
Exactly Learning Automata

with Small Cover Time

Dana Ron

�

Laboratory of Computer Science

MIT

Cambridge, MA 02139

danar@theory.lcs.mit.edu

Ronitt Rubinfeld

y

Computer Science Department

Cornell University

Ithaca, NY 14853

ronitt@cs.cornell.edu

Abstract

We present algorithms for exactly learning unknown environments that can be described by

deterministic �nite automata. The learner performs a walk on the target automaton, where at

each step it observes the output of the state it is at, and chooses a labeled edge to traverse

to the next state. We assume that the learner has no means of a reset, and we also assume

that the learner does not have access to a teacher that answers equivalence queries and gives

the learner counterexamples to its hypotheses. We present two algorithms, one assumes that

the outputs observed by the learner are always correct and the other assumes that the outputs

might be erroneous. The running times of both algorithms are polynomial in the cover time of

the underlying graph of the target automaton.
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1 Introduction

In this paper we study the problem of actively learning an environment which is described by

a deterministic �nite state automaton (DFA). The learner can be viewed as a robot performing

a walk on the target automaton M , beginning at the start state of M . At each time step it

observes the output of the state it is at, and chooses a labeled edge to traverse to the next state.

The learner does not have a means of a reset (returning to the start state of M). In particular,

we investigate exact learning algorithms which do not have access to a teacher that can answer

equivalence queries and give the learner counterexamples to its hypotheses. We also study the

case in which the environment is noisy, in the sense that there is some �xed probability � that the

learner observes an incorrect output of the state it is at.

This work was partly motivated by the game theoretical problem of �nding an optimal strategy

when playing repeated games against a computationally bounded opponent. In this scenario there

are two players. We refer to one as the player , and to the second as the opponent . At each time

step the player and the opponent each choose an action from a prede�ned set of actions according

to some strategy. A strategy is a (possibly probabilistic) mapping from the history of play to the

next action. The player then receives a payo� which is determined by the pair of actions played,

using a �xed game matrix. The goal of the player is to maximize its average (expected) payo�. In

particular, we are interested in �nding good strategies of play for the player when the opponent's

strategy can be computed by a computationally bounded machine such as a DFA. Namely, starting

from the starting state, the opponent outputs the action labeling the state it is at, and the action

played by the player determines the opponent's next state

1

. It is known [13] that there exist

optimal strategies in which the player simply forces the opponent DFA M to follow a cycle along

the nodes of M 's underlying graph. If M is known to the player, then it is not hard to prove that

the player can �nd an optimal cycle strategy e�ciently using dynamic programming. However,

if M is not known to the player, then Fortnow and Wang [9] show that there exists a subclass

of automata (sometimes referred to as combination-lock automata) for which it is hard to �nd an

optimal strategy in the case of a general game

2

.

The central property of combination lock automata which is used in the hardness result men-

tioned above is that they have hard to reach states. Thus, a natural question that arises is if �nding

an optimal strategy remains hard when we assume the automaton has certain combinatorial prop-

erties such as small cover time. Clearly, if such automata can be learned exactly and e�ciently

without reset then an optimal cycle strategy can be found e�ciently. It is important however that

the learning algorithm not use any additional source of information regarding the target automaton

(such as counterexamples to its hypotheses), otherwise the learning algorithm cannot be used in

the game playing scenario.

For both the noise-free and the noisy settings described previously we present probabilistic

learning algorithms for which the following holds. With high probability, after performing a single

walk on the target automaton, the algorithm constructs a hypothesis automaton which can be used

to correctly predict the outputs of the states on any path starting from the state at which the

hypothesis was completed. Both algorithms run in time polynomial in the cover time of M . The

1

There is a slight di�erence between the learning scenario and the game playing scenario since in the latter, the

player sees the action chosen by the opponent only after choosing its action. However, our algorithms can easily be

modi�ed to adapt to this di�erence

2

For certain games, such as penny matching (where the player gets positive payo� if and only if it matches the

opponent`s action), the combination-lock argument cannot be applied. When the underlying game is penny matching,

Fortnow and Wang [9] describe an algorithm that �nds an optimal strategy e�ciently, using ideas from Rivest and

Schapire's [19] learning algorithm (but without actually learning the automaton).
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cover time of M is de�ned to be the smallest integer t such that for every state q in M , a random

walk of length t starting from q visits every state in M with probability at least 1=2. In the noisy

setting we allow the running time of the algorithm to depend polynomially in 1=�, where � is a

lower bound on 1=2� �. We restrict our attention to the case in which each edge is labeled either

by 0 or by 1, and the output of each state is either 0 or 1. Our results are easily extendible to

larger alphabets.

In our algorithms we apply ideas from the no-reset learning algorithm of Rivest and Schapire [19],

which in turn uses Angluin's algorithm [4] as a subroutine. Angluin's algorithm is an algorithm for

exactly learning automata from a teacher that can answer both membership queries and equivalence

queries. Note that having a teacher which answers membership queries is equivalent to having

means of a reset. We use as a subroutine of our algorithm a variant of Angluin's algorithm which

is similar to the one described in [3]. As in [19], we use a homing sequence to overcome the

absence of a reset, only we are able to construct such a sequence without the aid of a teacher, while

Rivest and Schapire's learner needs a teacher to answer its equivalence queries and supply it with

counterexamples for its incorrect hypotheses. We \pay" for the absence of a teacher by giving an

algorithm whose running time depends on the cover time of M , and thus the algorithm is e�cient

only if the cover time is polynomial in the number of states in M .

In the noisy setting the learning problem becomes harder since the outputs observed may be

erroneous. If the learner has means of a reset then the problem can easily be solved [22] by running

the noise-free algorithm and repeating each walk a large enough number of times so that the

majority output observed is the correct output. However, when the learner does not have means

of a reset then we encounter several di�culties. One major di�culty is that it is not clear how

the learner can orient itself since when executing a homing sequence, with high probability it does

not observe the correct output sequence. In order to overcome this di�culty, we adapt a \looping"

idea presented by Dean et. al. [7]. Dean et. al. study a similar setting in which the noise rate is

not �xed but is a function of the current state, and present a learning algorithm for this problem.

