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Abstract

We consider a variant of the traditional task of explicitly reconstructing algebraic

functions from black box representations. In the traditional setting for such problems,

one is given access to an unknown function f that is represented by a black box, or an

oracle, which can be queried for the value of f at any input. Given a guarantee that

this unknown function f is some nice algebraic function, say a polynomial in its input

of degree bound d, the goal of the reconstruction problem is to explicitly determine the

coe�cients of the unknown polynomial. All work on polynomial interpolation, espe-

cially sparse ones, are or may be presented in such a setting. The work of Kaltofen and

Trager [25], for instance, highlights the utility of this setting, by performing numerous

manipulations on polynomials presented as black boxes.

The variant considered in this paper di�ers from the traditional setting in that our

black boxes represent several algebraic functions { f

1

; : : : ; f

k

, where at each input x,

the box arbitrarily chooses a subset of f

1

(x); : : : ; f

k

(x) to output and we do not know

which subset it outputs. We show how to reconstruct the functions f

1

; : : : ; f

k

from the

black box, provided the black box outputs according to these functions \often". This

allows us to group the sample points into sets, such that for each set, all outputs to

points in the set are from the same algebraic function. Our methods are robust in the

presence of a small fraction of arbitrary errors in the black box.

Our model and techniques can be applied in the areas of computer vision, machine

learning, curve �tting and polynomial approximation, self-correcting programs and

bivariate polynomial factorization.
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1 Introduction

Suppose you are given a large set of points in the plane and you are told that an overwhelming

majority of these points lie on one of k di�erent algebraic curves of some speci�ed degree

bound D (but you are not told anything else about the curves). Given the parameters k

and D, your task is to determine or \reconstruct" these algebraic curves, or alternatively, to

group the points into sets, each of which is on the same degree D curve. Related versions of

this problem may also be of interest, such as extensions to higher dimensions, and a setting

where instead of the points being given in advance, one is allowed to make queries of the

form \what is the value of one of the curves at point x?" (the answer to such a query will

not specify which of the k curves was used to compute the value).

Solutions to this fundamental problem have applications to:

� the grouping problem in computer vision

� computational learning theory

� curve �tting over discrete domains

� simple algorithms for polynomial factorization

� self-correcting programs.

Computer Vision Consider a computer vision system for a robot that picks parts out

of a bin. The input to the system contains an intensity map of the scene. The robot can

distinguish between the parts by extracting edges from the image. Current edge detection

algorithms use discretised di�erential operators to extract edges (e.g. [30][10]). These algo-

rithms produce output consisting of a bit map, where for every image point (x; y), the bit

value of the point, e(x; y), is set to 1 if and only if this point lies on an edge. For many

vision applications it is then desired to connect between neighboring points to achieve a more

compact representation of the edge map. This problem, known as \the grouping problem",

is complicated by the fact that the parts are cluttered, they may be nonconvex and they

may contain holes. No polynomial time algorithm has been found for this problem.

Under the assumption that the edges of the parts are given by piecewise algebraic curves,

and that the edge detection process produces results which are free of precision error, our

algorithm transforms edge maps into piecewise polynomial curves in polynomial time. The

second assumption is unrealistic in real computer vision applications. However, we feel that

it suggests an interesting approach which should be studied further.

Computational Learning Theory Our mechanism can be used to extend some well-

known results on learning boolean functions to the setting of learning real-valued functions.

Here is a speci�c instance of such a situation: In the study of economics, the price-demand

curve is often considered to be well-described by an algebraic function (e.g. f(x) = c=x or
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f(x) = �a �x+b). However, it is also the case that this curve may change [23]. In particular,

there may be several unknown price-demand curves which apply in various situations { one

may correspond to the behavior found when the country is at war, a second may apply after

a stock market crash, and a third behavior may be found after a change in the tax structure.

Some of the factors that determine which curve applies may be obvious, but others may

occur because of more subtle reasons. The task of learning the price-demand relationship

may be decomposed into the two subtasks of �rst determining the unknown curves, and

then learning what determines the move from one curve to another. Our algorithm gives a

solution for the �rst task.

We consider the Valiant model of PAC learning [36], in which a concept is learnable if

there is an e�cient algorithm that is able to �nd a good approximation to the concept on

the basis of sample data. In general, our results imply that any function on input x and

boolean attributes (y

1

; : : : ; y

m

) which uses (y

1

; : : : ; y

m

) to select f

i

from a set of polynomial

functions f

1

; : : : ; f

k

and then computes and outputs f

i

(x) can be learned, as long as the

selector function can be learned.

For example, a polynomial-valued decision list given by a list of terms (conjuncts of liter-

als), (D

1

; : : : ;D

k

) over boolean variables y

1

; : : : ; y

n

, and a list of univariate polynomials,

(f

1

; : : : ; f

k+1

) in a real variable x, represents a real valued function f as follows:

f(x; y

1

; : : : ; y

n

) = f

i

(x)

where i is the least index such that D

i

(y

1

; : : : ; y

n

) is true.

If the terms are restricted to being conjunctions of at most c literals, we call it a polynomial-

valued c-decision list. This is an extension of the boolean decision list model de�ned by Rivest

in [32], where the polynomials f

i

are restricted to being the constants 0 or 1.

In [32], Rivest shows that the class of boolean c-decision lists is learnable in polynomial time.

Using our techniques, in combination with Rivest's algorithm, we can extend this result to

show that the class of polynomial-valued c-decision lists can be learned in polynomial time.

The only technical point that needs to be made is as follows: Rivest gives an algorithm for

producing a decision list that is consistent with the random examples and then argues using

an Occam argument (see Blumer et. al. [8]) that any hypothesis that is consistent with the

labels of the random examples is a good hypothesis (i.e. computes a function that is usually

equal to the target function). Our techniques in combination with Rivest's algorithm yield

a consistent hypothesis, but since our hypothesis is not a boolean function, we must use the

work of Haussler [22] to see that a consistent hypothesis is a good hypothesis.

Independent of our work, Blum and Chalasani [6] also consider a model of learning from

examples where the examples may be classi�ed according to one of several di�erent concepts.

In their model an adversary controls the decision of which concept would be used to classify

the next example. Under this model they study the task of learning boolean-valued concepts

such as k-term DNF's and probabilistic decision lists.

Curve Fitting Problems over Discrete Domains A typical curve �tting problem takes

the following form: Given a set of points f(x

1

; y

1

); : : : ; (x

m

; y

m

)g on the plane, give a simple
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curve that \�ts" the given points. Depending on the exact speci�cation of the \�t" the

problem takes on di�erent avors: for instance, if the curve is to pass close to all the

points, then this becomes a uniform approximation problem (see text by Rivlin [33]), while

if the curve is supposed to pass through most of the points, then it resembles problems

from coding theory. Here, we consider a problem that uni�es the above two instances over

discrete domains. For example, given a set of m points, with integer coordinates, we show

in Subsection 4.1 how to �nd a polynomial with integer coe�cients that is �-close to all

but an � fraction of the points (if such a polynomial exists), where � need only be less than

1=2 (provided is m is larger than

(4�+1)d

1�2�

).

Reducing Bivariate Factoring to Univariate Factoring In [4] Berlekamp gave a ran-

domized polynomial time algorithm for factoring univariate polynomials over �nite �elds.

Kaltofen [24] and Grigoriev and Chistov [18] show that the problem of bivariate factoring

can also be solved in polynomial time by a reduction to univariate factoring, using some-

what deep methods from algebra. Our techniques in Subsection 4.2 give a simple method to

reduce the problem of factoring bivariate polynomials to that of factoring univariate poly-

nomials over �nite �elds in the special case when the bivariate polynomial splits into factors

which are monic and of constant degree in one of the variables. Though the results are not

new, nor as strong as existing results, the methods are much simpler than those used to

obtain the previously known results.

Self-Correcting Programs One motivation for this work comes from the area of self-

correcting programs introduced independently in [7][28]. For many functions, one can take

programs that are known to be correct on most inputs and apply a simple transformation to

produce a program that is correct with high probability on each input. But, how bad can

a program be, and still allow for such a transformation? There is previous work addressing

this question when the functions in question are polynomials (see for example [28],[13],[14]).

When the program is not known to be correct on most inputs, the de�nition of self-correction

needs to be modi�ed, since the program can toggle between two seemingly correct functions.

Our methods give self-correctors that work when the error of the program is such that

it answers according to one of a small number of other algebraic functions. An algebraic

decision tree may contain a small number of branches, in which all subtrees are intended

to compute the same function but are computed separately for purposes of e�ciency. The

algebraic decision tree program might err in some of the subtrees and compute the wrong

algebraic function. Our self-correctors output a small number of candidates for the correct

function.

One particular situation where this is useful is in the computation of the permanent of a

matrix, over a �nite �eld. Results of Cai and Hemachandra ([9]), when used in combination

with our results, imply that if there is an e�cient program which computes the permanent

correctly on a non-negligible fraction of the input and computes one of a small number of

other algebraic functions on the rest of the inputs, then the permanent can be computed

e�ciently everywhere.

4



1.1 The k-Algebraic Black Box Model

We consider the following black-box reconstruction problem, which is general enough to

model all of the aforementioned problems. We think of the black-box as \containing" k

functions, f

1

; : : : ; f

k

, where f

i

is an \algebraically well-behaved" function. For instance,

each f

i

could be a polynomial of degree at most d, and on every input x the black box

outputs f

i

(x) for some i 2 [k]. (Here and throughout this paper, the notation [k] stands for

the set of integers f1; : : : ; kg.) Relating to the problem discussed in the �rst paragraph of

the introduction, this corresponds to the case where for every value of an x-coordinate there

is at least one point that has that value. We now present this de�nition formally, starting

with the standard black box model (k = 1).

