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Abstract

Given two distributionsover ann element set, wewish to
check whether these distributions are statistically close by
only sampling. We give a sublinear algorithm which uses
O(n?/3e~*1logn) independent samples from each distribu-
tion, runs in time linear in the sample size, makes no as-
sumptions about the structure of the distributions, and dis-
tinguishesthe cases when the distance between the distribu-
tionsis small (less than max(%, ﬁ)) or large (more
than €) in L, -distance. We also givean Q(n?/3e~2/3) lower
bound.

Our algorithm has applicationsto the problem of check-
ing whether a given Markov processis rapidly mixing. We
develop sublinear algorithmsfor this problem as well.

1. Introduction

Suppose we have two distributions over the same n el-
ement set, and we want to know whether they are close to
each other in L;-norm. We assume that we know nothing
about the structure of the distributions and that the only al-
lowed operation is independent sampling. The naive ap-
proach would, for each distribution, sample enough ele-
ments to approximate the distribution and then compare
these approximations. Theorem 14 in Section 3.3 shows
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that the naive approach requires at least a linear number of
samples.

In this paper, we devel op amethod of testing that the dis-
tance between two distributionsis at most e using consider-
ably fewer samples. If the distributions have L -distance
at most max(B;—%, ﬁﬁ) then the algorithm will accept
with probability at least 1 — §. If the distributions have L -
distance more than ¢ then the algorithm will accept with
probability at most 6. The number of samples used is
O(n*/3e *lognlog$). We give an Q(n?/3¢~%/3) lower
bound for testing L -distance.

Our test relieson atest for the Lo -distance, which is con-
siderably easier to test: we give an agorithm that uses a
number of samples which is independent of n. However,
the Lo-distance does not in general give a good measure of
the closeness of two distributions. For example, two distri-
butions can have digoint support and still have small L -
distance. Still, we can get avery good estimate of the L o-
distance and then we use the fact that the L;-distanceis at
most /n times the Ly-distance. Unfortunately, the num-
ber of queries required by this approachistoo largein gen-
eral. Because of this, our L;-test is forced to distinguish
two cases.

For distributions with small Ly-norm, we show how to
use the Lo-distance to get a good approximation of the L -
distance. For distributions with larger L,-norm, we use the
fact that such distributions must have elements which oc-
cur with relatively high probability. We create a filtering
test that estimates the L -distance due to these high prob-
ability elements, and then approximates the L -distance
due to the low probability elements using the test for Lo-



distance. Optimizing the notion of “high probability” yields
our O(n?/3e~*logn log %) algorithm. The L,-distance test
uses O(e~*log(1/8)) samples.

Applying our techniques to Markov chains, we use the
above agorithm as a basis for constructing tests for deter-
mining whether aMarkov chainisrapidly mixing. We show
how to test whether iterating a Markov chain for ¢ steps
causesit to reach adistribution closeto the stationary distri-
bution. Our testing algorithm works by following O (tn®/3)
edgesin the chain. When the Markov chainisrepresentedin
aconvenient way (such arepresentation can be computed in
linear time and we give an example representation in Sec-
tion 4), this test remains sublinear in the size of a dense
enough Markov chain for small ¢. We then investigate two
notionsof being closeto arapidly mixing Markov chain that
fall within the framework of property testing, and show how
to test that a Markov chain is close to a Markov chain that
mixes in ¢ steps by following only O(tn?/3) edges. In the
case of Markov chains that come from directed graphs and
pass our test, our theorems show the existence of a directed
graph that is close to the original one and rapidly mixing.

Related Work  Our results fall within the various frame-
works of property testing [22, 13, 14, 7, 21]. A related work
of Kannan and Yao [17] outlines a program checking frame-
work for certifying the randomness of a program’s output.
In their model, one does not assume that samples from the
input distribution are independent.

There is much work on the problem estimating the dis-
tance between distributionsin data streaming models where
space is limited rather than time (cf. [11, 2, 8, 9]). Another
line of work [3] estimates the distance in frequency count
distributions on words between various documents, where
again spaceis limited.

In an interactive setting, Sahai and Vadhan [23] show
that given distributions p and ¢, generated by polynomial-
size circuits, the problem of distinguishing whether p and ¢
areclose or far in L;-norm, is complete for statistical zero-
knowledge.

Thereisavast literature on testing statistical hypotheses.
Inthese works, oneis given examples chosen from the same
distribution out of two possible choices, say p and q. The
godl is to decide which of two distributions the examples
are coming from. More generally, the goal can be stated as
deciding which of two known classes of distributions con-
tains the distribution generating the examples. This can be
seen to be a generalization of our model as follows: Let the
first class of distributions be the set of distributions of the
form ¢ x ¢. Let the second class of distributions be the set
of distributions of the form ¢; x ¢o where the L, differ-
enceof ¢; and ¢- is @ least e. Then, given examples from
two distributions p1, p2, create a set of example pairs (z, y)
where z is chosen according to p; and y according to ps.
Bounds and an optimal algorithm for the general problem

for various distance measures are given in [4, 19, 5, 6, 18].
None of these give sublinear bounds in the domain size for
our problem. The specific model of singleton hypothesis
classesis studied by Yamanishi [27].

Goldreich and Ron [12] give methods allowing testing
that the Lo-distance between a given distribution and the
uniform distribution is small in time O(y/n). Their “colli-
sion” idea underlies the present paper. Based on this, they
give a test which they conjecture can be used for testing
whether aregular graphis closeto being an expander, where
by close they mean that by changing a small fraction of
the edges they can turn it into an expander. Their test is
based on picking a random node and testing that random
walks from this node reach a distribution that is close to
uniform. Our tests are based on similar principles, but we
do not prove their conjecture. Mixing and expansion are
known to be related [24], but our techniques only apply to
the mixing properties of random walks on directed graphs,
since the notion of closeness we use does not preserve the
symmetry of the adjacency matrix. In another work, Gol-
dreich and Ron [14] show that testing that a graph is close
to an expander requires Q(n'/2) queries.

The conductance [24] of a graph is known to be closely
related to expansion and rapid-mixing properties of the
graph [16][24]. Frieze and Kannan [10] show, given agraph
G with n vertices and «, one can approximate the conduc-
tance of G to within additive error o intime O(n20(/2%),
Their techniquesalso yield an O(2P°¥(1/)) time test which
determines whether an adjacency matrix of a graph can be
changedin at most ¢ fraction of the locationsto get agraph
with high conductance. However, for the purpose of test-
ing whether an n-vertex, m-edge graph is rapid mixing,
we would need to approximate its conductance to within
a = O(m/n?); thusonly whenm = ©(n?) wouldit runin
O(n) time.

It is known that mixing [24, 16] is related to the separa-
tion between the two largest eigenvalues[1]. Standard tech-
niques for approximating the eigenvalues of adense n x n
matrix run in ©(n?3) flops and consume ©(n?) words of
memory [15]. However, for asparsen x n symmetric matrix
with m nonzero entries, n < m, “Lanczosagorithms’ [20]
accomplishthe sametask in © (n[m+logn]) flops, consum-
ing ©(n + m) storage. Furthermore, it is found in practice
that these algorithms can be run for far fewer, even a con-
stant number, of iterations while still obtaining highly ac-
curate values for the outer and inner few eigenvalues. Our
test for rapid mixing of a Markov chain runs more slowly
than the algorithmsthat are used in practice except on fairly
dense graphs (m > tn°/3 log n). However, our test is more
efficient than a gorithms whose behavior is mathematically
justified at every sparsity level. Our faster, but weaker, tests
of various altered definitions of “rapid mixing,” are more
efficient than the current algorithms used in practice.



2. Preliminaries

We use the following notation. We denote the set
{1,...,n} as[n]. Thenotation x €r [n] denotesthat x is
chosen uniformly at random from the set [n]. The L ;-norm
of a vector 7 is denoted by |7] and is equal to >, |v;].
Similarly the Lo-norm is denoted by ||¢]| and is equal to
Vo, vZ,and || 7| o = max; |v;|. We assume our distri-
butions are discrete distributions over n elements, and will
represent a distribution as a vector 7 = (p1, .. ., p,) Where
p; isthe probability of outputting element .

The collision probability of two distributions p’and ¢'is
the probability that a sample from each of p and ¢ yields
the same element. Note that, for two distributions p’ ¢, the
collision probability isp- ¢ = ", pig;. To avoid ambiguity,
we refer to the collision probability of p"and p' as the self-
collision probability of p, note that the self-collision proba-
bility of p'is ||p]|.

3. Testing closeness of distributions

The main goal of this section is to show how to test that
two distributions p’and ¢ are close in L1-norm in sublinear
time in the size of the domain of the distributions. We are
given access to these distributions via black boxes which
upon a query respond with an element of [n] generated ac-
cording to the respective distribution. Our main theoremis;

Theorem 1 Given parameter §, and distributions p,q
over a set of n elements, there is a test which runs
in time O(e *n**lognlog %) such that if [ — ¢ <
max(g;—%, ﬁﬁ), then the test outputs pass with prob-
ability at least 1 — 6 and and if |p'— q] > e, then the test
outputs fail with probability at least 1 — §.

In order to prove this theorem, we give atest which de-
termines whether pand ¢ are closein Lo-norm. Thetest is
based on estimating the self-collision and collision proba-
bilities of p'and ¢. In particular, if p'and ¢ are close, one
would expect that the self-collision probabilities of each are
close to the collision probability of the pair. Formalizing
thisintuition, in Section 3.1, we prove:

Theorem 2 Given parameter §, and distributions p"and ¢
over a set of n elements, there exists a test such that if ||p’ —
qll < ¢/2 then thetest passes with probability at least 1 — 4.
If||p— q]| > e thenthetest passeswith probability less than
§. Therunning time of the test is O (e ~* log $).

The test used to prove Theorem 2 isgivenin Figure 1. The
number of pairwise self-collisionsin set F is the count of
i < j such that the i*" samplein F is same as the j** sam-
plein F. Similarly, the number of collisions between @),
and Q,, isthe count of (i, j) such that thei*® samplein @,

L2-Distance-Test (p,q,m,¢€,0)
Repeat O(log(3)) times
Let Fp, = a set of m samples from p
Let F, = a set of m samples from ¢
Let 7, be the number of pairwise
self-collisions in Fj.
Let 7y be the number of pairwise
self-collisions in Fj.
Let Qp = a set of m samples from p
Let Q¢ = a set of m samples from ¢
Let spq be the number of collisions
between @, and Q.
Let r= 22 (rp+rq)
Let s =28pq
If r—s>m2?/2 then reject
Reject if the majority of iterations reject,
accept otherwise

Figure 1. Algorithm L,-Distance-Test

is same as the ;' samplein Q,. We use the parameter m
to indicate the number of samples needed by the test to get
constant confidence. In order to bound the L 5-distance be-
tween 5and 7 by €, settingm = O(%) suffices. By main-
taining arrays which count the number of times that each
element is sampled in £, F, one can achieve the claimed
running time bounds. Thus essentially m?2 estimations of
the collision probability can be performed in O(m) time.
Using hashing techniques, one can achieve O(m) with an
expected running time bound matching Theorem 2.

Since |v| < /n||v||, asimple way to extend the above
test to an L,-distance test is by setting ¢/ = ¢/v/n. Un-
fortunately, due to the order of the dependence on ¢ in the
Lo-distance test, the resulting running time is prohibitive.
It is possible, though, to achieve sublinear running times
if the input vectors are known to be reasonably evenly dis-
tributed. We make this precise by a closer analysis of the
variance of the test in Lemma 5. In particular, we ana-
lyze the dependence of the variance of s on the parameter
b = max(||p]co; [|7]lec). There we show that given p"and
g such that b = O(n~*), one can cal Ly-Distance-Test
with an error parameter of ﬁ and achieve running time of
0(674(n17a/2 + n272a)).

We use the following definition to identify the elements
with large weights.

Definition 3 An element i is called big with respect to a
distribution 7'if p; > —.

Our L;-distance tester calls the Lo-distance testing al-
gorithm as a subroutine. When both input distributions
have no big elements, the input is passed to the L -distance
test unchanged. If the input distributions have a large self-
collision probability, the distances induced respectively by



the big and non-big elements are measured in two steps.
Thefirst step measuresthe distance correspondingto the big
elements via straightforward sampling, and the second step
modifies the distributions so that the distance attributed to
the non-big elements can be measured using the L ,-distance
test. The complete test is given in Figure 2. The proof of
Theorem 1 is described in Section 3.2.

Li-Distance-Test (p,q,¢€,0)

Sample p and ¢ for
M = O(max(e2,4)n*3logn) times

Let S, and S; be the sample sets obtained
by discarding elements that occur less
than (1—¢/63)Mn~2/% times

If S, and S, are empty

Lo-Distance-Test (p,q, O(n*/? /"), 2\6/5,6/2)

else

? =# times element i appears in S,

¢ =# times element i appears in Sg

Fail if Y [f7 — €] > eM/8.

Define p as follows:
sample an element from
if this sample is not in S, output it,
otherwise output an z €g [n].

Define ¢ similarly.

Ly-Distance-Test (p', ¢, 0(n?3/e%), NG 5/2)

Figure 2. Algorithm L,-Distance-Test

In Section 3.3 we prove that Q(n?/3) samples are for
distinguishing distributionsthat are far in L -distance.

3.1. Closenessin Ly-norm

In this section we analyze the test in Figure 1 and prove
Theorem 2. The statistics rp, rq and s in Algorithm Lo-
Distance-Test are estimators for the self-collision proba-
bility of p, of ¢, and of the collision probability between
p and ¢, respectively. If p'and ¢ are statistically close,
we expect that the self-collision probabilities of each are
close to the collision probability of the pair. These prob-
abilities are exactly the inner products of these vectors.
In particular if the set F, of samples from p'is given by
{F,,...,F;"} thenfor any pair i, j € [m],i # j we have
that Pr [F = FJ] = - p = ||p]|*>. By combining these
statistics, we show that » — s is an estimator for the desired
value |5 — l|>.

Since our agorithm samples from not one but two dis-
tinct distributions, we must also bound the variance of the
variable s used in the test. One distinction to make be-
tween self-collisions and 7, 7 collisions is that for the self-
collision we only consider samplesfor whichi # j, but this
is not necessary for p, ¢ collisions. We accommodate this

in our agorithm by scaling r,, and r, appropriately. By this
scaling and from the above discussion we see that E [s] =
2m? () andthat E [r — 5] = m?(| 5]+ |71~ 2(79)) =
m? (|5 — ).

A complication which arises from this scheme, though,
is that the pairwise samples are not independent. Thus we
use Chebyshev’s inequality. That is, for any random vari-
able A, and p > 0, the probability Pr[|A — E[A]| > p] is
bounded above by VLQ[A]. To use this theorem, we require
abound on the variance, which we givein this section.

Our techniques extend the work of Goldreich and Ron
[12], where self-collision probabilities are used to estimate
norm of a vector, and the deviation of a distribution from
uniform. In particular, their work provides an analysis of
the statistics r, and r, above through the following lemma.

Lemma 4 (Goldreich Ron) Let A beoneofr, or rq inal-
gorithm L,-Distance-Test. Then E [A] = (%) - ||p]|? and
Var [A] < 2(E [A])%/?

The variance bound is more complicated, and is givenin
terms of the largest weight in p'and ¢.

Lemma5 There is a constant ¢ such that Var [r — s] <
c(m3b? + m?2b), where b = max(||p]| o, /¢l o0 )-

PROOF: Let F'betheset {1,...,m}. For (i,j) € ' x F,
define the indicator variable C; ; = 1 if the ith element
of @, and the j** element of @, are the same. Then the
variable from the algorithm s,,, = >_, ; C; ;. Also define
the notation C; ; = C; ; — E[C; ;).

Now Var [Yp,pCij] = E[(TperCis)] =
B[S0,(Cis) +2 S5y sn CoaCia] < (- @) +

2E {Z(m‘)#(w Cid'ckvl} :

To analyze the last expectation, we use two facts. First,
it is easy to see, by the definition of covariance, that
E [C’i,jC‘k,l] < E [CZ-,]C;CJ]. Secondly, we note that Ci’j
and Cy; are not independent only wheni = k or j = .
Expanding the sum we get

(i,3),(k,l))EF X F

(i,5)#(k,1)
= E Z Ci;Ci + Z Ci,Ch.j
(4,5),(i,l)EF X F (4,5),(k,j)EF X F
J#l ik ]
< E E Ci;iCii + E Ci,iC,j
(4,5),(i,l)EF X F (4,5),(k,j)EF X F
#l ik |




< om® Y peg; +pige < em® > o < em®b?
Le(n] L€(n]

for some constant ¢. In order to bound Var[r — s] we
use Lemma 4. Since Var[r] < ¢m?b and the variance is
additive for independent random variables, we can write
Var [r — 5] < ¢(m3b? + m?2b). i

Now using Chebyshev’s inequality, it follows that if we
choose m = O(e~*), we can achieve an error probability
lessthan 1/3. It follows from standard techniques that with
O(log ) iterations we can achieve an error probability at
most 6.

Lemma6 For two distributions p' and ¢ such that b =
max(||flloc. |17l ) @nd m = O((b? + €2Vb) /), if |7 —
qll < €/2, then Ly-Distance-Test(p, ¢, m, ¢, §) passes with
probability at least 1 — 4. If ||p'— ¢]| > e then L,-Distance-
Test(p, g, m, €, 0) passes with probability less than 6. The
running timeis O(mlog(%)).

PROOF: For our statistic A = (r — s) we can say, using
Chebyshev’sinequality, that for some constant %,

k(m®b? + m2b)
2

Thenwhen ||p'— ]| < €/2, for oneiteration,

Pr{lA—E[A][ > p] <

Pr [pass] Pr[(r —s) < m?¢?/2]
Pr[|(r—s) —E[r—s]| < m?/4]
1 _ 4k(m3b2+m?b)
mied
It can be shown that this probability will be at least 2/3
whenever m > ¢(b? 4 €2v/b)/€e* for some congtant c¢. A

similar analysis can be used to show the other direction. O

IV IVl

3.2. Closenessin L;-norm

The L, -closeness test proceeds in two stages. The first
phase of the agorithm filters out big elements (as defined
in Definition 3) while estimating their contribution to the
distance | — ¢]. The second phase invokes the L2 test on
the filtered distribution, with closeness parameter -~ The
correctness of thissubroutinecall is given by Lemma6 with
b = n—2/3. With these substitutions, the number of sam-
ples m is O(e~*n?/3). The choice of threshold n~2/3 for
the weight of the big elements arises from optimizing the
running-time trade-off between the two phases of the algo-
rithm.

We need to show that by using a sample of size
O(e2n?/3logn), we can estimate the weights of the big
elements to within amultiplicative factor of O(e).

Lemma? Let ¢ < 1/2. In L;-Distance-Test, after per-
forming M = O(%) samples from a distribution

7, we define p; = (/M. Then, with probability at least

1 - % the following hold for all i: (1) if p; > €2n=2/3

then [p; — pi| < & max(pi,n=2/%), (2) if p; < En=2/3,
< (1 —¢€/63)n=2/3,

PrROOF: We anayze three cases; we use Chernoff
bounds to show that for each 4, with probability at least
1 — %, the following holds: (1a) If p; > n~%/3 then
|pi — pil < ep;/63. (1b) If en=23 < p;, < n2/3
then |p; — pi| < en=2/3/63. (2) If p; < n~2/3 then
pi < 3¢2n~2/3. Since, for e < 1/2,3¢2 < (1 — ¢/63), the
lemmafollows. |

Once the big elements are identified, we use the follow-
ing fact to prove the gap in the distances of accepted and
rejected pairs of distributions.

Fact 8 For any vector v, |[v[|? < [v] - [|v]|co-

Theorem 9 L,-Distance-Test pass& distributions p. ¢

such that [p — ¢q] < maX(32ﬁ, 4ﬁ) and fails when
|p'— G| > €. Theerror probability is §. The running time of
the wholetest is O(e*n2/3logn log(3))-

PROOF: Supposeitems (1) and (2) from Lemma 7 hold for
all 4, and for both p’and ¢. By Lemma7, this event happens
with probability at least 1 — =

Let S = S,US,. By ourassumptlon al the big elements
of both o and q arein S, and no element with weight less
than e2n—2/3 (in either distribution) isin S.

Let A, be the L;-distance attributed to the elementsin
S.Let Ay = |p’ — | (inthecasethat S isempty, A; =0,
p=p adq=7q).

Noticethat A, < |p—¢]. Wecan show that A, < |5—4],
and|ﬁ—(ﬂ <247 + As.

The agorithm estimates A; in a brute-force manner
to within an additive error of ¢/9. The error on the
i*™ term of the sum is bounded by & (max(p;,n=%/3) +
max(q;,n~2/3)) < &(pi + ¢; + 2n~?%/3). Consider the
sum over ¢ of these error terms. Notice that thissumis over
a most 2n2/3/(1 — ¢/63) elementsin S. Hence, the total
additive error is bounded by
Z ( 2/3y « £ _

pi+q+2n 7)< —(2+4/(1—¢€/63)) < ¢/9.
= 63 63

Note that max(||p||co, |7]lec) < n~2/3 + n~1. So,
we can use the Lo-Distance-Test on p” and ¢’ withm =
O(e~*n?/3) as shown by Lemmas.

If [7—q) < W thensoare A and A,. Thefirst phase
of the algorithm clearly passes. By Fact 8, ||p" — ¢'|| <
4%. Therefore, the Lo-Distance-Test passes. Similarly,
if [p— q] > e thenether Ay > e/4 0r Ay > ¢/2. Either
the first phase of the algorithm or the L 5-Distance-Test will
fail.




To get the running time, note that the time for the
first phase is O(¢~2n?/31logn) and that the time for Lo-
Distance-Test is O(n*/3e~*log 1). It is easy to see that
our algorithm makes an error either when it makes abad es-
timation of A; or when Lo-Distance-Test makes an error.
So, the probability of error is bounded by §. O

We believe we can eliminatethelog n termin Theorem 1
(and Theorem 9). Instead of requiring that we correctly
identify the big and small elements, we alow some mis-
classifications. Thefiltering test should not misclassify very
many very big and very small elements and agood analysis
should show that our remaining tests will not have signifi-
cantly different behavior.

3.3. Lower Bounds

Theorem 10 Given any test using only o(n?/%) samples,
there exist distributions @ and b of L-distance 1 such that
the test will be unable to distinguish the case where one
distribution is @ and the other is b from the case where both
distributions are a.

PROOF: Fix atesting algorithmthat uses s = o(n?/?) sam-
ples. Without loss of generality we assumethat algorithmis
symmetric, i.e., given two distributions the algorithm will
give the same result for any permutation of the underly-
ing space. Otherwise we could permute the sample space
to maximize the error of the testing algorithm; the result
(including this pre-permutation) would be a symmetric al-
gorithm, and it would have the same failure probability on
worst-case input.

Let us assume that n is a multiple of four. We define
two distributions @ and b as follows: (1) For 1 < i < n?/3,
a; = bi = 5—575. We call these the heavy elements. (2) For
n/2 <i < 3n/4,a; = 2 and b; = 0. We call these the
light elements of @. (3) For 3n/4 < i < n, b; = 2 and
a; = 0. We call these the light elements of b. (4) For the
remaningi, a; = b; = 0.

The L4 -distance of @ and b isone. We will show that no
symmetric algorithm can distinguish the two.

Lemma 11 (1) Wth high probability, at most o(n?/3) of
the heavy elements occur more than twice in the sample
space of both distributions combined. (2) With high proba-
bility, none of the light elements occur more than twice in
the same space of both distributions.

