
with error at least 2A + p. The proof is similar to the previous stage, using the tighter
bound e(x) < 2A + p/2 for x € [—45,0]. Cases (i) and (iii) stay the same; for case (ii)

we have: e(t +p) < —e < A. Therefore, the error cannot exceed A + p in D;f,. But

e(2 4+ p) > 2A 4 e+ p— A, which is a contradiction. O

The following special case proves the stability result for linearity:
Corollary 8 The linearity property is (Dp,s, Dp,s, A, 2A)-stable.

Proof. Suppose function g is A-approximately linear on D, ;. Set h(%) = ¢g(%) in Lemma

7. This uniquely defines a linear A with p = 0. O

The intuition that drives us to set h(%) = g¢(%) in the proof of Corollary 8 is as follows.
Consider the following function of n,s: g(%) = (% + [("_SM)A ([z] denotes integer part of
). It is easy to see that g(z + y) ~a g(z) + g(y). Note that setting h($) = g(+) instead of
h(Z) = g(Z) does not work in general. If we set h(1) = g(1), then we obtain h(Z) = ZA.
But ||g —h]| is a growing function of n and so there is no way to bound the error at all points.

The following example shows that the error bound obtained in Corollary 8 using our
technique is tight: we have shown how to construct a linear function h so that ||h — ¢|| <
2A. We now show that there is a function g that, given our method of constructing h,

asymptotically approaches this bound from below. Define g as follows: g(n) = 0; g(z) =
(Bz/n—1)A for 0 <z < n—1; g(—z) = —g(z) for 0 < z < n. It is easy to see that g
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is A-approximately linear: If x +y < n, g(x +y) — g(z) — g(y) = A. If z + y = n, then
g(x +y) =0 and so g(z) + g(y) = A. Our construction sets h(n) = 0; thus, h = 0, the zero
function. However, ||g—h|| = |[g(n—1) —h(n—1)| = (2—3/n)A — 2A for large enough n.

2.2 Approximate Multilinearity

In this section we focus our attention on multilinear functions. A multivariate function is
multilinear if it is linear in any one input when all the other inputs are fixed. A multilinear
function of k variables is called a k-linear function. An example of a bilinear function is
multiplication, and bilinearity property can be stated concisely as f(z; + 2,29 + ) =
[y, 22) + f(2, xo) + fxy,2h) + f(2),2}). Note that distributivity of multiplication over
addition is a special case of multilinearity.

A natural extension of this class of functions is the class of approximately multilinear

functions, which are formally defined below:

Definition 9 (Approximate Multilinearity) A k-variate function g is A-approximately

k-linear on Dy . if it is A-approzimately linear on Dy, in each variable.

For instance, for k = 2, a function g is A-approximately bilinear if Vzq, 2}, 29, 2, € D, g(x1 +
Ty, T2) Ra g(21, T2) + g(2), 22) and g(z1, 22 + 73) ~a g(z1,22) + g(21, 75).

Now we generalize Lemma 7 to A-approximately k-linear functions. Let g be a A-
approximately k-linear function and A be the symmetric multilinear function uniquely defined
by the condition A(%,...,%) = g(%,...,2). Let e = h — g. e is a A-approximately k-linear
function.

Since g takes k inputs from D,, 4, if we consider each input to g as a coordinate, the set
of all possible k-tuples of inputs of g form a (2n 4+ 1) X --- x (2n + 1) cube of dimension k.

We show that for any point (x1,...,z) in this cube, |e(zy,...,zx)| is bounded.

Theorem 10 The approzimate k-linearity property is (DF D,’is, A, 2kA)-stable. In other

n,s’

k

n,ss then there exists a k-linear h on

words, if a function g is A-approximately k-linear on D

DE  such that ||h — g|| < 2kA.

n,s
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Proof. With h defined as above, e(%,...,%) = 0. First, we argue about points that have

S

one coordinate that is different from 2. Fix & — 1 of the inputs to be % (hard-wire into

g) and vary one (say z;). This operation transforms g from a A-approximately k-linear
function of xy, ...,z to a A-approximately linear function of z;. By Lemma 7, this function

cannot have an error of more than 2A in D, ;. Therefore, |e(%,..., %, z;,%,..., %) < 24,

if |7;] < 2. Next we consider points which have two coordinates that are different from 2

Consider without loss of generality an input a,b,%,...,%. By the result we just argued,
we know that e(2,b,%,...,%) < 2A. By fixing inputs 2 through k£ to be b,%,...,% and
varying the first input, by Lemma 7, we have |e(a,b,2,...,%)| < 4A for any a € D, ;. Via

symmetric arguments, we can bound the error by 4A if any two inputs are different from 2.

Continuing this way, it can be shown that for all inputs, the error is at most 2kA. O

The following theorem shows that the error can be reduced to (1+pu)A for any constant p > 0
by imposing the multilinearity condition on a larger domain D’ and fitting the multilinear
function h on D, where |D'|/|D| = [2k/p]. Note that doubling the domain size only involves

adding one more bit to the representation of a domain element.

Theorem 11 For any p > 0, the approximate multilinearity property is (Dé“kn/w, D,’is, A, (1+
p)A)-stable.

Proof. By Theorem 10, g is 2kA-close to a k-linear h on Doy, 5. For any x = a4,..., 2y,
we fix all coordinates except x; and argue in the ¢-th coordinate as below.

For any D, s, first we show that if |e(z)|p,,, < p then [e(z)|p,, ,, < (p+ A)/2. To
observe this, note that if x € D,, /o5, then 22 € D, ,. Therefore the function should satisfy
e(z)+e(x) ~a e(2z), which implies that |e(z)| < (p+A)/2. Thus, in general, the maximum
error in D, i s is < p/2' + A(1—1/2"). Since the error in Doy, is at most 2kA, the error
in D, is at most (1 + u)A by our choice of parameters. In the multilinear case, we can
make a similar argument by using points which have at least one coordinate x; within the

smaller half of the axis. O
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3 Polynomials

To test programs purportedly computing polynomials, it is tempting to (i) interpolate the
polynomial from randomly chosen points, and then (ii) verify that the program is approxi-
mately equal to the interpolated polynomial for a large fraction of the inputs. Since a degree
d k-variate polynomial can have (d + 1)* terms, this leads to exponential running times.
Furthermore, it is not obvious how error bounds that are independent of the domain size
can be obtained.

Our test uses the same “evenly spaced” interpolation identity as that in [30]: f is a degree
d polynomial if and only if for all x,¢ € D, dil(—l)dﬂfi (d—l_ 1> f(z +it) = 0. This identity
is computed by the method of successive diif:fgrences which never explicitly interpolates the
polynomial computed by the program, thus giving a particularly simple and efficient (O(d?)
operations) test.

We can show that the interpolation identity is approximately robust by modifying the
robustness theorem in [29]. (Section 3.3). Our proof of stability of the interpolation identity
(Section 3.2), however, uses a characterization of polynomials in terms of multilinear func-
tions that previously has not been applied to program checking. This in turn allows us to

use our results on the stability of multilinearity (Section 2.2) and other ideas from stability

theory. Section 3.4 extends these techniques to multivariate polynomials.

3.1 Preliminaries

In this section, we present the basic definitions and theorems that we will use. Define

Vif(x) € fz+1t) - f(o)

to be the standard forward difference operator. Let

Vif(z) €V, -V, f(z) = S (—1)%F (Z) f(x+ kt)

k=0

and Vy, 4, () 7, V., f(x). The following are simple facts concerning this operator.