De�nition 1 A black box B is an oracle representing a function from a �nite domain D

to a range R.

There are two kinds of domains that will be of interest to us. One is a �nite subset H of a

(potentially in�nite) �eld F . The second is an n-dimensional vector space over a �nite �eld

F . In both cases the range will be the �eld F .

Previous research on black box reconstruction focused on the following: Assuming that B is

one of a special class of functions (for example, that B is a degree d polynomial), determine

an explicit representation of B. In our model, there may be more than one output that is

valid for each input. More speci�cally:

De�nition 2 A black box B mapping a �nite subset H of a �eld F to F is a (k; d)-

polynomial black box if there exist polynomials f

1

; : : : ; f

k

: F ! F of degree at most d

such that for every input x 2 H, there exists i 2 f1; : : : ; kg, such that B(x) = f

i

(x). In such

a case, we say that the functions f

1

; : : : ; f

k

describe the black box B.

Our �rst black box reconstruction problem is:

Given a (k; d)-polynomial black box B, �nd a set of functions f

1

; : : : ; f

k

that

describe B.

The de�nition of a (k; d)-polynomial black box can be generalized to situations involving

noise as follows:

De�nition 3 For � 2 [0; 1] and for a �nite subset H of a �eld F , a black box B : H ! F

is an �-noisy (k; d)-polynomial black box if there exist polynomials f

1

; : : : ; f

k

: F ! F of

degree at most d and a set S � H, with jSj � (1 � �)jHj, such that for every input x 2 S,

there exists i 2 f1; : : : ; kg such that B(x) = f

i

(x). In such a case, the functions f

1

; : : : ; f

k

are said to describe B.
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The notion of the reconstruction problem generalizes to the noisy case in the obvious way.

We now attempt to generalize the problem to allow the black box to compute other algebraic

functions, such as B(x) =

p

x etc. This part is somewhat more technical, so we introduce

some new terminology:

De�nition 4 For positive integers d

x

; d

y

and indeterminates x; y, the f(d

x

; x); (d

y

; y)g--

weighted degree of a monomial x

i

y

j

is id

x

+ jd

y

. The f(d

x

; x); (d

y

; y)g-weighted degree of

a polynomial Q(x; y) is the maximum over all monomials in Q (i.e., the monomials with

non-zero coe�cients in Q) of their f(d

x

; x); (d

y

; y)g-weighted degree.

We now introduce the notion of an algebraic box and show how it relates to the earlier notion

of a polynomial black box.

De�nition 5 For a �nite subset H of a �eld F , A black box B : H ! F is a (k; d)-algebraic

black box if there exists a polynomial Q(x; y) of f(1; x); (d; y)g-weighted degree at most kd,

such that for every input x 2 H, the output y of the black box satis�es Q(x; y) = 0. In such

a case, we say that the polynomial Q describes B.

For example, if B(x) =

p

x, the polynomial Q(x; y) = (y

2

� x) satis�es the requirement of

the de�nition and describes B. The f(1; x); (d; y)g-weighted degree of Q is 2d.

Proposition 6 If B is a (k; d)-polynomial black box then B is also a (k; d)-algebraic black

box.

Proof: Let B be a (k; d)-polynomial black box and let f

1

; : : : ; f

k

describe it. Then the

polynomial Q(x; y)

def

=

Q

k

i=1

(y � f

i

(x)) describes B and has f(1; x); (d; y)g-weighted degree

at most kd.

The (k; d)-algebraic black box reconstruction problem is:

Given a (k; d)-algebraic box B, �nd the polynomial Q of f(1; x); (d; y)g-weighted

degree at most kd which describes it.

The de�nition and proposition can be extended easily to the �-noisy case.

All the above de�nitions generalize to a case where the input is an n-dimensional vector over

F and the black box is computing n-variate functions. In particular, we have:

De�nition 7 For a �nite �eld F , a n-variate black box B : F

n

! F is a (k; d)-polynomial

black box if there exist polynomials f

1

; : : : ; f

k

: F

n

! F of total degree at most d such

that for every input (x

1

; : : : ; x

n

) 2 F

n

there exists i 2 f1; : : : ; kg such that B(x

1

; : : : ; x

n

) =

f

i

(x

1

; : : : ; x

n

).
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De�nition 8 For a �nite �eld F , An n-variate black box B : F

n

! F is a (k; d)-algebraic

black box if there exists a polynomial Q(x

1

; : : : ; x

n

; y) of f(1; x

1

); : : : ; (1; x

n

); (d; y)g-weighted

degree at most kd such that for every input (x

1

; : : : ; x

n

) 2 F

n

, the output y of the black box

satis�es Q(x

1

; : : : ; x

n

; y) = 0.

Again the reconstruction problems are de�ned correspondingly. In this paper we attempt to

solve all such reconstruction problems. Notice that this problem is not well-de�ned if there

exist multiple solutions, say Q and

~

Q, such that both Q and

~

Q describe the black box. Much

of the work is done in establishing conditions under which any

~

Q that describes the black

box gives a meaningful answer.

1.2 Previous Work and Our Results

The setting where the black box represents a single polynomial or rational function, without

noise, is the classic interpolation problem and is well studied. E�cient algorithms for sparse

multivariate polynomial interpolation are given by Zippel [40, 41], Grigoriev, Karpinski and

Singer [21] and Borodin and Tiwari [3], and for sparse rational functions by Grigoriev,

Karpinski and Singer [20].

The case where the black box represents a single function with some noise has also been

studied previously. Welch and Berlekamp [39, 5] (see also [14]) show how to reconstruct

a univariate polynomial from a (

1

2

� �)-noisy (1; d)-polynomial black box and Coppersmith

[11], Gemmell, Lipton, Rubinfeld, Sudan and Wigderson [13] and Gemmell and Sudan [14]

show how to do the same for multivariate polynomials. All the above mentioned results

require, however, that the �eld size be at least polynomially large in

d

�

. The conditions are

required to ensure that there is a unique degree d polynomial describing the black box on

1=2 + � fraction of the inputs. Reconstructing functions from a black box representing more

than one function, or when the function it represents is not guaranteed to be unique, seems

to be a relatively unexplored subject. The works of Goldreich and Levin [15] and Kushilevitz

and Mansour [26] are the only exceptions we know of. Both papers study the reconstruction

of n-variate linear functions (i.e., homogenous polynomials of degree 1) from a 1=2� �-noisy

black box over GF(2). In this case, there can be up to O(

1

�

2

) polynomials representing the

black box and they reconstruct all such polynomials.

The main result in this paper is an algorithm for reconstructing algebraic functions describing

noisy algebraic black boxes, which works when the black box satis�es certain conditions. To

see why the result needs to have some conditions on the black box, consider the following

example: Suppose the black box is described by the polynomial (x

2

+y

2

�1)(x+y�1). But

suppose for every x the black box always outputs a y from the unit circle (and never according

to the line x+ y � 1 = 0. Then clearly the reconstruction algorithm has no information to

reconstruct the line x+ y� 1. The condition imposed on the black box essentially addresses

this issue. We describe the result for univariate �-noisy (k; d)-polynomial black boxes. We

present a randomized algorithm which takes as input a parameter p > � and with high

probability outputs a list of all polynomials f

i

which describe the black box on more than p

fraction of the input, provided (p� �)jHj > kd. (This condition amounts to saying that the
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black box must output according to f

i

su�ciently often.) The running time of the algorithm

is a polynomial in k; d and

1

(p��)

. This result is presented along with generalizations to

univariate noisy algebraic black boxes in Section 2.

To reconstruct a univariate polynomial, we sample the black box on a small set of inputs

and construct a bivariate polynomial

~

Q(x; y) which is zero at all the sample points. Then

we use bivariate polynomial factorization to �nd a factor of the form (y� f(x)). If it exists,

f(x) then becomes our candidate for output. We show that if the number of points (x; y)

such that y = f(x) is large in the sample we chose, then y � f(x) has to be a factor of any

~

Q which all the sample points satisfy.

Our results do not generalize immediately to multivariate polynomials. Among other factors,

one problem is that an n-variate polynomial of degree d has

�

n+d

d

�

coe�cients, which is

exponential in n (or d). This seems to make the problem inherently hard to solve in time

polynomial in n and d. However we bypass this, once again using the idea of black boxes.

Instead of trying to reconstruct the multivariate polynomial explicitly (i.e., by determining

all its coe�cients), we allow the reconstruction algorithm to reconstruct the polynomial

implicitly, i.e., by constructing a black box which computes the multivariate polynomial.

If the polynomial turns out to be sparse then we can now use any sparse interpolation

algorithm from [3, 20, 21, 40] to reconstruct an explicit representation of the polynomials

in time polynomial in n, d and the number of non-zero coe�cients. On the other hand, by

using the techniques of [25] we can also continue to manipulate the black boxes as they are

for whatever purposes

1

.

We now describe our result for reconstructing multivariate polynomials. We present a ran-

domized algorithm which takes as input a parameter p and with high probability reconstructs

probabilistic black boxes for all the polynomials f

1

; : : : ; f

k

describing a noisy (k; d)-black box

over a �nite �eld F , provided the noisy (k; d)-black black box satis�es the following condi-

tions: (1) Every polynomial is represented on at least a p-fraction of the inputs (i.e. for

every i, Pr

x̂2F

n

[B(x̂) = f

i

(x̂)] � p). (2) The �nite �eld F over which the black box works is

su�ciently large (jF j should be polynomially large in k; d;

1

(p��)

). The running time of the

algorithm is polynomial in k; d and

1

(p��)

. The main technique employed here is a randomized

reduction from the multivariate to the univariate case. We note that the solution obtained

here for the multivariate case di�ers in several aspects from the solution for the univariate

case. First, this algorithm does not extend to the case of �nite subsets of in�nite �elds.

