
Program Result Checking Against Adaptive Programs and in
Cryptographic Settings
�Extended Abstract�

Manuel Blum �

Computer Science Division

U�C� Berkeley

Berkeley� California �����

Michael Luby

International Computer Science Institute

Berkeley� California �����

Ronitt Rubinfeld y

Computer Science Division

U�C� Berkeley

Berkeley� California �����

May 	�� 	���

Abstract

The theory of program result checking introduced in �Blum� allows one to check that a
program P correctly computes the function f on input x� The checker may use P �s outputs on
other inputs to help it check that P �x� � f�x�� In this setting	 P is always assumed to be a 
xed
program	 whose output on input x is a function P �x�� We extend the theory to check a program
P which returns a result on input x that may depend on previous questions asked of P � We call
a checker that works for such a program an adaptive checker� We consider the case where there
is an adaptive program that supposedly computes f running on each of several noninteracting
machines� We design adaptive checkers that work for a constant number of independent and
noninteracting programs�

We also consider the following cryptographic scenario� A user wants to evaluate function f

on input x using program P running on another machine� As in checking	 the user does not
trust the program to be correct� The additional requirement is that the user wants to let the
other machine know as little information as possible about x from the questions asked of the
program P �for example	 the user may want the program to be able to learn at most the input
size� as in �Abadi Feigenbaum Kilian� �Beaver Feigenbaum�� We call a program that satis
es
the above constraints a private checker� As is the case for adaptive checking	 we consider the
case where there is a program that supposedly computes f on each of several noninteracting
machines� We design private checkers that work for a constant number of independent and
noninteracting programs�

The adaptive and private checkers given are general techniques that work for a variety of
numerical problems	 including integer multiplication	 modular multiplication	 matrixmultiplica�
tion	 the mod function	 integer division	 modular exponentiation and polynomial multiplication�

�Supported by NSF Grant No� CCR ���������
ySupported by an IBM Graduate Fellowship and NSF Grant No� CCR ���������

�



� Introduction

Consider the task of writing a program P to evaluate a function f � One of the main di�culties
of this task is that when P is implemented� it is di�cult to verify that P �x� � f�x� for all inputs
x� The theory of program result checking� introduced by �Blum	� provides a way of doing this�
Intuitively� a checker C for f makes calls to a program P that supposedly computes f � C is a
program that is much 
di�erent� than any correct program for computing f � On input x and ��
C outputs P �x� and either 
FAULTY� or 
PASS�� C always outputs 
PASS� if P is a correct
program for f on all inputs� whereas if P �x� �� f�x� then C outputs 
FAULTY� with probability
� �� ��

We want to ensure that the checker is in some way di�erent than the program being checked�
so that bugs in the checker are not the same as bugs in the program� This can be done in several
ways� The way which we use here is to require that the running time of the checker� not including
the time required by calls to the program� be asymptotically faster than the running time of any
known correct program which computes f�x�� We call a checker that has this property di�erent�

Since the checker is run each time that the program is used� it is also important that the total
running time� including calls to the program� be e�cient� We say a checker is e�cient if the total
running time is a constant multiplicative factor times the running time of the program� We say
a checker is f�n��e�cient if the total running time is f�n� multiplied by the running time of the
program�

The de
nition of a checker assumes that the program P is static� i�e� it computes some function�
though not necessarily the function f �P can be a probabilistic program in this de
nition� as long
as the output of P on input x only depends on x� and not other inputs�� This is not always the case�
as there are programs whose behavior changes as they run� even though the functions that they
supposedly compute remain 
xed� For example� hardware errors may evolve over time depending
on the previous inputs that the program has been run on� or� the software may be written such that
running the program on certain inputs may have unintended side e�ects on the program�s future
behavior� This could occur in a program that stores tables of previously computed information in
a permanent 
le to make subsequent processing more e�cient� We call such a program that can
modify itself and its subsequent computation an adaptive program� In this model� we assume that
the program is an adversary that can give answers depending on all the previous questions asked of
it by the checker� This is a restriction of the model used in interactive proof systems� in which the
role of the veri
er is played by the checker and the role of the prover is played by the program P �
The restriction is that the veri
er may only ask questions of the form 
What is the value of f�x����
All checkers extract an interactive proof of correctness from the program P � Since we do not always
know how to extract such an interactive proof from a single program P running on one machine�
we allow one program that supposedly computes f on each of k noninteracting machines� where k
is a parameter which we would like to minimize� This corresponds to a restriction of multi�prover
interactive proof systems where k is the number of provers�

De�nition �� Program C is an adaptive checker for f if C is a checker for f that also works with
respect to adaptive programs that supposedly compute f �

De�nition �� Program C is a k�adaptive checker if C is a checker for k adaptive programs which
do not communicate among themselves�

An adaptive checker is automatically a k�adaptive checker� and a k�adaptive checker is auto�

�



matically a �non�adaptive� checker�

Many checkers that have been found are also adaptive checkers� For example� it can easily be
seen that the GCD checker in �Adleman Huang Kompella	 and that all of the checkers given in
�Blum Kannan	 are adaptive� Other checkers do not work for an adaptive program� Examples of
such checkers are the ones in �Blum Luby Rubinfeld	� where adaptive programs can easily fool the
checkers� At the present time we see no way to convert such a checker into an adaptive checker�
However� if more than one copy of the program exists� we show that a checkers based on the
methods in �Blum Luby Rubinfeld	 can work for adaptive programs�

Next suppose we are in the following cryptographic situation� A user wants to evaluate function
f on input x using program P running on another machine� As in checking� the user does not trust
the program to be correct� The additional requirement is that the user wants to let the other
machine know as little information as possible about x from the questions asked of the program
P �for example� the user may want the program to be able to learn at most the input size�� This
is similar to the model introduced in �Abadi Feigenbaum Kilian	 and later extended in �Beaver
Feigenbaum	 to allow using several non�communicating programs for the same function� except
that here we do not trust the program to return correct answers� In addition� we only allow
protocols which are restricted versions of �Abadi Feigenbaum Kilian	 �Beaver Feigenbaum	 where
the checker may only ask the program questions of the form 
What is the value of f�x����

We introduce some notation in order to de
ne a private checker�

Let k be the number of programs purporting to compute f � such that none of these programs can
communicate with any other program� and let Pi be the program on the ith machine for � � i � k�

As in �Abadi Feigenbaum Kilian	� we de
ne L to be a function which we call the leak function�
Intuitively� L�x� is the amount of information leaked by the checker to the programs on input x�
An example is L�x� � jxj� i�e� the checker leaks the length of x to the programs� but nothing more�

Let CONVi�x	 denote the probability distribution of the variable representing the concatenation
of the questions that C asks of Pi on input x and let PrCONVi�x��y� denote the probability of the
string y according to the distribution�

De�nition �� A program C is �k� L��private if for all k�tuples of programs �P�� ���� Pk�� for all v� w
such that L�v� � L�w�� for all � � i � k and all y� PrCONVi�v��y� � PrCONVi�w��y��

If a checker C is �k� L��private where L leaks a very small amount of information about x �e�g�
the length of x�� then with high probability C does not ask any of the programs P�� ��� Pk to evaluate
input x� This means that the usual way of de
ning a checker to output 
FAULTY� on input x if
P �x� �� f�x� is insu�cient� We de
ne a private checker as follows�

De�nition �� A program C is a �k� L��private checker if C is �k� L��private and on input x and
�� outputs C�x� satisfying the following conditions� ��� if P�� ���� Pk answer correctly on all inputs�
C�x� � f�x�� ��� Pr�C�x� � f�x� or C�x� � 
FAULTY ��	 � �� ��

Thus� C outputs the correct answer if all programs always compute f as they should� but on the
other hand it is unlikely that they can fool C into outputting the wrong answer �with probability
at most ���

De�nition �� A program C is a �k� L��private�adaptive checker if it is a k�adaptive checker and a
�k� L��private checker�

We ask that the adaptive and private checkers be di�erent� and as e�cient as possible� A �k� L��

�



private checker or a k�adaptive checker is f�n��e�cient if the total work done by all k programs
and the checker is f�n� multiplied by the running time of the program�

� Description of Results and Related Work

We present general techniques for constructing simple to program and e�cient �k� L��private and k�
adaptive checkers� for a constant k and where L is a function that does not leak much about the input
�for example only the size of the input�� for a variety of numerical problems� The checkers given in
this paper are all based on the algorithms given in �Blum Luby Rubinfeld	� though the proofs are
di�erent� They apply to integer multiplication� the mod function� modular multiplication� modular
exponentiation� integer division� and polynomial and matrix multiplication over 
nite 
elds� For
all problems� the checker algorithms are both e�cient and di�erent� Furthermore� the checker
algorithms consists of the execution of the following basic operations at most a logarithmic number
of times in a prescribed order� ��� calls to P on random instances of the problem� ��� additions�
��� comparisons�

�Abadi Feigenbaum Kilian	 show that there is not likely to be a ��� jxj��private checker for SAT
that runs in polynomial time �not including the time required by the oracle�� �Beaver Feigenbaum	
describe how to compute any function privately with O�jxj� oracles that are trusted not to err�
however the oracles are not restricted to answer questions of the form 
What is the value of f�x����
�Beaver Feigenbaum Kilian Rogaway	 later improved this result to show that it can be done with
O�jxj� log jxj� oracles�

The notion of random�self�reducibility� as de
ned in �Feigenbaum Kannan Nisan	� is related
to private checking because it is possible to privately compute random�self�reducible functions�
Recently �Feigenbaum Kannan Nisan	 have shown that random boolean functions are not k�random�
self�reducible for any polynomial k� and that if a function is ��random�self�reducible� then the
function can be computed nonuniformly in nondeterministic polynomial time�

�Beaver Feigenbaum	 �Lipton	 show that any function that is a polynomial of degree d over a

nite 
eld is d�random�self�reducible� Thus� one can get a �O�d�� L��private checker for the function�
where L is the description of the 
nite 
eld� under the following conditions� ��� the program is not
adaptive and ��� the program is already known to be correct on a large fraction of inputs in the

nite 
eld�

In �Fortnow Rompel Sipser	� there is a general technique for turning any checker into a ��
adaptive checker� This technique can actually be used for many of the checkers� However� it
requires a quadratic blowup in the number of calls made� Thus� if the number of calls made to the
program is not constant� the extra work done by their technique is not of the same time order� For
example� we give a way of converting one of the checking techniques in �Blum Luby Rubinfeld	�
which makes O�logn� calls to the program� into an adaptive checker which is of the same e�ciency
as the original checker� The techniques of �Fortnow Rompel Sipser	 yield an adaptive checker that
is slower than the original checker by a multiplicative factor of O�logn��

Previous to our work� �Kaminski	 introduced a result checker for integer and polynomial multi�
plication based on computing the result of the program mod small special numbers� This checker
trivially works for an adaptive program as well� because it makes no extra calls to the program�
Independently of our work� �Adleman Huang Kompella	 describe a result checker for multiplication
in the same spirit but di�erent than �Kaminski	� Also previous to our work� �Freivalds	 introduced

�



a result checker for matrix multiplication which does not call the program�

� Three Properties of Functions

The three properties described in this section are also described in �Blum Luby Rubinfeld	 and for
completeness we include them here� We build checkers for functions that have these properties�
We include the running example of multiplication in order to show how the de
nitions are applied
to a speci
c problem�

Let �U denote the domain of f and let �x � �U be an input to f � Let �I�� �I�� � � � be a sequence
of subsets of �U such that �U � �n�N �In� The superscript n indicates the size of the problem� Let
D � fDnjn � Ng be a collection of probability distributions such that Dn is a distribution on �In�
Let P be a program that supposedly computes f �

In the case of integer multiplication� �U � N � N is the set of pairs of natural numbers and
�x � �x�� x�� � �U where f��x� � x� � x�� �In is the set of pairs of numbers of length at most n
�fxj� � x � �ng � fxj� � x � �ng	�

��� Computability by Random Inputs

The 
rst property that we are interested in is that any particular instance of the problem can be
expressed as the solution to a few random instances of the same size�

Let �x � �In be an instance of the problem� Let c��n� be an easily computable function of n
�in the following we use c� in place of c��n� for brevity and because in most cases c��n� is a
constant�� Informally� the property is that f��x� can be expressed as an easily computable function
of f��a��� � � � � f��ac��� where �a�� � � � � �ac� are each randomly distributed in �In according to Dn�

� More
formally� there is a generation procedure G and a computation F � both easily computable� that
interact as follows� For all n and for all �x � �In�

	�
 G�n� �x�R� � �a�� � � � � �ac� � A� where R is the bit string used as a random source of bits� When R
is randomly and uniformly distributed then� for each k � �� � � � � c�� �ak is randomly distributed
in �In according to Dn� A is auxiliary information generated in the process which is used in
part ����

	�
 F �n� �x�G�n� �x�R�� ��� � � � � �c�� evaluates to a possible output of an input in �In� Intuitively�
��� � � � � �c� are the answers that the program being checked produces on inputs �a�� � � � � �ac� �
respectively� We require that�

If� for all k � �� � � � � c�� �k � f��ak� then F �n� �x�G�n� �x�R�� ��� � � � � �c�� � f��x��

For integer multiplication� the conditions are ful
lled as follows�

�However	 no independence between these random variables is needed	 e�g� given the value of 
a� it is not necessary

that 
a� be randomly distributed in 
In according to Dn�

�



	�
 First� generate two truly random and independent bit strings r� and r�� each of length n� using a
random bit string R of length �n� Then� compute �� and ��� where �� � � if r� � x� and �� � �
otherwise and �� is calculated analogously with respect to r� and x�� Let s� � ���

n�x�r� and
s� � ���

n � x�� r�� It can be easily veri
ed that each of the pairs �a� � �r�� r��� �a� � �r�� s���
�a� � �s�� r�� and �a� � �s�� s�� are randomly and uniformly distributed in f�� �gn � f�� �gn�
Then� G�i� �x�R� � �a�� �a�� �a�� �a�� I where I � �r�� r�� s�� s�� ��� ����

	�
 De
ne F �n� �x�G�n� �x�R�� ��� � � � � ��� � �������������r��s�����
n��r��s�����

n������
�n�

It is easy to verify that F satis
es the requirements stated above�

The generation and computation steps require the checker to perform a constant number of
shifts� comparisons and additions on numbers of length n�

��� Computability by Smaller Inputs

Informally� the property is that there is a constant c� such that for all �x � �In� f��x� can be
expressed as an easily computable function of f��a��� � � � � f��ac��� where �a�� � � � � �ac� are each in �In���
More formally� there is a generation procedure G� and a computation F �� both easily computable�
that interact as follows� For all n � � and for all �x � �In�

	�
 G��n� �x� � �a�� � � � � �ac� � I� where� for each k � �� � � � � c�� �ak � �In��� I is auxiliary information
generated in the process which is used in part ����

	�
 F ��n� �x�G��n� �x�� ��� � � � � �c�� evaluates to a possible output of an input in �In� Intuitively�
��� � � � � �c� � � are the answers that the program being checked produces on inputs �a�� � � � � �ac�� �x�
respectively� We require that�

If� for all k � �� � � � � c�� �k � f��ak� then F ��n� �x�G��n� �x�� ��� � � � � �c�� � f��x��

For example� for integer multiplication� this condition is ful
lled as follows� In fact� instead of
reducing to inputs one bit smaller we reduce to half the number of bits� Assume n is even�

	�
 Let xL� be the most signi
cant n�� bits of x� and let xR� be the least signi
cant n�� bits of
x�� De
ne xL� and xR� analogously with respect to x�� Let �a� � �xR� � x

R
� �� �a� � �xL� � x

R
� ��

�a� � �xR� � x
L
� � and �a� � �xL� � x

L
� �� Then� G

��n� �x� � �a�� �a�� �a�� �a��

	�
 De
ne F ��n� �x�G��n� �x�� ��� � � � � ��� � �� � ��� � ��� � �
n�� � �� � �

n� It is easy to verify that
F � satis
es the requirements stated above�

��� Computability by Random Homomorphisms

Let G be a 
nite group with group operation 	 and with generators g�� � � � � gc� and identity element
�� For y � G� let y�� denote the inverse of y� Let G� be a �
nite or countable� group with group
operation 	� and identity element ��� For � � G�� let ��� denote the inverse of �� Let f � G 
 G�

be a function� Intuitively� f is relatively hard to compute compared to either 	 or 	��

Let UG be the uniform probability distribution on G� We say that f has the computability by
random homomorphisms property if�

�



	�
 It is easy to choose random elements of G according to UG�

	�
 F is an easily computable function with the property that� for any pair x�� x� � G� F �x�� x�� �
G� and furthermore f�x� 	 x�� � f�x�� 	

� f�x�� 	
� F �x�� x��� We call this property linear

consistency� In all of our applications except for integer multiplication� F �x�� x�� � �� for all
inputs x�� x�� in which case f is a group homomorphism�

	�
 For each generator gi � G� Fi is an easily computable function with the property that� for any
z � G� Fi�z� � G� and furthermore f�z 	 gi� � f�z� 	� Fi�z�� We call this property neighbor
consistency� This property is not needed for integer multiplication� For all of the other
applications� both G and G� are generated by a single element denoted � and ��� respectively�
�i�e� they are both cyclic groups�� and for all z � G� f�z 	 �� � f�z� 	� ���

The computability by random homomorphisms property is a special case of the computability by
random inputs property� The name comes from the fact that f is a group homomorphism in all of
our applications except for integer multiplication� in which case f exhibits properties similar to a
group homomorphism�

� Main Theorems

We 
rst show how to construct a checker that is both adaptive and private for any function com�
putable by random inputs and computable by smaller inputs� The checker is an adaptation of the
self�testing�correcting pair using the method based on reduction to smaller sized inputs given in
�Blum Luby Rubinfeld	�

Algorithm�

The algorithm is designed to run asking questions of programs P�� � � � � Pc� running on non�
communicating machines� We describe the algorithm as if the questions are asked and immediately
answered� However� the actual order of the questions is as follows� Let Qi be the set of questions
asked of Pi� The questions in Qi are asked in a randomly permuted order� and then the veri
cations
are done once all of the answers have been given� This can be done because none of the questions
asked depend on results of previous questions�

We make the convention that if any call to one of the subroutines returns 
FAULTY� then the
entire checker program outputs 
FAULTY� and halts immediately�

Program Check�l� �x	� The inputs are l � N � �x � �I l�

For i � �� � � � � l� call Random test�i	�
answer � Random Compute�l� �x	
Output �answer�
PASS��

Subroutine Random Test�n	�

Choose �x at random from �In�
If n � � then compute f��x� directly

�



For � � i � c�� yi � Pi��x�
If there is an i s�t� f��x� �� yi then output 
FAULTY�

Elseif n � � then�
Use computability by smaller inputs to generate G��i� �x� � �a�� � � � � �ac� � I �
For all k � �� � � � � c� let yk � Random compute�n � �� �ak	�
For � � i � c�� zi � Pi��x�
If there is an i such that F ��n� �x�G��n� �x�� y�� � � � � yc�� �� zi then output 
FAULTY�

Subroutine Random Compute�n� �x��

Use computability by random inputs to generate G�n� �x�R� � �a�� � � � � �ac� � I�
where R is a random� independent and uniformly distributed bit string�

For i � �� � � � � c�� �i � Pi��ai��
answer � F �n� �x�G�n� �x�R�� ��� � � � � �c��

This checker is based on the checker in �Blum Luby Rubinfeld	 which tests the program on
successively larger ranges� bootstrapping on the fact that the smaller ranges have already been
tested� Since testing has no meaning for an adaptive program� the proofs in �Blum Luby Rubinfeld	
do not work in this setting� In fact� a naive implementation of the protocol described in �Blum
Luby Rubinfeld	 can be fooled by c� adaptive programs� because the adaptive program can 
gure
out where the checker is in the computation by the questions asked of it� and lie accordingly� The
above protocol overcomes this by asking the questions on each machine in a random order� Using
the techniques of �Fortnow Rompel Sipser	� one can simply transform the checker in �Blum Luby
Rubinfeld	 into a ��adaptive checker� with an additional cost of O�logn� multiplicative overhead
in the running time over the original checker� On the other hand� the adaptive checker presented
here is as e�cient as the original checker of �Blum Luby Rubinfeld	�

Theorem �� Any function which is computable by random inputs and computable by smaller
inputs has a di�erent and T �x��e�cient �c�� L��private�adaptive checker� where T �x� � L�x� is the
size of x�

Proof of Theorem �� The intuition behind why this checker works in the adaptive setting is
that the questions are being sent to c� adaptive programs in such a way that the programs do not
know whether the question was generated at random in the 
rst line of Random�Test or whether
the question was generated at random within Random�Compute� We show that this is enough
to get a c��adaptive checker� Let m be the total number of questions asked to program Pi and
let q�� � � � � qm be the questions asked of Pi� Each program receives a random permutation of the
questions �q�� q�� � � � � qm�� One can easily verify that the distribution of the questions is the same
for all inputs of the same size� showing that the checker is �c�� L��private� One can also easily
verify that q�� � � � � qm are independently and uniformly distributed �but not identically distributed�
there are a subset of questions that are uniformly distributed in �Ir for each r � �� � � � � l�� Some of
the questions are generated in Random�Test� and some of the questions are generated in Random�
Compute in order to verify the questions in Random�Test� Notice that the questions asked in
Random�Test are veri
ed by computing them from questions that are of a smaller size� Let r be
the smallest sized question on which any program errs and let Pi be a program that errs on an input
of size r� Since the questions are asked in a randomly permuted order� with probability p where
���c� � �� � p � ���c�� ��� the question was generated in Random�Test rather than Random�
Compute� This is because Random�Test only makes one call to Pi on inputs of size r� whereas

�



Random�Compute is called c� times on inputs of size r �c��� times on inputs of size l� and makes
one call to Pi on an input of size r each time that it is called� The program Pi cannot tell which
subroutine generated the questions of size r because they are asked in a random order� If Pi errs
on a question generated by Random�Test� then if r � �� since the question is being veri
ed with
smaller inputs� all of which are correct �by choice of r�� the mistake is caught� Otherwise� if r � ��
the question is being veri
ed by computation done by the checker� and the mistake is caught�

To decrease the probability of error to � �� run the protocol O�log ���� times sequentially� If
answer is always the same� output answer� otherwise output 
FAULTY��

This outline can be used to develop an adaptive and private checker for the following problems�

Corollary ���� There is a ��� L��private�adaptive checker for integer multiplication� where L�x� �
jxj� The checker is both di�erent and e�cient�

Corollary ����There is a ��� L��private�adaptive checker for integer division f�a� b� � �a div b� amod
b�� where L�a� b� � fjaj� bg� The checker is both di�erent and �logn��e�cient�

Corollary ����There is a ��� L��private�adaptive checker for modular exponentiation f�a� x� q� �
ax mod q� where L�a� x� q� � fjaj� jxj� qg� The checker is both di�erent and �log� n��e�cient�

Corollary ����There is a ��� L��private�adaptive checker for matrix multiplication over a 
nite

eld f�A�B� � A �B� where L�A�B� � fjAj� jBjg� The checker is both di�erent and e�cient�

Corollary ����There is a ��� L��private�adaptive checker for polynomial multiplication over a

nite 
eld f�a�x�� b�x�� � a�x�� b�x�� where L�a� b� � fdegree�a�� degree�b�g� The checker is both
di�erent and e�cient�

It is also possible to construct an adaptive and private checker for any function computable by
random homomorphisms� The checker is an adaptation of the self�testing�correcting pair using the
method based on computability by random homomorphisms given in �Blum Luby Rubinfeld	�

Theorem �� Any function which is computable by random homomorphisms has e�cient and
di�erent ��adaptive and �k� L��private�adaptive checkers� for constant k � maxf�� c� � �g� where
L�x� � G �G is the underlying group��

Proof idea of Theorem �� �Fortnow Rompel Sipser	 show how to transform any checker into
a ��adaptive checker by simply running the original checking protocol with the 
rst program� If
the original checker would have accepted� a random question asked of the 
rst program is chosen�
and is also asked of the second program� If the second program gives the same answer as the

rst program� then the adaptive checker returns 
PASS�� Otherwise� if the original checker would
have returned 
FAULTY�� or if the second program answers di�erently than the 
rst� the adaptive
checker returns 
FAULTY�� An adaptation of the algorithm for self�testing�correcting based on
computability by random homomorphisms in �Blum Luby Rubinfeld	 combined with the technique
of �Fortnow Rompel Sipser	 proves Theorem ��

Corollary ����There is a ��adaptive and ��� L��private�adaptive checker for modular multiplication
f�a� b� q� � a� b mod q� where L�a� b� q� � fjaj� jbj� qg� The checkers are both di�erent and e�cient�

Corollary ����There is a ��adaptive and ��� L��private�adaptive checker for the mod function
f�a� q� � a mod q� where L�a� q� � fjaj� qg� The checkers are both di�erent and e�cient�

Corollary ����There is a ��adaptive and ��� L��private�adaptive checker for the exponentiation
mod a prime function f�a� x� p� � ax mod p� where L�a� x� p� � fa� jxj� pg� The checkers are both

