
The Bloomier Filter: An EÆient Data Struture for Stati Support

Lookup Tables

�

Bernard Chazelle

y

Joe Kilian

z

Ronitt Rubinfeld

z

Ayellet Tal

x

\Oh boy, here is another David Nelson"

Tiket Agent, Los Angeles Airport

(Soure: BBC News)

Abstrat

We introdue the Bloomier �lter, a data struture for

ompatly enoding a funtion with stati support in

order to support approximate evaluation queries. Our

onstrution generalizes the lassial Bloom �lter, an

ingenious hashing sheme heavily used in networks and

databases, whose main attribute|spae eÆieny|is

ahieved at the expense of a tiny false-positive rate.

Whereas Bloom �lters an handle only set membership

queries, our Bloomier �lters an deal with arbitrary

funtions. We give several designs varying in simpliity

and optimality, and we provide lower bounds to prove

the (near) optimality of our onstrutions.

1 Introdution

A widely reported news story

1

desribes the urrent

prediament faing air passengers with the name of

David Nelson, most of whom are being agged for extra

seurity heks at airports aross the United States: \If

you think seurity at airports is tight enough already,

imagine your name popping up in airline omputers

with a red ag as being a possible terrorist. That's

what's happening to David Nelsons aross the ountry."

The problem is so bad that many David Nelsons have

stopped ying altogether. Although the name David

Nelson raises a red ag, seurity oÆials won't say if

there is a terror suspet by that name. \Transportation

Seurity Administration spokesman Nio Melendez said

the problem was due to name-mathing tehnology used

�

This work was supported in part by NSF grant CCR-998817,

ARO Grant DAAH04-96-1-0181, and NEC Laboratories Ameria.

y

Prineton University and NEC Laboratories Ameria,

hazelle�s.prineton.edu

z

NEC Laboratories Ameria, fjoe|ronittg�ne-labs.om

x

Tehnion and Prineton University,

ayellet�ee.tehnion.a.il

1

http://news.bb.o.uk/2/hi/amerias/2995288.stm,

http://www.kgun9.om/story.asp?TitleID=3201&. . .

. . . ProgramOption=News

by airlines."

This story illustrates a ommon problem that arises

when one tries to balane false negatives and false

positives: if one is unwilling to aept any false negatives

whatsoever, one often pays with a high false positive

rate. Ideally, one would like to adjust one's system

to �x partiularly troublesome false positives while still

avoiding the possibility of a false negative (eg, one would

like to make life easier for the David Nelsons of the world

without making life easier for Osama Bin Laden). We

onsider these issues for the more prosai example of

Bloom �lters, desribed below.

Historial bakground Bloom �lters yield an ex-

tremely ompat data struture that supports mem-

bership queries to a set [1℄. Their spae requirements

fall signi�antly below the information theoreti lower

bounds for error-free data strutures. They ahieve

their eÆieny at the ost of a small false positive rate

(items not in the set have a small onstant probability

of being listed as in the set), but have no false nega-

tives (items in the set are always reognized as being in

the set). Bloom �lters are widely used in pratie when

storage is at a premium and an oasional false positive

is tolerable. They have many uses in networks [2℄: for

ollaborating in overlay and peer-to-peer networks [5,

8, 17℄, resoure routing [15, 26℄, paket routing [12, 30℄,

and measurement infrastrutures [9, 29℄. Bloom �l-

ters are used in distributed databases to support ie-

berg queries, di�erential �les aess, and to ompute

joins and semijoins [7, 11, 14, 18, 20, 24℄. Bloom �lters

are also used for approximating membership heking

of password data strutures [21℄, web ahing [10, 27℄,

and spell heking [22℄.

Several variants of Bloom �lters have been pro-

posed. Attenuated Bloom �lters [26℄ use arrays of Bloom

�lters to store shortest path distane information. Spe-

tral Bloom �lters [7℄ extend the data struture to sup-

port estimates of frequenies. In Counting Bloom Fil-

ters [10℄ eah entry in the �lter need not be a single bit

but rather a small ounter. Insertions and deletions to

the �lter inrement or derement the ounters respe-

tively. When the �lter is intended to be passed as a

message, ompressed Bloom �lters [23℄ may be used in-

stead, where parameters an be adjusted to the desired

tradeo� between size and false-positive rate.

We note that a standard tehnique for eliminating

a very small number of troublesome false positives is to

just keep an exeption list. However, this solution does

not sale well, both in lookup time and storage, when

the list grows large (say omparable to the number of

atual positives).

This Work A Bloom �lter is a lossy enoding

sheme for a set, or equivalently, for the boolean har-

ateristi funtion of the set. While Bloom �lters al-

low membership queries on a set, we generalize the

sheme to a data struture, the Bloomier �lter, that

an enode arbitrary funtions. That is, Bloomier �l-

ters allow one to assoiate values with a subset of the

domain elements. The method performs well in any

situation where the funtion is de�ned only over a

small portion of the domain, whih is a ommon o-

urrene. In our (faniful) terrorist detetion example,

suspiious names would map to suspet and popular,

non-suspiious names (eg, David Nelson) would map

to sounds-suspiious-but-really-ok; meanwhile, all but a

tiny fration of the other names would map to ok. This

third ategory is the only soure of error. Bloomier �l-

ters generalize Bloom �lters to funtions while maintain-

ing their eonomial use of storage. In addition, they

allow for dynami updates to the funtion, provided the

support of the funtion remains unhanged.

Another appliation of Bloomier �lters is to build-

ing a meta-database, ie, a diretory for the union of a

small olletion of databases. The Bloomier �lter keeps

trak of whih database ontains information about eah

entry, thereby allowing the user to jump diretly to the

relevant databases and bypass those with no relation to

the spei�ed entry. Many suh meta-databases already

exist on the Web: for example, BibFinder, a Computer

Siene Bibliography Mediator whih integrates both

general and spei� searh engines; Debrie�ng, a meta

searh engine that uses results from other searh en-

gines, a meta-site for zip odes & postal odes of the

world, et. Bloomier �lters an be used to maintain lo-

al opies of a diretory in any situation in whih data

or ode is maintained in multiple loations.

Our Results Let f be a funtion from D =

f0; : : : ; N � 1g to R = f?; 1; : : : ; 2

r

� 1g, suh that

f(x) = ? for all x outside some �xed (arbitrary) subset

S � D of size n. (We use the symbol ? either to

denote 0, in whih ase the funtion has support S, or to

indiate that f is not de�ned outside of S.) Bloomier

�lters allow one to query f at any point of S always

orretly and at any point of D n S almost always

orretly; spei�ally, for a random x 2 D n S, the

output returns f(x) = ? with probability arbitrarily

lose to 1. Bloomier �lters shine espeially when the

size of D dwarfs that of S, ie, when N=n is very large.

The query time is onstant and the spae requirement

is O(nr); this ompares favorably with the naive bound

of O(Nr), the bound of O(nr logN) (whih is ahieved

by merely listing the values of all of the elements in

the set) and, in the 0/1 ase, the O(n log

N

n

) bound

ahieved by the perfet hashing method of Brodnik

and Munro [3℄. (Of ourse, unlike ours, neither of

these methods ever errs.) Bloomier �lters are further

generalized to handle dynami updates. One an query

and update funtion values in onstant time while

keeping the spae requirement within O(nr), mathing

the trivial lower bound to within a onstant fator.

Spei�ally, for x 2 S, we an hange the value of f(x),

though we annot hange S.

We also prove various lower bounds to show that

our results are essentially optimal. First we show that

randomization is essential: over large enough domains,

linear spae is not enough for deterministi Bloomier

�lters. We also prove that, even in the randomized ase,

the ability to perform dynami updates on a hanging

support (ie, adding/removing x to/from S) requires a

data struture with superlinear spae.

Our Tehniques Our �rst approah to imple-

menting Bloomier �lters is to ompose an assortment

of Bloom �lters into a asading pipeline. This yields

a pratial solution, whih is also theoretially near-

optimal. To optimize the data struture, we hange

tak and pursue, in the spirit of [4, 6, 19, 28℄, an alge-

brai approah based on the expander-like properties of

random hash funtions.

As with bloom �lters, we assume that we an use

\ideal" hash funtions. We analyze our algorithms in

this model; heuristially one an use \pratial" hash

funtions.

2 A Warmup: the Bloom Filter Casade

We desribe a simple, near-optimal design for Bloomier

�ltering based on a asading pipeline of Bloom �lters.

For illustrative purposes, we restrit ourselves to the

ase R = f?; 1; 2g. Let A (resp. B) be the subset of

S mapping to 1 (resp. 2). Note that the \obvious"

solution whih onsists of running the searh key x

through two Bloom �lters, one for A and one for B, does

not work: What do we do if both outputs ontradit

eah other? One possible �x is to run the key through

a sequene of Bloom �lter pairs: (F(A

i

);F(B

i

)), for

i = 0; 1; : : : ; � and some suitable parameter �. The �rst

pair orresponds to the assignmentA

0

= A andB

0

= B.

Ideally, no key will pass the test for membership in

both A and B, as provided by F(A

0

) and F(B

0

), but

we annot ount on it. So, we need a seond pair of

Bloom �lters, and then a third, a fourth, et. (The idea

of multiple Bloom �lters appears in a di�erent ontext

in [7℄.) Generally, we de�ne A

i

to be the set of keys in

A

i�1

that pass the test in F(B

i�1

); by symmetry, B

i

is

the set of keys in B

i�1

that pass the test in F(A

i�1

). In

other words, A

i

= A

i�1

\ B

�

i�1

and B

i

= B

i�1

\ A

�

i�1

,

where A

�

i

and B

�

i

are the set of false positives for F(A

i

)

and F(B

i

), respetively.

Given an arbitrary key x 2 D, we run the test with

respet to F(A

0

) and then F(B

0

). If one test fails and

the other sueeds, we output 1 or 2 aordingly. If both

tests fail, we output ?. If both tests sueed, however,

we annot onlude anything. Indeed, we may be faed

with two false positives or with a single false positive

from either A or B. To resolve these ases, we all the

proedure reursively with respet to F(A

1

) and F(B

1

).

Note that A

1

(resp. B

1

) now plays the role of A (resp.

B), while the new universe is A

�

\B

�

. Thus, reursively

omputed outputs of the form `in A

1

', in B

1

', `not in

A

1

[B

1

' are to be translated by simply removing the

subsript 1.

For notational onveniene, assume that jAj =

jBj = n. Let n

i

be the random variable maxfjA

i

j; jB

i

jg.