However, they assume that the algorithm is either given a distinguishing sequence for the target

automaton, or can generate one e�ciently with high probability

3

. It is known (and there are very

simple examples illustrating it) that some automata do not have a distinguishing sequence, and

this remains true if we restrict our attention to automata with small cover time.

A natural question that arises is if our results can be improved if we only require that the

learner learn the target automaton approximately . When the learner has means of a reset it may

be natural to assume that while we allow the learner to actively explore its environment, its goal

is to perform well with respect to some underlying distribution on walks (each starting from the

starting state). This model is equivalent to PAC learning with membership queries. Since Angluin's

algorithm [4] can be modi�ed to a PAC learning algorithm with membership queries, DFAs are

e�ciently learnable in this model. However, when the learner does not have means of a reset, and

thus performs a single walk on M , we know of no natural notion of approximately correct learning.

In particular, it is not clear what type of approximation su�ces for the game theoretical scenario.

In recent work of Freund et. al. [11] our results have been improved as follows. Freund et. al.

consider the problem of learning probabilistic output automata. These are �nite automata whose

transition function is deterministic, but whose output function is probabilistic. Namely, for any

given string, whenever performing the walk corresponding to the string from a certain state, we

reach the same state. However, the output observed each time is determined by the probabilistic

3

A distinguishing sequence is a sequence of input symbols with the following property. If the automaton is at

some unknown state and is given the sequence as input, then the output sequence observed determines this unknown

starting state.
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process of ipping a coin with a bias that depends on the state reached. In the case when the

biases at each state are either � or 1� � for some 0 � � < 1=2, this is essentially the problem of

learning deterministic automata in the presence of noise, for which we give an algorithm in this

paper. In [11], a learning algorithm is given that runs in time polynomial in the cover time of the

target automaton, with no restrictions on the biases at each state.

Other Related Work

Several researchers have considered the problem of learning DFAs in the limit. In this setting the

learner is presented with an in�nite sequence of examples labeled according to an unknown DFA

and is required to output hypotheses that converge in the limit (of the number of examples) to the

target DFA. We refer the reader to a survey by Angluin and Smith [2]. Here we briey survey the

known e�cient learning algorithms for DFAs.

We start with the problem of exactly learning DFAs: Angluin [3] proves that it is hard to

exactly learn DFA when the learner has access to a membership oracle (which, as noted previously,

is equivalent to having means of a reset) but not to an equivalence oracle. However, this does not

contradict our results, as the adversary argument made by Angluin uses automata which have hard

to reach states and hence exponential cover time. In fact, Angluin shows that if the learner has a

method of e�ciently reaching all states of the automaton (which is true for graphs with polynomial

cover time), then it can exactly learn the automaton using reset. Rivest and Schapire [19] show

how permutation automata can be exactly learned e�ciently without means of a reset and without

making equivalence queries. Angluin proves [1] that the problem of exactly learning DFAs from

equivalence queries alone is hard. Ibarra and Jiang [15] show that the subclass of k-bounded regular

languages can be exactly learned from a polynomial number of equivalence queries.

Bender and Slonim [6] study the related problem of exactly learning directed graphs (which

do no have any outputs associated with their nodes). They show that this task can be performed

e�ciently by two cooperating robots where each robot performs a single walk on the target graph.

In contrast they show that this task cannot be performed e�ciently by one robot which perform

a single walk even if the robot may use a constant number of pebbles to mark states it passes.

They also show how their algorithm can be modi�ed and made more e�cient if the graph has high

conductance [23], where conductance is a measure of the expansion properties of the graph.

As for non-exact (approximate) learning, without the aid of queries, Kearns and Valiant [16]

show that under certain number theoretical assumptions, the problem of PAC learning DFAs is

hard when only given access to random examples. Learning algorithms for several special classes

of automata have been studied in this setting: Li and Vazirani [18] give several examples of regular

languages that can be learned e�ciently, including 1-letter languages. In [8] a learning algorithm

for languages accepted by width 2 branching programs is given. It is also shown that the problem

of learning width 3 branching programs is as hard as learning DNF, and it is observed that learning

width 5 branching programs is hard under certain number theoretical assumptions. In [12] it is

shown how to learn typical automata (automata in which the underlying graph is arbitrary, but

the accept/reject labels on the states are chosen randomly) by passive learning (the edge traversed

by the robot is chosen randomly) in a type of mistake bound model.

The following works consider the case when the labels of the examples are assumed to be noisy.

In [21], an algorithm is given for PAC-learning DFAs with membership queries in the presence of

persistent noise. In [10], an algorithm is given for learning DFAs by blurry concepts.
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2 Preliminaries

2.1 Basic De�nitions

Let M be the deterministic �nite state automaton (DFA) we would like to learn. M is a 4-tuple

(Q; �; q

0

; ) where Q is a �nite set of n states, � : Q� f0; 1g! Q is the transition function, q

0

2 Q

is the starting state, and  : Q! f0; 1g, is the output function. The transition function, � , can be

extended to be de�ned on Q � f0; 1g

�

in the usual manner. The output of a state q is (q). The

output associated with string u 2 f0; 1g

�

is de�ned as the output of the state reached by u, i.e.,

the output of �(q

0

; u), and is denoted by M(u). Unless stated otherwise, all strings referred to are

over the alphabet f0; 1g.

For 0 < � < 1, let the �-cover time of M , denoted by C

�

(M) be de�ned as follows. For every

state q 2 Q, with probability at least 1 � �, a random walk of length C

�

(M) on the underlying

graph ofM , starting at q, passes through every state inM . The cover time ofM , denoted by C(M)

is de�ned to be the 1=2-cover time ofM . Clearly, for every 0 < � < 1=2, C

�

(M) � C(M) log(1=�).

For two strings s

1

and s

2

, let s

1

�s

2

denote the concatenation of s

1

with s

2

. For two sets of

strings S

1

and S

2

let S

1

� S

2

def

= fs

1

�s

2

j s

1

2 S

1

; s

2

2 S

2

g. Let the empty string be denoted by �.

A set of strings S is said to be pre�x closed if for every string s 2 S, all pre�xes of s (including �

and s itself), are in S. A su�x closed set of strings is de�ned similarly. For a string s = s

1

: : :s

t

,

and for 0 � ` � t, the length ` pre�x of s is s

1

: : : s

`

, (where the length 0 pre�x is de�ned to be �).

