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\Oh boy, here is another David Nelson"

Ti
ket Agent, Los Angeles Airport

(Sour
e: BBC News)

Abstra
t

We introdu
e the Bloomier �lter, a data stru
ture for


ompa
tly en
oding a fun
tion with stati
 support in

order to support approximate evaluation queries. Our


onstru
tion generalizes the 
lassi
al Bloom �lter, an

ingenious hashing s
heme heavily used in networks and

databases, whose main attribute|spa
e eÆ
ien
y|is

a
hieved at the expense of a tiny false-positive rate.

Whereas Bloom �lters 
an handle only set membership

queries, our Bloomier �lters 
an deal with arbitrary

fun
tions. We give several designs varying in simpli
ity

and optimality, and we provide lower bounds to prove

the (near) optimality of our 
onstru
tions.

1 Introdu
tion

A widely reported news story

1

des
ribes the 
urrent

predi
ament fa
ing air passengers with the name of

David Nelson, most of whom are being 
agged for extra

se
urity 
he
ks at airports a
ross the United States: \If

you think se
urity at airports is tight enough already,

imagine your name popping up in airline 
omputers

with a red 
ag as being a possible terrorist. That's

what's happening to David Nelsons a
ross the 
ountry."

The problem is so bad that many David Nelsons have

stopped 
ying altogether. Although the name David

Nelson raises a red 
ag, se
urity oÆ
ials won't say if

there is a terror suspe
t by that name. \Transportation

Se
urity Administration spokesman Ni
o Melendez said

the problem was due to name-mat
hing te
hnology used

�
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by airlines."

This story illustrates a 
ommon problem that arises

when one tries to balan
e false negatives and false

positives: if one is unwilling to a

ept any false negatives

whatsoever, one often pays with a high false positive

rate. Ideally, one would like to adjust one's system

to �x parti
ularly troublesome false positives while still

avoiding the possibility of a false negative (eg, one would

like to make life easier for the David Nelsons of the world

without making life easier for Osama Bin Laden). We


onsider these issues for the more prosai
 example of

Bloom �lters, des
ribed below.

Histori
al ba
kground Bloom �lters yield an ex-

tremely 
ompa
t data stru
ture that supports mem-

bership queries to a set [1℄. Their spa
e requirements

fall signi�
antly below the information theoreti
 lower

bounds for error-free data stru
tures. They a
hieve

their eÆ
ien
y at the 
ost of a small false positive rate

(items not in the set have a small 
onstant probability

of being listed as in the set), but have no false nega-

tives (items in the set are always re
ognized as being in

the set). Bloom �lters are widely used in pra
ti
e when

storage is at a premium and an o

asional false positive

is tolerable. They have many uses in networks [2℄: for


ollaborating in overlay and peer-to-peer networks [5,

8, 17℄, resour
e routing [15, 26℄, pa
ket routing [12, 30℄,

and measurement infrastru
tures [9, 29℄. Bloom �l-

ters are used in distributed databases to support i
e-

berg queries, di�erential �les a

ess, and to 
ompute

joins and semijoins [7, 11, 14, 18, 20, 24℄. Bloom �lters

are also used for approximating membership 
he
king

of password data stru
tures [21℄, web 
a
hing [10, 27℄,

and spell 
he
king [22℄.

Several variants of Bloom �lters have been pro-

posed. Attenuated Bloom �lters [26℄ use arrays of Bloom

�lters to store shortest path distan
e information. Spe
-

tral Bloom �lters [7℄ extend the data stru
ture to sup-

port estimates of frequen
ies. In Counting Bloom Fil-

ters [10℄ ea
h entry in the �lter need not be a single bit

but rather a small 
ounter. Insertions and deletions to

the �lter in
rement or de
rement the 
ounters respe
-

tively. When the �lter is intended to be passed as a

message, 
ompressed Bloom �lters [23℄ may be used in-



stead, where parameters 
an be adjusted to the desired

tradeo� between size and false-positive rate.

We note that a standard te
hnique for eliminating

a very small number of troublesome false positives is to

just keep an ex
eption list. However, this solution does

not s
ale well, both in lookup time and storage, when

the list grows large (say 
omparable to the number of

a
tual positives).

This Work A Bloom �lter is a lossy en
oding

s
heme for a set, or equivalently, for the boolean 
har-

a
teristi
 fun
tion of the set. While Bloom �lters al-

low membership queries on a set, we generalize the

s
heme to a data stru
ture, the Bloomier �lter, that


an en
ode arbitrary fun
tions. That is, Bloomier �l-

ters allow one to asso
iate values with a subset of the

domain elements. The method performs well in any

situation where the fun
tion is de�ned only over a

small portion of the domain, whi
h is a 
ommon o
-


urren
e. In our (fan
iful) terrorist dete
tion example,

suspi
ious names would map to suspe
t and popular,

non-suspi
ious names (eg, David Nelson) would map

to sounds-suspi
ious-but-really-ok; meanwhile, all but a

tiny fra
tion of the other names would map to ok. This

third 
ategory is the only sour
e of error. Bloomier �l-

ters generalize Bloom �lters to fun
tions while maintain-

ing their e
onomi
al use of storage. In addition, they

allow for dynami
 updates to the fun
tion, provided the

support of the fun
tion remains un
hanged.