All �lters use the same number of hash funtions, whih

is a large enough onstant k. The storage alloated

for the �lters, however, depends on their ranks in the

sequene. We provide eah of the Bloom �lters F(A

i

)

and F(B

i

) with an array of size 2

k

i

kn

i

. The number �

of Bloom �lter pairs is the smallest i suh that n

i

= 0. A

key in A

i

ends up in A

i+1

if it produes a false positive

for F(B

i

). This happens with probability at most

(kjB

i

j

Æ

2

k

i

kn

i

)

k

= 2

�k

i+1

. This implies that a key in A

belongs to A

i

with probability at most 2

�(k

i+1

�k)=(k�1)

;

therefore,

En

i

� n2

�(k

i+1

�k)=(k�1)

and

E� � 2 log logn= log k:

The probability that a searh key runs through the i-th

�lter is less than 2

�k

i

, so the expeted searh time is

onstant. The expeted storage used is equal to

E

�

X

i=0

2

k

i

kn

i

= kn

�

X

i=0

2

�(k

i

�k)=(k�1)

= O(km):

Note that, if N is polynomial in n, we an stop

the reursion when n

i

is about n= logn and then use

perfet hashing [3, 13℄. This requires onstant time and

O(n) bits of extra storage. To summarize, with high

probability a random set of hash funtions provides a

Bloomier �lter with the following harateristis: (i)

the storage is O(kn) bits; (ii) at most a fration O(2

�k

)

of D produes false positives; and (iii) the searh time

is O(log logn) in the worst ase and onstant when

averaged over all of D.

3 An Optimal Bloomier Filter

Given a domain D = f0; : : : ; N � 1g, a range R =

f?; 1; : : : ; jRj � 1g, a subset S = ft

1

; : : : ; t

n

g of D, we

onsider the problem of enoding a funtion f : D 7! R,

suh that f(t

i

) = v

i

for 1 � i � n and f(x) = ? for

x 2 D n S. Note that the funtion is entirely spei�ed

by the assignment A = f(t

1

; v

1

); : : : ; (t

n

; v

n

)g. For the

purpose of onstruting our data struture, we assume

that the funtion values in R are enoded as elements

of the additive group Q = f0; 1g

q

, with addition de�ned

bitwise mod 2. As we shall see, the false-positive rate is

proportional to 2

�q

, so q must be hosen suÆiently

large. Any x 2 R is enoded by its q-bit binary

expansion enode (x). Conversely, given y 2 Q, we

de�ne deode (y) to be the orresponding number if it

is less than jRj and ? otherwise. We use the notation

r = dlog jRje.

Given an assignment A, we denote by A(t) the value

A assigns to t, ie, A(t

i

) = v

i

. Let � be a total ordering

on S. We write a >

�

b to mean that a omes after b

in �. We de�ne �(i) to be the ith element of S in �;

if i > j, then obviously �(i) >

�

�(j). For any triple

(D;m; k), we assume the ability to selet a random hash

funtion hash : D ! f1; : : : ;mg

k

. This allows us to

aess random loations in a Bloomier �lter table of size

m.

Definition 3.1. Given hash as above, let hash (t) =

(h

1

; : : : ; h

k

;). We say that fh

1

; : : : ; h

k

g is the neighbor-

hood of t, denoted N(t).

Bloomier �lter tables store the assignment

A, and are reated by alling the proedure

reate (A) [m; k; q℄, where A denotes the assignment

and (m; k; q) are the parameters hosen to optimize

the implementation. For notational onveniene, we

will omit mention of these parameters when there is no

ambiguity. Our ultimate goal is to reate a one-sided

error, linear spae (measured in bits) data struture

supporting onstant-bit table lookups. Spei�ally, we

need to implement the following operations:

� reate (A): Given an assignment

A = f(t

1

; v

1

); : : : ; (t

n

; v

n

)g;

reate (A) sets up a data struture Table. The

subdomain ft

1

; : : : ; t

n

g spei�ed by A is denoted

by S.

� set value (t; v;Table): For t 2 D and v 2 R,

set value (t; v;Table) assoiates the value v with

domain element t in Table. It is required that t be

in S.

� lookup (t;Table): For t 2 S, lookup (t;Table)

returns the last value v assoiated with t. For all

but a fration " of DnS, lookup (t;Table) returns

? (ie, erti�es that t is not in S). For the remaining

elements of D n S, lookup (t;Table) returns an

arbitrary element of R.

A data struture that supports only reate and

lookup is referred to as an immutable data struture.

Note that although re-assignments to elements in S are

made by set value , no hanges to S are allowed. Our

lower bounds show that, if we allow S to be modi-

�ed, then linear size (measured in bits) is impossible

to ahieve regardless of the query time. In other words,

Bloomier �lters provably rule out fully dynami opera-

tions.

There are three parameters of interest in our on-

strutions: the runtime of eah operation, the spae re-

quirements, and the false-positive rate �. The reate

operation runs in expeted O(n logn) time (indeed,

O(n) time, depending on the model) and uses O(n(r +

log 1=")) spae. The set value and lookup opera-

tions run in O(1) time.

3.1 An Overview We �rst desribe the immutable

data struture and later show how to use the same prin-

iples to onstrut a mutable version. The table onsists

of m q-bit elements, where m and q are implementation

parameters. We denote by Table [i℄ 2 f0; 1g

q

the ith

q-bit value in Table. To look up the value v assoiated

with t, we use a hash funtion hash to ompute k lo-

ations (h

1

; : : : ; h

k

), where 1 � h

i

� m, and a q-bit

\masking value" M (used for reduing false positives).

We then ompute x = M �

L

k

i=1

Table [h

i

℄, where �

denotes the bit-wise exlusive-or operation.

There are two main issues to address. First, we

must set the values of Table [i℄, for i = 1; : : : ;m, so

that the deode operations yield the orret values for

all t 2 S. We need to show that with high probability

a \random" solution works (for appropriate parameter

settings), and furthermore we wish to ompute the

assignment eÆiently, whih we do by a simple greedy

algorithm. Seond, we must ensure that, for all but an

� expeted fration of t 2 D nS, the omputed \image"

in Q deodes to ?.

We set the table values using the following key

tehnique. Given a suitable hoie of m and k, we show

that, with high probability, there is an ordering � on S

and an order respeting mathing, de�ned as follows:

Definition 3.2. Let S be a set with a neighborhood

N(t) de�ned for eah t 2 S. Let � be a omplete

ordering on the elements of S. We say that a mathing

� respets (S;�;N) if (i) for all t 2 S, � (t) 2 N(t), and

(ii) if t

i

>

�

t

j

, then � (t

i

) 62 N(t

j

). When the funtion

hash (and hene N) is understood from the ontext, we

say that � respets � on S.

Given � and � , we an, for t = �(1); : : : ;�(n),

set the value v assoiated with t by setting Table [� (t)℄.

By the order-respeting nature of � , this assignment

annot a�et any previously set values. We show the

existene of good (�;�) using the notion of lossless

expanders [6, 28℄. Our analysis implies that, with high

probability (over hash), we an �nd (�;�) in nearly

linear time using a greedy algorithm.

To limit the number of false positives, we use

the random mask M produed by hash (t). Beause

M is distributed uniformly and independently of any

of the values stored in Table, when we look up t 62

S, the resulting value is uniformly and independently

distributed over f0; 1g

q

. If the size of R is small

ompared with the size of f0; 1g

q

, then with high

probability this value will not enode a legal value of

R, and we will detet that t 62 S.

We make a mutable struture by using a two-table

onstrution. We use the �rst table, Table

1

, to enode

� (t) for eah t 2 S. We note that sine N(t) has

only k values, whih may be omputed from hash (t),

� (t) 2 N(t) an be ompatly represented by a number

in f1; : : : ; kg. Now, it follows from the de�nitions that

if t 6= t

0

for t; t

0

2 S, � (t) 6= � (t

0

). Thus, we an simply

store the value assoiated with t in Table

2

[� (t)℄; the

loations will never ollide.

3.2 Finding a Good Ordering and Mathing

We give a greedy algorithm that, given S and hash ,

omputes a pair (�;�) suh that � respets � on S.

First, we onsider how to ompatly represent � . Reall

that hash (t) de�nes the k neighbors, h

1

; : : : ; h

k

of t.

Therefore, given hash , we an represent � (t) 2 N(t)

by an element of f1; : : : ; kg. Thus, we de�ne �(t) suh

that � (t) = h

�(t)

. With S = ft

1

; : : : ; t

n

g, we also use the

shorthand �

i

= �(t

i

), from whih � = f�

1

; : : : ; �

n

g. Our

algorithm is based on the abundane of \easy mathes."

Definition 3.3. Let m; k;hash be �xed, de�ning N(t)

for t 2 D, and let S � D. We say that a loation

h 2 f1; : : : ;mg is a singleton for S if h 2 N(t) for

exatly one t 2 S. We de�ne tweak (t; S;hash) to be

the smallest value j suh that h

j

is a singleton for S,

where N(t) = (h

1

; : : : ; h

k

); tweak (t; S;hash) = ? if

no suh j exists.

If tweak (t; S;hash) is de�ned, then it sets the

value of �(t) and t is easy to math. Note that this

hoie will not interfere with the neighborhood for any

di�erent t

0

2 S. Let E denote the subset of S with

\easy mathes" of that sort, and let H = S n E. We

reursively �nd (�

0

;�

0

) on H and extend (�

0

;�

0

) to

(�;�) as follows. First, we put the elements of E

at the end of the ordering for the elements of H , so

that if t 2 E and t

0

2 H , then t >

�

t

0

(the ordering

of the elements within E an be arbitrary). Then we

de�ne � (t) to be the union of the mathings for H and

E. It is immediate that � respets � on S. We give

the algorithm in Figure 1. Note that it is not at all

lear that our algorithm for find math will sueed.

We show that for m and k suitably large, and hash

hosen at random, find math will sueed with high

probability.

3.3 Creating a Mutable Bloomier Filter Given

an ordering � on S, and a mathing � that respets

� on S (given the neighborhoods de�ned by hash),

we store values assoiated with any t 2 S as follows.

Given t 2 S, � gives a loation L 2 N(t) suh that L is

not in the neighborhood of any t

0

that appears before

t in �. Furthermore, given hash (t), L has a ompat

desription as an element ` 2 f1; : : : ; kg. Finally, no

other t

0

2 S (before or after t) has the same value of L.

We an onstrut an immutable table as follows:

For t = �[1℄; : : : ;�[n℄, we ompute the neighborhood

N(t) = fh

1

; : : : ; h

k

g and mask M from hash (t). From

� (t) we obtain L 2 N(t) with the above properties.