Facts 12 The following are true for the difference operator V :
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1. V is linear: V(f +¢9) =V [f+ Vg,
2. V is commutative: Vy, 4, = Vi, 4, and

3' vtl-i-tz - th - vtz = th,t2 = Vt27t1.

k
Let 2[¥] denote 7, ..., 2. For any k-ary symmetric f, let f*(z) = f(«*]) denote its diagonal

restriction. We use three different characterizations of polynomials [27, 15].
Fact 13 Let D be a ring. The following are equivalent:
d
1. there exist ag, ... ,aq € D such that Yz € D, f(z) = arx”,
k=0
2. Ya,t € D,V f(x) =0,
d
3. there exist symmetric k-linear functions Fy,, 0 < k < d such thatVx € D, f(z) = > Fi(x).
k=0

The above fact remains true for non-closed domains so long as we insist that the arguments
to f are from the domain.
The following definitions are motivated by the notions of using evenly and unevenly

spaced points in interpolation.

Definition 14 (Strong Approximate Polynomial) A function g is called strongly A-
approximately degree d polynomial on D if YV, t,...,t301 € D such that x+t1+- - -+t411 €
D7 |Vt1,---,td+1g(x)| S A.

Definition 15 (Weak Approximate Polynomial) A function g is called weakly A-approximately
degree d polynomial on D if Vx,t € D such that x +t(d + 1) € D, |VITg(z)| < A.

3.2 Stability for Polynomials

First, we prove that if a function is strongly A-approximately polynomial then there is a
polynomial that (24189¢A, 0)-approximates it. Next, we show that if a function is weakly
approximately polynomial on a domain, then there is a coarser subdomain on which the

function is strongly approximately polynomial. Combining these two, we can show that if
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a function is weakly approximately polynomial on a domain, then there is a subdomain on
which the function approximates a polynomial. By using Theorem 11, we can bring the
above error arbitrarily close to A by assuming the hypothesis on a large enough domain. In

order to pass programs that err by at most A’, we need to set A > (d + 1) - 29A/.

STRONGLY APPROXIMATE CASE.  One must be careful in defining polynomial A that is
close to ¢g. For instance, defining h based on the values of g at some d + 1 points will not

work. We proceed by modifying techniques in [2, 19], using the following fact:

Fact 16 If a function f is symmetric and k-linear, then Vi, . ., f*(x) = kUf(t1, ... te) if
k=dand 0 if k < d.

The following theorem shows the stability of the strong approximate polynomial property.

Theorem 17 The strong approzimate polynomial property is (Dpat2),s, Dn,s, A, O(24'8 1) A)-
stable. In other words, if g is a strongly A-approzimately degree d polynomial on Dy(gi9)s,

then there is a degree d polynomial hy such that ||g — ha||p,, < O(248%)A.

Proof. Note that if z,%1,...,%541 € Dy, then z + 2 + -+ + 41 € D(gy2)n,s- Now, the
hypothesis that g is a strongly A-approximately degree d polynomial on D,,442),, guarantees
that Vo, t1,...,t441 € Dy, |Vi,. 0, 9(®)] < A The rest of the proof uses this “modified
hypothesis” and works with D,, ;.

We induct on the degree. Let e; & lg — ha|. When d = 0, by the modified hypothesis,
we have Vz,t € D, 5, |Vig(z)| < A e, |Vg(0)| = |g(t) — ¢(0)| < A for all t € D,, 5. Setting
ho = ¢(0), a constant, we are done.

Suppose the lemma holds when the degree is strictly less than d + 1. Now, by the
modified hypothesis, we have V¢1,...,t411 € Dny, | Vi1, 9(®)| < A Using Fact 12 and
then our modified hypothesis, we have |Vt1+t'1,t2,...,tdg($) — Vi tot,9(x) — V,yl,tz,._.,tdg(xﬂ =
|Vt1,t'1,...,tdg($)| < A. By symmetry of the difference operator, we have a A-approximate

def Vi...1,9(0). Theorem 10 on mul-

symmetric d-linear function on D, ,, say G(ti,...,%q)
tilinearity guarantees a symmetric d-linear H with |G — H|| < 2dA. Let Hy(z1,...,zq4) =

H(zy,...,zq)/d!. Let ¢'(x) = g(x) — Hj(z) for z € D,, 4.
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Now, we have Vz,t,,...,tq € Dy,

Virotad (@) = |Vi(9(z) = Hy(2))]  (definition of ')

< |vt1 ----- tdg(x) - vtl ~~~~~ tdg(0)| + |Vt1 ----- tdg(o) - th ----- th;({E” (triangle inequahtY)

= |vt1,---,td,$g 0 | + |vt1,---7tdg(0) - vtl,---,th; (x)| (deﬁnition of V)
= |Vi,t,290) +|G(t1, ..., ta) = Vi, 4, Hj(z)|  (definition of G)

(0)
(0)

= [Vi,290)] +|G(t1,. .. ta) —d'Hy(ts,...,ts)|  (Fact 16)
(0)

|Vt1 ..... td@g 0 |—|— |G(t1,...,td) —H(tl,...,td)| (deﬁnition Of Hd)

IN

A+|G(tr,...,tq) — H(t1,...,t5)|  (modified hypothesis on g)
< (2d4+1)A  (since |G — H|| < 2dA).

Now we apply the induction hypothesis. ¢’ satisfies the hypothesis above for d and larger
error A’ = (2d + 1)A and so by induction, we are guaranteed the existence of a degree d — 1
polynomial hy_; such that ||g' — hg_i|| < eg_1A". Set hg = hq_1 + H;. By Fact 13(3) about
the characterization of polynomials, hy is a degree d polynomial. Now, e; = ||g — hql| =
lg —ha1—Hj|| =g — ha1]] < ea 1A =eq 1(2d + 1)A.

Unwinding the recurrence, the final error ||g — hq|| = AT, (20 + 1). O

WEAKLY APPROXIMATE CASE.  We first need the following useful fact [15] which helps

us to go from equally spaced points to unequally spaced points:

d d
Fact 18 For any \i,..., g € {0,1}, if t == Nti/i andty , = At; then
i=1

=1

vtl ~~~~~ tdf(x) = Z (_1)/\1+---+)\dvi Adf(x + tl),q )\d)'

.....

Using this fact, we obtain the following theorem. Let u(d) =lem{1,2,...,d}.

Theorem 19 If g is weakly (A/24T")-approzimately degree d polynomial on Dy(di1,su(d+1)s
then g 1is strongly A-approzimately degree d polynomial on Dy, ;.

Proof. Forty,...,t411 € Dy, and for any Ay,..., Agy1 € {0,1}, we have by our choice of

parameters that ¢) .t .. € Dya+1)su(a+1). Therefore, for x € Dy,

Virotang(@ < 30 VET gl o) <27 (A28 <A
Alyeery )\dJrlE{O,l} L
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3.3 Approximate Robustness for Polynomials

This section shows that the interpolation equation for degree d polynomials is in some
sense, approximately robust. All the results in this subsection are modifications of the
exact robustness of polynomials given in [29]. Let aj = (—1)4+1-* (dH) To self-test P on
D, s, we use the following domains. These domains are used for technical reasons that will

become apparent in the proofs of the theorems in this section.
L. Digtoyn,s
2. T =Dk, 1, where K, = n(d+ 2)(n(d + 1)!)* and L, = s((d + 1)!)?
3. Ti={jr:xeT}tfor0<j<d+1
4. Tij={iz:xe T for0<i,j <d+1

All 7}, T; ; contain D(g42),,s- Now, assume that P satisfies the following properties, which are
similar to the low-degree test in an approximate setting and over different domains. Note
that these properties can be tested by sampling. We use Pr,epl[-] to denote the probability

of an event when x is chosen uniformly from domain D.

d+1

1. 0§k§d+1,§£Dn,s,ten[§ a;P(z +it) ~a 0] > 1 — ¢,
d+1

2. foreach 0 < j <d+1, 0<kl<d+ﬂ"€ﬁwt€T Zaz T +it) A 0] > 1 —¢, and
d+1

3. foreach 0 <i,j <d+1, Zal (x+1t) =a 0] > 1 —e.