Second, it needs to make sure that all the polynomials are well-respresented in the black

box. The latter aspect is a signi�cant weakness and getting around this is an open question.

Subsequent work One of the main questions left open by this paper is the problem of

reconstructing all degree d polynomials that agree with an arbitrary black box on � fraction

of the inputs. Some recent work has addressed this question. Goldreich, Rubinfeld and

1

The idea of manipulating multivariate polynomials and rational functions represented by black boxes

was proposed by Kaltofen and Trager in [25]. They show that it is possible to factor and compute g.c.d.'s for

polynomials given by such a representation and to separate the numerator from the denominator of rational

functions given by such a representation.
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Sudan [16] give an algorithm to (explicitly) reconstruct all n-variate degree d polynomials

agreeing with a black box over F on � fraction of the inputs, provided � � 2

q

d=jF j. Their

algorithm runs in time O((n;

1

�

)

poly(d)

), which is exponential in d. Their algorithm general-

izes the earlier mentioned solution of Goldreich and Levin [15]. For the case of univariate

polynomials, Sudan [35], has given a polynomial time algorithm which can �nd all degree d

polynomials agreeing with a black box on � fraction of the domain, provided � � 2

q

d=jF j.

The main contribution in [35] is a simple observation which shows that m input/output pairs

from any black box can be thought of as the output of a (1; O(

p

m))-algebraic black box.

Using this observation, Lemma 18 of this paper is applied to reconstruct all polynomials

of low degree which describe the black box on �-fraction of the inputs. Finding a similar

solution for the multivariate cases remains open (some cases are addressed by [35], but the

problem is not completely resolved). A second question that is left open is the task of solving

the (k; d)-polynomial black box problem over the reals, where the points are not provided

to in�nite precision. This is the true problem underlying the application to computer vi-

sion. While the ideas in this paper do not immediately apply to this question, some variants

(in particular, the variant employed in [35]) seem promising and deserve to be investigated

further.

In other related work, Rubinfeld and Zippel [34] have employed the black box reconstruction

problem and build on the techniques presented in this paper to present a modular approach

to the polynomial factorization problem. While the application presented in this paper (in

Section 4.2) is to a restricted subclass of the bivariate factorization problem, the work of [34]

�nds an application to the general multivariate factorization problem.

1.3 Organization

The rest of this paper is organized as follows. In Section 2, we describe our results for

univariate polynomials, rational functions and other algebraic functions. In Section 3, we

consider extensions of the reconstruction problem to the case of multivariate polynomials.

Finally, in Section 4, we describe several applications of our work.

2 Univariate Black Boxes

In this section we consider the univariate reconstruction problem for (noisy) (k; d)-polynomial

and algebraic black boxes. We describe our general format of our results with the example

of a (k; d)-polynomial black box described by f

1

; : : : ; f

k

. We present a solution in the form of

an algorithm which takes m input/output pairs f(x

1

; y

1

); : : : ; (x

m

; y

m

)g of the black box and

attempts to reconstruct the polynomials f

1

; : : : ; f

k

from this set of input/output pairs. In

order to reconstruct a small set of polynomials which includes a speci�c polynomial f

i

, the

algorithm (obviously) needs to �nd su�ciently many points (x

j

; y

j

) such that y

j

= f

i

(x

j

)

(d + 1 such points are needed). We present complementary bounds, showing that if the

number of points on f

i

is su�ciently large, then the output is guaranteed to include f

i

.
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We then show how some simple sampling of the black box (either by exhaustively sampling

all points from the domain H or by picking a random sample of x

j

's chosen independently

and uniformly at random from H) yields a collection of input/output pairs which satis�es

the required condition, provided H is large enough and the fraction of inputs on which B's

output is described by f

i

is large enough.

2.1 An Intermediate Model

As a �rst step towards solving the algebraic reconstruction problem, we consider the case

where the black box outputs all of f

1

(x); : : : ; f

k

(x) on any input x. We refer to this as a

(k; d)-total polynomial black box. These are output in arbitrary order, which is not necessarily

the same for each x. We further assume that there are no errors in the output. Thus the

reconstruction problem we wish to solve may be stated formally as:

Given: Positive integers k and d, a �eld F and a black box B = (B

1

; : : : ; B

k

) where B

i

: F !

F with the property that there exist polynomials f

1

; : : : f

k

of degree at most d over F , such

that for every x 2 F , the multisets fB

1

(x); : : : ; B

k

(x)g and ff

1

(x); : : : ; f

k

(x)g are identical.

Problem: Find f

1

; : : : ; f

k

.

We reduce the problem of extracting the polynomials to that of bivariate polynomial fac-

torization. The main idea underlying this reduction is the following: On input x if the

(k; d)-total polynomial black box outputs fy

1

; : : : ; y

k

g, we know that 8j 2 [k]; 9i 2 [k] such

that y

j

= f

i

(x). Therefore, each input/output pair (x; y

1

; : : : ; y

k

) of the black box satis�es

the relation:

X

j

Y

i

(y

j

� f

i

(x)) = 0:

Our aim will be to construct a related polynomial which will enable us to recover the f

i

's.

Consider the functions �

j

: F 7! F , j 2 [k] de�ned as

�

j

(x)

def

=

X

S�[k];jSj=j

Y

i2S

f

i

(x):

(these are the primitive symmetric functions of f

1

; : : : ; f

k

).

Observe that �

j

(x) can be evaluated at any input x using the given (k; d)-total polynomial

black box, using the identity

�

j

(x) =

X

S�[k];jSj=j

Y

i2S

B

i

(x):

Furthermore this computation can be performed in time in O(k log k log log k) using a fast

Fourier transform (see survey article by von zur Gathen [12], pages 320{321). Observe further

that �

j

is a polynomial of degree at most jd. Hence evaluating it at jd+1 points su�ces to

�nd all the coe�cients of this polynomial (if the black box outputs every f

i

(x) for every x).

Now consider the following bivariate polynomial, in x and a new indeterminate y:

Q(x; y)

def

= y

k

� �

1

(x)y

k�1

+ � � �+ (�1)

k

�

k

(x):

10



From the explicit representation of the �

i

's, we can also compute an explicit representation

of Q. But now notice that Q can equivalently be written as:

Q(x; y) =

k

Y

i=1

(y � f

i

(x)):

(The equivalence follows from the de�nition of the �

j

's.) Therefore, to recover the f

i

's, all we

have to do is �nd the factors of the bivariate polynomial Q. Bivariate factorization can be

done e�ciently over the rationals [18, 24, 29] and can be done e�ciently (probabilistically)

over �nite �elds [17, 24].

We now summarize our algorithm. The input to the algorithm is kd + 1 distinct elements

fx

1

; : : : ; x

kd+1

g from the the �eld F , and a set fy

1;j

; : : : ; y

k;j

g for every j 2 [kd + 1] repre-

senting the output of the black box B on input x

j

.

1. Evaluate �

j

(x

i

) for every j 2 [k] and every i 2 [kd+ 1].

2. Interpolate for the coe�cients of �

j

(x) and let �

j;l

be the coe�cient of x

l

in �

j

.

3. Let Q(x; y) be the polynomial

P

k

j=0

P

jd

l=0

(�1)

j

�

j;l

x

l

y

k�j

.

4. Factor Q into its irreducible factors. This will yield Q(x; y) =

Q

k

i=1

(y � g

i

(x)).

5. Output the polynomials g

1

; : : : ; g

k

.

The arguments leading to this algorithm prove its correctness and we have the following

lemma.

Lemma 9 Let f(x

j

; (y

j;1

; : : : ; y

j;k

)g

kd+1

j=1

be the input/output pairs of a (k; d) total polynomial

black box B over a �eld F on kd + 1 distinct inputs. Then there exists an randomized

algorithm whose running time is polynomial in k; d which explicitly reconstructs the set of

polynomials ff

1

; : : : ; f

k

g which describe B.

Since the only condition on the x

j

's is that they be distinct, it is easy to get a total polynomial

reconstruction algorithm from the above lemma and thus we get the following theorem.

Theorem 10 Let f

1

; : : : ; f

k

be degree d polynomials over Q (the rationals) or a �nite �eld

F of cardinality at least kd + 1. Given a black box B which on input x outputs the multiset

ff

1

(x); : : : ; f

k

(x)g (in arbitrary order), there exists an algorithm which queries the black

box on kd + 1 distinct inputs and reconstructs the polynomials that describe the black box.

The algorithm is deterministic when the polynomials are over Q and probabilistic when the

polynomials are over some �nite �eld.

11



2.2 (k; d)-polynomial black boxes

We now build on the methods of the previous section to reconstruct information from a (k; d)-

polynomial black box which outputs the value of one of k univariate polynomials f

1

; : : : ; f

k

,

on every input. Our method extends immediately to two more general cases:

1. (k; d)-algebraic black boxes.

2. Noisy (polynomial and algebraic) black boxes.

The generalizations are dealt with in the next section.

The problem we wish to solve is formally stated as:

Given: Positive integers k and d, a �eld F , a �nite set H � F and a black box B : H ! F

with the property that there exist polynomials f

1

; : : : f

k

of degree at most d over F , such that

for every x 2 H, B(x) 2 ff

1

(x); : : : ; f

k

(x)g.

Problem: Find f

1

; : : : ; f

k

.