Finally, we set Table [L℄ so that M �

L

k

i=1

Table [h

i

℄

enodes the value v assoiated with t. By the properties

of L given above, altering Table [L℄ annot a�et any of

the t

0

whose assoiated values have already been put

into the table. To retrieve the value assoiated with t,

we simply ompute

x =M �

k

M

i=1

Table [h

i

℄;

and see if x is a orret enoding of some value v 2 R. If

it is not, we delare that t 62 S. Beause M is random,

so is x if t 62 S; therefore, it is a valid enoding only

with probability jRj=2

q

.

In order to make a mutable table, we use the fat

that eah t 2 S has a distint mathing value L, with a

suint representation ` 2 f1; : : : ; kg (given hash (t)).

We use the above tehnique to make an immutable table

that stores for eah t the value ` that an be used to

reover its distint mathing value L. We then store

any value assoiated with t in the Lth loation of a

seond table.

We give our �nal algorithms in Figures 2 and 3.

4 Analysis of the Algorithm

The most tehnially demanding aspet of our analysis

is in showing that for a random hash , and suÆiently

large k and m, the find math routine will with

high probability �nd (�;�) suh that � respets � on

S. One we have suh an (�;�), the analysis of our

algorithms is straightforward.

Lemma 4.1. Assuming that find math sueeded in

reate , then for t 2 S, the value v returned by

lookup (t;Table) will be the most reent v assigned to

t by reate or set value .

Proof. When the assignment for t is �rst stored in Table,

� (t) generates a loation L 2 N(t), with a onise

representation ` 2 f1; : : : ; kg. By the onstrution,

Table

1

[L℄ is set so that

M �

M

Z2N(t)

Table

1

[Z℄

is a valid representation for `. We laim that the

same value of ` (and hene L) is reovered by the

lookup and set value ommands on input t. These

routines reover ` by the same formula; it remains to

verify that none of the operations auses this value to

hange. We observe that the lookup and set value

ommands do not alter Table

1

. The only indies of

Table

1

subsequently altered by reate are of the form

� (t

0

), where t

0

>

�

t (sine the ts are proessed aording

to �). However, by the properties of � , it follows that

� (t

0

) 62 N(t), so these hanges to Table

1

annot a�et

the reovered value of `, and hene L.

Finally, we observe that all of the L are distint:

Suppose that t

1

; t

2

2 S and t

1

6= t

2

. Assume without

loss of generality that t

1

>

�

t

2

. Then � (t

1

) 62 N(t

2

),

but � (t

2

) 2 N(t

2

), so � (t

1

) 6= � (t

2

). It follows that

Table

2

(L) is only altered when reate and set value

assoiate a value to t, as desired. }

Lemma 4.2. Suppose that Table is reated using an

assignment with support S. Then if t 62 S,

Pr[lookup (t;Table) = ?℄ � 1�

k

2

q

;

where the probability is taken over the oins of reate ,

assuming that hash is a truly random hash funtion.

Proof. Sine t 62 S, the data strutures were generated

ompletely independent of the values of

(h

1

; : : : ; h

k

;M) = hash (t):

In partiular, M is uniformly distributed over f0; 1g

q

,

independent of anything else. Hene, the value of

M �

M

Z2N(t)

Table

1

[Z℄

find math (hash ; S)[m; k℄ Find (�;�) for S;hash

1. E = ;;� = ;

For t

i

2 S

If tweak (t

i

; S;hash) is de�ned

�

i

= tweak (t

i

; S;hash)

E = E [ft

i

g

If E = ; Return (failure)

2. H = S nE

Reursively ompute (�

0

;�

0

) = find math (hash ; H)[m; k℄.

If find math (hash ,H)[m,k℄=failure Return (failure)

3. � = �

0

For t

i

2 E

Add t

i

to the end of � (ie, make t

i

be the largest element in � thus far)

Return (�;� = f�

1

; : : : ; �

n

g)

(where �

i

is determined for t

i

2 E, in Step 1, and for t

i

2 H (via �

0

) in Step 2.)

Figure 1: Given hash and S, find math �nds an ordering � on S and a mathing � on S that respets

� on S.

reate (A = f(t

1

; v

1

) : : : ; (t

n

; v

n

)g)[m; k; q℄ (reate a mutable table)

1. Uniformly hoose hash : D ! f1; : : : ;mg

k

� f0; 1g

q

S = ft

1

; : : : ; t

n

g

Create Table

1

to be an array of m elements of f0; 1g

q

Create Table

2

to be an array of m elements of R.

(the initial values for both tables are arbitrary)

Put (hash ;m; k; q) into the \header" of Table

1

(we assume that these values may be reovered from Table

1

)

2. (�;�) = find math (hash ; S)[m; k℄

If find math (hash ; S)[m; k℄ = failure Goto Step 1

3. For t = �[1℄; : : : ;�[n℄

v = A(t) (ie, the value assigned by A to t)

(h

1

; : : : ; h

k

;M) = hash (t)

L = � (t); ` = �(t) (ie, L = h

`

)

Table

1

[L℄ = enode (`)�M �

k

M

i = 1

i 6= `

Table

1

[h

i

℄

Table

2

[L℄ = v

4. Return (Table = (Table

1

;Table

2

))

Figure 2: Given an assignment A and parameters m; k; q, reate reates a mutable data struture

orresponding to A.

lookup (t;Table = (Table

1

;Table

2

))

1. Get (hash ;m; k; q) from Table

1

(h

1

; : : : ; h

k

;M) = hash (t)

` = deode

M �

k

M

i=1

Table

1

[h

i

℄

!