0<k<d+1 xe’n],te’l’k prd
d+1
Define g(x) = 0<£2%€1rl1at%n{§: a;P(x + it)}. We obtain the following theorem that shows the
approximate robustness of polynomlals Let & (n,5) be the distribution that flips a fair three-
sided die and on outcome i € {1,2,3}, chooses inputs according to distribution given in the

i-th property above. Let D, ) be the union of the domains used in the above properties.

Theorem 20 The interpolation equation, where inputs are picked according to the distribu-

tion Er(n,s)s 1S (2€,€, Dr(n,s)s Dnyss A, 273N, A)-approzimately robust.
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The rest of this section is devoted to proving the above theorem.
By Markov’s inequality, ¢’s definition, and properties (1) and (3) of P, it is easy to show
that P (A, 2¢)-approximates g:

Theorem 21 If program P satisfies the above three properties, then, for alli,j € {0,...,d+
1}, Preer;  [P(v) =a g(x)] > 1 — 2¢ and Pryep, ,[P(7) =a g(z)] > 1 — 2¢.

Now, we set out to prove that g is a weakly approximate polynomial. Let d(py,p2) = p1
if p1 = py and 0 otherwise. For two domains A, B, subsets of a universe X, let 6(A, B) =
Ysex 0(Pryea[r = s], Pryegly = s]) and call the domains e-close if §(A, B) is at least 1 — e.
Using the definitions of 7,7}, 7; ;, the following fact can be shown:

Fact 22 For any © € D(gia)ns, the domains T; and {x +1t:t € T;} are g = O(1/n?)-close.
For any x, the domains T;; and {x +t :t € T; ;} are e = O(1/n?)-close.

The following lemma shows that, in some sense, g is well-defined, and links it to an interpo-

lation obtained from P:

d+1

Lemma 23 For all x € D(gyo)n,s, ) Regaien Z ajP(x+jt)] > 1 — € and

Pr
nggd-i-l,teTk
d+1

Vi tP;} ) Regaran Z ajP(x + jt)] > 1 —es where e3 =2(d+1)(e + €3) and €4 = (d + 1)e3
€

Proof. Consider 0 < k,l < d+ 1 and t; € Tp,to € T,. For a fixed 0 < 7 < d+1,
using properties of P, and since 7;; and {z + jt| : t; € Ti} are es-close (Fact 22), we get
Pr[P(z + jt1) ma T H aiP(x 4 jty + its)] > 1 — e — 3 and Pr[P(z + ity) ~a Y95 o P(z +
jti+ity)] > 1—€—ep. Summing over all 0 < 4, j < d+1 and noting that Y% a; A < 29H1A

Pr(Y % o P(z+jt1) Rgavin D) opP(x+its)] > 1—2(d+1)(e+€2) = 1 —e€3. Using Lemma
43 (see Section 4.3), we can show that with a relaxation of twice the error, this probability
lower bounds the probability in the first part of the lemma. The second part of the lemma

follows from the first via a simple averaging argument. O

Now, the following theorem completes the proof that ¢ is a weakly approximate degree d

polynomial.
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d+1
Theorem 24 For allz € Digiopm,s, Vi € {0,...,d + 1}, P;[g(x) Ngarapn P ajg(z+jt)] > 1 — €5
i =
where €5 = €4+ (d+1)(2e+€;) andVz,t € D, -, [|V‘Prl (z)] < 273A] > 1 — (d+ 1)(2¢5 + €1)

Proof. It is implied by Theorem 21, Lemma 23 and the closeness of the domains 7; ;
d+1
and {z +t:t € T;;} that Vo € Do, Vi, Pr ) Rgirzn Za] (x+jt)] > 1—¢4 and

th’; [9(x + jt) ma Pz + jt)] > 1 — 2¢ — €. Summlng the latter expressmn and putting them
together, we have the first part of the lemma. The second part follows from the first part
and the fact that 7; and {t + jt; : t; € T} are €;-close (Fact 22). O

For an appropriate choice of ¢, ¢, €5, we have a ¢ that is a weakly (2¢73A)-approximately

degree d polynomial on D, ; with g (A, 2¢)-approximating P on D, ;.

3.4 Multivariate Polynomials

The following approach is illustrated for bivariate polynomials. We can easily generalize this
to multivariate polynomials. It is easy to show that the approximate robustness holds when
the interpolation equation [30] is used as in Section 3.3, i.e., for any k-variate polynomial P
of total degree d, the following interpolation equation is satisfied for all z,t € Dﬁ,é

d+1

> a;P(z +it) = 0.

i=0

An horizontal azis parallel line for a fixed y is the set of points I, , = {(z + kh,y) : k €
Z}. A vertical axis parallel line is defined analogously. As a consequence of approximate
robustness, we have a bivariate function g(x,y) that is a strongly approximately degree
d polynomial along every horizontal and vertical line. We use this consequence to prove
stability.

The characterization we will use is: f(x,y) is a bivariate polynomial (assume degree in
both = and y is d) if and only if there are d + 1 symmetric k-linear functions F(y1, ..., yx) :
D* — Pp|x] where the range is the space of all degree d univariate polynomials in z.

For each value of y, g,(x) is a strongly approximately degree d polynomial. Using the
univariate case (Theorem 17), there is an exact degree d polynomial P,(x) such that for

all z, g(z,y) ~giwap P,(z). Construct the function ¢'(z,y) = P,(z). Let A’ = 24184\,
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Now, for a fixed z (i.e., on vertical line) for any y, using V,, ..., 9(z,y) =a 0, we have
Vit 9 (@,y) =a 0. Thus, ¢'(z,y) is a bivariate function where along every horizontal
line, it is an ezact degree d polynomial and along every vertical line, it is a strongly A’-
approximate degree d polynomial. Interpreting ¢'(z,y) as ¢.(y) and using the same idea
as in univariate case, we can conclude that V(ti,...,t;) : D¢ — Pplz] is a symmetric
approximate d-linear function (here, we used the fact that ¢/ (y) € Pp[z]). The rest of the
argument in Theorem 17 goes through because our proofs of approximate linearity (Lemma
7) and multilinearity (Theorem 10) assume that the range is a metric space (which is true for
Pplx] with, say, the Chebyshev norm). The result follows from the above characterization

of bivariate polynomials.