2.2 The Learning Models

2.2.1 The noise free model

The problem we study is that of exactly learning a deterministic �nite state automaton when the

learning algorithm has no means of resetting the automaton. The learning algorithm can be viewed

as performing a \walk" on the automaton starting at q

0

. At each time step, the algorithm is at

some state q, and can observe q's output. The algorithm then chooses a symbol � 2 f0; 1g, upon

which it moves to the state �(q; �). In the course of this walk it constructs a hypothesis DFA. The

algorithm has exactly learned the target DFA if its hypothesis can be used to correctly predict the

sequence of outputs corresponding to any given walk on the target DFA starting from the current

state that it is at. The learning algorithm is an exact learning algorithm, if for every given � > 0,

with probability at least 1 � �, it exactly learns the target DFA. An exact learning algorithm is

e�cient if it runs in time polynomial in n and log(1=�). We assume that the algorithm is given

an upper bound on the cover time of M . We also assume, without loss of generality, that M is

irreducible. Namely, every pair of states q and q

0

in Q are distinguished by some string s, so that

the output of the state reaches when executing s starting from q di�ers from the output of the state

reached when performing the same walk starting from q

0

.

We also consider the easier setting in which the learning algorithm has a means of resetting the

machine and performing a new walk starting from the start state. We require that for any given

� > 0, after performing a polynomial (in n and log(1=�)) number of walks, each of polynomial

length, it output a hypothesis

c

M , which is equivalent to M , i.e., for every string s,

c

M (s) =M(s).

2.2.2 The noisy model

Our assumptions on the noise follow the classi�cation noise model introduced by Angluin and

Laird [5]. We assume that for some �xed noise rate � < 1=2, at each step, with probability 1 � �

the algorithm observes the (correct) output of the state it has reached, and with probability � it

4



observes an incorrect output. The observed output of a state q reached by the algorithm is thus

an independent random variable which is (q) with probability 1� �, and (q) with probability �.

We do not assume that � is known, but we assume that some lower bound, �, on 1=2� �, is known

to the algorithm.

As in the noise free model, the algorithm performs a single walk on the target DFA M , and is

required to exactly learn M as de�ned above, where the predictions based on its �nal hypothesis

must all agree with the correct outputs of M . Since the task of learning becomes harder as �

approaches 1=2, and � approaches 0, we allow the running algorithm to depend polynomially on

1=�, as well as on n and log(1=�).

3 Exact Learning with Reset

In this section we describe a simple variant of Angluin's algorithm [4] for learning deterministic

�nite automata. The algorithm works in the setting where the learner has means of a reset. The

analysis is similar to that in [3] and shows that if the target automatonM has cover time C(M) then

with high probability, the algorithm exactly learns the target automaton by performing O(nC(M))

walks, each of length O(C(M)). We name the algorithm Exact-Learn-with-Reset, and it is used as a

subroutine in the learning algorithm that has no means of a reset, which is described in Section 4.

Algorithm Exact-Learn-with-Reset(�)

1. let r be random string of length m = C(M ) log(1=�);

2. let R

1

be the set of all pre�xes of r; R

2

 R

1

� f0; 1g;

3. initialize the table T : R R

1

S

R

2

, S  f�g, query all strings in R � S to �ll in T ;

4. while T is not consistent do:

� if exist r

i

; r

j

2 R

1

, s.t. row

T

(r

i

) = row

T

(r

j

) but for some � 2 f0; 1g, row

T

(r

i

��) 6=

row

T

(r

j

��) then:

(a) let s

k

2 S be such that T (r

i

��; s

k

) 6= T (r

j

��; s

k

);

(b) update T : S  S

S

f� �s

k

g, �ll new entries in table by performing corresponding

walks on M ;

� /* else table is consistent */

5. if exists r

i

2 R

2

for which there is no r

j

2 R

1

such that row

T

(r

i

) = row

T

(r

j

) (T is not

closed), then return to 1 (rerun algorithm);

a

a

Though we assume that with high probability the event that the table is not closed does not occur, we

add this last statement for completeness. We could of course solve this situation as in Angluin's algorithm,

but we choose this solution for the sake of brevity.

Figure 1: Algorithm Exact-Learn-with-reset

Following Angluin, the algorithm constructs an Observation Table. An observation table is a

table whose rows are labeled by a pre�x closed set of strings, R, and whose columns are labeled by

a su�x closed set of strings, S. An entry in the table corresponding to a row labeled by the string

r

i

, and a column labeled by the string s

j

, isM(r

i

�s

j

). We also refer toM(r

i

�s

j

) as the behavior of r

i

on s

j

. An observation table T induces a partition of the strings in R, according to their behavior on

su�xes in S. Strings that reach the same state are in the same equivalence class of the partition.
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The aim is to re�ne the partition such that only strings reaching the same state will be in the

same equivalence class, in which case we show that if the set R has a certain property then we can

construct an automaton based on the partition which is equivalent to the target automaton.

More formally, for an observation table T and a string r

i

2 R, let T (r

i

) denote the row in T

labeled by r

i

. If S = fs

1

; : : : ; s

t

g, then row

T

(r

i

) = (T (r

i

�s

1

); : : : ; T (r

i

�s

t

)). We say that two strings,

r

i

; r

j

2 R belong to the same equivalence class according to T , if row

T

(r

i

) = row

T

(r

j

). Given an

observation table T , we say that T is consistent if the following condition holds. For every pair of

strings r

i

; r

j

2 R such that r

i

and r

j

are in the same equivalence class, if r

i

��; r

j

�� 2 R for � 2 f0; 1g,

then r

i

�� and r

j

�� belong to the same equivalence class as well. We say that T is closed if for every

string r

i

2 R such that for some � 2 f0; 1g, r

i

�� =2 R, there exists a string r

j

2 R such that r

i

and

r

j

belong to the same equivalence class according to T , and for every � 2 f0; 1g, r

j

�� 2 R.