2. If ` is de�ned

L = h

`

Return (Table

2

[L℄)

Else Return (?)

set value (t; v;Table = (Table

1

;Table

2

))

1. Get (hash ;m; k; q) from Table

1

(h

1

; : : : ; h

k

;M) = hash (t)

` = deode

M �

k

M

i=1

Table

1

[h

i

℄

!

2. If ` is de�ned

L = h

`

Table

2

[L℄ = v

Return (suess)

Else Return (failure)

Figure 3: lookup looks up t in Table = (Table

1

;Table

2

). set value sets the value assoiated with t 2 S

to v in Table = (Table

1

;Table

2

). Note that for set value , t must be an element of S, as determined (by

A) in the original reate invoation.

will be uniformly distributed over f0; 1g

q

. However,

there are only k out of 2

q

values enoding legitimate

values of ` 2 f1; : : : ; kg. }

Thus, in the \ideal" setting, where hash is truly

random, it suÆes to set

q =

�

lg

�

k

�

��

:

to ahieve a false positive rate of �. Of ourse, hash

is generated heuristially, and is at best pseudorandom,

so this analysis must be taken in ontext. We note that

if hash is a ryptographially strong pseudorandom

funtion, then the behavior of the data struture using

hash will be omputationally indistinguishable from

that of using a truly random hash ; however, funtions

with provable pseudorandomness properties are likely

to be too ompliated to be used in pratie.

4.1 Analyzing find math It remains to show for

any S, with reasonable probability (onstant probability

suÆes for our purposes), find math will indeed �nd

a pair (�;�) suh that � respets � on S. Reall

that find math works by �nding an \easy" set E,

solving the problem reursively for H = S nE, and then

ombining the solutions for E andH to get a solution for

S. To show that find math terminates, it suÆes to

show that for any subset A of S, find math will �nd

a nonempty \easy" set, E

A

, implying that find math

always makes progress.

Let G be an n � m bipartite graph de�ned as

follows: On the left side are n verties, L

1

; : : : ; L

n

2 L,

orresponding to elements of S. On the right side are m

verties, R

1

; : : : ; R

m

2 R, orresponding to f1; : : : ;mg.

Reall that hash de�nes for eah t

i

2 S a set of k values

h

1

; : : : ; h

k

2 f1; : : : ;mg; G ontains an edge between L

i

and R

h

j

, for 1 � j � k. The following property is

ruial to our analysis:

Definition 4.1. Let G be as above. We say that G

has the singleton property if for all nonempty A � L,

there exists a vertex R

i

2 R suh that R

i

is adjaent to

exatly one vertex in A.

We laim that if G has the singleton property, then

find math will never get stuk. This is beause

whenever find math is being alled on a subset A

of S, the resulting easy set will ontain R

i

, and hene

will be nonempty.

We next redue the singleton property to a well-

studied (lossless) expansion property. Let N(v) be the

set of neighbors of a vertex v 2 L, and for A � L, let

N(A) be the set of neigbors (in R) of elements of A.

Definition 4.2. Let G be as above. We say that G

has the lossless expansion property if for all nonempty

A � L, jN(A)j > kjAj=2.

Lemma 4.3. If G has the lossless expansion property,

then it has the singleton property.

Proof. Assume to the ontrary that eah node in N(A)

has degree at least 2. Then G graph has at least 2jN(A)j

edges. However, by the lossless expansion property,

N(A) > jAjk=2, so G has greater than jAjk edges, whih

is a ontradition.

Now, hoosing hash at random orresponds to

hoosing G aording to the following distribution:

Eah v 2 L selets (with replaement) k random verties

in r

1

; : : : ; r

k

2 R to be adjaent to. Suh random graphs

are well studied; Lemma 4.4 follows from a standard

ounting argument.

Lemma 4.4. Let G be hosen as above, with �xed k

and m = kn. For any onstant > 1 + 1=

p

n

and n suÆiently large, G has the lossless expansion

probability with probability at least 2=3.

Proof. (Sketh) The probability of a ounterexample is

at most

n

X

s=1

�

n

s

��

m

bks=2

��

bks=2

m

�

ks

�

n

X

s=1

�

en

s

�

s

�

2en

s

�

ks=2

�

s

2n

�

ks

�

n

X

s=1

�

e

k=2+1

2

k=2

s

�

s

�

s

n

�

ks=2

� o(1) +

X

s�

p

n

�s

= o(1):

}

5 Lower Bounds

We onsider the ase R = f?; 1; 2g. The set S splits into

the subsets A and B that map to 1 and 2, respetively.

It is natural to wonder whether a single set of hash

funtions might be suÆient for all pairs A;B. In

other words, is deterministi Bloomier �ltering possible

with only O(n) bits of storage. We provide a negative

answer to this question. Our lower bound also holds for

nonuniform algorithms; in other words, we may use an

arbitrary large amount of storage besides the Bloomier

�lter tables as long as the enoding depends only on n

and N .

Theorem 5.1. Deterministi Bloomier �ltering

requires
(n+ log logN) bits of storage.