4 Functional Equations

Extending the technique in Lemma 7 to addition theorems f(x +y) = G[f(x), f(y)] is not
straightforward, since GG can be an arbitrary function. In order to prove approximate robust-
ness (Section 4.3) and stability (Section 4.2), several related properties of G are required.
Proving that G satisfies each individual one is tedious; however, the notion of modulus of
continuity from approximation theory gives a general approach to this problem. We show
that bounds on the modulus of continuity imply bounds on all of the quantities of G' that we
require. The stability of G is shown by a careful inductive technique based on a canonical
generation of the elements in D, s (Section 4.2). The scope of our techniques is not only

limited to addition theorems; we also show that Jensen’s equation is approximately robust

and stable. (Section 4.2.4)

4.1 Preliminaries

For addition theorems, we can assume that G is algebraic and a symmetric function (the
latter is true in general under some technical assumptions as in [28]). We need a notion of

“smoothness” of G. The following notions are well-known in approximation theory [25, 33].
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Definitions 25 (Moduli of Continuity) The modulus of continuity of the function f :
D — R is the following function of 6 € [0,00) :

w(f;0) = sup {|f(z1) — fl22)]}-

|2y —w2|<6
z1,22€D

The modulus of continuity of the function f : D* — R is the following function of 0,9, €
[0, 00)? :
w(f; 0z, 0y) = sup {1f(z1,91) — f(z2,92)[}-

|21 —22|<dz,ly1 —y2|<dy
xl)y17a‘.27y2€D

The partial moduli of continuity of the function f : D*> — R are the following functions of
d €1[0,00) :

w(f;0,0) =sup sup {|f(z1,y)—f(z2,9)|} and w(f;0,6) =sup sup {|f(z,y1)—f(z,y2)[}-

YED |z —z3|<5 ZED |y; —ya|<s
z1,22€D y1,y2€D

We now present some facts which are easily proved.
Facts 26 The following are true of the modulus of continuity:
1. 0 <w(f;0) Swl(f;d) if 6 <65
2. If f', the derivative of f exists, and is bounded in D, then w(f;d) < || f'llp;

3. w(f;0,0) <w(f;0,0)+w(f;0,0), and if f(-,-) is symmetric, thenw(f;0,0) < 2w(f;0,0);

and

4. If fl is the partial derivative of f with respect to x, then w(f;0,0) < o||fL|p-

We need a notion of an “inverse” of G. If G[z,y] = z, denote G1'[z,y] = z,G5'[z,2] = v.

Since G is symmetric, G;' = G5 ' and we denote G~'[z, y] = =.

AN EXAMPLE. Wherever necessary, we will illustrate our scheme using the functional

f(x)f(y)
f(x) + f(y)

equation is f(z) = C'/x for some constant C'. The following fact [34] is useful in locating the

equation f(x +y) = , i.e., G[z,y] = zy/(x + y). The solution to this functional

maxima of analytic functions.

Fact 27 (Maximum Modulus Principle) If f is analytic in a compact set D, then f

attains extremum only on the boundary of D.
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Over a bounded rectangle D = [L,U]?, where 0 < L < U, G is analytic and hence by

Fact 27, attains its maximum on the boundary. G € C'[L,U] in D (i.e., is continuously

differentiable). We have G [z,y] = y?/(z + y)? which is a decreasing function of z. By Fact

27, |G| attains a maximum when :(SLQ, giving @5 = G- (-, y)|| = v*/(L + y)*. Therefore,
y U

using Fact 26(4), w(G;9,0) < su = .
& (4), ) ye[LI,)U} (L+y)»? (L+U)

4.2 Stability for Functional Equations

In this section, we prove (under some assumptions) that, if a function ¢ satisfies a func-
tional equation approximately everywhere, then it is close to a function h that satisfies
the functional equation exactly everywhere. Our functional equations are of the form

g(x +vy) = Glg(z),g(y)], where G is a symmetric algebraic function.

9(7)g(y)

9(7) +g(y)

. . h(x)h(y)
there is a function h such that h(x +y) = ———=—
@D = 5+ hiy)
for some A’ > 0 and all valid . The domains for the valid values of z, y, as well as the

EXAMPLE. If g satisfies g(x + y) ~a for some A > 0 and for all valid z, y, then

for all valid z,y, and h(z) ~a g(x)

relationship between A and A’ will be discussed later.

In the following sections we show how to construct the function h that is close to g,
satisfying a particular functional equation. Given such an h, let e(x) denote |h(x) — g(z)|,
ie., h(z) =em) g(x). For simplicity, let H;(x) © Gz, 2]. Note that Hi(h(z)) = h(2z).
We assume that w(Hy;0) < ¢d; our results thus hold for functions where the modulus of
continuity is linear in . We will be making this assumption for our moduli of continuity
when appropriate.

We consider the cases when ¢ < 1, ¢ = 1, and ¢ > 1, first show how to obtain A, and
then obtain bounds on e(x). Then, we can conclude that h, which satisfies the functional
equation everywhere, also approximates g; i.e., the functional equation is stable.

Call £ even (resp. odd) if = is even (resp. odd).

4.2.1 When c<1

We begin by assuming that n is a power of 2, i.e., let n = 2¥ in D, ;. We first construct h

by setting h(1) = g(%). This determines h for all values in D by the fact that & satisfies the

26



functional equation.

We obtain a relationship between the error at x and 2x using the functional equation.
Lemma 28 ¢(2z) < ce(z) + A.

Proof. e(2z) = |g(2z) — h(22)| < A+ |G[g(z), g(x)] — G[h(z), h(x)]|. But, rewriting, and
using the definition of the modulus of continuity, |H;(g(x))—H;(h(z))| < w(Hi;e(x)) < ce(x)

|

We explore the relationship between e(z+1) and e(z). For simplicity, let Hs(z) el g(3)].
Note that Hy(h(z)) = h(z+1). We again consider functions where the modulus of continuity
is bounded by a linear function in 6, i.e., w(Hy;6) = [Hj(-, g(+))| < db for some constant d.

Now,
Lemma 29 e(x + 1) < de(x) + A.

Proof. e(z+ 1) = |9z + 1) — h(z + I)] < A+ |Glg(z),9(3)] — Gh(z),h(})]]. But,

S

Glg(2), 9(5)] = Glh(x), h(3)] = [Halg(2)] = Ho[h()]] < w(Hy; e(x)) < de(z). M

S

We will show a scheme to bound e(x) for all x when d < 1. This scheme can be thought of
as an enumeration scheme, where at each step of the process, certain constraint equations
have to be satisfied. We construct a binary tree T}, with nodes labeled with elements from
D;;, where 28 = n. The root is labeled L. If x is the label of a node, then 2z is the label
of its left child (if 2z is not already in the tree). and x + © is the label of its right child (if

o+ L is not already in the tree). It is easy to see that, if x is even (except root), then z is a
s y y

left child; if x is odd, then z is a right child.

Lemma 30 Let w(Hy;d) < c¢d,w(Hs;6) < dd with ¢,d < 1. For all x € D}, if x is even,

then e(x) < A and if x is odd, then e(x) < - A.

Proof. We will prove this by induction on the preorder enumeration of 7). Let x be the
next element to be enumerated. By preorder listing, its parent has already been enumerated
and hence, its error is known. If x = 2y is even, it is a left child, and hence generated by a 2y
operation. e(y) < 2=A by the induction hypothesis. This together with Lemma 28 yields
e(r) < ce(y)+ A< C%CA +A< %SA, preserving the induction hypothesis. If z = y + %
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is odd, it is a right child, and hence generated by a y + 1 operation. But, y is even, so
e(y) < %A by the induction hypothesis. This together with Lemma 29 and d < 1 yields
e(z) <de(y) + A <e(y) + A < A + A < A, preserving the induction hypothesis. O

This yields the following theorem:

Theorem 31 Let w(Hy;6) < ¢d,w(Hs;0) < d§ with ¢,d < 1 and let n be a power of 2.
Then, the addition theorem is (D}, D A, -2 A)-stable.

n,s? “n,sr = 1—¢

With our example, we have Hi(x) = G[z,z] = x/2 and so ¢ = 1/2. Also, Hy(z) =
Glz, g(1)] from which Hj(z) <1as 0 < L < x,g(). Thus, d < 1. By Theorem 4.2.1, we
have e(r) < 4A for all z € Df .

When n is not a power of 2, we can argue in the following manner. From our proof, we
see that we use very specific values of x,y in the approximate functional equation. Let i be
such that 27" < n < 2" and let D' = Dyi ;. We extend D} to D' and define values of g at
D'\D: at even z (= 2y) let g(x) = H1(g9(y)) and at odd = (=y+ 1) let g(x) = Hay(g(y)).
These can be thought of new assumptions on g which are satisfied “exactly” (i.e., without

error A). We can use Lemma 30 to conclude that there is a linear h on D’ that is 72 A close

D,,.s (0 for simplicity). Now, we have h(—z) = G~'[h(z), h(0)]. Therefore, as in Theorem ,

we have e(—z) < w(G ).

to g. Hence, h is close to g even on D:{’s. To argue about D_ ., we pick a “pivot” point in

When d > 1, the error can no longer be bounded. In this case, we have ¢ < 1 < d. Let
r = c¢d. We can see from the structure of T} that the maximum error can occur at L;l
By simple induction on the depth of the tree, the error is given by e(%) < SR 2+
dVEA = (d+ 1) X2 A = (d+1)

rk

;_II_IA. If r < 1, we obtain a constant error bound of

e(x) < (d+1)7=A by geometric summation. Otherwise, we obtain e(z) = O(r'¢").

4.2.2 Whenc>1

In this case, we require additional assumptions. We define the quantity

w_l(f;é): sup {|z1 — z2|}-
1f (21)—F(2)I<8
z1,22€D
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Note that w(f;d) < c¢d implies w'(f;d) > 6/c. Now, we assume that w='(f;d) < §/c, for
some ¢ > 1.

Set h(%) = g(%) Since h satisfies the addition theorem, this can be used to fix all of A,
if H7' is well-defined. Let e(x) = |g(z) — h(x)| as before.

As before, we first obtain a relationship between the error at z and at 2x using the

addition theorem.
Lemma 32 e(x) < (e(2z) + A)/c.

Proof. We have as in Lemma 28, |H;(g(x)) — Hi(h(z))] < e(2x) + A. By definition of w™!
and our assumption, we get e(r) < w™'(Hy;e(2x) + A) < (e(2z) + A) /. O

For simplicity, let Hy(z) % G 1g(Z),Z — 2]. We assume that w(Hs;d) < dd for some

s/? s

constant d. The following lemma can be proved easily.
Lemma 33 e(z) < de(% —x)+ A.

e(%) = 0 by our construction. We adopt a scheme similar to the one in the previous section.
Construct a binary tree T} with nodes labeled with elements from D, .. The root is labeled
%. If x is the label of a node and z is even, then /2 is the label of its left child (if /2 is
not already in the tree). and % — x is the label of its right child (if % — z is not already
in the tree). It is easy to see that if x < 2’“% (except the root), then x is a left child and if
T > 2’“%, then z is a right child. We use the preorder enumeration of DTJ{’S using T} to prove

the following lemma, in the spirit of the proof of Lemma 30.

Lemma 34 For all x € DF

n,s’
e(r) < HCA.

1—¢

if v < 2%1 and d < 1, then e(z) < 25 A and if > 2’“% then

1—¢

This yields (under the assumptions on w™!(H;;6) and w(Hs;d)), the following theorem:

Theorem 35 Let w Y(Hy;d) < §/c,w(Hs,d8) < d§ with d < 1 and let n be a power of 2.
Then, the addition theorem is (D ,, D, A, S A)-stable.

n,s’ — n,s’ ) 1—¢

This case arises for linearity where H;(x) = G[z,z] = 2z and so ¢ = 2. Using the above

theorem, we get a weaker bound of e(xz) < 3A (as opposed to < 2A by Corollary 8). Similar

29



techniques as in previous section can be used to argue about D,, ; and when n is not a power
of 2.

The case when d > 1 can be handled by schemes as in the previous section.

4.2.3 When c=1

In this case, it means that w(H;;0) = § or in other words, by Fact 26(2), ||H{|| = 1. By
Fact 27, the maximum occurs only at the boundary of the domain. Hence, we can test by

looking at a subdomain in which the maximum is less than 1.

4.2.4 Jensen’s Equation

Jensen’s equation is the following: Vx,y € Dn,s,f(‘”Tﬂ/) = w The solution to this
functional equation is the set of affine linear functions i.e., f(z) = ax + b for some constants
a,b. Jensen’s equation can be proved approximately robust by modifying the proof of its
robustness in [28]. We will show a modified version of our technique for proving its stability.
As before, we have Vz,y € Dy, g(xTer) SN w. To prove the stability of this equation,
we construct an affine linear h. Note that two points are necessary and sufficient to fully

determine h. We set h(%) = g(%) and h(0) = g(0).

Lemma 36 ¢(*¥) <e(z)/2+e(y)/2 + A.

Proof. e(w_ﬂ/) — |g(%) _h(:vTer)| <A+ |g(w)42rg(y) _ h(fv);rh(y) . But, |g(fv);h(fv) + g(y);h(y)| —

e(r)/2 +e(y)/2. O

The following corollary is immediate.

n
2

Corollary 37 e(5) < A+e(x)/2 and e(Z2) < A +e(x)/2.

Proof. Since for y =0 and y = %, e(y) = 0 in Lemma 36. 0

We construct a slightly different tree T} in this case. The root of Ty is labeled by 2 and if
is the label of a node, then x/2 (if integral and not already present) is label of its left child
and (2 4 x)/2 (if integral and not already present) is the label of its right child.

Theorem 38 The Jensen equation is (D)., D ., A, 2A)-stable.

n,s? ~n,s?
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Proof. The proof is by induction on an enumeration order of T} given by, say, a breadth-
first traversal. Clearly, at the root, e(%) = 0 < 2A. Now, if e(x) < 2A, then, consider its
children. Its left (resp. right) child (if exists) is 2/2 (resp. (z + 2)/2). Thus, by Corollary

37, we have e(2) < A +e(x)/2 < 2A (resp. e(“5=) < A +e(x)/2 < 2A), 0

n
s
2

4.3 Approximate Robustness for Functional Equations

As in [20, 29], we test the program on Dy, ; and make conclusions about its correctness on
D, s. The relationship between p and n will be determined later. The domain has to be such
that G is analytic in it. Therefore, we consider the case when f is bounded on Dy, i.e.,

0< L < f(x) <U. Let G be the family of functions f that satisfy the following conditions:

L Pr[fa) > L] >1—¢

$€D2p,s

2. Pr [f(z) <UI>1-¢

$€D2p,s

3. Pr [G[f(z),f(y)]>L]>1—¢, and

mayEDQPxS

4. Pr [G[f(z), f(y)]<U]>1—¢.

mayEDQp,s
Note that the membership in G is easy to determine by sampling. We can define a distribution
Er(n,s) such that if P satisfies the functional equation on &, 5y with probability at least 1 —e¢,

then P also satisfies the following four properties.

1. Pr [P(x+y)~a G[P(),PR)]] >1—e

m,yEDp,s

2. Pr [P(z)=a G[P(x—1y),P(y)]] >1—c¢,
3. Pr [P(z) =a G[P(y),P(x—y)]] >1—¢, and

4. Pr [P(x) ~a G[P(z —y),P(y)]] > 1 —e.

ZBEDn,s,yEDp,s
Er(n,s) is defined by flipping a fair four-sided die and on outcome i € {1,2,3,4}, choosing
inputs according to the distribution given in the i-th property above. Let G = ||G"||p. We

can then show the following:
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Theorem 39 The addition theorem with the distribution £;q, 5 is (2€, €, Doy s, Dp 5, A, (9CA¥Z+

5@)A, A)-approzimately robust.

Define for z € D, 4, g(z) = mgcplian{G[P(x — 1), P(y)]}. By Markov’s inequality, definition
Yy&Llp,s
of g, and the properties of P, it is easy to show the following:

Lemma 40 Pr,cp, [g(x) ~a P(z)] > 1 — 2e.

Proof.  Consider the set of elements # € D, such that Pryep, [P(z) ~a G[P(z —
y),P(y)]] < i. If the fraction of such elements is more than 2e, then it contradicts hy-
pothesis (4) on P that Pryep, , yep, . [P(z) #a G[P(xz —y), P(y)]] > 1 — €. For the rest, for
at least half of the y’s, P(z) ~a G|P(x —y), P(y)]. By defining ¢ to be the median (over y’s

in D, 5), we have for these elements g(x) ~a P(x). O

For simplicity of notation, let P, denote P(z) for any « € D, ; and G, denote G[P(x), P(y)]
for any z,y € D, ,. Since G is fixed, we will drop G from the modulus of continuity.

A distribution U’ on D is said to be e-uniform on D if Y, cp |U'(x) — 1/|D|| < €. Let

v =n/2p.
Fact 41 (1) For all © € Dy, s, the distribution of x +y is y-uniform on D, .

(2) For any event E(x) and for an e-uniform distribution U' on D, |Pr,.p[E(x)] —
Pryep[E(z)]| <e.

Lemma 42 Forx € Dy, s, P
y

,zEZI)'p,S [Gx_yyy R2w(A,0) Gm—z,z] >1—12¢ — 47‘

Proof. y’zggp,s Gy Rwa0) GlGa sy Pyl = GPo 2, Gyl Ru,n) Gosz] > 1 — 126 — 4.
The error in the first step (due to computation of P,_,) is w(A,0) and the equation holds
with probability at least 1 — e — ~ by property (3) and Fact 41. The bounds on G,_, .,
also hold with probability at least 1 — 2e — 2y by properties (3), (4) and Fact 41 and so
the error is just w(A,0). The next line is just rewriting. In a similar manner, the final
equation holds with probability at least 1 — e — ~ by property (2) and Fact 41 and the error
bound is w(0, A) The bounds on random points P,, P,, P,_,, P,_, hold with probability at

least 1 — 8¢ by properties (1), (2) on P to make the error w(0, A). Hence, the total error is
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w(A,0) +w(0,A) = 2w(A,0) by Fact 26(3) and the equality holds with probability at least
1 —12¢ — 4. |
The following lemma, which helps us to bound the error, is from [23]. The proof uses the
observation that the clique number of G? is at least as big as the maximum degree in G.
Hence, for a random node z, probability that x is present in the largest clique in G? is more

than the probability that z is connected to the maximum degree vertex (say y) in G.

Lemma 43 ([23]) If G = (V,E) is a random graph with edges inserted with probability
1 —¢, then G*> = (V,{(z,y) : 3z € V,(x,2) € E A (2,y) € E}) is a graph where the largest

clique is of size at least (1 —€)|V|.
The following shows, in some sense, that g is well-defined:

Lemma 44 For all ¥ € Dy, Pryep, [9(®) ~oar Gayyl > 1 — 12¢ — 4y, where A’ =
2w(A,0).

Proof. We have the following: for all z € Dy, 4, Pry .cp, , [Gaeyy Bar Gz 2] > 1—-12e—47.
Now, we use Lemma 43. If G denotes a graph in which (y, z) is an edge iff G,_,, ~ar Gu—s
then G? denotes the graph in which (y, z) is an edge iff G,_,, ~oar G,—,.. Now, using
Lemma 43, we have that number of elements that are 2A" away from the largest clique is at
most 2e. Thus, at least 1 — 2¢ of elements are within 2A’ of each other. If € < 1/2 and since

g(x) is the median, the lemma follows. O

Now, the following theorem completes the proof that g satisfies the addition theorem ap-

proximately.

Theorem 45 For all v,y € Dy, g(v +y) ~ar Glg(x),g(y)] with probability at least 1 —
56€ — 147y, where A" = (9G? + 5G)A.

Proof. Pr [G[g(l‘), g(y)] %w(2A’,2A’) G[Gu,mfua Gv,yfv]

u,vEDp s
- G[Py, G[Po—ys Guys]]
— G[Py, GGy, Pyy]]
Rw0wn,0) GlPu, Gautoy—o
Ron)  Gumiyn

N 9(z +y)] > 1 —56e — 14y
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By Lemma 44, the first equality holds with probability 1 —24e—8~ and error w(2A’, 2A"). By
property (4), the bounds on G, ;_, G, ,_, hold with probability at least 1 — 4e to make the
error w(2A’,2A") < 2w(2A',0) = 4w(A’,0) = 8w(w(A,0),0) by Fact 26(3). The second and
third equalities are always true. The fourth equality holds with probability at least 1 —e — v
by property (1) and Fact 41 on P and the error accrued is w(0,w(A,0)). The bounds on
P,,P, ., P, P, ., Gy ,, hold with probability at least 1 —10e by properties (1)-(4) to make
the error w(0,w(A,0)) = w(w(A,0),0). The fifth equality also holds with probability at least
1 — € — 7 by property (1) on P and the error accrued is w(0,A) = w(A,0), after bounds
on P,, P4, (with probability at least 1 — 4¢). The final equality holds with probability
at least 1 — 12¢ — 4 by Lemma 44 and error is 2A” = 4w(A,0). Thus, the total error is
9w(w(A,0),0) + 5w(A,0). But, w(A,0) < AG by Fact 26(4). Hence, w(w(A,0),0) < AG2.

a

If € < 1/112,p > 14n, we have 1 — 56¢ — 14y > 0 and so the above lemma is true with
probability 1. In the case of our example function, we already calculated G = U%/(L + U)?2.

QU4 5U2
H A=A .
((L P TR g U)?)

5 Approximate Self-Testing and Self-Correcting

In this section we briefly show how to apply our techniques that we developed in this paper to

construct approximate self-tester and self-correctors. The approaches in this section follow

8, 20].

5.1 Definitions

The following modifications of definitions from [20] capture the idea of approximate checking,
self-testing, and self-correcting in a formal manner. Let P be a program for f, x € D, ; an

input to P, and [ the confidence parameter.

Definition 46 A (A, Ay, D;.5), Dy s)-approximate result checker for f is a probabilistic
oracle program T that, given P, v € D, 5, and (3, satisfies the following:

(1) P (Ay,0)-approzimates f on Dy = Pr[T outputs “PASS”] > 1 — f.
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(2) P(z) %n, f(x) = Pr[T? outputs “FAIL”] > 1 — j3.