Another appli
ation of Bloomier �lters is to build-

ing a meta-database, ie, a dire
tory for the union of a

small 
olle
tion of databases. The Bloomier �lter keeps

tra
k of whi
h database 
ontains information about ea
h

entry, thereby allowing the user to jump dire
tly to the

relevant databases and bypass those with no relation to

the spe
i�ed entry. Many su
h meta-databases already

exist on the Web: for example, BibFinder, a Computer

S
ien
e Bibliography Mediator whi
h integrates both

general and spe
i�
 sear
h engines; Debrie�ng, a meta

sear
h engine that uses results from other sear
h en-

gines, a meta-site for zip 
odes & postal 
odes of the

world, et
. Bloomier �lters 
an be used to maintain lo-


al 
opies of a dire
tory in any situation in whi
h data

or 
ode is maintained in multiple lo
ations.

Our Results Let f be a fun
tion from D =

f0; : : : ; N � 1g to R = f?; 1; : : : ; 2

r

� 1g, su
h that

f(x) = ? for all x outside some �xed (arbitrary) subset

S � D of size n. (We use the symbol ? either to

denote 0, in whi
h 
ase the fun
tion has support S, or to

indi
ate that f is not de�ned outside of S.) Bloomier

�lters allow one to query f at any point of S always


orre
tly and at any point of D n S almost always


orre
tly; spe
i�
ally, for a random x 2 D n S, the

output returns f(x) = ? with probability arbitrarily


lose to 1. Bloomier �lters shine espe
ially when the

size of D dwarfs that of S, ie, when N=n is very large.

The query time is 
onstant and the spa
e requirement

is O(nr); this 
ompares favorably with the naive bound

of O(Nr), the bound of O(nr logN) (whi
h is a
hieved

by merely listing the values of all of the elements in

the set) and, in the 0/1 
ase, the O(n log

N

n

) bound

a
hieved by the perfe
t hashing method of Brodnik

and Munro [3℄. (Of 
ourse, unlike ours, neither of

these methods ever errs.) Bloomier �lters are further

generalized to handle dynami
 updates. One 
an query

and update fun
tion values in 
onstant time while

keeping the spa
e requirement within O(nr), mat
hing

the trivial lower bound to within a 
onstant fa
tor.

Spe
i�
ally, for x 2 S, we 
an 
hange the value of f(x),

though we 
annot 
hange S.

We also prove various lower bounds to show that

our results are essentially optimal. First we show that

randomization is essential: over large enough domains,

linear spa
e is not enough for deterministi
 Bloomier

�lters. We also prove that, even in the randomized 
ase,

the ability to perform dynami
 updates on a 
hanging

support (ie, adding/removing x to/from S) requires a

data stru
ture with superlinear spa
e.

Our Te
hniques Our �rst approa
h to imple-

menting Bloomier �lters is to 
ompose an assortment

of Bloom �lters into a 
as
ading pipeline. This yields

a pra
ti
al solution, whi
h is also theoreti
ally near-

optimal. To optimize the data stru
ture, we 
hange

ta
k and pursue, in the spirit of [4, 6, 19, 28℄, an alge-

brai
 approa
h based on the expander-like properties of

random hash fun
tions.

As with bloom �lters, we assume that we 
an use

\ideal" hash fun
tions. We analyze our algorithms in

this model; heuristi
ally one 
an use \pra
ti
al" hash

fun
tions.

2 A Warmup: the Bloom Filter Cas
ade

We des
ribe a simple, near-optimal design for Bloomier

�ltering based on a 
as
ading pipeline of Bloom �lters.

For illustrative purposes, we restri
t ourselves to the


ase R = f?; 1; 2g. Let A (resp. B) be the subset of

S mapping to 1 (resp. 2). Note that the \obvious"

solution whi
h 
onsists of running the sear
h key x

through two Bloom �lters, one for A and one for B, does

not work: What do we do if both outputs 
ontradi
t

ea
h other? One possible �x is to run the key through

a sequen
e of Bloom �lter pairs: (F(A

i

);F(B

i

)), for

i = 0; 1; : : : ; � and some suitable parameter �. The �rst

pair 
orresponds to the assignmentA

0

= A andB

0

= B.

Ideally, no key will pass the test for membership in

both A and B, as provided by F(A

0

) and F(B

0

), but

we 
annot 
ount on it. So, we need a se
ond pair of



Bloom �lters, and then a third, a fourth, et
. (The idea

of multiple Bloom �lters appears in a di�erent 
ontext

in [7℄.) Generally, we de�ne A

i

to be the set of keys in

A

i�1

that pass the test in F(B

i�1

); by symmetry, B

i

is

the set of keys in B

i�1

that pass the test in F(A

i�1

). In

other words, A

i

= A

i�1

\ B

�

i�1

and B

i

= B

i�1

\ A

�

i�1

,

where A

�

i

and B

�

i

are the set of false positives for F(A

i

)

and F(B

i

), respe
tively.