Given a closed and consistent table T , we de�ne the following automaton,M

T

= fQ

T

; �

T

; q

T

0

; 

T

g,

where each equivalence class corresponds to a state in M

T

:

� Q

T

def

= frow

T

(r

i

) j r

i

2 R; 8� 2 f0; 1g; r

i

�� 2 Rg;

� �

T

(row

T

(r

i

); �)

def

= row

T

(r

i

��);

� q

T

0

def

= row

T

(�);

� 

T

(row

T

(r

i

))

def

= T (r

i

; �);

It is not hard to verify (see [4]) that M

T

is consistent with T in the sense that for every r

i

2 R,

and for every s

j

2 S, M

T

(r

i

�s

j

) = T (r

i

; s

j

).

The idea of the algorithm is as follows | �rst we use a random walk to construct a set R

1

of

strings that with high probability reach every state in M . Namely, R

1

is such that for every state q

in M , there exists a string s in R

1

such that if we take a walk onM corresponding to s and starting

from q

0

, then we end up at state q. Given R

1

we extend it to a set R of strings that traverse every

edge in M . We then show how to use R to construct an observation table that has an equivalence

class for each state.

Let r 2 f0; 1g

m

be a random string of length m = C

�

(M) (where � is the con�dence parameter

given to the algorithm). Let R

1

= fr

i

j r

i

is a pre�x of rg, R

2

= R

1

� f�g for � 2 f0; 1g, and

R = R

1

S

R

2

. The learning algorithm initializes S to include only the empty string, �, and �lls in

the (single columned) table by performing the walks corresponding to the strings in R. Let us �rst

observe that from the de�nition of C

�

(M), we have that with probability at least 1 � �, for every

state q 2 Q, there exists a string r

i

2 R

1

, such that �(q

0

; r

i

) = q. Assume that this is in fact the

case. It directly follows that T is always closed. Hence, the learning algorithm must only ensure

that T be consistent. This is done as follows. If there exists a pair of strings r

i

; r

j

2 R such that

row

T

(r

i

) = row

T

(r

j

), but for some � 2 f0; 1g, row

T

(r

i

��) 6= row

T

(r

j

��), then a string ��s

k

is added

to S, where s

k

2 S is such that T (r

i

��; s

k

) 6= T (r

j

��; s

k

), and the new entries in T are �lled in. The

pseudo-code for the algorithm appears in Figure 1.

It is clear that the inconsistency resolving process (stage 4 in the algorithm given in Figure 1)

ends after at most n � 1 steps. This is true since every string added to S re�nes the partition

induced by T . On the other hand, the number of equivalence classes cannot exceed n, since for

every pair of strings r

i

; r

j

2 R such that row

T

(r

i

) 6= row

T

(r

j

), r

i

and r

j

reach two di�erent states

in M . Hence, after adding O(nC(M) log(1=�)) entries to the table, each corresponding to a string

of length O(C(M) log(1=�)+n), the algorithm has constructed a consistent table. We further make

the following claim:
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Lemma 3.1 If for every state q 2 Q, there exists a string r

i

2 R

1

such that �(q

0

; r

i

) = q, then

M

T

�M .

Proof: In order to prove thatM

T

�M , we show that there exists a mapping � : Q! Q

T

, which

has the following properties:

1. �(q

0

) = q

T

0

;

2. 8q 2 Q, 8� 2 f0; 1g, �(�(q; �)) = �

T

(�(q); �);

3. 8q 2 Q; (q) = 

T

(�(q))

Since we have assumed (without loss of generality) thatM is irreducible, � is an (output preserving)

isomorphism between M and M

T

. Clearly, the existence of such a function su�ces to prove

equivalence between M

T

and M since by the above properties, for every s 2 f0; 1g

�

,

(�(q

0

; s)) = 

T

(�(�(q

0

; s))

= 

T

(�

T

(�(q

0

); s))

= 

T

(�

T

(q

T

0

; s)) : (1)

Let � be de�ned as follows: for each q 2 Q, �(q) = T (r

i

), where r

i

2 R is such that �(q

0

; r

i

) = q.

From the assumption in the statement of the lemma we have that for every state q 2 Q, there exists

a string r

i

2 R

1

such that �(q

0

; r

i

) = q. By de�nition of deterministic �nite automata, if for r

i

6= r

j

in R, �(q

0

; r

i

) = �(q

0

; r

j

), then necessarily T (r

i

) = T (r

j

). It follows that � is well de�ned. We next

show that � satis�es the three properties de�ned above.

� has the �rst property since �(q

0

; �) = q

0

, and q

T

0

def

= T (�). � has the third property since



T

(T (r

i

))

def

= T (r

i

; �) =M(r

i

) = (�(q

0

; r

i

)). It remains to prove the second property. Let r

i

2 R

1

be such that �(q

0

; r

i

) = q. From the assumption in the statement of the lemma, we know there exists

such a string. Thus, �(q) = T (r

i

). By de�nition of M

T

, �

T

(T (r

i

); �) = T (r

i

��). Since �(q

0

; r

i

) = q,

we have that �(q; �) = �(q

0

; r

i

��), and by de�nition of �, �(�(q; �)) = T (r

i

��) = �

T

(T (r

i

); �).

We thus have the following theorem.

Theorem 1 For every target automaton M , with probability at least 1��, Algorithm Exact-Learn-

with-Reset outputs a hypothesis DFA which is equivalent to M . Furtheremore, the running time of

the algorithm is

O

�

n (C(M))

2

log

2

(1=�)

�

:

4 Exact Learning without Reset

In this section we describe an e�cient exact learning algorithm (as de�ned in Subsection 2.2) for

automata whose cover time is polynomial in their size. This algorithm closely follows Rivest and

Schapire's learning algorithm [19]. However, we use new techniques that exploit the small cover

time of the automaton in place of relying on a teacher who supplies us with counterexamples to

incorrect hypotheses. We name the algorithm Exact-Learn, and its pseudo-code appears in Figure 3.

The main problem encountered when the learner does not have means of a reset is that it cannot

simply orient itself whenever needed by returning to the starting state. We thus need an alternative

way by which the learner can orient itself. As in [19], we overcome the absence of a reset by the

use of a homing sequence, de�ned below. A homing sequence is a sequence such that whenever it is

executed, the corresponding output sequence observed uniquely determines the �nal state reached.