Definition 47 A (A, Ay, €, D;(n,s), Dy s)-approximate self-tester for f is a probabilistic or-
acle program T that, given P and (3, satisfies the following:

(1) P (Ay,0)-approzimates f on Dy(ns = Pr[T" outputs “PASS”] > 1 —f.
(2) P does not (Ag,€)-approzimate f on D, s = Pr[T" outputs “FAIL”] > 1 — 0.
Observe that if a property is (0, €, D;(5.5), D5, A1, Ao, Ag)-approximately robust, (D5, Dyt o1, Ao, Ay)-

stable, and it is possible to do equality testing for the function family satisfying the property,
then it is possible to construct a (Ay, Ag + Ay, €, D,, 5, Dy )-approximate self-tester.

Definition 48 A (A, ¢, A’, D;(,5), Dy s)-approximate self-corrector for f is a probabilistic
oracle program SC? that, given P that (A, €)-approzimates f on Dy, © € Dy, and [,
outputs SCY (z) such that Pr[SCY (z) ~ar f(z)] > 1 — B.

Note that a (A1, Ag, €, Dr(n 5), Dy s)-approximate self-tester and (Aq, €, Az, D7 s), Dn,s)-approximate
self-corrector yield a (A1, Az, D;(s,5), Dn,s)-approximate result checker [8].

5.2 Constructing Approximate Self-Correctors

We illustrate how to build approximate self-correctors for functional equations. Suppose P
(A, €)-approximates f for e < 1/8 and f(z +y) = G[f(z), f(y)]. Then the self-corrector SC}

at input x is constructed as follows. To obtain a confidence of f3:
1. choose random points 41, ys, ..., yn(N = O(In1/5)),
2. let SC?(I) be the median of G[P(z — y1), P(v1)],- .., G[P(x — yn), P(yn)].

By the assumption on €, both the calls to P on z—y; and y; are within A of f with probability
greater than 3/4. In this case, the value of G[P(x —y;), P(y;)] is A’ = 2AG away from f(z)
(see Section 4.1 for G). Using Chernoff bounds, we can see that at least half of the values
G[P(x — y;), P(y;)] are at most A" away from f(z). Thus, their median SC?(I) is also at

most A’ away from f(z).
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For degree d polynomials, a similar self-corrector works with A’ = O((d + 1)2¢A). In
order to pass good programs, this is almost the best A’ possible using the evenly spaced
interpolation equation since the coefficients of the interpolation equation are ©(2¢). Using
interpolation equations that do not use evenly spaced points seem to require A’ that is

dependent on the size of the domain.

5.3 Constructing Approximate Self-Testers

The following is a self-tester for any function satisfying an addition theorem f(z +y) =
G[f(z), f(y)] computing the function family F over D, . We use the notation from Sec-
tion 4.1. To obtain a confidence of 3, we choose random points z1,y1,...,2y,yn(N =
O(1/eln1/pB)) and verify the assumptions on program P in the beginning of Section 4.3. If
P passes the test, then using Chernoff bounds, approximate robustness, and stability of the
property, we are guaranteed that P approximates some function in F. We next perform the
equality test to ensure that P approximates the given f € F. Assume that f (%) when ¢ < 1
(resp. f(%) when ¢ > 1) is given. Using the proofs in Section 4.2, one can show that if there
is a constant A such that SCF (1) ~a f(1) when ¢ < 1 ( SCY(2) ~a f(%) when ¢ > 1),
the error between SC? and f can be bounded by a constant on the rest of D,, ;. Since SC?
approximates P, the correctness of the self-tester follows.

For polynomials, we use random sampling to verify the conditions on program P required
for approximate robustness that are given in the beginning of Section 3.3. If P satisfies
the conditions then using the approximate robustness and stability of the evenly spaced
interpolation equation, P is guaranteed to approximate some degree d polynomial h. To
perform the equality test that determines if P approximates the correct polynomial f, we
assume that the tester is given the correct value of the polynomial f at £ = (d+1)/e evenly
spaced points 1 = —%,..., 2y = 7 € D,,. Using the self-corrector SC}D from Section 5.2,
we have ||[SC} — hl| < A" = (d+1)272¥8¢A. The equality tester now tests that for all z;,
|f(2;) —=SCF (z;)] < (d+1)2¢A. Call an input x bad if | f(z) — h(z)] > A" = A"+ (d+1)2¢A.
If z is bad then |f(z) — SC}(z)| > (d + 1)2?A. If z is a sample point, and z is bad, then

the test would have failed. Define a bad interval to be a sequence of consecutive bad points.
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If the test passes, then any bad interval in the domain can be of length at most (2n +1)/¢,
because any longer interval would contain at least one sample point. The two sample points
immediately preceding and following the bad interval satisfy | f(z) —h(x)| < A”. This implies
that there must be a local maximum of f —h (a degree d polynomial) inside the bad interval.
Since there are only d extrema of f — h, there can be at most d bad intervals, and so the total
number of bad points is at most d(2n + 1)/¢. Thus, on 1 — € fraction of D, 4, SC?’S error is
at most A’ + A”. These arguments can be generalized to the k-variate case by partitioning
the k-dimensional space into ((d + 1)/e)* cubes.

We have thus shown how to construct approximate self-testers and self-correctors. It is

straightforward to construct approximate result-checkers using these.

5.4 Reductions Between Functional Equations

This section explores the idea of using reductions among functions (as in [7, 3]) to obtain
approximate self-testers for new functions. Consider any pair of functions fi, fo that are
interreducible via functional equations. Suppose we have an approximate self-tester for f;
and let there exist continuous computable functions F, F'~! such that fo(z) = F[fi(z)] and
fi(x) = F7Y(fz(z)). Given a program P, computing f,, construct program P, computing
f1 via F~!. We can then self-test P;. Suppose P; is A-close to f; on a large portion of the
domain. Then for every x for which P;(z) is A-close to fi(z), we bound the deviation of
Py() from f3(z) by A = F[f()+A] fo(x). Then A’ = FLf;(x)+A]~ F[fi(2)] < w(F;A).
If we can bound the right-hand side by a constant (at least for a portion of the domain), we
can bound the maximum deviation A’ of P, from f;. This idea can be used to give simple
and alternative approximate self-testers for functions like sin x, cos x, sinh z, cosh  which can
be reduced to e*.

For example, suppose we are given a (41, €1, 09, €2, D, D’)- approximate self-tester for
f1(z) = e” and we want an approximate self-tester for the function f, given by fo(x) = cos z.
By the Euler identity, fi(iz) = fo(z) + if2(x + 37/2). Given a program P, that supposedly
computes f,, we can build a program Py, (for €%) out of the given P, (for cosz) and self-test

Pi. Pi(ix) = Py(x) +iPy(x 4 37/2).

37



Let the range of f; be equipped with the following metric: |P(z) — fi(z)| = |R(Pi(x) —
fi(@)] +|S(Pi(x) — fi(z))]- In other words, in our case, we have |P(z) — €| = |Py(x) —
cos x| + | Py(x + 37 /2) — cos(x + 3w/2)|. This metric ensures that P is erroneous on z if and
only if P, is erroneous on at least one of z;, z + 37 /2. Alternatively, there is no “cancellation”
of errors.

Suppose P; is (01, €1)-good. Then, what can we say about P»? For §; fraction of the
“bad” domain for P;, the errors can occur in both the places where P; is invoked. Hence, at
most 26, fraction of the domain for P, is bad. The rest of the domain for P; is €;-close to
f1, which by our metric implies P, is also €;-close to fo. Thus, Ps is (201, €;)-good.