Given an arbitrary key x 2 D, we run the test with

respe
t to F(A

0

) and then F(B

0

). If one test fails and

the other su

eeds, we output 1 or 2 a

ordingly. If both

tests fail, we output ?. If both tests su

eed, however,

we 
annot 
on
lude anything. Indeed, we may be fa
ed

with two false positives or with a single false positive

from either A or B. To resolve these 
ases, we 
all the

pro
edure re
ursively with respe
t to F(A

1

) and F(B

1

).

Note that A

1

(resp. B

1

) now plays the role of A (resp.

B), while the new universe is A

�

\B

�

. Thus, re
ursively


omputed outputs of the form `in A

1

', in B

1

', `not in

A

1

[ B

1

' are to be translated by simply removing the

subs
ript 1.

For notational 
onvenien
e, assume that jAj =

jBj = n. Let n

i

be the random variable maxfjA

i

j; jB

i

jg.

All �lters use the same number of hash fun
tions, whi
h

is a large enough 
onstant k. The storage allo
ated

for the �lters, however, depends on their ranks in the

sequen
e. We provide ea
h of the Bloom �lters F(A

i

)

and F(B

i

) with an array of size 2

k

i

kn

i

. The number �

of Bloom �lter pairs is the smallest i su
h that n

i

= 0. A

key in A

i

ends up in A

i+1

if it produ
es a false positive

for F(B

i

). This happens with probability at most

(kjB

i

j

Æ

2

k

i

kn

i

)

k

= 2

�k

i+1

. This implies that a key in A

belongs to A

i

with probability at most 2

�(k

i+1

�k)=(k�1)

;

therefore,

En

i

� n2

�(k

i+1

�k)=(k�1)

and

E� � 2 log logn= log k:

The probability that a sear
h key runs through the i-th

�lter is less than 2

�k

i

, so the expe
ted sear
h time is


onstant. The expe
ted storage used is equal to

E

�

X

i=0

2

k

i

kn

i

= kn

�

X

i=0

2

�(k

i

�k)=(k�1)

= O(km):

Note that, if N is polynomial in n, we 
an stop

the re
ursion when n

i

is about n= logn and then use

perfe
t hashing [3, 13℄. This requires 
onstant time and

O(n) bits of extra storage. To summarize, with high

probability a random set of hash fun
tions provides a

Bloomier �lter with the following 
hara
teristi
s: (i)

the storage is O(kn) bits; (ii) at most a fra
tion O(2

�k

)

of D produ
es false positives; and (iii) the sear
h time

is O(log logn) in the worst 
ase and 
onstant when

averaged over all of D.

3 An Optimal Bloomier Filter

Given a domain D = f0; : : : ; N � 1g, a range R =

f?; 1; : : : ; jRj � 1g, a subset S = ft

1

; : : : ; t

n

g of D, we


onsider the problem of en
oding a fun
tion f : D 7! R,

su
h that f(t

i

) = v

i

for 1 � i � n and f(x) = ? for

x 2 D n S. Note that the fun
tion is entirely spe
i�ed

by the assignment A = f(t

1

; v

1

); : : : ; (t

n

; v

n

)g. For the

purpose of 
onstru
ting our data stru
ture, we assume

that the fun
tion values in R are en
oded as elements

of the additive group Q = f0; 1g

q

, with addition de�ned

bitwise mod 2. As we shall see, the false-positive rate is

proportional to 2

�q

, so q must be 
hosen suÆ
iently

large. Any x 2 R is en
oded by its q-bit binary

expansion en
ode (x). Conversely, given y 2 Q, we

de�ne de
ode (y) to be the 
orresponding number if it

is less than jRj and ? otherwise. We use the notation

r = dlog jRje.

Given an assignment A, we denote by A(t) the value

A assigns to t, ie, A(t

i

) = v

i

. Let � be a total ordering

on S. We write a >

�

b to mean that a 
omes after b

in �. We de�ne �(i) to be the ith element of S in �;

if i > j, then obviously �(i) >

�

�(j). For any triple

(D;m; k), we assume the ability to sele
t a random hash

fun
tion hash : D ! f1; : : : ;mg

k

. This allows us to

a

ess random lo
ations in a Bloomier �lter table of size

m.

Definition 3.1. Given hash as above, let hash (t) =

(h

1

; : : : ; h

k

; ). We say that fh

1

; : : : ; h

k

g is the neighbor-

hood of t, denoted N(t).

Bloomier �lter tables store the assignment

A, and are 
reated by 
alling the pro
edure


reate (A) [m; k; q℄, where A denotes the assignment

and (m; k; q) are the parameters 
hosen to optimize

the implementation. For notational 
onvenien
e, we

will omit mention of these parameters when there is no

ambiguity. Our ultimate goal is to 
reate a one-sided

error, linear spa
e (measured in bits) data stru
ture

supporting 
onstant-bit table lookups. Spe
i�
ally, we

need to implement the following operations:

� 
reate (A): Given an assignment

A = f(t

1

; v

1

); : : : ; (t

n

; v

n

)g;


reate (A) sets up a data stru
ture Table. The

subdomain ft

1

; : : : ; t

n

g spe
i�ed by A is denoted

by S.