ProOF: For afixed heavy element of probability p =
5575 the probability that it appears at least three times is
bounded by s3p = o(1), i.e, that is roughly s3 possible
triples each of which are al equal to our element with prob-
ability p°. By linearity of expectation we have o(n?/?) high
probability elements occurring three times. For the light

elements the same argument gives o(1) low probability ele-
ments occurring three times. |

The elements which occur three or more times occur
only on the heavy elements which have the same probability
in each distribution. So these cannot help the algorithm dis-
tinguish the distributions. Let H be the random variable de-
noting the number of collisions among the heavy elements.
Let L be the random variable denoting the number of colli-
sions among the light elements. If the algorithm was given
distributions @ and b the number of collisions it would see
between them would be H. If the agorithm was given the
same distribution @ twice the number of collisions would
be the random variable H + L. The only relevant test a
symmetric algorithm can make is to determine whether the
number of collisions between the distributions comes from
HorH+ L.

The expected value of H is s2/2n%/3. The variance is
0(s%/n%3 + 53 /n?/3) = 0(s?/n?/3) since s = o(n?/?).
The standard deviation of H is \/6(s2/n2/3) = 6(s/n'/?).
The expected vaue and variance of L is 6(s?/n) =
o(s/n'/3).

Since the expected value and variance of L are swamped
by the standard deviation of H and one would expect it is
impossible to distinguish between samples drawn from H
versus H + L. To see this we need to show that H hasrea-
sonable properties, basically that H is approximately Gaus-
sian. Let f(h) be the probability that H = h. We will
derive an exact formulafor f(h).

Consider the experiment of putting s indistinguished
ballsin b = n?/3 distinguished bags without putting three
inany bag. If we have h collisions then h bags get 2 balls,
s —2h bagsget 1 ball and b — s + h bags get no balls. The
number of waysto do thisis

b!
(s —2h)IAI(b — s+ h)!

oy

Since the balls are distinguished we need to multiply Equa-
tion 1 by s!/2" which is the number of ways to put the s
ballsinto h bagswith 2 ballsand s — 2h bags of 1 ball.

We then divide by the b ways of placing s distinguish-
able ballsinto b bagsto get

bls!

f(h) = 2 (s — 20)1(b — 5 + h)Ihlb®

Itis useful to consider theratio of f(h) and f(h — 1).

F(h)  (s—2h+1)(s—2h+2)

90 =51 2h(h+b—s)

By Chebyshev's inequality, we only need to consider the
case that i is within a constant number of standard devia-
tions around the expected value of H. In this case we have
s = o(n?/3) = o(b) and h = O(s?/b) = O(s(s/b)) =




o(s). We then have g(h) approximately s2/2bh. Note
that f achieves its maximum about where g(h) = 1, i.e,
h = s2/2b which isthe expected value of H.

There is a constant = such that if for some &, s2/2b —
ks/vVb < hy < hy < 52/2b+ks//bthen f(hy) and f(hs)
arewithin afactor of 1+ rk. Thisfollows by approximating
the product of the g(h)’sin thisrange.

Now we want to show that H and H + L do not differ
much asdistributions. Let «(¢) bethe probability that L = ¢
and v(x) be the probability that H + L = z. We have
(@) = X fla — Oull),

Since the expected value of L is O(s?/n), by Markov’s
inequality we can get agood approximationto v(z) by only
considering ¢ with |[¢| = O(s%/n). Inthisrange f(x) and
f(z —¢) differ by at most afactor of 1 +O(s2/n)n'/3/s =
1+ O(s/n*3) = 1+ o(1). We havev(z) = > ,(1 +
o) f(@u(t) = (1 + o(1)f(x) Sut) = flx) +
o(f(z))sinced, u(f) = 1.

The Li-norm of the distance of H and H + L is
> . o(f(x)) = o(1) since f is a probability distribution.
Thus no statistical test can distinguish H and H + L with
nontrivial probability. |

By appropriately modifying the distributions @ and b we
can give a stronger version of Theorem 10 with a depen-
denceone.

Corollary 12 Given any test using only o(n2/3 /€2/3) sam
ples, there exist distributions @ and b of L;-distance e such
that the test will be unableto distinguish the case where one
distribution is @ and the other is b from the case where both
distributions are a.

We can get alower bound of Q(e~2) for testing the Lo-
Distance with a rather simple proof.

Theorem 13 Given any test using only o(e~2) samples,
there exist distributions @ and b of Lo-distance e such that
the test will be unable to distinguish the case where one
distribution is @ and the other is b from the case where both
distributions are a.

PROOF: Letn = 2, a1 = as = 1/2and by =
1/2 —¢/v/2 and by = 1/2 + ¢/+/2. Distinguishing these
distributions is exactly the question of distinguishing a fair
coinfromacoin of biasé(¢) whichiswell known to require
6(€?) coinflips. |

The next theorem shows that learning a distribution us-
ing sublinear number of samplesis not possible.

Theorem 14 Suppose we have an algorithm that draws
o(n) samples from some unknown distribution & and out-
putsa distribution ¢. Thereis some distribution b for which
the output ¢ is such that b and ¢ have L -distance close to
one.

PrROOF: (Sketch) Let Ag bethedistribution that is uni-
formover S C {1,...,n}. Pick S a random among sets of
size n/2 and run the algorithm on A s. The agorithm only
learns o(n) elements from S. So with high probability the
L -distance of whatever distribution the algorithm output
will have L -distance from A g of nearly one. O

4. Application to Markov Chains

Random walks on Markov chains generate probability
distributions over the states of the chain which are endpoints
of arandomwalk. We employ L -Distance-Test , described
in Section 3, to test mixing properties of Markov Chains.

Preliminaries/Notation Let M beaMarkov chain repre-
sented by the transition probability matrix M. The uth state
of M corresponds to an n-vector ¢, = (0,...,1,...,0),
with a one in only the uth location and zeroes elsewhere.
The distribution generated by ¢-step random walks starting
at state v is denoted as a vector-matrix product &, M®.