Proof. Let G be a graph with

�

N

2n

��

2n

n

�

nodes, eah one

orresponding to a distint vetor f�1; 0; 1g

N

with ex-

atly n oordinates equal to 1 and n others equal to

�1. Two nodes of G are adjaent if there exists at

least one oordinate position 1 � i � N suh that their

orresponding vetors (x

1

; : : : ; x

N

) and (y

1

; : : : ; y

N

) sat-

isfy x

i

y

i

= �1. Intuitively, eah node orresponds to a

hoie of A (the 1 oordinates) and B (the �1 oordi-

nates). Two nodes are joined by an edge if the set A of

one node intersets the set B of the other one. Sine the

table T is the only soure of information about A;B, no

two adjaent nodes should orrespond to the same table

assignment; therefore, the size m of the array is at least

log�(G), where �(G) is the hromati number of G.

Theorem 5.1 follows diretly from the lemma below.

}

Lemma 5.1. The hromati number of G is between

(2

n

logN) and O(4

n

lnN).

Proof. Consider a minimum oloring of G. For any

vetor w 2 f�1; 1g

n

and any sequene of n indies

1 � i

1

< � � � < i

n

� N , there exists a olor suh

that w = (z

i

1

; : : : ; z

i

n

). To see why, onsider a hoie of

A;B that mathes the oordinates of w at the positions

i

1

; : : : ; i

n

. If we turn all the minus ones to zeroes, the

resulting set of vetors z

is (N;n)-universal (meaning

that the restritions of the vetors z

to any given

hoie of n oordinate positions produe all possible 2

n

patterns). By Kleitman and Spener [16℄, the number of

suh vetors is known to be
(2

n

logN). For the upper

bound, we use the existene of a (N; 2n)-universal set of

vetors of size O(n2

n

logN)|also established in [16℄|

and turn all zeroes into minus ones. (Alternatively,

we an use Razborov's bound on the size of separating

sets [25℄.) Eah node is olored by piking a vetor from

the universal set that mathes the the ones and minus

ones of the vetor assoiated with that node. }

Going bak to the randomized model of Bloomier

�ltering, we onsider what happens if we attempt to

modify the set S itself. Again we give a negative

answer, but this time the universe size need be only

polynomially larger than n for the sheme to break

down. Intuitively, this shows that too muh information

is lost in a linear bit size enoding of the funtion f to

allow for hanges in the set S.

Theorem 5.2. If N = 2

n

O(1)

and the number m of

storage bits satis�es n � m �

n

log log(N=n

3

) for some

large enough onstant , then Bloomier �ltering annot

support dynami updates on the set S.

Proof. Again, we onsider S to be the disjoint union

of of an n-set A (resp. B) mapping to 1 (resp. 2).

Fix the original B, and onsider the assignments of the

table T orresponding to the various hoies of A. With

eah assignment of T is assoiated a ertain family of

n-element sets A � D. Let F be the largest suh family:

obviously, jFj �

�

N

n

�

2

�m

. Given an integer k > 0, let

L

k

be the set of elements x 2 U that belong to at least

k sets of jFj. It is easy to see that L

k

annot be too

small. Indeed, let F

k

denote the subfamily onsisting

of the sets of F that are subsets of L

k

. Obviously,

jF n F

k

j � (k � 1)N . The assumptions of the theorem

imply that N > n

3

; thus, the hoie of k = bjFj=2N

ensures that k > and

jF

k

j � jFj � (k � 1)N >

1

2

jFj �

�

N

n

�

2

�m�1

:

Beause

�

L

k

n

�

� jF

k

j, it follows that

jL

k

j � 2

�

m+1

n

N:(5.1)

The expeted number of sets in F that a random

element from D intersets is

n

N

jFj. Given an n-element

B � D, let F

B

denote the subfamily of F whose sets

interset B. For a random B,

E

X

n

jSj : S 2 F

B

o

�

n

3

N

jFj:

Let F

B

= F n F

B

and L

B

k

=

S

fS \ L

k

jS 2 F

B

g.

Sine eah x 2 L

k

intersets at least k sets of F ,

E jL

B

k

j � jL

k

j �

n

3

kN

jFj � jL

k

j � 3n

3

:

One the new hoie of B is revealed, the table gets

updated. The only information about A is enoded

in the previous table assignment. Thus the algorithm

annot distinguish between any two sets A in F

B

. To

summarize, given a random B, the algorithm must

answer `in A' for any searh key in L

B

k

; furthermore,

Prob

h

jL

B

k

j � jL

k

j � 6n

3

i

�

1

2

:(5.2)

Next, we partition the family of n-element sets B

aording to the assignment of T eah one orresponds

to. This gives us at most 2

m

subfamilies fG

i

g, with

P

i

jfG

i

gj =

�

N

n

�

. If M

i

denotes the union

S

fS \

L

k

jS 2 G

i

g, then given any new hoie of B in G

i

the algorithm must answer `in B' for any searh key in

M

i

. By our previous remark, therefore, it is imperative

that M

i

should be disjoint from L

B

k

. We show that if

m is too small, then for a random hoie of B both sets

interset with high probability.

Fix a parameter � = bjL

k

j2

�

m=n

. Let i(B) denote

the index j suh that B 2 G

j

and let � = djL

k

jn=2Ne.

Given a randomB, by Cherno�'s bound, the probability

that jB \ L

k

j < � is o(1). On the other hand, the

onditional probability that jM

i(B)

j � �, given that

jB \ L

k

j � � , is at most

max

s��

2

m

�

�

s

�

.

�

jL

k

j

s

�

= 2

m

�

�

�

�

.

�

jL

k

j

�

�

� 2

m

�

�

jL

k

j

�

= o(1):

Therefore, the probability that jM

i(B)

j > � is 1� o(1).