Our solution for this problem is based on the solution of the previous subsection. The

critical observation is that the polynomial Q produced by the algorithm of the previous

section always satis�ed the property Q(x; y) = 0 for any input x to the black box and where

y is any element of the output set of the black box on input x. We will try to construct

a polynomial Q in two variables as in the previous section, satisfying the property that if

y = B(x) is the output of the black box on input x, then Q(x; y) = 0. However, we will not

be able to construct the polynomials �

i

(x) as in the previous case. Hence, we will abandon

that part of the algorithm and directly try to �nd any polynomial

~

Q such that

~

Q(x; y) = 0

on all the sampled points. We will then use the factors of this polynomial to determine the

f

i

's as in the previous section. Thus our algorithm is summarized as follows:

The input to the algorithm is m distinct pairs of elements f(x

1

; y

1

); : : : ; (x

m

; y

m

)g.

1. Interpolate to �nd a set of coe�cients ~q

lj

of the polynomial

~

Q(x; y) =

k

X

l=0

dl

X

j=0

~q

lj

y

k�l

x

j

that satis�es

~

Q 6� 0 and

~

Q(x

i

; y

i

) = 0 for i 2 [m].

2. Factor the polynomial

~

Q and if it has any factors of the form (y � g(x)), output g as

a candidate polynomial.

Notes: The important step above is Step 1 which involves �nding a non-trivial solution to a

homogenous linear system. First we need to make sure this system has at least one solution.

This is easy since Q(x; y) =

Q

i

(y� f

i

(x)) is such a solution. However the solution in such a

step need not necessarily be unique and we will simply �nd any solution to this system and

show that it su�ces, under certain conditions, for Step 2. In what follows, we shall examine

the conditions under which the output will include a certain polynomial f

i

.

12



Lemma 11 For a set f(x

j

; y

j

)jj 2 [m]g of m distinct pairs from F � F , if

~

Q is a bivariate

polynomial of f(1; x); (d; y)g-weighted degree kd satisfying

8 j 2 [m];

~

Q(x

j

; y

j

) = 0

and f is a univariate polynomial of degree d satisfying

jfjjf(x

j

) = y

j

gj > kd;

then the polynomial (y � f(x)) divides the polynomial

~

Q(x; y).

Proof: Let S

def

= fjjf(x

j

) = y

j

g. Notice that for distinct j

1

; j

2

2 S, x

j

1

6= x

j

2

, or else the

pairs (x

j

1

; f(x

j

1

)) and (x

j

2

; f(x

j

2

)) are not distinct.

Consider the univariate polynomial

~

Q

f

(x) �

~

Q(x; f(x)). For all indices j 2 S we have that

~

Q(x

j

) = 0. Furthermore

~

Q

f

(x) is a polynomial of degree at most kd in x. Hence if

~

Q

f

is

zero at jSj > kd places, then it must be identically zero, implying that (y � f(x))j

~

Q(x; y).

The lemma above guarantees that under certain circumstances, the factors of

~

Q(x; y) do give

useful information about the f

i

's. The e�ect is summarized in the following lemma.

Lemma 12 Let f(x

1

; y

1

); : : : ; (x

m

; y

m

)g be m distinct pairs of elements which are the in-

put/output pairs of a (k; d)-polynomial black box B described by polynomials f

1

; : : : ; f

k

. If

there exists an i 2 [k] such that jfjjy

j

= f

i

(x

j

)gj > kd, then a set of at most k polynomials

fg

1

; : : : g

k

g that includes f

i

can be found in time polynomial in m, k and d.

Remark: Notice that Lemma 12 is a strict strengthening of Lemma 9.

To �nish the analysis of the algorithm we need to determine how to sample the black box

B so as to get enough points according to f

i

. Let p

i

def

= Pr

x2H

[B(x) = f

i

(x)] and � > 0

be the con�dence parameter. Let M =

4

p

i

(kd + ln

2

�

). The strategy for picking the points

f(x

1

; y

1

); : : : ; (x

m

; y

m

)g depends on jHj. If jHj �

2

�

�

M

2

�

, then we let m = M and pick m

elements x

1

; : : : ; x

m

independently and uniformly at random from H. Lemma 35 in the

appendix (shown using a simple combination of Cherno� bounds and the \birthday problem

analysis") shows that the sampled points are all distinct and satisfy jfj : B(x

j

) = f

i

(x

j

)gj >

kd with probability at least 1� �. Thus in this case we will use f(x

1

; B(x

1

); : : : ; (x

m

; B(x

m

)g

as the input to the algorithm described above. If on the other hand jHj is not large enough,

then we will simply sample every point in H (i.e., the input set will be f(x;B(x))jx 2 Hg)

implying in particular that m = jHj, and in this case the algorithm described above will

include f

i

as part of its output provided p

i

jHj > kd. Notice that in both cases the running

time of the algorithm is polynomial in M , which is in turn bounded by some polynomial in

k; d;

1

p

i

;

1

�

. Furthermore, by choosing �

0

= �=k and a threshold parameter p and running the

algorithm above with con�dence parameter �

0

, we �nd that the algorithm above recovers,

with con�dence 1 � �, every polynomial f

i

, such that p

i

� p. The running time is still a

polynomial in k; d;

1

p

;

1

�

. This yields the following theorem.
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Theorem 13 Let B be a (k; d)-polynomial black box, mapping a �nite domain H to a �eld

F , described by polynomials f

1

; : : : ; f

k

. For i 2 [k], let p

i

def

= Pr

x2H

[B(x) = f

i

(x)]. There

exists an algorithm which takes as input a con�dence parameter � > 0 and a threshold p > 0,

runs in time poly(k; d;

1

p

;

1

�

) and makes calls to the black box B and with probability at least

1� � reconstructs a list of at most k polynomials which includes all polynomials f

i

such that

p

i

� p, provided p >

kd

jH j

.

2.3 (k; d)-algebraic black boxes

The algorithm of Section 2.2 extends immediately to the case of algebraic black boxes. Here,

by de�nition, the input/output pair of the black box, (x; y), satis�es an algebraic relation

of the form Q(x; y) = 0. We can attempt to �nd a polynomial

~

Q which satis�es

~

Q(x; y) = 0

for all the sampled points by interpolation (Step 3 in the algorithm of Section 2.2).

As in the previous section, it will not be possible to guarantee that the output we produce

will be exactly Q. For instance, if Q(x; y) = (x

2

+ y

2

� 1)(x + y � 1), but all the points

actually come from the unit circle, then the algorithm has no information to point to the

line x+ y� 1 = 0. Thus, as in the previous section, we will only attempt to �nd those parts

of the curve that describe signi�cant portions of output of the black box. More precisely, if

Q(x; y) factors into irreducible factors Q

1

(x; y); : : : :Q

l

(x; y) and we know that many points

satisfy, say, Q

1

(x

j

; y

j

) = 0, then we would like Q

1

to be one of the outputs of the algorithm.

The proof that this is indeed the case is slightly more complicated than in the previous

subsection. We will use a version of Bezout's theorem ([38], Theorem 3.1). Essentially,

Bezout's theorem states that two algebraic curves in the plane cannot intersect in in�nitely

many points, unless they are identical. The theorem gives an explicit bound on the number

of points where two curves of degree d

1

and d

2

may meet. Bezout's bound is slightly weaker

than the one we wish to prove for the case of (k; d)-algebraic black boxes, so we prove our

lemma from �rst principles.

Before going on to the next lemma we review a couple of standard de�nitions from algebra

(cf. [38]).

De�nition 14 Given univariate polynomials P (y) =

P

d

1

i=0

�

i

y

i

, and Q(y) =

P

d

2

j=0

�

j

y

j

over

some domain F , let M(P;Q) be the (d

1

+ d

2

)� (d

1

+ d

2

) matrix given as follows:

M(P;Q) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�

0

�

1

� � � �

d

1

�1

�

d

1

0 � � � 0 0 0 � � � 0

0 �

0

� � � �

d

1

�2

�

d

1

�1

�

d

1

� � � 0 0 0 � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � 0 0 0 � � � �

0

�

1

�

2

� � � �

d

1

�

0

�

1

� � � �

d

1

�1

�

d

1

�

d

1

+1

� � � �

d

2

�1

�

d

2

0 � � � 0

0 �

0

� � � �

d

1

�2

�

d

1

�1

�

d

1

� � � �

d

2

�2

�

d

2

�1

�

d

2

� � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 � � � �

0

�

1

�

2

� � � �

d

2

�d

1

�

d

2

�d

1

+1

�

d

2

�d

1

+2

� � � �

d

2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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The resultant of the polynomials P and Q, denoted Res(P;Q) is the determinant ofM(P;Q).

For multivariate polynomials P (x

1

; : : : ; x

n

; y) and Q(x

1

; : : : ; x

n

; y) their resultant with respect

to y is de�ned similarly by viewing P;Q as polynomials in y with coe�cients from the ring

of polynomials in x

1

; : : : ; x

n

. We de�ne the matrix M

y

(P;Q) as above and its determinant

is the resultant Res

y

(P;Q).

Lemma 15 For a set of points f(x

1

; y

1

); : : : ; (x

m

; y

m

)g, with the x

j

's being distinct, if

~

Q(x; y)

and Q

1

(x; y) are polynomials of f(1; x); (d; y)g-weighted degree at most kd and k

1

d respec-

tively, satisfying the properties: (1) 8 j 2 [m];

~

Q(x

j

; y

j

) = 0 and (2) jfjjQ

1

(x

j

; y

j

) = 0gj >

kk

1

d, then the polynomials Q

1

(x; y) and

~

Q(x; y) share a non-constant common factor.

Proof: Consider the resultant R

y

(x) of the polynomials

~

Q(x; y) and Q

1

(x; y) with respect

to y. Observe that the resultant is a polynomial in x. The following claim bounds the degree

of this polynomial.