Instead of computing such products in our agorithms,
we assume that our L,-Distance-Test has access to an or-
acle, next _node which on input of the state u responds
with the state v with probability M (u, v). Given such an or-
acle, the distribution €2 M can be generated in O(t) steps.
Furthermore, the oracle itself can be realized in O(logn)
time per query, given linear preprocessing time to compute
the cumulativesums M..(j, k) = S M(j, ). Theoracle
can be simulated on input « by producing a random number
ain [0, 1] and performing binary search over the uth row of
M. to find v such that M.(u,v) < a < Mc(u,v + 1).
It then outputs state v. Note that when M is such that
every row has at most d nonzero terms, slight modifica-
tions of this yield an O(log d) implementation consuming
O(n + m) words of memory if M isn x n and has m
nonzero entries. Improvements of the work given in [26]
can be used to prove that in fact constant query time is
achievable with space consumption O(n + m) for imple-
menting next node given linear preprocessing time.

We say that two states w and v are (e, t)-closeif the dis-
tribution generated by ¢-step random walks starting at « and
v are within € in the Ly norm, i.e. |€,M! — &,M!| < .
Similarly we say that a state u and adistribution 5 are (e, t)-
closeif |6, M" — 5] < e. Wesay M is (¢, t)-mixing if all
states are (e, ¢)-close to the same distribution:

Definition 15 A Markov chain M is (e, t)-mixing if a dis-
tribution 5 exists such that for all states , |¢;,M* — 5] < e.

For example, if M is (¢, O(log n log 1/€))-mixing, then M
is rapidly-mixing [24]. It can be easily seen that if M is
(e, t0)-mixing then it is (e, t) mixing for all ¢ > .

We now make the following definition:



Definition 16 The average ¢-step distribution, 5\ ¢ of a
Markov chain M with n statesis the distribution

o 1 L
SM,t = — E eth.
n
u

This distribution can be easily generated by picking « uni-
formly from [n] and walking ¢ steps from state . In an
(e, t)-mixing Markov chain, the average ¢-step distribution
is e-close to the stationary distribution. In a Markov chain
that is not (e, t)-mixing, thisis not necessarily the case.
Each test given below assumes access to an L, distance
tester ,-Distance-Test(u, v, €,d) which given oracle ac-
cess to distributions ¢, €, over the same n element set de-
cideswhether e, —&,| < f(e) orif |&, —&,| > e with con-
fidence1—4. Thetime complexity of L1 _test isT(n,¢,0),
and f is the gap of the tester. The implementation of L -
Distance-Test given earlier in Section 3 has gap f(e) =
¢/(4y/n), and time complexity 7' = O(4n?/3log 1).

4.1. A test for mixing and atest for almost-mixing

We show how to decide if a Markov chain is (e, t)-
mixing; then we define and solve a natural relaxation of that
problem.

In order to test that M is (e, ¢)-mixing, one can use
L,-Distance-Test to compare each distribution &, M? with
Mt With error parameter ¢ and confidence 6/n. The
running time is O(nt - T(n,¢e,6/n)). If every state
is (f(e)/2,t)-close to some distribution 3, then Sy IS
f(e)/2-close to 5. Therefore every state is (e, t)-close to
Sm,:. On the other hand, if there is no distribution that
is (¢, t)-close to all states, then, in particular, $n,; iS not
(e, t)-closeto at least one state. We have shown

Theorem 17 Let M be a Markov chain. Given Li-
Distance-Test with time complexity T'(n,¢,4) and gap f
and an oracle for next node, there exists a test with time
complexity O(nt - T'(n,€,d/n)) with the following behav-
ior: If M is(f(e)/2,t)-mixingthen Pr [M passes| > 1—¢;
if M isnot (e, t)-mixing then Pr [M passes < 4.

For the implementation of L-Distance-Test given in Sec-
tion 3 the running time is O(4n®/3tlognlog}). It dis-
tinguishes between chains which are ¢/(4+/n) mixing and
those which are not e-mixing. Therunningtimeis sublinear
inthesizeof M if t € o(n'/3/log(n)).

A relaxation of thisprocedureistesting that most starting
states reach the same distribution after ¢ steps. If (1 — p)
fraction of the states u of agiven M satisfy |§— ¢, M¢| < e,
then we say that M is (p, ¢, t)-almost mixing. By picking
O(1/p - In(/0)) starting states uniformly at random, and
testing their closeness to 5\, we have:

Theorem 18 Let M be a Markov chain. Given Li-
Distance-Test with time complexity T'(n,¢,0) and gap f

and an oracle for next node, there exists a test with
time complexity O(:T'(n, ¢, dp) log ) with the follow-
ing behavior: If M is (p, f(e)/2,t)-almost mixing then
Pr[M passes] > 1 — ¢; If M isnot (p, €, t)-almost mix-
ing then Pr [M passes| < 6.

4.2. A Property Tester for Mixing

The main result of thissection is atest that determinesif
a Markov chain’s matrix representation can be changed in
an e fraction of the non-zeroentriesto turnit into a (4e, 2t)-
mixing Markov chain. This notion falls within the scope of
property testing [22, 13, 14, 7, 21], which in general takes
a set S with distance function A and asubset P C S and
decides if an elements x € S isin P or if it is far from
every element in P, according to A. For the Markov chain
problem, we take as our set S al matricesM of sizen x n
with at most d non-zero entries in each row. The distance
functionisgiven by thefraction of non-zero entriesin which
two matricesdiffer, and the differencein their averaget-step
distributions.

Definition 19 Let M; and M- be n-state Markov chains
with at most d non-zero entriesin each row. Define distance
function A(M7,Ms) = (€1, €2) iff M; and M, differ on
erdn entriesand |Su, ¢ — SM,,¢| = €2. Wesay that M; and
M, are (e, e2)-closeif A(My, M) < (e1,€2).t

A natural question is whether all Markov chains are e-
close to an (¢, t)-mixing Markov chain, for certain param-
eters of . For constant e and t = O(log n), one can show
that every strongly-connected Markov chainis (e, 1)-close
to another Markov chain which (e, t)-mixes. However, the
situation changes when asking whether there is an (e, t)-
mixing Markov chain that is close both in the matrix rep-
resentation and in the average t-step distribution: specifi-
cally, it can be shown that there exist constantse, €1, €2 < 1
and Markov chain M for which no Markov chain is both
(€1, €2)-close to M and (e, log n)-mixing. In fact, when e,
is small enough, the problem becomes nontrivial even for
€2 = 1. The Markov chain corresponding to random walks
on the n-cycle provides an examplewhichisnot (¢ ~/21)-
closeto any (e, t)-mixing Markov chain.

Motivation As before, our algorithm proceeds by taking
random walks on the Markov chain and comparing fina dis-
tributions by using the L, distance tester. We define three
types of states. First anormal stateis onefrom which aran-
dom walk arrives at nearly the average t-step distribution.
In the discussion which follows, ¢ and e denote constant pa-
rameters fixed as input to the algorithm TestMixing.

Wesay (z,y) < (a,b)iff x <aandy < b



Definition 20 Given a Markov Chain M, a state u of the
chain is normal if it is (e, t)-close to Sy . That is if
leuM! — Sm¢| < e. Astateisbad if it isnot normal.

Testing normality requirestime O(t - T'(n, €, §)). Using this
definition the first two algorithms given in this section can
be described as testing whether all (resp. most) states in
M are normal. Additionally, we need to distinguish states
which not only produce random walks which arrive near
5w, but which have low probability of visiting a bad state.
We call such states smooth states:

Definition 21 A state &, in a Markov chain M is smooth
if (8 uis (e, 7)-closeto sm . for 7 = t, ..., 2t and (b) the
probability that a 2¢-step random walk starting at ¢, visits
abad stateisat most e.

Testing smoothness of a state requires O(t? - T'(n,¢,d))
time. Our property test merely verifies by random sampling
that most states are smooth.

The test Figure 3 gives an agorithm which on input
Markov chain M and parameter ¢ determines whether
at least (1 — ¢) fraction of the states of M are smooth
according to two distributions; uniform and the aver-
age t-step distribution. Assuming access to L -Distance-
Test with complexity T'(n,¢,0), this test runs in time

O(e 2T (n, €, 5;)).

TestMixing (M,¢,¢)
Let k = ©(1/¢)
Select k states wui,...,ur uniformly
Select k states ugy1,...,usr according to Swm,:
For ¢ = 1 to 2k
U = €y,
For w = 1 to O(1/e)
For 7 = 1 to 2t
u = next_node (M, u)
L1—Distance—Test(€th,§M,t,e
End
End
For 7 =t to 2t
L1—Distance—Test(é'uiMT,.?M,t,e,%)
End
Pass if all tests pass

1
aa)

Figure 3. Algorithm TestMixing

The main lemma of this section says that any Markov
chain which passesour test is (2¢, 1.01¢)-closeto a (4e, 2t)-
mixing Markov chain. First we give the modification

Definition 22 F isa function fromNn X n matriceston x n
matrices such that F'(IM) returns M by modifying the rows
corresponding to bad states of M to €', where v isa smooth
state.

Animportant feature of the transformation F' isthat it does
not affect the distribution of random walks originating from
smooth states very much.

Lemma 23 GivenaMarkov chainM andany statew € M
whichis smooth. If M = F(M) thenfor anytimet < 7 <
2t1 |€1LMT - aLMTl <e and ‘gM,t - é'uMT| < 2e.

PROOF: DefineI" as the set of all walks of length + from
win M. Partition T intoI' g and I’ 5 where T is the subset
of walks which visit a bad state. Let x, ; be an indicator
function which equals 1 if walk w ends at state 4, and O oth-
erwise. Let weight function W (w) be defined as the proba-
bility that walk w occurs. Finally definethe primed counter-
parts I, etc. for the Markov chain M. Now the ith element
of e, M7 iS Y cp, Xuw,i - W(w) + X ery, Xuw,i - W(w).
A similar expression can be written for each element of
&,M7. Since W (w) = W'(w) whenever w € L' it fol-
lows that [¢, M7 — &, M"| < 33" r. Xw,i|W(w) —
W/ (w)| <32 > wery XwiW (w) <e.

Additionally, since |3n: — €,M7T| < ¢ by the defini-
tion of smooth, it follows that [§nr.; — @, M7| < |3nre —
E.MT| + [E,M™ — &,M7| < 2. O

We can now prove the main lemma:

Lemma 24 If according to both the uniform distribution
and the distribution 5, (1 — €) fraction of the states
of a Markov chain M are sr1N100th, then the matrix M is
(2¢,1.01¢)-closeto a matrix M which is (4e, 2¢)-mixing.

PROOF: Let M = F(M). M and M differ on at
most en(d 4 1) entries. This gives the first part of our dis-

—

tance bound. For the second we analyze |5 — Sl =

LS &Mt — &,M!| as follows. The sum is split into
two parts, over the nodes which are smooth and those nodes
which are not. For each of the smooth nodes «, Lemma 23
says that |e,M! — &,M!| < e. Nodes which are not
smooth account for at most e fraction of the nodes in the
sum, and thus can contribute no morethan e absol ute weight
to the distribution 5t . The sum can be bounded now by

|5M,e — §1\~/I,t| < 1((1-e)ne+en) < 2e.

In order to show that M is (4e, 2t)-mixing, we provethat
for every state u, |§n ¢+ — €, M?!| < 4e. Theproof considers
three cases. u smooth, u bad, and » normal. The last case
isthe most involved.

If « is smooth in the Markov chain M, then Lemma 23
immediately tells us that |5y — €,M2!| < 2¢. Similarly
if u is bad in the Markov chain M, then in the chain M any
path starting at u transitions to a smooth state v in one step.
Since |5y — €, M2 < 2¢ by Lemma 23, the desired
bound follows.



If &, isanormal state which is not smooth we need a
more involved analysis of the distribution |&, M?¢|. We di-
vide T, the set of all 2¢-step walks in M starting at u, into
three sets, which we consider separately.

For thefirst settake " C I to be the set of walkswhich
visit a bad node before time ¢. Let d_;, be the distribution
over endpoints of these walks, that is, let s assign to state
1 the probability that any walk w € T'p ends at state . Let
w € I'p beany such walk. If w visits a bad state at time
7 < t, thenin the new Markov chain M, w visits a smooth
state v at time 7 4+ 1. Another application of Lemma 23
implies that |€vﬁ2t”*1 — 34| < 2e. Sincethisis true
for all walks w € T, wefind |d, — n.| < 2e.

For the second set, let T's C I" \ I'p be the set of walks
not in I' 5 which visit a smooth state at time ¢. Let d, be
the distribution over endpoints of these walks. Any walk
w € I's isidentical in the chains M and M up to time ¢,
and then in the chain M visits a smooth state v at time ¢.
Thussince |&,M! — S| < 26, we have |dy — S| < 2e.

Finally let Ty = T'\ (I'z UT), and let d,, be the dis-
tribution over endpoints of walks in T' . I'y consists of a
subset of the walks from anormal node v which do not visit
a smooth node at time ¢. By the definition of normal, u is
(e,t)-closeto 5p ¢ in the Markov chain M. By assumption
at most e weight of 5\ + IS assigned to nodes which are not
smooth. Therefore Ty |/|T'| isat most € + € = 2e.

Now define the weights of these distributions as wp, w;
and w,,. That iswy, is the probability that awalk from « in
M visits a bad state beforetime ¢t. Similarly w, isthe prob-
ability that a walk does not visit a bad state before time ¢,
but visits a smooth state at time ¢, and w,, is the probabil-
ity that awalk does not visit a bad state but visits anormal,
non-smooth state at time t. Then wy, + wy + w, = 1. Fi-
nally |6, M? — S| = |wpdy + weds + wnds, — Sue] <
wb|db - gh{t' + Ws|ds N §M,t| + Wn|dn igM,t| < (Wb +
ws) maX{|db - §M,t|; |ds - §M,t|} + wn|dn - §M,t| < 4e.
|

Given this, we finally can show our main theorem:

Theorem 25 Let M be a Markov chain. Given Li-
Distance-Test with time complexity T'(n,¢,0) and gap f
and an oraclefor next node, there exists a test such that
if ML is(f(e), t)-mixing then thetest passes with probability
at least 2/3. If M isnot (2¢, 1.01¢)-close to any M which
is (4e, 2t)-mixing then the test fails with probability at least
2/3. Theruntime of thetest isO( % - t2 - T'(n, €, &;)).

PrRoOF: Sincein any Markov chain M which is (e, t)-
mixing all states are smooth, M passes this test with proba-
bility at least (1 — ). Furthermore, any Markov chain with
at least (1 — €) fraction of smooth statesis (2¢, 1.01¢)-close
to aMarkov chain whichis (4¢, 2¢)-mixing, by Lemma 24.
O

4.3. Extension to spar segraphsand uniform distri-
butions

The property test can aso be made to work for gen-
eral sparse Markov chains by a simple modification to the
testing algorithms. Consider Markov chains with at most
m << n? nonzero entries, but with no nontrivial bound
on the number of nonzero entries per row. Then the defini-
tion of the distance should be modified to A(M;, M2) =
(e1,€2) if My and M, differ on ¢; - m entries and the
Myt — Sm,,e = €2. The above test does not suffice for
testing that M is (e1, €2)-close to an (e, t)-mixing Markov
chain M, sincein our proof, the rows corresponding to bad
states may have many nonzero entries and thus M and M
may differ in alarge fraction of the nonzero entries. How-
ever, let D be adistribution on states in which the probabil -
ity of each state is proportional to cardinality of the support
set of itsrow. Natural ways of encoding this Markov chain
alow constant time generation of states accordingto D. By
modifying the test in Figure 3 to also test that most states
according to D are smooth, one can show that M is closeto
an (e, t)-mixing Markov chain M.

Because of our ability to test e-closeness to the uniform
distributionin O(n'/2¢=2) steps[12], it is possible to speed
up our test for mixing for those Markov chains known to
have uniform stationary distribution, such asMarkov chains
corresponding to random walks on regular graphs. An er-
godic random walk on the vertices of an undirected graph
instead may beregarded (by looking at it “at times¢+1/2")
as arandom walk on the edge-midpoints of that graph. The
stationary distribution on edge-midpoints always exists and
is uniform. So, for undirected graphs we can speed up mix-
ing testing by using a tester for closeness to uniform distri-
bution.

5. Further Research

It would be interesting to study these questions for other
difference measures. For example, the Kullback-Leibler
asymmetric “distance” from Information Theory defined as

N Di
KLdist(p, q) = piln—
(5, @) Z "

(2

measures the relative entropy between two distributions.
However, small changes to the distribution can cause great
changes in the Kullback-Leibler distance making distin-
guishing the casesimpossible.

Perhaps some variation of Kullback-Leibler distance
might lead to more interesting results. For example, con-
sider the following distance formula

NPdist (7, 7) = KLdist(7, 7%) + KLdist(, 7%).



We can show it isatrue metric, has constant valueif p'and ¢
have digoint support and cannot increase if we use the same
Markov chain transition of " and ¢. We suspect NPdist is
in some sense “most powerful” for the purpose of deciding
whether 7 # §.

Russell Impagliazzo also suggests considering weighted
differences, i.e,, estimating || p'— ¢l|/ max(]||2]|, ||| ) for var-
ious normslike the Lo-norm.

Suppose instead of having two unknown distributions,
we have only one distribution to sample and we want to
know whether it is close to some known fixed distribution
D. If Distheuniform distribution, Goldreich and Ron[12]
give atight bound of 6(/n). For other D the question re-
mains open. Our (n?/3) lower bound proof does not ap-
ply.

What if our samples are not fully independent? Our up-
per bound works even if the samples are only four-way in-
dependent. How do our boundsincreaseif we lack even that
much independence?

Finally our lower and upper bounds do not precisely
match. Can we get tighter bounds with better analysis or
do we need new variations on our tests and/or counterex-
amples?

Smith [25] has someimproved boundsand additional ap-
plications of the resultsin this paper.
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