Similarly, suppose P; is not (ds, €2)-good. Py is not good on at least d5 fraction of the
domain, where P; is not ex-close to f;. Thus, at these points in the domain, at least one of
points where P, is called is definitely not e5/2-close to fo. Thus, P, is not (dy, €2/2)-good.

Therefore, we have an (201, €1, 0y, €2/2, D, D')- approximate self-tester for f from a (91, €1, d2, €2, D, D’
approximate self-tester for f;, given by [20].
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A Proofs of Some Theorems for Linearity

Theorem 49 (Hyers’ Theorem) Let S be an Abelian semigroup and B be a Banach space
and let g : S — B be such that for some A > 0, g is A-approrimately linear on S, then, for
every x € S, h(x) = lim,_,» g(2™x) /2" exists, h is linear, and ||g — h|| < A.

Proof. ([17]) By induction on n, |g(z)/2" — ¢g(z/2")| < A(1 — 1/2"). Let g,(x) =
g(2"z)/2". Then, q,(z) — qn(x) = (g(2m "2"x) — 2™ "g(2"z))/2™. If m < n, we can
obtain |g,(z) — gm(z)] < A(1 — 2™~ ™)/2™. Thus, for x € S, {g,(x)} is a Cauchy sequence
and by completeness of B, it has a limit function h(x) = lim,,_,», g(2"z)/2". The properties

of h are easily proved. O

Theorem 50 (Skof’s Theorem) Let n > 0 and let g : [0,n) — R be such that for some
A>0, |lglx+y)—gx)—gly)| <A for all0 < z,y < n (such that x + y < n), then, there
exists a linear h : R — R such that ||g — h||jpon) < 3A.
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Proof. For any x € R", write z = p(n/2) + ¢ where 0 < ¢ < n/2. Define ¢ : Rt - R
such that ¢'(z) = pg(n/2) + g(q). Clearly, ||g’' — g/po,n) < A. Now, the claim is ¢'(z +y) ~2a
g'(z) + ¢'(y). As before, z = p(n/2) +q,y =r(n/2) +s with 0 < ¢, s < n/2.

0<qg+s<n/2. Wehave, ¢'(x+y) =g(g+ )+ (p+7)g(n/2) ~a g(q) + g(s) + pg(n/2) +
rg(n/2) = g'(x) + ¢'(y).
n/2<q+s<n. Let g+s=1t+n/2. We have ¢'(z+y) = g(t)+ (p+7)g(n/2)+g(n/2) ~a

9(q) +g(s) +pg(n/2) +rg(n/2) = g'(x) + ¢'(y).

To extend ¢' to R, define for © < 0, ¢'(z) = —¢'(—x). Thus, Vz,y € R, ¢ (x + y) ~aa
g'(x) + ¢'(y). By Theorem 49, there is a linear h such that ||¢" — h|| < 2A. Therefore,
lg = llomy < 119 = gl + 19" = Bllpmy < 3A. D

B Proofs of Some Theorems for Polynomials

B.1 Stability for Polynomials

Fact 12 (Vy41, — Vi, = Vi) f(2) = Vit = Vigs, .

Proof. (Vi11,—Vi, —Vy,)f(z) = fx+ti+ta)— f(x)— flr+t)+ f(2)— flz+t)+ f(2) =
flo+ti+to) = fla+t) = flrt+t)+ f(x) = Vi fa+t2) =V, f(z) = Vi (f(x+1t2) — f(2)) =
Vi f(@) = Vi, f(2). O

Difference operators act on multilinear functions in a nice manner, which is captured in the

following fact.

Fact 51 If f is a k-linear function, then Vi, 4, f*(x) = k'f(t1,...,te) if k = d and 0 if
k<d.

Proof. Recall that, due to multilinearity, f is also symmetric. By induction on k. Chasing
deﬁnitions? we have vtl,...,tdf*('r) = vtl,...,td_l (f*(l'+td)—f* (fL')) = vtl,...,td_l (f((l' + td)[dil}v 1‘)4—
F(z+t)!" U ty) — f(2[™)), which by linearity of V yields Vi, f((x+ )" Y ta) +
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Vi (f((@+ 1) 2) — f(2l9)). Observe that for any constant ¢, the restriction of
k-linear f to any of its arguments being ¢ (denoted f;) results in a (k — 1)-linear function.
By induction, the first term in the above expression evaluates to (d — 1)!f, (¢1,...,ta—1) =
(d — 1)!f(t1,...,tq). Now, using the symmetry and linearity (in each variable) of f, we
can write the second term as V,, ;. (X%, (d_.l)f(x[i“],td[d_i_l]) — f(z)) which is (d —

DVt JE@EN ) + 593, (dzl)f(x[i“], t4147=1). By induction, the first term
evaluates to (d — 1)(d — 1)!fy,(t1,. .., ta—1) = (d — 1)(d — D)!f(t4,...,tq), which combined
with the earlier result yields d!f(t,...,t;). The second term evaluates to 0 since each of
the terms inside the sum are restrictions of f to more than 1 variable, which evaluates to 0

after applying V,, O

d—1"

Fact 13 Let D be a ring. The following characterizations of polynomials, are equivalent:
d
1. Ve €D, f(z) = apat,
k=0
2. Vo,t € D,V f(z) =0
d
3. there exists symmetric k-linear functions Fy, 0 < k < d such thatVz € D, f(z) =Y _ Fji(z).
k=0

Proof. (1) < (2) follows from Lagrangian interpolation. We first prove (1) = (3).

Given (1), just set F(z1,...,7%) = ap[IF_o 7. It is easy to see that Fj’s are symmet-
ric, k-linear. We now prove (3) = (2). Given (3), Vi, 1, J(2) = Vi 10 Theo Fi(z) =
ZZ:O Virta Fr (x) = 0 by Fact 16 about difference operators. O

Fact 18 For any \i,...,\g € {0,1}, if

d d
tl)\l ..... Ad = - Z )\Ztl/z’ tl/\ll ..... Ad T Z )\Ztl
=1 =1
then
Void@= X OV )

Aty Ag€{0,1}
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! n
A A A term

00 0 0 0
01| —ty/2 ts —[f(x) = 2f(z +t2/2) + f(z + t2)]
10 —t t —[flz —t1) = 2f(2) + f(z +1,)]

11| =ty —to/2 |ty + o | +H[f(x —t1) = 2f(x + t2/2) + f(z + t1 + t3)]

Table 2: An Illustration of Fact 18

Proof. By a pairing argument. First, it is easy to prove that the left-hand side can be

.....

right-hand side as
d

d
oo (=t (g)dE (k) fla+1tX ., + Kt 5,) When k =0, left-hand side
Alyeens /\dE{O,l} k=0

is obtained. So, we have to prove that for £ > 0, the right-hand side vanishes. The terms

inside f(-) are linear combinations of ¢;’s by our construction. Note that for each k& >
0, each term inside f(-) on the right-hand side has exactly one t; absent because of its
cancellation between ¢ and ¢". So, for each Ai,...,A\; € {0,1}, construct its conjugate
Niyoooy Mg € {0, 1} with A} =1 — A; and A; = ); otherwise. It is easy to see that the terms

....................

illustration of this fact is given below. O

To illustrate with an example, consider the case when d = 2. Then, the left-hand side is
given by Vi 4, f(z) = f(x + t, + t2) — f(x +t1) — f(z + t2) + f(z). The right-hand side is
given by the sum of the entries in the last column of Table B.1.

It is easy to see that appropriate cancellations take place so that left-hand side equals

the right-hand side.
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