Claim 16 R

y

(x) is a polynomial of degree at most k

1

kd.

Proof: The determinant of the matrix M

y

(

~

Q;Q

1

) is given by

X

�

k+k

1

Y

i=1

sign(�)(M

y

(

~

Q;Q

1

))

i�(i)

;

where � ranges over all permutations from [k+k

1

] to [k+k

1

] and sign(�) denotes

the sign of the permutation. We will examine every permutation � : [k + k

1

] !

[k+ k

1

] and show that the degree of the term

Q

k+k

1

i=1

(M

y

(

~

Q;Q

1

))

i�(i)

(viewed as a

polynomial in x) is at most kk

1

d. This will su�ce to show that the determinant

is a polynomial of degree at most kk

1

d.

Let d

ij

denote the degree of the entry (M

y

(

~

Q;Q

1

))

ij

. Observe that, by the de�-

nition of the resultant, d

ij

� (i+ k� j)d for i � k

1

and d

ij

� (i� j)d for i � k

1

.

(Here we consider the polynomial 0 as having degree �1.) Thus the degree of

the term

Q

k+k

1

i=1

(M

y

(

~

Q;Q

1

))

i�(i)

is given by

k+k

1

X

i=1

d

i�(i)

=

k

1

X

i=1

d

i�(i)

+

k+k

1

X

i=k

1

+1

d

i�(i)

�

k

1

X

i=1

(i+ k � �(i))d+

k+k

1

X

i=k

1

+1

(i� �(i))d

=

k+k

1

X

i=1

id�

k+k

1

X

i=1

�(i)d + kk

1

d

= kk

1

d:

This concludes the proof.
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It is well-known that the resultant of two polynomials is zero i� the polynomials share a

common factor (cf. [38], Chapter 1, Theorem 9.3). We will show that R

y

(x) is identically

zero and this will su�ce to prove the lemma. We show this part in the next claim by showing

that R

y

(x) has more zeroes than the upper bound on its degree.

Claim 17 For every j such that

~

Q(x

j

; y

j

) = Q

1

(x

j

; y

j

) = 0, R

y

(x

j

) = 0.

Proof: Fix x

j

and consider the polynomials ~q(y) =

~

Q(x

j

; y) and q

1

(y) =

Q

1

(x

j

; y). Now R

y

(x

j

) gives the resultant of the polynomials ~q(y) and q

1

(y).

Now we know that ~q(y

j

) = q

1

(y

j

) = 0 implying that (y � y

j

) is a common fac-

tor of ~q and q

1

. Therefore the resultant of ~q and q

1

must be zero, implying

R

y

(x

j

) = 0.

Since the above holds for any factor Q

i

of Q, we have:

Lemma 18 Let B be a (k; d)-algebraic black box described by a bivariate polynomial Q

with no repeated non-constant factors. Let Q

1

; : : : ; Q

l

be the irreducible factors of Q of

f(1; x); (d; y)g-weighted degree k

1

d; : : : ; k

l

d respectively. Given m pairs of elements f(x

1

; y

1

);

: : : ; (x

m

; y

m

)g which are the input/output pairs of B on m distinct inputs, if there exists an

i 2 [k] such that jfjjQ

i

(x

j

; y

j

) = 0gj > k

i

kd, then a set of at most k polynomials f

~

Q

1

; : : : ;

~

Q

k

g

that includes Q

i

can be found in time polynomial in m, k and d.

Remark: For a set of pairs f(x

1

; y

1

); : : : ; (x

m

; y

m

)g, with distinct x

j

's, Lemma 18 is a

strengthening of Lemma 12. Unfortunately, the proof as shown above does not extend to the

case of where the pairs are distinct, but the x

j

are not. Due to this limitation, Lemma 18

does not even cover the case of Lemma 9.

Once again, using a sampling method similar to that used for Theorem 13, we get the

following theorem.

Theorem 19 . Let B be a (k; d)-algebraic black box described by a polynomial Q with

distinct irreducible factors Q

1

; : : : ; Q

l

such that the f(1; x); (d; y)g-weighted degree of Q is at

most kd and of Q

i

is at most k

i

d. Further, let p

i

= Pr

x2H

[Q

i

(x;B(x)) = 0]. There exists

a randomized algorithm which takes as input a con�dence parameter � > 0 and a threshold

p > 0, runs in time poly(k; d;

1

p

;

1

�

), makes calls to the black box B and with probability at least

1 � � reconstructs a list of at most k bivariate polynomials which includes every polynomial

Q

i

such that p

i

=k

i

� p, provided pjHj > kd.
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2.4 �-noisy black boxes

Finally we extend the reconstruction algorithms of the previous section to the case when the

black boxes are allowed to output noise on an � fraction of the inputs from H. As usual the

basic algorithm will be to �nd a polynomial

~

Q(x; y) which is zero on all the input-output

pairs of the black box. However we will have to do something about the noisy points which

do not lie on any nice algebraic curve. We adapt an algorithm of Welch and Berlekamp

[39, 5] (see also [14]) to handle this situation.

Say we sample the black box B in m points x

1

; : : : ; x

m

and the black box outputs y

1

; : : : ; y

m

according to some (unknown) polynomial Q in all but m

0

locations. Say that these locations

are given by E = fjjQ(x

j

; B(x

j

)) 6= 0g. We use the fact that there exists a non-zero

polynomial W (x) of degree at most m

0

which is zero when x = x

j

for j 2 E. Indeed

W (x) =

Q

j2E

(x� x

j

) is such a polynomial. Let Q

�

(x; y) = Q(x; y) �W (x). Then Q

�

(x

j

; y

j

)

is zero for all j 2 [m]. Thus we can modify the algorithm of the previous section to try to

�nd Q

�

. This algorithm is summarized as follows:

The input to the algorithms is m pairs of elements f(x

1

; y

1

); : : : ; (x

m

; y

m

)g with distinct x

j

's.

1. Interpolate to �nd a set of coe�cients q

lj

of the polynomial

~

Q(x; y) =

k

X

l=0

dl+m

0

X

j=0

q

lj

y

k�l

x

j

that satis�es

~

Q(x

i

; y

i

) = 0 for i 2 [m]. /* The parameter m

0

will be speci�ed later. */

2. Factor the polynomial

~

Q and output all its irreducible factors.

Let Q

1

(x; y); : : : ; Q

l

(x; y) be the irreducible factors of the unknown polynomial Q

�

(x; y)

describing the black box B. We focus on the factor Q

1

. Let the f(1; x); (d; y)g-weighted

degree of Q

1

be k

1

d. The following two lemmas essentially show that if the fraction of points

(x

i

; y

i

) for which Q

1

(x

i

; y

i

) = 0 is su�ciently larger than k

1

times the fraction of noise, then

we can reconstruct the polynomial Q

1

.

Lemma 20 For a set of points f(x

j

; y

j

)jj 2 [m]g, if

~

Q(x; y) and Q

1

(x; y) are polynomials of

f(1; x); (d; y)g-weighted degree at most kd+m

0

and k

1

d respectively, satisfying the properties:

(1) 8 j 2 [m];

~

Q(x

j

; y

j

) = 0 and (2) jfjjQ

1

(x

j

; y

j

) = 0gj > k

1

(kd+m

0

), then the polynomials

Q

1

(x; y) and

~

Q(x; y) share a non-constant common factor.

Proof: The proof is a straightforward modi�cation of the proof of Lemma 15. The only

change is in Claim 16, where the bound on the degree of the resultant Res

y

(

~

Q;Q

1

) goes up

to k

1

(kd+m

0

), because the degree of the non-zero entries in the �rst k

1

columns goes up by

m

0

.
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Lemma 21 Let B be a (k; d)-algebraic black box described by a bivariate polynomial Q with

no repeated non-constant factors. Let Q

1

; : : : ; Q

l

be the irreducible factors of Q of at most

f(1; x); (d; y)g-weighted degree k

1

d; : : : ; k

l

d respectively. Given m

0

� m and m pairs f(x

1

; y

1

);

: : : ; (x

m

; y

m

)g, which are the input/output pairs of B on distinct inputs, if there exists an

i 2 [k] such that jfjjQ

i

(x

j

; y

j

) = 0gj > k

i

(m

0

+ kd) and jfjjQ(x

j

; y

j

) 6= 0gj � m

0

, then a set

of at most k bivariate polynomials that includes Q

i

can be found in time polynomial in m, k

and d.

Lemma 36 of the appendix ensures that if M =

k

i

kd

p�k

i

�

+

16

(p�k

i

�)

2

ln

3

�

and jHj �

3

�

�

M

2

�

, then a

sample of M elements fx

1

; : : : ; x

M

g chosen independently and uniformly at random from F

satis�es the following three properties:

1. The x

j

's have no repeated elements.

2. There are (strictly) less than ((� + p

i

=k

i

)=2)M � kd=2 values of j such that Q(x

j

;

B(x

j

)) 6= 0.

3. There are at least ((p

i

+ k

i

�)=2)M + k

i

kd=2 values of j such that Q

i

(x

j

; B(x

j

)) = 0.

Thus if jHj �

3

�

�

M

2

�

, then we choose m =M randomly points from H and use f(x

1

; B(x

1

));

: : : ; (x

m

; B(x

m

))g and m

0

= ((�+ p

i

=k

i

)=2)M � kd=2� 1 as input to the algorithm described

above. If, on the other hand H is small, then we use all f(x;B(x))jx 2 Hg as the input set

and use m

0

= �jHj as input to our algorithm. In the latter case, Q

i

is guaranteed to be part

of the output if (p

i

� k

i

�)jHj > kk

i

d. This yields the following theorem.

Theorem 22 Let B be an �-noisy (k; d)-algebraic black box described by a polynomial Q

with no repeated non-constant factors. Further, let Q

1

; : : : ; Q

l

be the (distinct) irreducible

factors of Q and let p

i

def

= Pr

x2H

[Q

i

(x;B(x)) = 0]. There exists an algorithm which takes as

input �; p > 0, runs in time poly(k; d;

1

p��

;

1

�

) and with probability at least 1�� reconstructs a

list of at most k bivariate polynomials which includes every Q

i

such that p

i

=k

i

� p, provided

(p � �)jHj > kd.

3 Multivariate Black Boxes

In this section, we extend Theorem 22 to multivariate polynomial black boxes over �nite

�elds. The methods of Section 2, i.e., those based on trying to �nd the coe�cients of poly-

nomials simultaneously, do not seem to extend directly to the general multivariate case. This

is due to the possibly large explicit representation of the function extracted from the black

box, which makes it ine�cient to work with. Instead, we use techniques of pairwise indepen-

dent sampling to reduce the problem to a univariate situation and then apply Theorem 22

to the new univariate problem. We start by summarizing the problem.

18



Given: An n-variate �-noisy (k; d)-polynomial black box B : F

n

! F . I.e., there exist n-

variate polynomials f

1

; : : : ; f

k

of total degree at most d such that

Pr

x̂2F

n

[9i 2 [k] s.t. B(x̂) = f

i

(x̂)] � 1 � �

and furthermore, each f

i

is well represented in B, i.e.,

8 i 2 [k] Pr

x̂2F

n

[B(x̂) = f

i

(x̂)] � p > �:

Problem: Construct k black boxes computing the functions f

1

; : : : ; f

k

.

Notice that we have changed the problem from that of the previous section in several ways.

First, we no longer ask for an explicit representation of f

i

, but allow for implicit repre-

sentations. This is a strengthening of the problem, since explicit representations may be

much longer than implicit ones and thus allow a reconstruction algorithm much more time

than we do. For instance, if the reconstructed function is a sparse multivariate polynomial,

then we can use any of the sparse multivariate polynomial interpolation algorithms given in

[3, 20, 21, 40] to recover explicit representations of the reconstructed functions, in running

time which is polynomial in the number of non-zero coe�cients rather than total number of

possible coe�cients. A second change from the problem of the previous section is that we

expect all the polynomials f

1

; : : : ; f

k

to be well represented in the black box B. This is a

weakening of the problem, and we do not know how to get around it.

The outline of the method we use to solve the above problem is as follows. Consider �rst the

slightly simpler problem: Given B and an input

^

b 2 F

n

, �nd the multiset ff

1

(

^

b); : : : ; f

k

(

^

b)g.

This we solve by a reduction to a univariate version of the reconstruction problem. Now

a solution to this problem does not immediately su�ce to yield a solution to the n-variate

reconstruction problem as described above. This is because the solution produces a multiset

of values fy

1

; : : : ; y

k

g for which we do not know which y

j

corresponds to f

i

. We want the

black boxes to always output according to the same polynomial consistently.

In order to solve this problem, we introduce the notion of a reference point r̂ 2 F

n

, which

will have the property that the value of the k di�erent polynomials will be all distinct on this

point. We will then use a more general reduction to the univariate problemwhich will allow us

to reconstruct a set of pairs f(y

1

; z

1

); : : : ; (y

k

; z

k

)g = f(f

1

(

^

b); f

1

(r̂)); : : : ; (f

k

(

^

b); f

k

(r̂))g This,

along with the property of the reference point, allows us to order the points consistently for

all inputs

^

b. We now go into the details.

3.1 Reference Points

The following de�nition of a reference point is motivated by the above discussion. We wish

to consider the polynomial Q(x

1

; : : : ; x

n

; y) =

Q

k

i=1

(y � f

i

(x

1

; : : : ; x

n

)), and want to ensure

that at the reference point r̂, f

i

(r

1

; : : : ; r

n

) 6= f

j

(r

1

; : : : ; r

n

), whenever i 6= j. One way to test

for this is to see if the polynomial p(y)

def

= Q(r

1

; : : : ; r

n

; y) has any repeated non-constant

factors. This will be our de�nition of a reference point. Note that this de�nition is general

enough to apply also to polynomials Q which do not factor linearly in y.
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De�nition 23 For a multivariate polynomial Q(x

1

; : : : ; x

n

; y) that has no non-constant re-

peated factors, a reference point is an element r̂ = (r

1

; : : : ; r

n

) of F

n

such that the univariate

polynomial p(y)

def

= Q(r

1

; : : : ; r

n

; y) has no repeated non-constant factors.

The next lemma will show that a random point is likely to be a reference point for any given

polynomial Q, provided the �eld size is large compared to the degree of the polynomial Q.

We will need one more notion which is standard in algebra.

De�nition 24 The discriminant of a univariate polynomial Q(y), denoted �, is Res(Q;Q

0

)

where Q

0

is the derivative of Q with respect to y. The discriminant of a multivariate poly-

nomial Q(x

1

; : : : ; x

n

; y) with respect to y, denoted �(x

1

; : : : ; x

n

), is de�ned to be Res

y

(Q;Q

0

)

where Q

0

is the derivative of Q with respect to y. (Formally the derivative of a monomial

q

i

y

i

is (q

i

+ � � �+ q

i

)y

i�1

, where the summation is of i q

i

's. The derivative of a polynomial is

simply the sum of the derivatives of the monomials in it.)

The above de�nition is motivated by the following well-known fact: A polynomial p (over

any unique factorization domain) has repeated non-constant factors if and only if it shares a

common factor with its derivative (cf. [27], Theorem 1.68). From the well-known fact about

resultants, this extends to saying that a polynomial has repeated non-constant factors if and

only if its discriminant is zero.

Lemma 25 For a polynomial Q(x

1

; : : : ; x

n

; y) of f(1; x

1

); : : : ; (1; x

n

); (d; y)g-weighted degree

at most kd with no repeated non-constant factors a random point r̂ 2 F

n

is a reference point

with probability at least 1�

k(k�1)d

jF j

.

Proof: Let �(x

1

; : : : ; x

n

) be the discriminant of Q with respect to y. Notice that Q

0

is

a polynomial of f(1; x

1

); : : : ; (1; x

n

); (d; y)g-weighted degree at most (k � 1)d. Thus, as in

Claim 16 we can show that �(x

1

; : : : ; x

n

) is a polynomial in x

1

; : : : ; x

n

of degree at most

k(k� 1)d. Since Q has no repeated factors, �(x

1

; : : : ; x

n

) is not identically zero. Thus for a

random point r̂ 2 F

n

, the probability that �(r̂) = 0 is at most k(k � 1)d=jF j. But observe

that �(r̂) is the discriminant of the univariate polynomial p(y)

def

= Q(r

1

; : : : ; r

n

; y), and if

�(r̂) 6= 0, then r̂ is a reference point.

3.2 Reduction to the univariate case

We now consider the case where we are given a black box B, described by polynomials

f

1

; : : : ; f

k

, and two points â;

^

b 2 F

n

, and we wish to �nd a set of k pairs f(y

1

; z

1

); : : : ; (y

k

; z

k

)g

such that for every i 2 [k], there exists some j 2 [k] such that (y

j

; z

j

) = (f

i

(â); f

i

(

^

b)). We

solve this problem by creating a univariate reconstruction problem and then using Theo-

rem 22 to solve this problem. This reduction builds upon a method of [14], which in turn

builds upon earlier work of [1, 13].

We create a univariate \subdomain", more precisely a function D : F ! F

n

, such that the

image of the domain, Im(D)

def

= fD(t)jt 2 Fg, satis�es the following properties:,
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1. â and

^

b are contained in Im(D)..

2. The restriction of a polynomial

~

Q(x

1

; : : : ; x

n

; y) of f(1; x

1

); : : : ; (1; x

n

); (d; y)g-weighted

degree kd to Im(D), i.e., the function

~

Q

D

(t; y)

def

=

~

Q(D(t); y), is a bivariate polynomial

of f(1; t); (3d; y)g-weighted degree 3kd.

3. Im(D) resembles a randomly and independently chosen sample of F

n

of size jF j. In

particular, with high probability, the fraction of points from Im(D) where the black

box responds with f(x

1

; : : : ; x

n

) is very close to the fraction of points from F

n

where

the black box responds with f .

For a �nite �eld F , with jF j > 3, D = (D

1

; : : : ;D

n

), where D

i

: F ! F is constructed

by picking vectors ĉ = (c

1

; : : : ; c

n

) and

^

d = (d

1

; : : : ; d

n

) at random from F

n

and setting

D

i

(t) = a

i

+ c

i

t + d

i

t

2

+ (b

i

� c

i

� d

i

� a

i

)t

3

, for i 2 [n]. By construction it is immediately

clear that the \subdomain" D satis�es properties (1) and (2) listed above. The following

lemma shows that it also satis�es property (3) above.

Lemma 26 For sets S

1

; : : : ; S

k

; E � F

n

, let p

i

def

= jS

i

j=jF

n

j and �

def

= jEj=jF

n

j and let  > 0.

Then

Pr

ĉ;

^

d

[9i 2 [k] s.t. jIm(D) \ S

i

j=jF j � p

i

� =2 or jIm(D) \ Ej=jF j � �+ =2] �

k + 1



2

(jF j � 2)

:

Proof: Observe that the set of points fD(t)jt 2 F n f0; 1gg, constitute a pairwise indepen-

dent sample of points chosen uniformly at random from F

n

. The lemma now follows from a

standard application of Chebyshev bounds.

Thus we obtain the following algorithm (tuned for con�dence parameter � = 1=3).

The algorithm is given a threshold p.