More formally:
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Definition 4.1 For a state q and sequence s = s

1

: : : s

t

2 f0; 1g

t

, let

qhsi

def

= (q)(�(q; s

1

)) : : :(�(q; s)) :

A homing sequence h 2 f0; 1g

�

, is a sequence of symbols such that for every pair of states q

1

; q

2

2 Q,

if q

1

hhi = q

2

hhi, then �(q

1

; h) = �(q

2

; h).

It is not hard to verify (cf. [17]) that every DFA has a homing sequence of length at most

quadratic in its size. Moreover, given the DFA, such a homing sequence can be found e�ciently.

4.1 Learning When a Homing Sequence is Known

Assume we had a homing sequence h of length at most n

2

for our target DFA M (we remove

this assumption shortly). Then we could run the algorithm Exact-Learn-Given-Homing-Sequence

whose pseudo-code appear is Figure 2. This algorithm creates at most n copies of the algorithm

Exact-Learn-with-Reset , ELR

�

1

; : : : ; ELR

�

n

, each corresponding to a di�erent output sequence �

i

which may be observed when h is executed. At each stage, the algorithm walks according to h,

observes the output sequence �, and then performs the next walk ELR

�

would have performed

(starting from q

0

), from the current state reached. Since h is a homing sequence, for any given

output sequence �, whenever h is executed and � is observed, we have reached the same state. We

refer to this state as the e�ective starting state of ELR

�

. Thus, each copy ELR

�

constructs its

own observation table, T

�

, where the entries are �lled by performing walks which all start from the

e�ective starting state of ELR

�

. The algorithm terminates when one of these copies completes,

The completed copy's hypothesis automaton can then be used to predict correctly the outcome of

any walk. If, as described in the pseudo-code of Exact-Learn-Given-Homing-Sequence (see Figure 2),

we run each copy of Exact-Learn-with-Reset with the con�dence parameter �=n, then by Theorem 1

and the fact that there are at most n copies of Exact-Learn-with-Reset, with probability at least 1��

the hypothesis of the completed copy is correct. The running time of the algorithm Exact-Learn-

Given-Homing-Sequence is bounded by the running time of each copy, multipled by the number of

copies executed and the length of the homing sequence, and is thus O

�

n

4

(C(M))

2

log

2

(n=�)

�

.

Algorithm Exact-Learn-Given-Homing-Sequence(�)

� while no copy of Exact-Learn-with-Reset has completed do:

1. perform the walk corresponding to h, and let � be the corresponding output sequence;

2. if there does not exist a copy ELR

�

of Exact-Learn-with-Reset(�=n), then create

such a new copy;

3. simulate the next step of ELR

�

to �ll in any entry in T

�

by performing the corre-

sponding walk starting at the current state;

4. if the observation table T

�

of ELR

�

is consistent and closed then ELR

�

has completed;

5. if T

�

is consistent but not closed, then discard ELR

�

;

Figure 2: Algorithm Exact-Learn-Given-Homing-Sequence

8



4.2 Learning When a Homing Sequence is Unknown

If a homing sequence is unknown, consider the case in which we guess a sequence h which is not

a homing sequence and run the algorithm Exact-Learn-Given-Homing-Sequence with h instead of a

true homing sequence. Since h is not a homing sequence, there exist (at least) two states q

1

6= q

2

,

such that for some pair of states q

0

1

; q

0

2

, a walk starting at q

0

1

reaches q

1

upon executing h and a

walk starting at q

0

2

reaches q

2

upon executing h, but the output sequence in both cases is the same.

Let this output sequence be �. Hence, ELR

�

has more than one e�ective starting state and when

we simulate ELR

�

some of the walks performed to �ll in entries in T

�

might be performed starting

from q

1

, and some might be performed starting from q

2

.

The �rst of two possible consequences of such an event is that the observation table T

�

becomes

consistent and closed, but the hypothesis M

T

�

is incorrect . Namely, there exists some walk start-

ing from the current state whose outcome is predicted incorrectly by M

T

�

. The second possible

consequence is that T

�

just grows without becoming consistent, and the number of equivalence

classes in the partition induced by T

�

become larger than n. In what follows we describe how to

modify Exact-Learn-Given-Homing-Sequence when we do not have a homing sequence so as to detect

that a copy has more than one e�ective starting state and thus avoid the above two consequences.

Furthermore, the procedure for detection helps us \improve" h by extending it so that after at

most n � 1 such extensions it becomes a homing sequence, where initially h = �.

Let Q

�

be the set of e�ective starting states of T

�

. Namely

Q

�

def

= fq : q 2 Q; 9q

0

s.t. �(q

0

; h) = q and q

0

hhi = �g :

If for each q

�

2 Q

�

it holds that for every state q in Q there exists a row in T

�

labeled by a string

that reaches q when starting from q

�

, then the following is true. By the time we add at most n� 1

columns to T

�

, for each pair of states q

1

�

and q

2

�

in Q

�

, there must exist at least one entry in T

�

which distinguishes between the two states. This is true since otherwise, following Lemma 3.1, q

1

�

and q

2

�

would be equivalent, in contradiction to our assumption thatM is irreducible. If we discover

one such entry, then we have evidence that ELR

�

has more than one e�ective starting state and

therefore h is not a homing sequence. Moreover, we can concatenate the string corresponding to

this entry to h, and restart the algorithm with the extended h.

4

After at most n�1 such extensions,

h must become a homing sequence.

4.2.1 Detecting Distinguishing Entries

We next show how to detect entries which distinguish between two e�ective starting states. Let

Exact-Learn-with-Reset-R be a variant of Exact-Learn-with-Reset, in which each walk to �ll in an

entry in the table is repeated N consecutive times for a given N . If all N walks give the same

output then the entry is �lled with that output. Otherwise, we have found a distinguishing entry.

Thus, in the algorithm Exact-Learn, instead of simulating copies ELR

�

of Exact-Learn-with-Reset,

as in Exact-Learn-Given-Homing-Sequence, we simulate copies ELRR

�

of Exact-Learn-with-Reset-R

with a parameter N that is set subsequently and with con�dence

�

2n

2

. If for some copy we �nd that

its observation table includes a distinguishing entry, then as described previously, we extend h by

the string corresponding to this entry and restart the algorithm with the new h. We continue in

this way until one copy terminates. In order to ensure that we never �ll in a distinguishing entry

4

As in [19], we actually need not discard all copies and restart the algorithm, but we may only discard the copy

in which the disagreement was found, and construct an adaptive homing sequence which results in a more e�cient

algorithm. For sake of simplicity of this presentation, we continue with the use of the preset homing sequence.