� set value (t; v;Table): For t 2 D and v 2 R,

set value (t; v;Table) asso
iates the value v with



domain element t in Table. It is required that t be

in S.

� lookup (t;Table): For t 2 S, lookup (t;Table)

returns the last value v asso
iated with t. For all

but a fra
tion " of DnS, lookup (t;Table) returns

? (ie, 
erti�es that t is not in S). For the remaining

elements of D n S, lookup (t;Table) returns an

arbitrary element of R.

A data stru
ture that supports only 
reate and

lookup is referred to as an immutable data stru
ture.

Note that although re-assignments to elements in S are

made by set value , no 
hanges to S are allowed. Our

lower bounds show that, if we allow S to be modi-

�ed, then linear size (measured in bits) is impossible

to a
hieve regardless of the query time. In other words,

Bloomier �lters provably rule out fully dynami
 opera-

tions.

There are three parameters of interest in our 
on-

stru
tions: the runtime of ea
h operation, the spa
e re-

quirements, and the false-positive rate �. The 
reate

operation runs in expe
ted O(n logn) time (indeed,

O(n) time, depending on the model) and uses O(n(r +

log 1=")) spa
e. The set value and lookup opera-

tions run in O(1) time.

3.1 An Overview We �rst des
ribe the immutable

data stru
ture and later show how to use the same prin-


iples to 
onstru
t a mutable version. The table 
onsists

of m q-bit elements, where m and q are implementation

parameters. We denote by Table [i℄ 2 f0; 1g

q

the ith

q-bit value in Table. To look up the value v asso
iated

with t, we use a hash fun
tion hash to 
ompute k lo-


ations (h

1

; : : : ; h

k

), where 1 � h

i

� m, and a q-bit

\masking value" M (used for redu
ing false positives).

We then 
ompute x = M �

L

k

i=1

Table [h

i

℄, where �

denotes the bit-wise ex
lusive-or operation.

There are two main issues to address. First, we

must set the values of Table [i℄, for i = 1; : : : ;m, so

that the de
ode operations yield the 
orre
t values for

all t 2 S. We need to show that with high probability

a \random" solution works (for appropriate parameter

settings), and furthermore we wish to 
ompute the

assignment eÆ
iently, whi
h we do by a simple greedy

algorithm. Se
ond, we must ensure that, for all but an

� expe
ted fra
tion of t 2 D nS, the 
omputed \image"

in Q de
odes to ?.

We set the table values using the following key

te
hnique. Given a suitable 
hoi
e of m and k, we show

that, with high probability, there is an ordering � on S

and an order respe
ting mat
hing, de�ned as follows:

Definition 3.2. Let S be a set with a neighborhood

N(t) de�ned for ea
h t 2 S. Let � be a 
omplete

ordering on the elements of S. We say that a mat
hing

� respe
ts (S;�;N) if (i) for all t 2 S, � (t) 2 N(t), and

(ii) if t

i

>

�

t

j

, then � (t

i

) 62 N(t

j

). When the fun
tion

hash (and hen
e N) is understood from the 
ontext, we

say that � respe
ts � on S.

Given � and � , we 
an, for t = �(1); : : : ;�(n),

set the value v asso
iated with t by setting Table [� (t)℄.

By the order-respe
ting nature of � , this assignment


annot a�e
t any previously set values. We show the

existen
e of good (�;� ) using the notion of lossless

expanders [6, 28℄. Our analysis implies that, with high

probability (over hash ), we 
an �nd (�;� ) in nearly

linear time using a greedy algorithm.

To limit the number of false positives, we use

the random mask M produ
ed by hash (t). Be
ause

M is distributed uniformly and independently of any

of the values stored in Table, when we look up t 62

S, the resulting value is uniformly and independently

distributed over f0; 1g

q

. If the size of R is small


ompared with the size of f0; 1g

q

, then with high

probability this value will not en
ode a legal value of

R, and we will dete
t that t 62 S.

We make a mutable stru
ture by using a two-table


onstru
tion. We use the �rst table, Table

1

, to en
ode

� (t) for ea
h t 2 S. We note that sin
e N(t) has

only k values, whi
h may be 
omputed from hash (t),

� (t) 2 N(t) 
an be 
ompa
tly represented by a number

in f1; : : : ; kg. Now, it follows from the de�nitions that

if t 6= t

0

for t; t

0

2 S, � (t) 6= � (t

0

). Thus, we 
an simply

store the value asso
iated with t in Table

2

[� (t)℄; the

lo
ations will never 
ollide.

3.2 Finding a Good Ordering and Mat
hing

We give a greedy algorithm that, given S and hash ,


omputes a pair (�;� ) su
h that � respe
ts � on S.

First, we 
onsider how to 
ompa
tly represent � . Re
all

that hash (t) de�nes the k neighbors, h

1

; : : : ; h

k

of t.

Therefore, given hash , we 
an represent � (t) 2 N(t)

by an element of f1; : : : ; kg. Thus, we de�ne �(t) su
h

that � (t) = h

�(t)

. With S = ft

1

; : : : ; t

n

g, we also use the

shorthand �

i

= �(t

i

), from whi
h � = f�

1

; : : : ; �

n

g. Our

algorithm is based on the abundan
e of \easy mat
hes."

Definition 3.3. Let m; k;hash be �xed, de�ning N(t)

for t 2 D, and let S � D. We say that a lo
ation

h 2 f1; : : : ;mg is a singleton for S if h 2 N(t) for

exa
tly one t 2 S. We de�ne tweak (t; S;hash ) to be

the smallest value j su
h that h

j

is a singleton for S,

where N(t) = (h

1

; : : : ; h

k

); tweak (t; S;hash ) = ? if

no su
h j exists.

If tweak (t; S;hash ) is de�ned, then it sets the

value of �(t) and t is easy to mat
h. Note that this




hoi
e will not interfere with the neighborhood for any

di�erent t

0

2 S. Let E denote the subset of S with

\easy mat
hes" of that sort, and let H = S n E. We

re
ursively �nd (�

0

;�

0

) on H and extend (�

0

;�

0

) to

(�;� ) as follows. First, we put the elements of E

at the end of the ordering for the elements of H , so

that if t 2 E and t

0

2 H , then t >

�

t

0

(the ordering

of the elements within E 
an be arbitrary). Then we

de�ne � (t) to be the union of the mat
hings for H and

E. It is immediate that � respe
ts � on S. We give

the algorithm in Figure 1. Note that it is not at all


lear that our algorithm for find mat
h will su

eed.

We show that for m and k suitably large, and hash


hosen at random, find mat
h will su

eed with high

probability.

3.3 Creating a Mutable Bloomier Filter Given

an ordering � on S, and a mat
hing � that respe
ts

� on S (given the neighborhoods de�ned by hash ),

we store values asso
iated with any t 2 S as follows.

Given t 2 S, � gives a lo
ation L 2 N(t) su
h that L is

not in the neighborhood of any t

0

that appears before

t in �. Furthermore, given hash (t), L has a 
ompa
t

des
ription as an element ` 2 f1; : : : ; kg. Finally, no

other t

0

2 S (before or after t) has the same value of L.

We 
an 
onstru
t an immutable table as follows:

For t = �[1℄; : : : ;�[n℄, we 
ompute the neighborhood

N(t) = fh

1

; : : : ; h

k

g and mask M from hash (t). From

� (t) we obtain L 2 N(t) with the above properties.

Finally, we set Table [L℄ so that M �

L

k

i=1

Table [h

i

℄

en
odes the value v asso
iated with t. By the properties

of L given above, altering Table [L℄ 
annot a�e
t any of

the t

0

whose asso
iated values have already been put

into the table. To retrieve the value asso
iated with t,

we simply 
ompute

x =M �

k

M

i=1

Table [h

i

℄;

and see if x is a 
orre
t en
oding of some value v 2 R. If

it is not, we de
lare that t 62 S. Be
ause M is random,

so is x if t 62 S; therefore, it is a valid en
oding only

with probability jRj=2

q

.

In order to make a mutable table, we use the fa
t

that ea
h t 2 S has a distin
t mat
hing value L, with a

su

in
t representation ` 2 f1; : : : ; kg (given hash (t)).

We use the above te
hnique to make an immutable table

that stores for ea
h t the value ` that 
an be used to

re
over its distin
t mat
hing value L. We then store

any value asso
iated with t in the Lth lo
ation of a

se
ond table.

We give our �nal algorithms in Figures 2 and 3.

4 Analysis of the Algorithm

The most te
hni
ally demanding aspe
t of our analysis

is in showing that for a random hash , and suÆ
iently

large k and m, the find mat
h routine will with

high probability �nd (�;� ) su
h that � respe
ts � on

S. On
e we have su
h an (�;� ), the analysis of our

algorithms is straightforward.

Lemma 4.1. Assuming that find mat
h su

eeded in


reate , then for t 2 S, the value v returned by

lookup (t;Table) will be the most re
ent v assigned to

t by 
reate or set value .

Proof. When the assignment for t is �rst stored in Table,

� (t) generates a lo
ation L 2 N(t), with a 
on
ise

representation ` 2 f1; : : : ; kg. By the 
onstru
tion,

Table

1

[L℄ is set so that

M �

M

Z2N(t)

Table

1

[Z℄

is a valid representation for `. We 
laim that the

same value of ` (and hen
e L) is re
overed by the

lookup and set value 
ommands on input t. These

routines re
over ` by the same formula; it remains to

verify that none of the operations 
auses this value to


hange. We observe that the lookup and set value


ommands do not alter Table

1

. The only indi
es of

Table

1

subsequently altered by 
reate are of the form

� (t

0

), where t

0

>

�

t (sin
e the ts are pro
essed a

ording

to �). However, by the properties of � , it follows that

� (t

0

) 62 N(t), so these 
hanges to Table

1


annot a�e
t

the re
overed value of `, and hen
e L.