1. Pick ĉ;

^

d at random from F

n

.

2. Let D(t) = (D

1

(t); : : : ;D

n

(t)) be given by D

i

(t) = a

i

+ c

i

t+ d

i

t

2

+ (b

i

� a

i

� c

i

� d

i

)t

3

,

and let B

0

: H ! F be the black box given by B

0

(t) = B(D(t)), where H = F �f0; 1g.

3. Reconstruct all univariate polynomials g

1

; : : : ; g

k

of degree at most 3d describing B

0

,

for threshold p and con�dence 1 � 1=6.

4. Output f(g

1

(0); g

1

(1)); : : : ; (g

k

(0); g

k

(1))g.

Let  =

r

6(k+1)

(jF j�2)

. By Lemma 26 we know that the above algorithm �nds a univariate domain

D, s.t. at most �+=2 fraction of the points on the domain are \noisy" and every polynomial

is represented on at least p

i

� =2 fraction of the domain, with probability at least 1� 1=6.

Thus if p

i

� p for every i, and (p� �� )(jF j� 2) > 3kd, then the univariate reconstruction
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algorithm is guaranteed to �nd all the f

i

's, with probability at least 1� 1=6. The condition

on jF j above can be simpli�ed (somewhat) to (p� �)jF j > 3kd+

q

6(k + 1)jF j+2 and under

this condition the algorithm above returns f(f

1

(0); f

1

(1)); : : : ; (f

k

(0); f

k

(1))g correctly with

probability at least 2=3. Notice that by repeating log

1

�

times and outputting the majority

answer (i.e., the set that is output most often), we can boost the con�dence up to 1� �, for

any � > 0. This yields the following lemma:

Lemma 27 Given an �-noisy n-variate polynomial black box B described by polynomials

f

1

; : : : ; f

k

of degree d, s.t.

8i 2 [k]; Pr

x̂2F

n

[B(x̂) = f

i

(x̂)] � p > �;

there exists a randomized algorithm that takes as input �; p > 0 and â;

^

b 2 F

n

, runs

in time poly(n; k; d;

1

(p��)

; log

1

�

) and outputs the set of k ordered pairs f(f

1

(â); f

1

(

^

b)); : : : ;

(f

k

(â); f

k

(

^

b))g with probability at least 1 � � provided (p� �)jF j > 3kd + 2 +

q

6(k + 1)jF j.

3.3 Putting it together

We are now ready to describe the algorithm for solving the multivariate reconstruction

problem. The algorithm has a preprocessing stage where it sets up k black boxes, and a

query processing stage where it is given a query point â 2 F

n

and the black boxes compute

f

i

(â).

Preprocessing Stage: Given: Oracle access to a black boxB described by polynomials f

1

; : : : ; f

k

.

Parameters k, �, p and �.

Step 1: Pick r̂ at random and

^

b at random.

Step 2: Reconstruct, with con�dence 1 � �, the set f(f

1

(r̂); f

1

(

^

b)); : : : ; (f

k

(r̂); f

k

(

^

b))g

using the algorithm of Section 3.2.

Step 3: If the multiset ff

1

(r̂); : : : ; f

k

(r̂)g has two identical values, then output \fail-

ure". Else pass the reference point r̂ and the values f

1

(r̂); : : : ; f

k

(r̂) to the Query

Processing Stage.

Query Processing Stage: Given: Oracle access to a black box B,

^

b 2 F

n

and parameters

k; d; p and �. Additionally reference point r̂ and values v

1

; : : : ; v

k

passed on by

the Preprocessing Stage.

Step 1: Reconstruct with con�dence � the set f(f

1

(r̂); f

1

(

^

b)); : : : ; (f

k

(r̂); f

k

(

^

b))g using

the algorithm of Section 3.2.

Step 2: If the set ff

1

(r̂); : : : ; f

k

(r̂)g equals the set fv

1

; : : : ; v

k

g then reorder the indices

so that f

i

(r̂) = v

i

for every i 2 [k]. If the sets are not identical then report

\failure".

Step 3: For every i 2 [k], the black box B

i

outputs f

i

(b).
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This yields the following theorem.

Theorem 28 Let B be an �-noisy n-variate (k; d)-polynomial black box s.t.

Pr

x̂2F

n

[9i 2 [k]; s.t. B(x̂) = f

i

(x̂)] � 1� �

and 8i 2 [k] Pr

x̂2F

n

[B(x̂) = f

i

(x̂)] � p > �:

Then, if (p� �)jF j > 3kd+2+

q

6(k + 1)jF j, there exists a randomized algorithm that takes

as input a con�dence parameter � and with probability 1� � produces k black boxes B

j

such

that for every i 2 [k] there exists j 2 [k] s.t. for every input

^

b 2 F

n

, the black box B

j

computes f

i

(

^

b) with probability 1� �.

4 Applications

In this section, we describe the application of our techniques to curve �tting and bivariate

polynomial factorization.

4.1 Curve Fitting Problems over Discrete Domains

In this subsection, we study the curve �tting problem over discret domains. Given a set of m

points, with integer coordinates, we show how to �nd a polynomial with integer coe�cients

that is �-close to all but an � fraction of the points (if such a polynomial exists), where

� need only be less than 1=2 (provided is m is larger than

(4�+1)d

1�2�

). Over Z

p

(or over the

integers) the problem can be formulated as:

Given: m pairs of points, f(x

1

; y

1

); : : : ; (x

m

; y

m

)g and �, such that there exists a polynomial

f , of degree at most d, such that for all but �m values of j in [m]

9i 2 [��;�] s.t. y

j

= f(x

j

) + i

Problem: Find such an f .

Consider f

i

(x)

def

= f(x) + i, where i 2 [��;�]. Notice that all but � fraction of the points

are described by the polynomial f

i

's. Thus the above problem could be thought of a recon-

struction problem for an �-noisy (2� + 1; d)-polynomial black box reconstruction problem.

Lemma 21 can now be applied to this set of points to get the following result.

Claim 29 If there exists an i such that the number of points for which y = f

i

(x) is strictly

more than �m+ kd, then we can �nd a small set of polynomials which includes f

i

.
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The weakness of the above procedure is that it can only be guaranteed to succeed if � is

smaller than

1

2�+2

, since only then can we guarantee the existence of an i such that the

polynomial f

i

(x) is represented more often than the noise in the input set. We now present

a variation of the above method which gets around this weakness and solves the curve �tting

problem for strictly positive values of � (independent of �) and in fact works for � arbitrarily

close to 1=2.

The idea is that we can arti�cially decrease the inuence of the bad points. To do this,

we look at the following set of points: f(x

i

1

; y

i

1

); : : : ; (x

i

m

; y

i

m

)g

�

i=��

, where x

i

j

= x

j

and

y

i

j

= y

j

� � + i. (From each point in the original sample, we generate 2� + 1 points, by

adding and subtracting up to � to the y coordinate of each point.) We show that these

points represent the output of a (k; d)-algebraic black box for k = �m+ (4� + 1)d.

Observe that the following conditions hold for the (2� + 1)m points constructed above:

� There exists a polynomial Q(x; y) of f(1; x); (d; y)g-weighted degree at most �m +

(4� + 1)d such that Q(x; y) = 0 for all the points. This is the polynomial: Q(x; y) =

W (x) ��

2�

i=�2�

(y�f

i

(x)), where f

i

(x) = f(x)+i and W (x) is the polynomial satisfying

W (x

j

) = 0 if f

i

(x

j

) 6= y

j

for any i 2 [��;�]. (Notice that the degree of W is �m.)

� At least (1 � �)m of the points satisfy y = f(x). This is because for every point in

the original (x

j

; y

j

) such that y

j

is within � of f(x

j

) (and there were (1 � �)m such

points), one of the new (x

i

j

; y

i

j

) pairs satis�es y

i

j

= f(x

i

j

).

Lemma 30 Given m points f(x

1

; y

1

); : : : ; (x

m

; y

m

)g, integer d and � <

1

2

there exists a

polynomial time algorithm that can �nd all polynomials f of degree d such that f is �-close

to all but an � fraction of the points (x

j

; y

j

), provided m >

(4�+1)d

1�2�

.

Proof: Find a polynomial

~

Q(x; y) such that

~

Q(x; y) = 0 for all the points f(x

i

j

; y

i

j

)g

m; �

j=1;i=��

such that the degree of

~

Q is at most �m + (4� + 1)d. If �m + (4� + 1)d < (1 � �)m then

by Lemma 11 we know that for every candidate function f which forms an (�;�) �t on the

given points, (y � f(x)) divides

~

Q. Thus factoring

~

Q will give us all the candidates.

4.2 Reducing Bivariate Factoring to Univariate Factoring

In Section 2.1, we saw how to reduce the problem of reconstructing total polynomial black

boxes to the problem of factoring bivariate polynomials. In the speci�c case of univariate

polynomial black boxes over �nite �elds, we will also reduce the reconstruction problem

to that of factoring univariate polynomials into their irreducible factors. As an interesting

consequence, we describe a simple way of reducing the problem of factoring special bivariate

polynomials over �nite �elds to the problem of factoring univariate polynomials.

We �rst show how to reduce the reconstruction problem to that of factoring univariate

polynomials: Suppose we have a black box which on input x outputs the (unordered) set
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ff

1

(x); : : : ; f

k

(x)g, where the f

i

's are univariate polynomials, each of degree at most d.

Sampling from the black box and interpolating, we can �nd the polynomial f(x) =

Q

k

i=1

f

i

(x)

explicitly (in terms of its coe�cients). If somehow we could guarantee that at least one of

the f

i

's is irreducible, we could factor t to �nd f

i

. Such a guarantee is not available, but we

simulate it via randomization.