�



di�erent and e�cient�

� Open Questions

By the results of �Fortnow Rompel Sipser	� any checker can be converted into a ��adaptive checker�
A question that arises naturally is whether a checker can in general be converted into a ��adaptive
checker� as opposed to ��adaptive� Since there is a complete language in NEXPTIME that has
a checker �Babai Fortnow Lund	� there is no general technique that converts any checker into a
��adaptive checker unless NEXPTIME�PSPACE� To see this� suppose there is such a general
technique and consider the checker for the complete language in NEXPTIME� Now� because we
can supposedly convert this checker into a ��adaptive checker� there is an interactive proof for the
language� Then by the results of �Lund Fortnow Karlo� Nisan	 and �Shamir	� the language must
be in PSPACE�

Since there is probably no general technique for converting a checker into a ��adaptive checker�
it would be interesting to charactize which problems do have adaptive checkers�

Another interesting question is under what conditions on L it is true that a ��� L��private checker
is always a ��adaptive checker�

�Fortnow Rompel Sipser	 have shown a technique by which any checker can be made into a
��adaptive checker� Is there a more e�cient technique which does the same thing�

� Acknowledgements

We thank for Oded Goldreich� Sampath Kannan� Joan Feigenbaum� Silvio Micali and Sha
 Gold�
wasser for many enlightening discussions and for technical suggestions�

References

�Adleman Huang Kompella	 Adleman� L�� Huang� M�� Kompella� K�� Personal communication
through L� Adleman�

�Abadi Feigenbaum Kilian	 Abadi� M�� Feigenbaum� J�� Kilian� J�� 
On Hiding Information from
an Oracle�� Journal of Computer and System Sciences� Vol� ��� No� �� August ����� pp� ������

�Babai Fortnow Lund	 Babai� L�� Fortnow� L�� Lund� C�� 
Non�Deterministic Exponential Time
has Two�Prover Interactive Protocols�� Technical Report ������ University of Chicago� Dept�
of Computer Science�

�Beaver Feigenbaum	 Beaver� D�� Feigenbaum� J�� 
Hiding Instance in Multioracle Queries�� To
appear in Proceedings of STACS �����

�Beaver Feigenbaum Kilian Rogaway	 Beaver� D�� Feigenbaum� J�� Kilian� J�� Rogaway� P�� 
Cryp�
tographic Applications of Locally Random Reductions�� AT�T Bell Laboratories Technical
Memorandum� November �����

��



�Blum	 Blum� M�� 
Designing programs to check their work�� Submitted to CACM�

�Blum Kannan	 Blum� M�� Kannan� S�� 
Program correctness checking ��� and the design of pro�
grams that check their work�� STOC ��
��

�Blum Luby Rubinfeld	 Blum� M�� Luby� M�� Rubinfeld� R�� 
Program Result Checking Against
Adaptive Programs and in Cryptographic Settings�� to appear in proceedings of STOC �����

�Feigenbaum Kannan Nisan	 Feigenbaum� J�� Kannan� S�� Nisan� N�� 
Lower Bounds on Random�
Self�Reducibility�� to appear in proceedings of Structure in Complexity Theory Conference�
�����

�Fortnow	 Fortnow� L�� 
Complexity�Theoretic Aspects of Interactive Proof Systems�� Tech Report
MIT�LCS�TR����� May �����

�Fortnow Rompel Sipser	 Fortnow� L�� Rompel� J�� Sipser� M�� 
On the Power of Multi�Prover
Interactive Protocols�� Proc� �rd Structure in Complexity Theory Conference� ����� pp� ����
����

�Freivalds	 Freivalds� R��
Fast Probabilistic Algorithms�� Springer Verlag Lecture Notes in CS No�
��� Mathematical Foundations of CS� ����� �������

�Kaminski	 Kaminski� Michael� 
A note on probabilistically verifying integer and polynomial prod�
ucts�� JACM� Vol� ��� No� �� January ����� pp���������

�Lund Fortnow Karlo� Nisan	 Lund� C�� Fortnow� L�� Karlo�� H�� Nisan� N�� 
The Polynomial Time
Hierarchy has Interactive Proofs�� Manuscript�

�Lipton	 Lipton� R�� 
New directions in testing�� Manuscript�

�Rubinfeld	 Rubinfeld� R� 
Designing checkers for programs that run in parallel�� Manuscript�

�Shamir	 Shamir� A�� 
IP�PSPACE�� Manuscript�

��


