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Abstract. In this paper, we study two questions related to the problem of testing

whether a function is close to a homomorphism. For two finite groups G;H (not

necessarily Abelian), an arbitrary map f : G ! H , and a parameter 0 < � < 1,

say that f is �-close to a homomorphism if there is some homomorphism g such

that g and f differ on at most �jGj elements ofG, and say that f is �-far otherwise.

For a given f and �, a homomorphism tester should distinguish whether f is a

homomorphism, or if f is �-far from a homomorphism. When G is Abelian, it

was known that the test which picks O(1=�) random pairs x; y and tests that

f(x) + f(y) = f(x + y) gives a homomorphism tester. Our first result shows

that such a test works for all groups G.

Next, we consider functions that are close to their self-convolutions. Let A =

fa

g

jg 2 Gg be a distribution on G. The self-convolution of A, A0

= fa

0

g

jg 2

Gg, is defined by a

0

x

=

P

y;z2G;yz=x

a

y

a

z

. It is known that A = A

0 exactly

when A is the uniform distribution over a subgroup of G. We show that there is

a sense in which this characterization is robust – that is, if A is close in statistical

distance to A0, then A must be close to uniform over some subgroup of G.

1 Introduction

In this paper, we focus on two questions that are related to the problem of testing

whether a function is close to a homomorphism.

For two finite groupsG;H (not necessarily Abelian), an arbitrary map f : G! H ,

and a parameter 0 < � < 1, say that f is �-close to a homomorphism if there is some

homomorphism g such that g and f differ on at most �jGj elements of G. Define Æ, the

probability of group law failure, by

1� Æ = Pr

x;y

[f(x)� f(y) = f(x� y)℄ :

Define � such that � is the minimum � for which f is �-close to a homomorphism. In

[3], it was shown that over Abelian groups, there is a constant Æ
0

, such that if Æ � Æ

0

,



then the one can upper bound � in terms of a function of Æ that is independent of jGj.

This yields a homomorphism tester with query complexity that depends (polynomially)

on 1=�, but is independent of jGj. In particular, the writeup in [3] contains an improved

argument by Coppersmith [4], which shows that Æ
0

< 2=9 suffices, and that � is upper

bounded by the smaller root of x(1 � x) = Æ (yielding a homomorphism tester with

query complexity linear in 1=�). Furthermore, the bound on Æ
0

was shown to be tight

for general groups [4].

Our first result is to give a relationship between the probability of group law fail-

ure and the closeness to being a homomorphism that applies to general (non-Abelian)

groups. We show that for Æ
0

< 2=9, then f is � -close to a homomorphism where

� = (3 �

p

9� 24Æ)=12 � Æ=2 is the smaller root of 3x � 6x

2

= Æ. The condi-

tion on Æ, and the bound on � as a function of Æ, are shown to be tight, and the latter

improves that of [3].

Next, consider the following question about distributions that are close to their self-

convolutions: Let A = fa

g

jg 2 Gg be a distribution on group G. The convolution of

distributions A;B is

C = A �B; 


x

=

X

y;z2G; yz=x

a

y

b

z

:

Let A0 be the self-convolution of A, A � A, i.e. a0
x

=

P

y;z2G;yz=x

a

y

a

z

. It is known

that A = A

0 exactly when A is the uniform distribution over a subgroup of G. The

question considered here is: when is A close to A

0? In particular, if dist(A;A0) =

1

2

P

x2G

ja

x

� a

0

x

j � � for small enough �, what can be said about A? We show that A

must be close to the uniform distribution over a subgroup ofG, that is, for a distribution

A over a group G, if dist(A;A � A) � � � 0:0182, then there is a subgroup H of G

such that dist(A;U
H

) � 5�, where U
H

is the uniform distribution overH . On the other

hand, we give an example of a distribution A such that dist(A;A �A) � :1504, but A

is not close to uniform on any subgroup of the domain.

A weaker version of this result, with a somewhat more complicated proof, was used

in the original proof of the homomorphism testing result in [3]. The earlier result was

never published since the simpler and more efficient proof from [4] was substituted.

Instead, a separate writeup of weaker versions of both of the results in this paper, by the

current set of authors, was promised in [3]. This paper is the belated fulfillment of that

promise, though the earlier results have been strengthened in the intervening time.

To give a hint of why one might consider the question on convolutions of distribu-

tions when investigating homomorphism testing, consider the distribution A
f

achieved

by picking x uniformly fromG and outputting f(x). It is easy to see that the error prob-

ability Æ in the homomorphism test is at least dist(A
f

; A

f

� A

f

). Unfortunately, this

last relationship is not in the useful direction. In fact, the relationship between the re-

sult in this work and the original proof of the homomorphism test is more complicated

than the present direct proof of the homomorphism test, and is omitted. However, in

Remark 2 of Section 3, we present a relationship between homomorphism testing and

distributions close to their self-convolution.

Related work: The homomorphism testing results can be improved in some cases: We

have mentioned that Æ
0

< 2=9 is optimal over general Abelian groups [4]. However,



using Fourier techniques, Bellare et. al. [1] have shown that for groups of the form

(Z=2)

n, Æ
0

� 45=128 suffices.

Several works have shown methods of reducing the number of random bits required

by the homomorphism tests. That is, in the natural implementation of the homomor-

phism test, 2 log jGj random bits per trial are used to pick x; y, and then test that

f(x) + f(y) = f(x + y). The results of [6, 5, 2, 7] have shown that fewer random bits

are sufficient for implementing the homomorphism tests. The recent work of [7] gives a

homomorphism test for general (non-Abelian) groups that uses only (1+o(1)) log

2

jGj

random bits. Given a Cayley graph that is an expander with normalized second eigen-

value 
, they show that for 12Æ

1�


< 1, � is upper bounded by 4Æ=(1� 
).

2 Non-Abelian homomorphism testing

In this section, we show that the homomorphism test of [3] works over non-Abelian

groups as well. As in the Introduction, we define Æ, the probability of group law failure,

by

1� Æ = Pr

x;y

[f(x)� f(y) = f(x� y)℄ :

We prove the following:

Theorem 1. If Æ < 2=9 then f is � -close to a homomorphism, where � = [3 �

p

9� 24Æ℄=12 < Æ=2 is the smaller root of 3x� 6x

2

= Æ.

The rest of this section is devoted to proving the theorem, and showing that the

parameters of the theorem are tight.

Pr

x;y

(?) is the probability of ? when x; y are independently selected from G with

the uniform random distribution.

Given two finite groupsG;H (not necessarily Abelian), and given an arbitrary map

f : G ! H (not necessarily a homomorphism) we will construct a map g : G ! H ,

which (under certain conditions on f ) will be a group homomorphism and will agree

with f on a large fraction of its domain G.

Given f : G! H , with associated Æ < 2=9, we define g : G! H by

g(a) = majority

x2G

�

f(a� x)� f(x)

�1

�

:

That is, we evaluate the bracketed expression for each x 2 G, and let g(a) be the value

most often attained. Define �
a

, � and � :

1� �

a

= Pr

x

�

f(a� x)f(x)

�1

= g(a)

�

� = max

a

�

a

1� � = Pr

x

[f(x) = g(x)℄

Lemma 1. If Æ < 2=9 then �
a

� �̂ where �̂ is the smaller root of x� x

2

= Æ.



Proof: For a 2 G, define

p

a

= Pr

x;y2G

�

f(a� x)� f(x)

�1

= f(a� y)� f(y)

�1

�

:

By rearranging, we have

p

a

= Pr

x;y2G

�

f(a� y)

�1

� f(a� x) = f(y)

�1

� f(x)

�

� Pr

x;y2G

�

f(a� y)

�1

� f(a� x) = f(y

�1

� x) ^ f(y)

�1

� f(x) = f(y

�1

� x)

�

:

Each of the latter two equations is a random instance of the test equation f(u)�f(v)
?

=

f(u� v), or equivalently, f(u)�1 � f(u� v)

?

= f(v), so each holds with probability

1� Æ, and, by the union bound, they both hold simultaneously with probability at least

1� 2Æ. So we have

p

a

� 1� 2Æ > 5=9:

If we partition G into blocks

B

a;z

= fx 2 Gjf(a� x)� f(x)

�1

= zg

with relative sizes b
a;z

= jB

a;z

j=jGj, then

X

z

b

a;z

= 1

p

a

=

X

z

b

2

a;z

� max

z

b

a;z

so that max

z

(b

a;z

) > 5=9, and g(a) = argmax

z

(b

a;z

) is well defined. By definition,

1� �

a

= max

z

(b

a;z

) > 5=9. Since 1� �

a

> 1=2, we also have

p

a

� (1� �

a

)

2

+ �

2

a

1� 2Æ � 1� 2�

a

+ 2�

2

a

Æ � �

a

� �

2

a

;

and since �
a

< 1=2, we conclude that �
a

� �̂, the smaller root of x � x

2

= Æ, as

required. ut

Corollary 1. If Æ < 2=9 then �
a

< 1=3 and � < 1=3.

Lemma 2. If Æ < 2=9 then g is a homomorphism.

Proof:

IDENTITY: g(1) = 1. Immediate since each value x gives f(1� x)� f(x)

�1

= 1.

INVERSE: g(a�1) = g(a)

�1. There is a one-one correspondence between x satis-

fying f(a � x) � f(x)

�1

= g(a) and y satisfying f(a�1 � y) � f(y)

�1

= g(a)

�1,

namely y = a� x.



PRODUCT: g(a) � g(b) = g(a � b). Each of the following three equations holds

with probability at least 1� � > 2=3 on random choice of y:

g(a) = f(a� y)� f(y)

�1

g(b) = f(y)� f(b

�1

� y)

�1

g(a� b) = f(a� y)� f(b

�1

� y)

�1

(In the definition of g, we substitute y = x in the first equation, and y = b � x in the

second and third.) By the union bound, all three equations hold simultaneously with

probability at least 1� 3� > 0; that is, there is at least one value of y satisfying all three

equations. Substituting one such value of y and combining these three equations, we

conclude g(a)� g(b) = g(a� b), as desired. ut

Lemma 3. � � Æ + �.

Proof:

� = Pr

a

[f(a) 6= g(a)℄

� Pr

a;x

�

f(a) 6= f(a� x)� f(x)

�1

�

+Pr

a;x

�

g(a) 6= f(a� x)� f(x)

�1

�

� Æ +Average

a

(�

a

) � Æ + �:

ut

Lemma 4. � � 2(� � �

2

).

Proof:

Pr

x;y

�

f(x)� f(y)

�1

6= g(x� y

�1

)

�

is the average value of �
a

(over random choices of a), and so is bounded by �. This

group law failure will hold at least if either of these two mutually exclusive events

occurs, since g is a homomorphism:

– f(x) = g(x) ^ f(y) 6= g(y);

– f(x) 6= g(x) ^ f(y) = g(y):

Each of the two events has probability �(1 � �), since x; y are chosen independently.

So

� � �(1� �) + (1� �)� = 2(� � �

2

):

ut

Corollary 2. If Æ < 2=9 then � < 3�

p

3

6

< 0:2114.

Proof: If Æ < 2=9 then � < 1=3, and Lemma 4 implies either � < 3�

p

3

6

< 0:2114 or

� >

3+

p

3

6

> 0:7886: The latter is inconsistent with � � Æ + � < 5=9 (Lemma 3). ut

Lemma 5. If Æ < 2=9 then Æ � 3� � 6�

2.

Proof: Since g is a homomorphism, the inequality f(x) � f(y) 6= f(x � y) (which

has probability Æ) will hold in at least the following three mutually exclusive events:



– f(x) = g(x) ^ f(y) = g(y) ^ f(x� y) 6= g(x� y);

– f(x) = g(x) ^ f(y) 6= g(y) ^ f(x� y) = g(x� y);

– f(x) 6= g(x) ^ f(y) = g(y) ^ f(x� y) = g(x� y).

Each event has probability at least � � 2�

2. Taking the first for example, we have (by

pairwise independence of the arguments)

Pr

x;y

[f(x� y) 6= g(x� y)℄ = �

Pr

x;y

[f(x� y) 6= g(x� y) ^ f(x) 6= g(x)℄ = �

2

Pr

x;y

[f(x� y) 6= g(x� y) ^ f(y) 6= g(y)℄ = �

2

Pr

x;y

[f(x� y) 6= g(x� y) ^ ff(x) 6= g(x) _ f(y) 6= g(y)g℄ � 2�

2

Pr

x;y

[f(x� y) 6= g(x� y) ^ ff(x) = g(x) ^ f(y) = g(y)g℄ � � � 2�

2

Since the three events are mutually exclusive, their probabilities add, giving

Æ � 3(� � 2�

2

):

ut

Lemma 6. If Æ < 2=9 then � is bounded by the smaller root of 3x� 6x

2

= Æ.

Proof: Combine Corollary 2 (� < 0:2114) with Lemma 5 (Æ � 3� � 6�

2). ut

This finishes the proof of Theorem 1.

Example 1. The bound Æ < 2=9 is tight. The following example has Æ = 2=9 and

� = 1=3, but � = 1 � 1=3

k�1 is arbitrarily close to 0. Here the groups are written

additively rather than multiplicatively.

f : Z=3

k

! Z=3

k�1

f(3`+ d) = `; 0 � ` < 3

k�1

; d 2 f�1; 0; 1g

The group law f(x) + f(y) = f(x + y) is violated exactly when x = 3` + d, y =

3m + d, x + y = 3(` + m + d) � d mod 3

k, d 2 f�1; 1g, which happens with

probability exactly 2/9. Each homomorphism g

j

: Z=3

k

! Z=3

k�1 is given by an

integer j 2 f0; 1; : : : ; 3

k�1

� 1g, namely g
j

(m) = jm (mod 3

k�1

); 0 � m < 3

k.

Each homomorphism g

j

agrees with f in exactly three arguments: if f(3m + d) =

g

j

(3m+ d) with d 2 f�1; 0; 1g and 0 � m < 3

k�1, then

j(3m+ d) = m (mod 3

k�1

)

m = dj=(1� 3j) (mod 3

k�1

);

since 1�3j is invertible (mod 3

k�1

); so that for each of three possible values of d we

have exactly one argument 3m+dwhere the two maps agree. This yields � = 1�3=3

k.



Example 2. The bound 3� � 6�

2

� Æ is tight. Choose � 0 with 0 < �

0

� 1=3, chooseN

an arbitrarily large odd positive integer, and define f : Z=N ! Z=2 by

f(x) = 1, �

0

<

x

N

< 2�

0

:

(Again the groups are written additively.) Since N is odd, the only possible homomor-

phism g is g(x) � 0. We have

� = Pr

x

[f(x) = 1℄ = �

0

+O(1=N):

The error O(1=N) is due to rounding errors.

Pr

x;y

[f(x) = f(y) = 1℄ = �

2

:

This comes from independence of x; y.

Pr

x;y

[f(x) = f(y) = f(x+ y) = 1℄ = 0:

The third equation comes from the fact that x=N; y=N; (x + y)=N cannot simulta-

neously lie in the interval (� 0; 2� 0), nor can x=N; y=N; (x + y � N)=N . So an error

f(x)+f(y) 6= f(x+y) will happen precisely when exactly one of f(x); f(y); f(x+y)

is 1. We calculate from the above equations that

Pr

x;y

[f(x) = 1; f(y) = 0; f(x+ y) = 0℄ = � � 2�

2

;

similarly,

Pr

x;y

[f(x) = 0; f(y) = 1; f(x+ y) = 0℄ = � � 2�

2

;

Pr

x;y

[f(x) = 0; f(y) = 0; f(x+ y) = 1℄ = � � 2�

2

:

These are the only three ways the group law failure can arise, and they are mutually

exclusive, yielding:

Æ = 3(� � 2�

2

):

3 Convolutions of distributions

In this section, we show that for a distributionA over a finite groupG, if jA�A�Aj � �

then A is Æ-close to the uniform distribution over a subgroup of G.

We let capital letters A;B;C denote distributions over group G and subscripted

uncapitalized letters a
x

; b

y

denote the probability of a particular element. X;Y; Z;H

will be subsets of G.

We let U
S

denote the uniform distribution on S � G.

We let dist(A;B) =

1

2

jA � Bj. Note that distances satisfy the triangle inequality,

i.e., dist(A;C) � dist(A;B) + dist(B;C). Also it is easy to see that dist(A �B;A �

C) � dist(B;C).



It will also be convenient to consider a second kind of convolution,

C = A �B; 


x

=

X

y;z2G; xy=z

a

y

b

z

:

When we have uniform distributions on subsets of equal size, the two convolutions

enjoy the following relation:

Lemma 7. Let X;Y; Z be subsets of a finite group G, with jX j = jY j = jZj = n.

Then

dist(U

X

; U

Y

� U

Z

) = dist(U

Y

; U

Z

� U

X

):

Proof: For any two distributions A;B, since jAj = jBj = 1, we have

dist(A;B) =

X

a

x

>b

x

(a

x

� b

x

) =

X

a

x

<b

x

(b

x

� a

x

):

Then

dist(U

X

; U

Y

� U

Z

) =

P

x2X

[(U

X

)

x

� (U

Y

� U

Z

)

x

℄

=

P

x2X

[

1

n

�

P

y2Y;z2Z;yz=x

�

1

n

� �

1

n

�

℄

= 1�

1

n

2

jf(x; y; z) : x 2 X; y 2 Y; z 2 Z; yz = xgj

=

P

y2Y

[

1

n

�

P

z2Z;x2X;yz=x

�

1

n

� �

1

n

�

℄

=

P

y2Y

[(U

Y

)

y

� (U

Z

� U

X

)

y

℄

= dist(U

Y

; U

Z

� U

X

):

ut

Remark 1. The lemma does not hold for arbitrary distributions, nor for uniform distri-

butions on subsets of different sizes.

Overview of proof: We will embedG in a larger group F = G�Z=N for suitably

large N , and consider a distribution B induced from A, namely b
(x;j)

= a

x

=N . This

will alleviate problems later when we have to round to integers. We show that if B0

=

B � B is close to B, then there is a set X � F such that B is close to U
X

. We next

show that X must be close to a subgroup ^

H of F , and further that this subgroup is of

the form ^

H = H � Z=N . Then B is close to the uniform distribution on ^

H , and A is

close to the uniform distribution on H . A bootstrap lemma allows us to claim that once

A is moderately close to U
H

, then it is very close.

Expanding the group: Pick N suitably large. Define F = G � Z=N , with elements

f(x; j) : x 2 G; j 2 Z=Ng and group law (x; j)(y; k) = (xy; j + k). The distribution

B on F is given by A � U

Z=n

, that is, b
(x;j)

= a

x

(1=N). Defining B0

= B � B and

A

0

= A �A, it is immediate that dist(B;B0

) = dist(A;A

0

).

B is close to uniform on a subset: Our first theorem shows that if B0

= B �B is close

to B, then there is a set X � F such that B is close to U
X

.



Theorem 2. Let F be a finite group. Let B be a distribution on F for which no element

has probability more than 1=N . Let 1=8 > � > 0 be a constant. If dist(B;B � B) � �

then there is a set X � G such that dist(B;U
X

) � �

0 where �0 = 3� + O(1=N).

Further, dist(U
X

; U

X

� U

X

) � 6�+O(�

2

) +O(1=N).

Proof: Let B0

= B � B. In the rest of the proof, relabel the elements such that

b

1

� b

2

� b

3

� : : :, i.e., 1 corresponds to the element of F with the highest probability

mass. For given x 2 G, the N elements b
(x;k)

; k 2 Z=N , are equal, so we arrange that

they are contiguous in this ordering.

For n � 1, let sum
n

=

P

n

j=1

b

j

be the sum of the n highest probabilities. Also, let

sum

0

n

=

P

n

j=1

b

0

j

be the sum of the probabilities with respect to B0 of the n most likely

elements with respect to B.

Let �
n

= sum

2

n

+ n

P

j>n

b

2

j

. It is not hard to see that sum
n

� �

n

.

Claim. �
n

� sum

0

n

.

Proof: [of claim] Construct a bipartite graph, where U = fu

s

: s 2 Fg and V = fv

s

:

s 2 Fg are disjoint sets of nodes. For all s 2 F , let E
s

= f(u

x

; v

y

) : x � y = sg.

Let the weight of each edge (u
x

; u

y

) in E
s

be b
x

b

y

, and the weight of E
s

be wt(E
s

) =

b

0

s

=

P

(u

x

;v

y

)2E

s

b

x

b

y

. Let G = (U; V;E) where E =

S

s2F

E

s

. Since F is a group,

each vertex is of degree jF j, and there are no multiple edges. The weight of G is the

total weight of all edges, i.e., wt(G
F

) =

P

s

b

0

s

= 1.

Because of the initial relabeling of B, u
j

and v
j

correspond to the elements with

the jth highest probability mass. Let G
n

be the graph induced on vertices f1 : : : ng

according to this relabeling. Notice that wt(G
n

) = sum

0

n

.

We show how to transform G

n

into the graph G0
n

by a series of edge swaps such

that wt(G
n

) � wt(G

0

n

), where G0
n

is the complete bipartite graph between vertices

u

1

; : : : ; u

n

and v
1

; : : : ; v

n

, along with n multiple edges between u
j

and v
j

for each

j > n. From this the claim follows since �
n

= wt(G

0

n

).

Edge Swap: Let k; k0; l; l0 � 1 be such that k < l

0

; k

0

< l. Suppose the edges

(u

k

; v

l

) and (u

l

0

; v

k

0

) exist. The swap consists of deleting these two edges and

adding the two new edges (u
k

; v

k

0

) and (u

l

0

; v

l

) .

After each edge swap, the new weight minus the old weight is (b
k

� b

l

0

)(b

k

0

� b

l

).

This is nonnegative because k < l

0 implies that b
k

� b

l

0 and k

0

< l implies that

b

k

0

� b

l

.

The first part of the swap sequence to go from G

n

to G0
n

is as follows. For all k; k0 �

n such that there is no edge (u

k

; v

k

0

), there must exist an l > n and an l0 > n such

that edges (u
k

; v

l

) and (u

l

0

; v

k

0

) exist. This is because each vertex has degree n in G
n

and initially there are no multiple edges among the first n vertices and we retain these

properties throughout the swap sequence. Use an edge swap to delete these two edges

and add the two edges (u
k

; v

k

0

) and (u

l

0

; v

l

). Note that (u
k

; v

k

0

) is not a multiple edge,

although (u

l

0

; v

l

) might be. Still, since l; l0 > n the swap does not create multiple edges

among the first n vertices on each side of the bipartition. This sequence of swaps creates

a complete bipartite graph among the first n vertices on each side of the bipartition.



The rest of the swap sequence is as follows. For all j > n, if there are not nmultiple

edges from u

j

to v
j

then there must be an l > j and an l0 > j such that (u
j

; v

l

) and

(u

l

0

; v

j

) are both edges. Use an edge swap to delete these two edges and add the edges

(u

j

; v

j

) and (u

l

0

; v

l

). This eventually reaches G0, thus proving the claim. ut

We will define an X such that dist(B;U
X

) is small. Pick � with 1=4 � � � 3=4;

later we will specify � = 3=5. Select m with sum

m�1

< � � sum

m

. Set h = b

m

. Set

p = b1=h
. Let the distribution ^

U assign weight h to the first p elements, and a weight

1 � ph < h to the (p + 1)st element. Let n = p if b
p+1

> û

p+1

, and n = p + 1

otherwise. Let X consist of the first n elements, so that dist( ^U;U
X

) < h = O(1=N).

Also define g = b

n

.

The distribution B differs from ^

U in three places. For i � m, b
i

� û

i

; define

� =

P

i�m

(b

i

� û

i

). For i > n, b
i

� û

i

; define Æ =

P

i>n

(b

i

� û

i

). For m < i � n,

b

i

� û

i

; we have � + Æ =

P

m<i�n

(û

i

� b

i

). So dist(B; ^U) = � + Æ.

For m < i � n we have g � b

i

� h, so that b2
i

� (g + h)b

i

� gh. Similarly for

i > n we have 0 � b

i

� g, so that b2
i

� gb

i

. Recall also that mh + � = � + O(1=N)

and nh = 1 +O(1=N). This enables the following computation:

� � sum

m

� sum

0

m

� sum

m

� �

m

= (mh+ �)� (mh+ �)

2

�m

P

n

m+1

b

2

i

�m

P

i>n

b

2

i

� (mh+ �)(1�mh� �)�m

P

n

m+1

[(g + h)b

i

� gh℄�m

P

i>n

gb

i

= (mh+ �)(1�mh� �)�m(g + h)

P

n

m+1

b

i

+m(n�m)gh�mg

P

i>n

b

i

= (mh+ �)(1�mh� �)�m(g + h)(nh�mh� � � Æ) +mngh�m

2

gh�mgÆ

= (mh+ �)(1�mh� �)�m(g + h)(1�mh� � � Æ) +mg �m

2

gh�mgÆ +O(1=N)

= (1�mh� �)(mh+ � �mg �mh) +m(g + h)(Æ) +mg �m

2

gh�mgÆ +O(1=N)

= (1�mh� �)(�) � (1�mh� �)(mg) +mhÆ +mg �m

2

gh+O(1=N)

= (1� �)(�) +mhÆ +mg� +O(1=N)

= (1� �)(�) + (� � �)Æ +mg� +O(1=N)

� (1� �)� + �Æ � �Æ +O(1=N)

= [(1� �)� + �Æ℄ +

1

4�(1��)

f[(1� �)� � �Æ℄

2

� [(1� �)� + �Æ℄

2

g+O(1=N)

� [(1� �)� + �Æ℄�

1

4�(1��)

[(1� �)� + �Æ℄

2

+O(1=N)

= u�

u

2

4�(1��)

+O(1=N)

where u = (1 � �)� + �Æ. Now � � � + O(1=N) and Æ � 1 � � so that u =

(1� �)� + �Æ � 2�(1� �) is less than the larger root of

x

2

4�(1� �)

� x+ � = 0;

namely

[(1� �)� + �Æ℄ � 2�(1� �) +O(1=N) � 2�(1� �)[1 +

p

1� �=�(1� �)℄

(since �=�(1� �) < (1=8)=(1=4� 3=4) < 1), so it must be less than the smaller root:

[(1� �)� + �Æ℄ � 2�(1� �)[1�

p

1� �=�(1� �)℄ +O(1=N);



remembering the error term.

Substituting � = 3=5, we have

2� + 3Æ �

12

5

"

1�

r

1�

25

6

�

#

+O(1=N) = 5�+O(�

2

) +O(1=N):

By the triangle inequality,

dist(B;U

X

) � dist(B;

^

U) + dist(

^

U;U

X

) = � + Æ +O(1=N):

One can calculate that if � < 1=8 then � + Æ < 3�, establishing the theorem. For later

use, we also note that if � < 0:0182 then � + Æ < 2:6�.

Repeatedly applying the triangle inequality, we can obtain:

dist(B;U

X

�U

X

) � dist(B;B�B)+dist(B;B�U

X

)+dist(B;U

X

�U

X

) � �+2(�+Æ):

To obtain dist(U
X

; U

X

� U

X

) we could apply the triangle inequality again. Instead,

we recall that B differs from ^

U , and hence U
X

, in three pieces, namely (up to errors

of order O(1=N)) � (before m), �� � Æ (between m and n), and Æ (after n). The

convolution U
X

� U

X

is everywhere bounded by n(1=n)2 = 1=n. So when we change

B to U
X

and monitor the change in dist(?; U
X

� U

X

), the first change of � is driving

us closer to U
X

�U

X

, while the other two changes of �+ Æ and Æ might drive us further

away. The net result is

dist(U

X

; U

X

� U

X

) � dist(B;U

X

� U

X

) +

1

2

[�� + (� + Æ) + Æ℄ +O(1=N)

� �+ 2� + 3Æ +O(1=N)

� �+

12

5

h

1�

q

1�

25

6

�

i

+O(1=N)

= 6�+O(�

2

) +O(1=N):

This establishes the second part of the theorem.ut

B is close to uniform on a subgroup of F : Next we show that if the uniform distribution

onX is close in distance to its convolution with itself, thenX is close to some subgroup
^

H of F .

Theorem 3. Let F be a finite group and X a subset of F . Let � = dist(U

X

; U

X

�

U

X

) = dist(U

X

; U

X

�U

X

). If � < 1=9 then there is a subgroup ^

H of F with jXn ^Hj+

j

^

HnX j � 3� jX j.

Proof: Let n = jX j. Let V = U

X

� U

X

so that

v

x

=

1

n

2

jf(y; z) : y; z 2 X; xy = zgj:

If e is the identity element of F , we see v
e

=

1

n

, and v
x

�

1

n

for all x 2 G.

We need to establish a triangle inequality on quantities such as (v
e

� v

x

).



Lemma 8. For x; y 2 F , the quantities (v
e

�v

x

), (v
e

�v

y

), (v
e

�v

xy

) are nonnegative

and satisfy the triangle inequalities:

(v

e

� v

x

) + (v

e

� v

y

) � (v

e

� v

xy

) (1)

(v

e

� v

x

) + (v

e

� v

xy

) � (v

e

� v

y

) (2)

(v

e

� v

y

) + (v

e

� v

xy

) � (v

e

� v

x

) (3)

Proof: If v
x

= k

x

=n

2, with 0 � k

x

� n, then there are k
x

elements z 2 F such that

both z and xz are in X ; call such z “good elements” for x. There are n� k
x

elements z

such that z 2 X and xz =2 X ; there are n�k
x

elements z such that z =2 X and xz 2 X ;

call the latter two kinds of z “bad elements” for x. The number of bad elements for x is

2(n� k

x

) = 2n

2

(v

e

� v

x

). If z is neither good nor bad for x it is “neutral” for x.

For each z 2 F , consider the three elements z; yz; xyz. If all three are in X , then

we have found good elements for each of x; y; xy. (Namely, z is a good element for

y and for xy, and yz is a good element for x.) If exactly two are in X , then we have

found bad elements for exactly two of x; y; xy, and a good element for the other. (For

example, if z; xyz 2 X and yz =2 X , then z is good for xy, z is bad for y, and yz is

bad for x.) If exactly one of z; yz; xyz is in X , then we have bad elements for exactly

two of x; y; xy and a neutral one for the other. If z; yz; xyz =2 X then we have found

neutral elements for all three. The important point is that the “bad elements” come in

pairs, each time contributing to two of 2(n� k

x

); 2(n� k

y

); 2(n� k

xy

). Setting

p = jfz : z bad for xy and ygj

q = jfz : z bad for xy; yz bad for xgj

r = jfz : z bad for y; yz bad for xgj;

we find
2(n� k

x

) = q + r

2(n� k

y

) = p+ r

2(n� k

xy

) = p+ q:

This establishes the triangle inequality among 2(n � k

x

); 2(n � k

y

); 2(n � k

xy

), and

hence the lemma. ut

Next we show an “excluded middle” result for V .

Lemma 9. Let � < 1=9. For all x 2 F , either v
x

� 3�=n <

1

3n

or v
x

� (1�3�)=n >

2

3n

.

Proof: Assume the contrary: for some x 2 F , 3�

n

< v

x

<

1�3�

n

. Choose any y 2 X .

If xy 2 X , use triangle inequality (3) to deduce

(v

e

� v

y

) + (v

e

� v

xy

) � (v

e

� v

x

)

j(U

X

)

y

� v

y

j+ j(U

X

)

xy

� v

xy

j � (v

e

� v

x

) >

1

n

� (

1

n

�

3�

n

) =

3�

n

:

If xy =2 X , use triangle inequality (1) and (U

X

)

xy

= 0 to deduce

(v

e

� v

x

) + (v

e

� v

y

) � (v

e

� v

xy

)

(v

e

� v

y

) + v

xy

� v

x

j(U

X

)

y

� v

y

j+ j(U

X

)

xy

� v

xy

j � v

x

>

3�

n

:



Summing over y 2 X ,

X

y2X

[j(U

X

)

y

� v

y

j+ j(U

X

)

xy

� v

xy

j℄ > n

�

3�

n

�

= 3�:

Then use

dist(U

X

; V ) =

X

y2X

j(U

X

)

y

� v

y

j

and

2dist(U

X

; V ) =

X

z2F

j(U

X

)

z

� v

z

j �

X

y2X

j(U

X

)

xy

� v

xy

j

to deduce
(1 + 2)dist(U

X

; V ) > 3�

3� = 3dist(U

X

; V ) > 3�;

contradicting our hypothesis and establishing the lemma. ut

The excluded middle gives us a natural candidate for our subgroup ^

H .

Lemma 10. Let � < 1=9. Define ^

H = fx 2 F : v

x

>

2

3n

g. Then ^

H is a subgroup of

F .

Proof: ^

H contains the identity e because v
e

= 1=n. ^

H is closed under inverse: z

is good for x if and only if xz is good for x�1, whence k
x

= k

x

�1 and v
x

= v

x

�1 ,

so x 2 H , x

�1

2 H . Closure under the group operation follows from the triangle

inequality (1): if x; y 2 ^

H then

v

xy

� v

x

+ v

y

� v

e

>

2

3n

+

2

3n

�

1

n

=

1

3n

so that (by the excluded middle) v
xy

>

2

3n

and xy 2 ^

H . ut

Finally we show that ^

H is close to X .

Lemma 11. With � < 1=9 and ^

H as above, the symmetric difference between X and
^

H satisfies:

j

^

HnX j+ jXn

^

Hj �

2�

1� 3�

jX j � 3� jX j:

Proof: We have

2� = 2dist(U

X

; V ) =

P

x2F

j(U

X

)

x

� v

x

j

=

P

x2X

(

1

n

� v

x

) +

P

x2FnX

(v

x

� 0)

�

P

x2Xn

^

H

(

1

n

�

3�

n

) +

P

x2

^

HnX

(

1

n

�

3�

n

)

=

1�3�

n

h

jXn

^

Hj+ j

^

HnX j

i

which, with jX j = n, proves the lemma. ut

ut



B is close to a subgroup ^

H: We can push these results back to the distributions B:

Theorem 4. Let F be a finite group. Let B be a distribution on F . Let X � F be a

subset. Given �; �; Æ such that:

– dist(B;B �B) � �;

– dist(B;U

X

) � � + Æ (as in Theorem 2);

– � = �+ 2� + 3Æ < 1=9,

then there is a subgroup ^

H of F with dist(B;U
^

H

) < � + Æ + 2�=(1� 3�). The same

is true if we replace the first condition with

dist(B;B �B) � �:

Proof: As in Theorem 2, we have we have:

dist(U

X

; U

X

� U

X

) � �+ 2� + 3Æ +O(1=N) = � +O(1=N):

(This remains true if we replace “�” by “�” throughout.) Then by Theorem 3, we con-

struct a subgroup ^

H with jXn ^Hj+ j

^

HnX j �

2�

1�3�

jX j.

A direct calculation shows that if jX j = n, jXn ^Hj = b, and j ^HnX j = a, then

dist(U

X

; U

^

H

) =

�

a=(n+ a� b) if a � b

b=n if a � b

For a fixed value of a+ b this distance is maximized when a = 0; so we have

dist(U

X

; U

^

H

) �

1

n

�

2�n

1� 3�

=

2�

1� 3�

:

Finally, dist(B;U
^

H

) � dist(B;U

X

) + dist(U

X

; U

^

H

) � � + Æ +

2�

1�3�

. ut

Reverting to original group: The group ^

H respects the block structure of F = G �

Z=N , in the sense that for all x 6= e 2 G and j; k 2 Z=N , v
(x;j)

= v

(x;k)

, with v

as defined in Lemma 8, so that (x; j) 2 ^

H , (x; k) 2

^

H . Further, one can verify

that v
(e;k)

� v

(x;k)

, so that if any (x; k) 2

^

H with x 6= e, then the entire block

f(e; k) : k 2 Z=Ng is in ^

H. (Note that if it were the case that there were no (x; k) 2

^

H

with x 6= e, then H = feg, which is a subgroup of G.) This implies that ^

H is of the

form
^

H = H � Z=N:

It is obvious that H is a subgroup of G, and that

dist(A;U

H

) = dist(B;U

^

H

):

We tie in with Theorem 2.

Theorem 5. Let A be a distribution on the finite group G. Let dist(A;A � A) � � �

0:0182. Then there is a subgroupH � G with dist(A;U
H

) � 21�.



Proof: Pass to B and F , with

dist(B;B �B) � �:

A computation shows that with � < 0:0182, we have

2� + 3Æ �

12

5

h

1�

q

1�

25

6

�

i

+O(1=N) � 5:1�

� + Æ � 2:6�:

From Theorem 2 we have a subset X with

dist(B;U

X

) � � + Æ � 2:6�:

Then apply Theorem 4 with � = � + 2� + 3Æ � 6:1� < 1=9 to find the subgroup ^

H ,

and use the triangle inequality:

dist(B;U

^

H

) � dist(B;U

X

) + dist(U

X

; U

^

H

) � � + Æ +

2�

1� 3�

< 2:6�+3� � 21�:

Reverting to the original distribution,

dist(A;U

H

) = dist(B;U

H

) � 21�:

ut

Once we have bounds on dist(A;A�A) (or dist(A;A�A)) and a subgroupH with

small dist(A;U
H

), we can improve the numerical estimates of dist(A;U
H

).

Theorem 6. Given a distribution A on G and a subgroup H � G with

dist(A;A �A) = � � 0:06

dist(A;U

H

) = � � 0:4

then we can conclude

dist(A;U

H

) � 5�:

Proof: Define n = jH j. Define � = dist(A;U

H

). Define � =

P

x2GnH

a

x

, and

remark � � �. Let B = A Æ A where Æ is either � or � (or any Latin square operator

respecting the subgroupH , that is, mapping H �H to H).
P

x2GnH

b

x

� 2�(1� �),

so dist(A;B) �

P

x2GnH

(b

x

� a

x

) � 2�(1� �)� � = �� 2�

2.

From � � � � 0:4 and � � 0:06 we can compute that � is less than the larger root

of x� 2x

2

= �, so that � is bounded by the smaller root of that equation, namely

� �

1�

p

1� 8�

4

� 1:2� < 0:1:

Define  = (1� �)=n, the average value of A on H . For x 2 H , let a
x

=  + 


x

,

so that
P

H




x

= 0 and set

� =

X

H

j


x

j:



We have

� � 2(�� �):

This is because 2� = �+

P

H

j

�

n

� 


x

j � �+

P

H

j


x

j+ �. We also have

� =

X

x

j


x

j =

X

H

ja

x

�  j �

X

H

(ja

x

� 1=nj+ (1=n�  )) � (2�� �) + � = 2�;

2�� 2� � � � 2�:

For x 2 H define

Res

x

=

X

yÆz=x;y;z =2H

a

y

a

z

:

Then we have

b

x

=

X

yÆz=x;y;z2H

( + 


y

)( + 


z

) +Res

x

b

x

= n 

2

+ (

X

H




y

+

X

H




z

)+

X

y;z2H;yÆz=x




y




z

+Res

x

= n 

2

+

X

y;z2H;yÆz=x




y




z

+Res

x

because
P

H




y

= 0. Then

jb

x

�  j �

j�� �

2

j

n

+

X

y;z2H;yÆz=x

j


y




z

j+Res

x

X

x

jb

x

�  j � (�� �

2

) +

X

y;z2H

j


y




z

j+ �

2

= �� �

2

+ �

2

+ �

2

= �+ �

2

:

Then

2dist(A;B) =

P

x2H

ja

x

� b

x

j+

P

x=2H

ja

x

� b

x

j

�

P

x2H

ja

x

�  j �

P

x2H

jb

x

�  j+ (�� 2�

2

)

� �� (�+ �

2

) + (� � 2�

2

)

= �� �

2

� 2�

2

�� �

2

� 2�+ 2�

2

:

From
� � 2� � 2(0:4) = 0:8

2�+ 2�

2

< 2(0:06) + 2(0:1)

2

= 0:14;

we see that � is smaller than the larger root of x� x2 = 2�+2�

2, so that it is bounded

by the smaller root:

� �

1�

p

1� 8�� 8�

2

2

�

1�

p

1� 8�� 8(1:2�)

2

2

< 2:6�:

We conclude

dist(A;U

H

) � 2�+ � � 5�:

ut

Combining the last two results, we have:



Theorem 7. Let A be a distribution on the finite group G. Let dist(A;A � A) � � �

0:0182. Then there is a subgroupH � G with dist(A;U
H

) � 5�.

Proof: From Theorem 5 we have such a subgroup H with dist(A;U
H

) � 21� �

0:3822 < 0:4. Since 0:0182 < 0:06, Theorem 6 applies, giving dist(A;U
H

) � 5�. ut

Example 3. Let G = Z=N with N a large prime integer. Let a
n

= �(240� jnj) when

�200 < n < �1 or 1 � n � 200 and a
n

= 0 otherwise, where � = 1=55800 is chosen

to normalize A. Then dist(A;A � A) � 0:1539, but dist(A;U
H

) = 1 � O(1=N) for

any subgroupH of Z=N .

A gap remains.

Remark 2. The two notions explored in this paper (homomorphism testing, and dis-

tributions close to their self-convolution) are related. Given a map (not necessarily a

homomorphism) f : G ! H between two finite groups, we can construct the product

group

G�H = f(x; y) : x 2 G; y 2 Hg

and a distribution A:

a

(x;y)

=

�

1=jGj if y = f(x)

0 otherwise

Then we have the identity

dist(A;A �A) = Pr

x;y

[f(x)� f(y) 6= f(x� y)℄:

If f is close to a homomorphism g, then A is close to the uniform distribution on the

subgroup f(x; g(x)) : x 2 Gg. But the correspondence is not exact: the map f given in

Example 1 is not at all close to any homomorphism g on all ofG, but there is a subgroup
~

H of G � H with dist(A;U
~

H

) = 2=3, namely ~

H = f(3`; `) : 0 � ` < 3

k�1

g.

The difference comes because g is required to be a homomorphism on all of G. We

could relax the requirement, and notice that there is a large subgroup G0 of G (namely

G

0

= f3`g, with jG0j = jGj=3) and a homomorphism g

0

: G

0

! H that agrees with f

on this subgroup. The subgroup ~

H of G�H is associated with G0 and g0.
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