9



Algorithm Exact-Learn(�)

1. N  4C(M ) log (C(M )) log

2

(4n=�);

2. � �=(4Nn);

3. h �;

4. while no copy of Exact-Learn-with-Reset-R is completed do:

(a) choose uniformly and at random a length ` 2 [0; : : : ; C

�

(M )], and perform a random

walk of length `.

(b) perform the walk corresponding to h, and let � be the corresponding output sequence;

(c) if there does not exist a copy ELRR

�

of Exact-Learn-with-Reset-R(N,�=(2n

2

)),

then create such a new copy;

(d) simulate the next step of ELRR

�

to �ll in any entry in T

�

by performing the corre-

sponding walk w starting at the current state;

(e) if it is the �rst execution of w, then �ll in the corresponding entry in T

�

with the (�nal)

output observed;

(f) else if the output of the state reached is di�erent from the output of the previous state

reached when performing w then do:

i. h h�w;

ii. discard all existing copies of Exact-Learn-with-Reset-R, and go to 2; /* restart

algorithm with extended h */

(g) if the observation table T

�

of ELRR

�

is consistent and closed then ELRR

�

has com-

pleted;

(h) if T

�

is consistent but not closed, then discard ELRR

�

;

Figure 3: Algorithm Exact-Learn. Algorithm Exact-Learn-with-Reset-R is a variant of

Exact-Learn-with-Reset in which given an integer N , each walk to �ll in an entry in the table

is repeated N times and only if a single output is observed, then this output is entered.
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without identifying it as one, we need to ensure that for every entry (r

i

; s

j

) we need to �ll, if (r

i

; s

j

)

is a distinguishing entry in T

�

then the following holds: For some pair of e�ective starting states,

q

1

and q

2

, which are distinguished by (r

i

; s

j

), at least one of the N executions of r

i

�s

j

starts from

q

1

and at least one starts from q

2

.

To this end we do the following. Each time before executing h, we randomly choose a length

0 � ` � C

�

(M) (where � is set subsequently), and perform a random walk of length `. The idea

behind this random walk is that for every state there is some non-negligible probability of reaching

it upon performing the random walk. More precisely: For a distinguishing entry (r

i

; s

j

) in T

�

,

consider the N executions of h whose outcome was � and which were followed by performing the

walk corresponding to r

i

�s

j

. For a state q 2 Q

�

, let B(q) be the set of states from which q is reached

upon executing h, i.e.,

B(q)

def

= fq

0

: q

0

2 Q; �(q

0

; h) = qg :

For a given q 2 Q

�

, the probability that we did not reach q after any one of the N executions of h

in which � was observed, equals the probability that following all preceding random walks, we did

not reach a state in B(q). This probability is bounded as follows. Assume that instead of choosing

a random length and performing a random walk of that length, we �rst randomly choose a string

t of length C

�

(M), then choose a random length `, and �nally perform a walk corresponding to

the length ` pre�x of t. Clearly the distribution on the states reached at the end of this walk is

equivalent to the distribution on the states reached by the original randomized procedure. Thus,

the probability that we did not reach some q 2 Q

�

is at most

N�+ (1� 1=C

�

(M))

N

: (2)

The �rst term, N�, is a bound on the probability that for at least one of the random strings t,

none of the states in B(q) are passed on the walk corresponding to t. Given that such an event

does not occur, the second term, (1� 1=C

�

(M))

N

, is a bound on the probability that none of the

pre�xes chosen reach any of these states.

4.2.2 Bounding the Error and the Running Time of the Algorithm

It remains to set � and N so that the total error probability of Exact-Learn is at most �, and then

to bound the algorithm's running time. We have two types of events we want to avoid so as to

ensure that the algorithm constructs a correct hypothesis. We shall bound the probability that

each type of event occurs by �=2. The �rst type of event is that for some copy ELRR

�

and for one

of its e�ective starting states q

�

, there exists a state q in Q such that no row in T

�

is labeled by a

string which reaches q when starting from q

�

. In the course of the algorithm, h takes on at most n

values. For each value there are at most n e�ective starting states for all existing copies ELRR

�

(even though a single state may be an e�ective starting state of more than on copy). Since we

simulate each copy with error parameter �=(2n

2

), then with probability at least 1� �=2, the above

type of event does not occur. In such a case, it follows from Lemma 3.1 that when h �nally turns

into a homing sequence (after at most n � 1 extensions), and some table T

�

becomes consistent,

then M

T

�

is a correct hypothesis.

The second type of bad event is that when �lling an entry in some table T

�

, we do not detect

that it is a distinguishing entry. For each value of h consider the �rst entry to be �lled (in some

table T

�

) that is a distinguishing entry. Since h takes at most n values, there are at most n such

�rst entries. For each such entry, there exists at least one pair of e�ective starting states which it

distinguishes. Assume we choose N and � so that

N�+ [1� 1= (C(M) log(1=�))]

N

< �=(4n) : (3)
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Then, by Equation (2), with probability at least 1 � �=2, for each �rst distinguishing entry, we

perform the walk corresponding to that entry starting from each of the two e�ective starting states

it distinguishes. It follows that with probability 1 � �=2 we always detect the �rst distinguishing

entry for every value of h, and thus do not output a hypothesis of a copy ELRR

�

which corresponds

to more than one e�ective starting state. The following choice of N and � gives us the required

bound:

N = 4C(M) log (C(M)) log

2

�

8n

�

�

� =

�

8Nn

:

The running time of the algorithm is bounded by the product of the number of phases of the

algorithm (one for each value of h) which is n, and the running time of each phase. The running

time of each phase is bounded by the product of: the number of copies in each phase (which is at

most n), the number of entries added to each table (which is O(nC(M) log(2n

2

=�))), the maximum

length of each walk to �ll in an entry (which is O(C(M) log(2n

2

=�)),N , and the maximum length of

h (which is O(n

2

C(M) log(2n

2

=�))) added on to the maximum length of the random walk performed

(which is C(M) log(1=�)). The total running time is hence O

�

n

5

(C(M))

4

log

6

(n=�) log

2

(C(M))

�

.

We have thus proven that:

Theorem 2 Algorithm Exact-Learn is an exact learning algorithm for DFAs, and its running time

is O

�

n

5

(C(M))

4

log

6

(n=�) log

2

(C(M))

�

.

As mentioned previously, Rivest and Schapire [19] give an exact learning algorithm that runs

in time polynomial in n and log(1=�) and does not depend on any other parameter related to

the target automaton. However, they rely on a teacher that gives the learner counterexamples to

the incorrect hypotheses output by the learner. It is interesting to note that the (tempting) idea

to simply run Rivest and Schapire's algorithm but instead of making equivalence queries try and

randomly guess a counterexample whenever the learner has a hypothesis, does not work even in

the case of automata that have small cover time. Rivest and Zuckerman [20] construct a pair of

automata which both have small cover time, but for which the probability of randomly guessing

a sequence which distinguishes between the automata is exponentially small. These automata are

described in Appendix A.

5 Exact Learning in the Presence of Noise

In this section we describe how to modify the learning algorithm described in Section 4 in order to

overcome a noisy environment. We name the new algorithm Exact-Noisy-Learn, and its pseudo-code

appears in Figure 6. We start by showing how to compute a good estimate of the noise rate. We

then show how to use this estimate to learn the target DFA when a homing sequence is known,

and �nally describe a learning algorithm which is not given a homing sequence.

5.1 Estimating the Noise Rate

According to our learning model, the algorithm is given only an upper bound 1=2 � � on the

noise rate, �. Since we need a good approximation �̂ of �, we �rst show that � can be e�ciently

approximated (with high probability) within a small additive error. This is done by running
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Procedure Estimate-Noise-Rate whose pseudo-code appears in Figure 4, and which is analyzed in

the following lemma. A very similar procedure was described in [21].

Lemma 5.1 For any given �

0

> 0, and � > 0, after time polynomial in n, 1=�, log(1=�

0

) and 1=�,

Procedure Estimate-Noise-Rate outputs an approximation �̂ of �, such that with probability at least

1� �

0

, j�̂ � �j � �.

Proof: Before going into the details of the procedure we describe the idea it is based on. Consider

a pair of states q

1

and q

2

. For a string z, and i 2 f0; 1g, let the observed behavior of q

i

on z be the

output observed by the learner after executing the walk corresponding to z starting from q

i

, and

let the actual behavior of q

i

on z be the (correct) output of the state reached. If q

1

= q

2

then for

every string z, �(q

1

; z) = �(q

2

; z). Thus, the observed di�erence in the behavior of q

1

and q

2

on any

set of strings is entirely due to the noise process. If q

1

6= q

2

, then the di�erence in their observed

behavior on a set of strings Z is due to the di�erence in their actual behavior on Z as well as the

noise. Thus in order to estimate the noise rate, we look for two strings that seem to reach the same

state and deduce the noise rate from the di�erence in their observed behavior. More precisely, this

is done as follows.

Procedure Estimate-Noise-Rate(�

0

; �)

1. L (1=�)

2

(1=�)

2

log(n=�

0

);

2. let t be an arbitrary string of length L;

3. perform the walk corresponding to t, n+ 1 times;

4. let o

i

= o

i

1

: : : o

i

L

be the sequence of outputs corresponding to the ith execution of t;

5. 8i; j, 1 � i < j � n+ 1, let d

ij

 

1

L

P

L

k=1

o

i

k

� o

j

k

;

6. let d

min

 min

i;j

d

ij

;

7. if d

min

> 1=2 then goto 1 ;

8. let �̂ be the solution to d

min

= 2�̂(1� �̂) s.t. �̂ < 1=2;

9. return �̂;

Figure 4: Procedure Estimate-Noise-Rate

Let t be an arbitrary string of length L, where L is set subsequently. Suppose t is executed n+1

times. For 1 � i � n + 1, let q

i

be the state reached after performing t exactly i� 1 times and let

o

i

= o

i

1

: : :o

i

L

be the sequence of outputs corresponding to the ith execution of t. Clearly, for some

pair of indices i 6= j, q

i

= q

j

. For every pair 1 � i < j � n + 1, let d

ij

=

1

L

P

L

k=1

o

i

k

� o

j

k

. Thus, d

ij

is the fraction of indices in which the sequences o

i

and o

j

di�er, or equivalently, it is the fraction

of strings among all pre�xes of t on which there is an observed di�erence in behavior between q

i

and q

j

. The key observation is that if q

i

= q

j

then the expected value of d

ij

is 2�(1� �), while

if q

i

6= q

j

it is at least as large. More precisely, if the fraction of pre�xes of t on which q

i

and q

j

actually di�er is �, then the expected observed di�erence in behavior between the states is

(1� �) � 2�(1� �) + � � ((1� �)

2

+ �

2

) = 2�(1� �) + �(1� 2�)

2

: (4)

We therefore de�ne d

min

to be the minimum value over all d

ij

's, and let �̂ < 1=2 be the

solution of the quadratic equation 2�̂(1 � �̂) = d

min

. Since we have less than n

2

pairs, if L =
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((1=�)

2

(1=�)

2

log(n=�

0

)), then by Hoe�ding's inequality [14], with probability at least 1� �

0

, for

every pair i; j, jd

ij

�E[d

ij

]j � ��, and hence jd

min

� 2�(1� �)j � 2��. It directly follows (see [21])

that j�̂ � �j � �.

We thus assume from here on that we have a good approximation, �̂, of �. In particular we

assume that �̂ is at most �=n away from �.

5.2 Learning When a Homing Sequence is Known

As in the noise free case, we �rst assume that the algorithm has means of a reset. With this

assumption, we use the technique of [22] and de�ne a slight modi�cation of Exact-Learn-with-Reset,

named Exact-Noisy-Learn-with-Reset, which given a large enough integer N simply repeats each

walk to �ll in an entry in the table N times, and �lls the corresponding entry with the majority

observed label. Thus, with high probability, for an appropriate choice of N , the majority observed

label is in fact the correct label of the state reached.