Finally, we observe that all of the L are distin
t:

Suppose that t

1

; t

2

2 S and t

1

6= t

2

. Assume without

loss of generality that t

1

>

�

t

2

. Then � (t

1

) 62 N(t

2

),

but � (t

2

) 2 N(t

2

), so � (t

1

) 6= � (t

2

). It follows that

Table

2

(L) is only altered when 
reate and set value

asso
iate a value to t, as desired. }

Lemma 4.2. Suppose that Table is 
reated using an

assignment with support S. Then if t 62 S,

Pr[lookup (t;Table) = ?℄ � 1�

k

2

q

;

where the probability is taken over the 
oins of 
reate ,

assuming that hash is a truly random hash fun
tion.

Proof. Sin
e t 62 S, the data stru
tures were generated


ompletely independent of the values of

(h

1

; : : : ; h

k

;M) = hash (t):

In parti
ular, M is uniformly distributed over f0; 1g

q

,

independent of anything else. Hen
e, the value of

M �

M

Z2N(t)

Table

1

[Z℄



find mat
h (hash ; S)[m; k℄ Find (�;� ) for S;hash

1. E = ;;� = ;

For t

i

2 S

If tweak (t

i

; S;hash ) is de�ned

�

i

= tweak (t

i

; S;hash )

E = E [ ft

i

g

If E = ; Return (failure)

2. H = S nE

Re
ursively 
ompute (�

0

;�

0

) = find mat
h (hash ; H)[m; k℄.

If find mat
h (hash ,H)[m,k℄=failure Return (failure)

3. � = �

0

For t

i

2 E

Add t

i

to the end of � (ie, make t

i

be the largest element in � thus far)

Return (�;� = f�

1

; : : : ; �

n

g)

(where �

i

is determined for t

i

2 E, in Step 1, and for t

i

2 H (via �

0

) in Step 2.)

Figure 1: Given hash and S, find mat
h �nds an ordering � on S and a mat
hing � on S that respe
ts

� on S.


reate (A = f(t

1

; v

1

) : : : ; (t

n

; v

n

)g)[m; k; q℄ (
reate a mutable table)

1. Uniformly 
hoose hash : D ! f1; : : : ;mg

k

� f0; 1g

q

S = ft

1

; : : : ; t

n

g

Create Table

1

to be an array of m elements of f0; 1g

q

Create Table

2

to be an array of m elements of R.

(the initial values for both tables are arbitrary)

Put (hash ;m; k; q) into the \header" of Table

1

(we assume that these values may be re
overed from Table

1

)

2. (�;� ) = find mat
h (hash ; S)[m; k℄

If find mat
h (hash ; S)[m; k℄ = failure Goto Step 1

3. For t = �[1℄; : : : ;�[n℄

v = A(t) (ie, the value assigned by A to t)

(h

1

; : : : ; h

k

;M) = hash (t)

L = � (t); ` = �(t) (ie, L = h

`

)

Table

1

[L℄ = en
ode (`)�M �

k

M

i = 1

i 6= `

Table

1

[h

i

℄

Table

2

[L℄ = v

4. Return (Table = (Table

1

;Table

2

))

Figure 2: Given an assignment A and parameters m; k; q, 
reate 
reates a mutable data stru
ture


orresponding to A.



lookup (t;Table = (Table

1

;Table

2

))

1. Get (hash ;m; k; q) from Table

1

(h

1

; : : : ; h

k

;M) = hash (t)

` = de
ode

 

M �

k

M

i=1

Table

1

[h

i

℄

!

2. If ` is de�ned

L = h

`

Return (Table

2

[L℄)

Else Return (?)

set value (t; v;Table = (Table

1

;Table

2

))

1. Get (hash ;m; k; q) from Table

1

(h

1

; : : : ; h

k

;M) = hash (t)

` = de
ode

 

M �

k

M

i=1

Table

1

[h

i

℄

!

2. If ` is de�ned

L = h

`

Table

2

[L℄ = v

Return (su

ess)

Else Return (failure)

Figure 3: lookup looks up t in Table = (Table

1

;Table

2

). set value sets the value asso
iated with t 2 S

to v in Table = (Table

1

;Table

2

). Note that for set value , t must be an element of S, as determined (by

A) in the original 
reate invo
ation.

will be uniformly distributed over f0; 1g

q

. However,

there are only k out of 2

q

values en
oding legitimate

values of ` 2 f1; : : : ; kg. }

Thus, in the \ideal" setting, where hash is truly

random, it suÆ
es to set

q =

�

lg

�

k

�

��

:

to a
hieve a false positive rate of �. Of 
ourse, hash

is generated heuristi
ally, and is at best pseudorandom,

so this analysis must be taken in 
ontext. We note that

if hash is a 
ryptographi
ally strong pseudorandom

fun
tion, then the behavior of the data stru
ture using

hash will be 
omputationally indistinguishable from

that of using a truly random hash ; however, fun
tions

with provable pseudorandomness properties are likely

to be too 
ompli
ated to be used in pra
ti
e.

4.1 Analyzing find mat
h It remains to show for

any S, with reasonable probability (
onstant probability

suÆ
es for our purposes), find mat
h will indeed �nd

a pair (�;� ) su
h that � respe
ts � on S. Re
all

that find mat
h works by �nding an \easy" set E,

solving the problem re
ursively for H = S nE, and then


ombining the solutions for E andH to get a solution for

S. To show that find mat
h terminates, it suÆ
es to

show that for any subset A of S, find mat
h will �nd

a nonempty \easy" set, E

A

, implying that find mat
h

always makes progress.

Let G be an n � m bipartite graph de�ned as

follows: On the left side are n verti
es, L

1

; : : : ; L

n

2 L,


orresponding to elements of S. On the right side are m

verti
es, R

1

; : : : ; R

m

2 R, 
orresponding to f1; : : : ;mg.

Re
all that hash de�nes for ea
h t

i

2 S a set of k values

h

1

; : : : ; h

k

2 f1; : : : ;mg; G 
ontains an edge between L

i

and R

h

j

, for 1 � j � k. The following property is


ru
ial to our analysis:

Definition 4.1. Let G be as above. We say that G

has the singleton property if for all nonempty A � L,

there exists a vertex R

i

2 R su
h that R

i

is adja
ent to

exa
tly one vertex in A.

We 
laim that if G has the singleton property, then

find mat
h will never get stu
k. This is be
ause

whenever find mat
h is being 
alled on a subset A

of S, the resulting easy set will 
ontain R

i

, and hen
e

will be nonempty.

We next redu
e the singleton property to a well-

studied (lossless) expansion property. Let N(v) be the

set of neighbors of a vertex v 2 L, and for A � L, let

N(A) be the set of neigbors (in R) of elements of A.

Definition 4.2. Let G be as above. We say that G

has the lossless expansion property if for all nonempty

A � L, jN(A)j > kjAj=2.

Lemma 4.3. If G has the lossless expansion property,

then it has the singleton property.

Proof. Assume to the 
ontrary that ea
h node in N(A)

has degree at least 2. Then G graph has at least 2jN(A)j

edges. However, by the lossless expansion property,

N(A) > jAjk=2, so G has greater than jAjk edges, whi
h

is a 
ontradi
tion.

Now, 
hoosing hash at random 
orresponds to


hoosing G a

ording to the following distribution:

Ea
h v 2 L sele
ts (with repla
ement) k random verti
es

in r

1

; : : : ; r

k

2 R to be adja
ent to. Su
h random graphs

are well studied; Lemma 4.4 follows from a standard


ounting argument.



Lemma 4.4. Let G be 
hosen as above, with �xed k

and m = 
kn. For any 
onstant 
 > 1 + 1=

p

n

and n suÆ
iently large, G has the lossless expansion

probability with probability at least 2=3.

Proof. (Sket
h) The probability of a 
ounterexample is

at most

n

X

s=1

�

n

s

��

m

bks=2


��

bks=2


m

�

ks

�

n

X

s=1

�

en

s

�

s

�

2e
n

s

�

ks=2

�

s

2
n

�

ks

�

n

X

s=1

�

e

k=2+1

2

k=2

s

�

s

�

s


n

�

ks=2

� o(1) +

X

s�

p

n




�s

= o(1):

}

5 Lower Bounds

We 
onsider the 
ase R = f?; 1; 2g. The set S splits into

the subsets A and B that map to 1 and 2, respe
tively.

It is natural to wonder whether a single set of hash

fun
tions might be suÆ
ient for all pairs A;B. In

other words, is deterministi
 Bloomier �ltering possible

with only O(n) bits of storage. We provide a negative

answer to this question. Our lower bound also holds for

nonuniform algorithms; in other words, we may use an

arbitrary large amount of storage besides the Bloomier

�lter tables as long as the en
oding depends only on n

and N .

Theorem 5.1. Deterministi
 Bloomier �ltering

requires 
(n+ log logN) bits of storage.

Proof. Let G be a graph with

�

N

2n

��

2n

n

�

nodes, ea
h one


orresponding to a distin
t ve
tor f�1; 0; 1g

N

with ex-

a
tly n 
oordinates equal to 1 and n others equal to

�1. Two nodes of G are adja
ent if there exists at

least one 
oordinate position 1 � i � N su
h that their


orresponding ve
tors (x

1

; : : : ; x

N

) and (y

1

; : : : ; y

N

) sat-

isfy x

i

y

i

= �1. Intuitively, ea
h node 
orresponds to a


hoi
e of A (the 1 
oordinates) and B (the �1 
oordi-

nates). Two nodes are joined by an edge if the set A of

one node interse
ts the set B of the other one. Sin
e the

table T is the only sour
e of information about A;B, no

two adja
ent nodes should 
orrespond to the same table

assignment; therefore, the size m of the array is at least

log�(G), where �(G) is the 
hromati
 number of G.

Theorem 5.1 follows dire
tly from the lemma below.

}

Lemma 5.1. The 
hromati
 number of G is between


(2

n

logN) and O(4

n

lnN).

Proof. Consider a minimum 
oloring of G. For any

ve
tor w 2 f�1; 1g

n

and any sequen
e of n indi
es

1 � i

1

< � � � < i

n

� N , there exists a 
olor 
 su
h

that w = (z




i

1

; : : : ; z




i

n

). To see why, 
onsider a 
hoi
e of

A;B that mat
hes the 
oordinates of w at the positions

i

1

; : : : ; i

n

. If we turn all the minus ones to zeroes, the

resulting set of ve
tors z




is (N;n)-universal (meaning

that the restri
tions of the ve
tors z




to any given


hoi
e of n 
oordinate positions produ
e all possible 2

n

patterns). By Kleitman and Spen
er [16℄, the number of

su
h ve
tors is known to be 
(2

n

logN). For the upper

bound, we use the existen
e of a (N; 2n)-universal set of

ve
tors of size O(n2

n

logN)|also established in [16℄|

and turn all zeroes into minus ones. (Alternatively,

we 
an use Razborov's bound on the size of separating

sets [25℄.) Ea
h node is 
olored by pi
king a ve
tor from

the universal set that mat
hes the the ones and minus

ones of the ve
tor asso
iated with that node. }

Going ba
k to the randomized model of Bloomier

�ltering, we 
onsider what happens if we attempt to

modify the set S itself. Again we give a negative

answer, but this time the universe size need be only

polynomially larger than n for the s
heme to break

down. Intuitively, this shows that too mu
h information

is lost in a linear bit size en
oding of the fun
tion f to

allow for 
hanges in the set S.

Theorem 5.2. If N = 2

n

O(1)

and the number m of

storage bits satis�es n � m �

n




log log(N=
n

3

) for some

large enough 
onstant 
, then Bloomier �ltering 
annot

support dynami
 updates on the set S.

Proof. Again, we 
onsider S to be the disjoint union

of of an n-set A (resp. B) mapping to 1 (resp. 2).

Fix the original B, and 
onsider the assignments of the

table T 
orresponding to the various 
hoi
es of A. With

ea
h assignment of T is asso
iated a 
ertain family of

n-element sets A � D. Let F be the largest su
h family:

obviously, jFj �

�

N

n

�

2

�m

. Given an integer k > 0, let

L

k

be the set of elements x 2 U that belong to at least

k sets of jFj. It is easy to see that L

k


annot be too

small. Indeed, let F

k

denote the subfamily 
onsisting

of the sets of F that are subsets of L

k

. Obviously,

jF n F

k

j � (k � 1)N . The assumptions of the theorem

imply that N > 
n

3

; thus, the 
hoi
e of k = bjFj=2N


ensures that k > 
 and

jF

k

j � jFj � (k � 1)N >

1

2

jFj �

�

N

n

�

2

�m�1

:

Be
ause

�

L

k

n

�

� jF

k

j, it follows that

jL

k

j � 2

�

m+1

n

N:(5.1)



The expe
ted number of sets in F that a random

element from D interse
ts is

n

N

jFj. Given an n-element

B � D, let F

B

denote the subfamily of F whose sets

interse
t B. For a random B,

E

X

n

jSj : S 2 F

B

o

�

n

3

N

jFj:

Let F

B




= F n F

B

and L

B

k

=

S

fS \ L

k

jS 2 F

B




g.

Sin
e ea
h x 2 L

k

interse
ts at least k sets of F ,

E jL

B

k

j � jL

k

j �

n

3

kN

jFj � jL

k

j � 3n

3

:

On
e the new 
hoi
e of B is revealed, the table gets

updated. The only information about A is en
oded

in the previous table assignment. Thus the algorithm


annot distinguish between any two sets A in F

B




. To

summarize, given a random B, the algorithm must

answer `in A' for any sear
h key in L

B

k

; furthermore,

Prob

h

jL

B

k

j � jL

k

j � 6n

3

i

�

1

2

:(5.2)

Next, we partition the family of n-element sets B

a

ording to the assignment of T ea
h one 
orresponds

to. This gives us at most 2

m

subfamilies fG

i

g, with

P

i

jfG

i

gj =

�

N

n

�

. If M

i

denotes the union

S

fS \

L

k

jS 2 G

i

g, then given any new 
hoi
e of B in G

i

the algorithm must answer `in B' for any sear
h key in

M

i

. By our previous remark, therefore, it is imperative

that M

i

should be disjoint from L

B

k

. We show that if

m is too small, then for a random 
hoi
e of B both sets

interse
t with high probability.

Fix a parameter � = bjL

k

j2

�


m=n


. Let i(B) denote

the index j su
h that B 2 G

j

and let � = djL

k

jn=2Ne.

Given a randomB, by Cherno�'s bound, the probability

that jB \ L

k

j < � is o(1). On the other hand, the


onditional probability that jM

i(B)

j � �, given that

jB \ L

k

j � � , is at most

max

s��

2

m

�

�

s

�

.

�

jL

k

j

s

�

= 2

m

�

�

�

�

.

�

jL

k

j

�

�

� 2

m

�

�

jL

k

j

�

= o(1):

Therefore, the probability that jM

i(B)

j > � is 1� o(1).

Sin
e � > 6n

3

, it follows that, with probability at least

1=2�o(1), jM

i(B)

j interse
ts L

B

k

and the algorithm fails.

}
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