Let �(x) 2 F [x] be a random degree d polynomial. We can convert the given set of sample

points so that on each input x we have the (still unordered) set fg

1

(x); : : : ; g

k

(x) : g

i

(x) =

f

i

(x)+�(x)g. Each of the polynomials g

i

is a random degree d polynomial (but they are not

necessarily independent). We then use the fact that random polynomials over �nite �elds

have a reasonable chance of being irreducible.

Lemma 31 ([27], p.84) The probability P

q

(d) that a random polynomial of degree d is

irreducible over F

q

, is at least

1

d

(1�

1

q�1

).

We can thus interpolate (after sampling at kd + 1 points) and explicitly compute g(x) =

Q

k

i=1

g

i

(x). We factor g into irreducible factors r

1

� � � � � r

l

. For each factor r

j

of g, we verify

whether or not r

j

� � is a candidate for one of the f

i

's by checking that it evaluates to one

of the outputs of the black box B on all the sampled points. By Lemma 31 we know that

with non-negligible probability g

i

is irreducible and if this happens, we �nd g

i

as one of the

factors of g (i.e., as one of the r

j

's). Subtracting � from g

i

gives us f

i

, which will pass the

candidacy veri�cation.

Lemma 32 If a degree d polynomial p agrees with one of the outputs of the black box on

kd+ 1 di�erent x's, then p agrees with one of the outputs of the black box on all x's.

Proof: If p agrees with one of the outputs of the black box on kd + 1 di�erent x's, then

by the pigeonhole principle there is a polynomial f

i

which agrees with p on at least d + 1

di�erent x's. Thus p � f

i

.

Thus, no r

j

which is not equal to one of the g

i

's will pass the candidacy veri�cation. By

repeating this procedure enough times and outputting all the candidates, we can reconstruct

all the polynomials ff

1

; : : : ; f

k

g. Straightforward analysis shows that the expected number

of times that we need to repeat the process (choose random �) is O(k=P

q

(d)). Re�ning the

analysis, we can show that O(ln k=P

q

(d)) times su�ce.

From the above, we get the following algorithm for �nding the monic linear factors of a

bivariate polynomial Q(x; y).
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program Simple Factor

repeat O( ln k=P

q

(d) ) times

pick a random degree d polynomial

�(x) over F

factor Q(x; �(x))

for every factor g(x) of Q(x; �(x))

if (y + g(x)� �(x)) divides Q(x; y)

output (y + g(x)� �(x))

end

Claim 33 Given a bivariate polynomial Q(x; y), over a �nite �eld F , of total degree at most

kd, the algorithm Simple Factor �nds all the linear and monic factors of Q(x; y).

We next extend this mechanism, and apply the reconstruction mechanism of Section 2.2 to

the problem of �nding the factors of Q(x; y) which are monic and of constant degree in y.

Our mechanism tries to isolate some factor A(x; y) of Q(x; y) of the form

A(x; y) = y

c

+ a

c�1

(x)y

c�1

+ � � � + a

0

(x)

where the a

i

's are polynomials in x of degree at most d (and c is a constant).

Let Q(x; y) be a polynomial of f(1; x); (d; y)g-weighted degree kd. For each i 2 [c] we

construct a program P

i

which is supposed to be a (K; d)-algebraic box for a

i

, for some

K � 2ikd

�

k

c

�

. We then use our reconstruction procedure (Theorem 22) to produce, for each

i 2 [c], a list of at most K polynomials which contains a

i

. This, in turn, gives a set of at

most K

c

polynomials in x and y which contains A(x; y). A(x; y) can be isolated from this

set by exhaustive search. The running time of this algorithm is thus some polynomial in

(kd)

c

2

.

The program P

i

for a

i

works as follows on input x

1

:

� P

i

constructs the polynomialQ

x

1

(y) � Q(x

1

; y) (which is a polynomial in y) and factors

Q

x

1

.

� Let S be the set of factors of Q

x

1

. (S contains polynomials in y.)

� Let S

c

be the set of polynomials of degree c obtained by taking products of polynomials

in S.

� P

i

picks a random polynomial f in S

c

and outputs the coe�cient of y

i

in f .

We now show that P

i

is a (2ikd

�

k

c

�

; d)-algebraic black box described by some polynomial

Q

�

(x; y) such that y� a

i

(x) divides Q

�

(x; y). Let Q(x; y) = q

k

(x)y

k

+ q

k�1

y

k�1

+ � � �+ q

0

(x).
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Over the algebraic closure of the quotient ring of polynomials in x, Q(x; y) factors into linear

factors in y; let this factorization be

Q(x; y) = q

k

(x)(y � b

1

(x))(y � b

2

(x)) � � � (y � b

k

(x)):

(The b

i

(x) are some functions of x, but not necessarily polynomials.) For T � [k], jT j = c,

let �

T;i

(x)

def

=

P

S�T;jSj=i

Q

l2S

b

l

(x). Notice that the function a

i

(x) that we are interested

in is actually �

T;i

(x) for some T . Notice further that the output of the program P

i

is

always �

T;i

(x) for some T (though this T is some arbitrary subset of [k]). Thus the in-

put/output pairs (x; y) of the program P

i

always satisfy

Q

T�[k];jT j=c

(y � �

T;i

(x)) = 0. Un-

fortunately, �

T;i

(x) need not be a polynomial in x. So we are not done yet. We will show

that Q

�

(x; y)

def

= (q

k

(x; y)

N

)

Q

T�[k];jT j=c

(y � �

T;i

(x)) is actually a polynomial in x and y of

f(1; x); (d; y)g-weighted degree at most Ki, where N = i

�

k

c

�

. To see this, consider the coef-

�cient of y

j

in Q

�

(x; y). This is q

k

(x)

N

times some polynomial in b

1

(x); : : : ; b

k

(x), denoted

g

j

(b

1

(x); : : : ; b

k

(x)). By de�nition of Q

�

, we notice that g

j

is a symmetric polynomial in

b

1

(x); : : : ; b

k

(x) of degree at most i

�

k

c

�

. We now invoke the \fundamental theorem of sym-

metric polynomials" ([27], pages 29{30) which states that a symmetric polynomial of degree

D in variables z

1

; : : : ; z

k

can be expressed as a polynomial of degree at most D in the primi-

tive symmetric functions in z

1

; : : : ; z

k

. In our case this translates into saying that, there exists

some polynomial ~g

j

of degree at mostN s.t. g

j

(b

1

(x); : : : ; b

k

(x)) = ~g

j

(

q

k�1

(x)

q

k

(x)

; : : : ;

q

0

(x)

q

k

(x)

) (since

the primitive symmetric functions in b

1

(x); : : : ; b

k

(x) are actually

q

k�1

(x)

q

k

(x)

; : : : ;

q

0

(x)

q

k

(x)

. Thus we

�nd that the coe�cient of y

j

in Q

�

(x; y) is a polynomial in x of degree at most ikd

�

k

c

�

. The

claimed bound on the degree of Q

�

now follows easily.

Thus we get the following lemma.

Lemma 34 Given a polynomial Q(x; y) of f(1; x); (d; y)g-weighted degree kd, there is an

algorithm that runs in time polynomial in (kd)

c

2

which �nds all factors of Q that are monic

and of degree c in y.
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A Appendix

Lemma 35 Given S � H, with jSj=jHj = p, if jHj �

2

�

�

M

2

�

, and M �

2

p

(kd + ln

2

�

), then

the probability that M points x

1

; : : : ; x

M

chosen uniformly at random from H turn out to be

distinct and satisfy jfjjx

j

2 Sgj � kd is at least 1� �.

Proof: First observe that for a given i 6= j, the probability that x

i

= x

j

is exactly 1=jHj.

Thus the probability that there exists i; j s.t. x

i

= x

j

is at most

�

M

2

�

=jHj � �=2.

Now for the second part we use Cherno� bounds (in particular we use a bound from [31],

Theorem 4.2). Let X denote the number of elements j s.t. x

j

2 S. Let � =Mp denote the

expected value of X. Then Pr[X � K] � exp(�(� � K)

2

=2�). Plugging in the values of

� = 2(kd + ln

2

�

) and K = kd and simplifying we �nd that exp(�(��K)

2

=2�) � �=2.

Thus the probability that either of the above two events happen is bounded by at most � as

desired.

Lemma 36 Given S;E � H, with jSj=jHj = p and jEj=jHj = � if jHj �

3

�

�

M

2

�

, and

M �

k

1

kd

p�k

1

�

+

16

(p�k

1

�)

2

ln

3

�

, then the probability that M points x

1

; : : : ; x

M

chosen uniformly at

random from H turn out to be distinct and satisfy jfjjx

j

2 Sgj > M(p + k

1

�)=2 + k

1

kd=2

and jfjjx

j

2 Egj < M(p=k

1

+ �)=2� kd=2 is at least 1 � �.

Proof: First we argue as above that the probability that the x

j

's are not distinct is at

most �=3.

Now for the second part we again use Cherno� bounds (this time we use the bounds from

[31], Theorem 4.2 and Theorem 4.3). Let X denote the number of elements j s.t. x

j

2 S.

The above mentioned bounds translate to show that the probability that the number of

points from S is less than Mp � �

p

Mp is at most exp(��

2

=2). Similarly the probability

that the number of points from E turns out to be more than M�+ �

p

M� is bounded by at

most exp(��

2

=4). Each of these probabilities is at most �=3 if we choose � = 2

q

ln

3

�

. The

lemma now follows from the fact that for the chosen value ofM , we have that M�+�

p

M <

M(p=k

1

+ �)=2 � kd=2 and Mp + �

p

M > M(p + k

1

�)=2 + k

1

kd=2.
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