Sine � > 6n

3

, it follows that, with probability at least

1=2�o(1), jM

i(B)

j intersets L

B

k

and the algorithm fails.

}

Referenes

[1℄ Bloom, B. Spae/time tradeo�s in in hash oding with

allowable errors, CACM 13 (1970), 422{426.

[2℄ Broder, A., Mitzenmaher, M. Network appliations of

Bloom �lters: a survey, Allerton 2002.

[3℄ Brodnik, A., Munro, J.I., Membership in onstant

time and almost minimum spae, SIAM J. Comput.

28 (1999), 1628{1640.

[4℄ Buhrman, H., Miltersen, P.B., Radhakrishnan, J.,

Venkatesh, S. Are bitvetors optimal? Pro. 32th

STOC (2000), 449{458.

[5℄ Byers, J., Considine, J., Mitzenmaher, M. Informed

ontent delivery over adaptive overlay networks, Pro.

ACM SIGCOMM 2002, Vol. 32:4, Computer Commu-

niation Review (2002), 47{60.

[6℄ Capalbo, M., Reingold, O., Vadhan, S., Wigderson, A.

Randomness ondutors and onstant-degree expansion

beyond the degree /2 barrier, Pro. 34th STOC (2002),

659{668.

[7℄ Cohen, S., Matias, Y. Spetral Bloom �lters, SIGMOD

2003.

[8℄ Cuena-Auna, F.M., Peery, C., Martin, R.P., Nguyen,

T.D. PlanetP: Using gossiping to build ontent ad-

dressable peer-to-peer information sharing ommuni-

ties, Rutgers Tehnial Report DCS-TR-487, 2002.

[9℄ Estan, C., Varghese, G. New diretions in traÆ

measurement and aounting, Pro. ACM SIGCOMM

2002, Vol 32:4, Computer Communiation Review

(2002), 323{336.

[10℄ Fan, L., Cao. P., Almeida, J., Broder, A. Summary

ahe: a salable wide-area web ahe sharing protool,

IEEE /ACM Transations on Networking, 8 (2000),

281-293.

[11℄ Fang, M., Shivakumar, N., Garia-Molina, H., Mot-

wani, R., Ullman. J. Computing ieberg queries eÆ-

iently, Pro. 24th Int. Conf. on VLDB (1998), 299{

310.

[12℄ Feng, W.-C., Shin, K.G., Kandlur, D., Saha, D.

Stohasti fair blue: A queue management algorithm

for enforing fairness, INFOCOM '01 (2001), 1520{

1529.

[13℄ Fredman, M.L., Komlos, J., Szemeredi, E. Storing a

sparse table with O(1) worst ase aess time, J. ACM

31 (1984), 538{544.

[14℄ Gremillion, L.L. Designing a Bloom Filter for di�eren-

tial �le aess, Comm. ACM 25 (1982), 600{604.

[15℄ Hsiao, P. Geographial region summary servie for ge-

ographial routing, Mobile Computing and Communi-

ations Review 5 (2001), 25{39.

[16℄ Kleitman, D.J., Spener, J. Families of k-independent

sets, Disrete Math 6 (1973), 255{262.

[17℄ Ledlie, J., Taylor, J., Serban, L., Seltzer, M. Self-

organization in peer-to-peer systems, Pro. 10th Eu-

ropean SIGOPS Workshop, September 2002.

[18℄ Li, Z., Ross, K.A. PERF join: an alternative to two-

way semijoin and bloomjoin CIKM '95, Pro. 1995 In-

ternational Conferene on Information and Knowledge

Management, 137{144, November 1995.

[19℄ Luby, M. LT odes, Pro. 43rd Annu. IEEE Symp.

Foundat. Comput. Si., 2002.

[20℄ Makert, L., Lohman, G. R* optimizer validation and

performane for distributed queries, Pro. Int'l. Conf.

on VLDB (1986), 149{159.

[21℄ Manber, U., Wu, S. An algorithm for approximate

membership heking with appliation to password se-

urity, Information Proessing Letters 50 (1994), 191{

197.

[22℄ MIlroy, M.D. Development of a spelling list, IEEE

Trans. on Communiations, COM-30 (1982), 91{99.

[23℄ Mitzenmaher, M. Compressed Bloom �lters, IEEE

Transations on Networking 10 (2002).

[24℄ Mullin, J.K. Optimal semijoins for distributed database

systems, IEEE Transations on Software Engineering

16 (1990).

[25℄ Razborov, A.A. Appliations of matrix methods to the

theory of lower bounds in omputational omplexity,

Combinatoria 10 (1990), 81{93.

[26℄ Rhea, S.C., Kubiatowiz, J. Probabilisti loation and

routing, Proeedings of INFOCOM 2002.

[27℄ Rousskov, A., Wessels, D. Cahe digests, Computer

Networks and ISDN Systems, 30(22-23), 2155-2168,

1998.

[28℄ Sipser, M., Spielman, D.A. Expander odes, IEEE

Trans. Inform. Theory 42 (1996), 1710{1722.

[29℄ Snoeren, A.C., Partridge, C., Sanhez, L.A., Jones,

C.E., Thakountio, F., Kent, S.T., Strayer W.T. Hash-

based IP traebak, Pro. ACM SIGCOMM 2001, Vol.

31:4, Computer Communiation Review, 3{14, August

2001.

[30℄ Whitaker, A., Wetherall, D. Forwarding without loops

in Iarus, Pro. 5th OPENARCH (2002), 63{75.