Next we assume that the algorithm has no means of a reset, but instead, has a homing sequence,

h. Clearly, in a single execution of h, with high probability, the output sequence will be erroneous.

We thus adapt a technique that was used in [7]. Assume we execute the homing sequence m

consecutive times, where m >> n and is set subsequently. The last m�n executions of the homing

sequence must be following a cycle (though not a simple cycle). We use this fact to estimate the

output sequence corresponding to the last homing sequence executed. For 1 � i � m, let q

i

be the

state reached after the ith execution of h. Let o

i

= o

i

1

: : : o

i

jhj

be the output sequence corresponding

to this execution, and let b

p

= b(m � n)=pc. Then there exists some (minimal) period p, where

1 � p � n, such that for every 1 � k � b

p

, q

m

= q

m�kp

, so that every p executions of h it

was executed starting from q

m

. Thus, if we know p, then we can compute with high probability

the correct output sequence corresponding to the last execution of h (which started from q

m

) by

considering all previous executions which started from q

m

. More formally, for every 1 � j � jhj we

let �

j

= 1 if 1=b

p

P

b

p

k=1

o

m�kv

j

> 1=2, and 0 otherwise. It follows that with high probability, for an

appropriate choice of m, the sequence � = �

1

: : : �

jhj

is the correct output sequence corresponding

to the last execution of h. In this case we could proceed as in Exact-Learn-Given-Homing-Sequence,

simulating copies of Exact-Noisy-Learn-with-Reset, instead of copies of Exact-Learn-with-Reset.

How do we �nd the period p? For each possible length 1 � v � n, let b

v

= b(m � n)=vc, and

let

~

 

v

be an jhj dimensional vector which is de�ned as follows. For 1 � j � jhj,

 

v

j

= 1=b

v

b

v

X

k=1

o

m�kv

j

: (5)

Let q

i

j

be the state reached after i executions of h, followed by the length j pre�x of h. When

v = p, then by de�nition of p for every k; k

0

, and for every j, q

m�kv

j

= q

m�k

0

v

j

. Therefore, with high

probability, for every j,  

v

j

is either within � of 1� �̂, or within � of �̂, for some small additive error

�. In particular we shall choose m so at to ensure that � � �=4n.

When v 6= p, then there are two possibilities. If for every j and for every k; k

0

, (q

m�kv

j

) =

(q

m�k

0

v

j

) (even though q

m�kv

j

might di�er from q

m�k

0

v

j

), then the following is still true. De�ne

�

v

j

to be 1 if  

v

j

is greater than 1=2, and 0 if it is at most 1=2. Then, with high probability,

�

v

= �

v

1

: : :�

v

jhj

is the correct output sequence corresponding to the last execution of h. Otherwise,

let j be an index for which the above does not hold, and let K

0

= jfk j (q

m�kv

j

) = 0gj, and

K

1

= jfk j (q

m�kv

j

) = 1gj. We claim that both K

0

=b

v

and K

1

=b

v

are at least 1=p which is at

least 1=n. This is true since v � p must be a period as well, and hence for every k and k

0

which are
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multiples of v � p, q

m�kv

j

= q

m�k

0

v

j

. It follows that

E[ 

v

j

] = �(1� �) + (1� �)� (6)

where � = K

1

=b

v

. Since 1=n � � � 1� 1=n,

� + (1� 2�)

1

n

� E[ 

v

j

] � (1� �)� (1� 2�)

1

n

: (7)

Using this bound on the expected value of  

v

j

, we have that the observed value of  

v

j

is bounded

away from both � and 1 � � with high probability. Since �̂ is at most �=n away from �, we have

that

�̂ +

�

n

� E[ 

v

j

] � (1� �̂)�

�

n

: (8)

Thus, if  

v

j

is at most �=4n away from its expected value for every j, then we are able to detect

whether or not v = p, and consequently compute the correct output sequence corresponding to the

homing sequence h. The pseudo-code for the procedure described above appears in Figure 5. Note

that we did not actually use the fact that h is a homing sequence and hence this procedure can be

used to compute the correct output sequence corresponding to any given sequence.

Procedure Execute-Homing-Sequence(h)

1. � 

�

��

2

�

=

�

100n (C(M ))

2

log

2

(C(M )) log

3

(n=�)

�

;

2. m 100 (n=�)

2

log(nC(M )=�);

3. choose uniformly and at random a length ` 2 [0; : : : ; C

�

(M )], and then perform a random

walk of length `.

4. perform the walk corresponding to h for m consecutive times, and for 1 � i � m, let o

i

be

the output sequence corresponding to the ith execution of h;

5. for each length 1 � v � n, and for every 1 � j � jhj, let  

v

j

= 1=m

v

P

m

v

k=1

o

m�kv

j

, where

m

v

= bm=vc;

6. let v be such that for every j either j 

v

j

� �̂j � �=4n, or j 

v

j

� (1� �̂)j � �=4n; if there is no

such v, then return to (1);

7. for 1 � j � jhj, let �

j

= 1 if m

j

v

> 1=2, and 0 otherwise;

8. return �;

Figure 5: Procedure Execute-Homing-Sequence

5.3 Learning When a Homing Sequence is Unknown

It remains to treat the case in which a homing sequence is not known. Similarly to the noise free

case, for a (correct) output sequence � corresponding to a candidate homing sequence h, let Q

�

be all states q 2 Q for which there exists a state q

0

2 Q such that �(q

0

; h) = q and q

0

hhi = �.

For a state q 2 Q

�

, let B(q) be the set of states q

0

such that �(q

0

; h

m

) = q. Let (r

i

; s

j

) be an

entry in the table for which there exist q

1

; q

2

2 Q

�

, such that (�(q

1

; r

i

�s

j

)) 6= (�(q

2

; r

i

�s

j

)). Let

Q

1

�

= fq j q 2 Q

�

; (�(q

1

; r

i

�s

j

)) = 1g, and let Q

0

�

be de�ned similarly. If, as in the noise free

case, the walk corresponding to a given entry is repeated N times, and a random walk of a length
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` chosen uniformly in the range [0; : : : ; C

�

(M)] is performed prior to the m executions of h, then

the expected fraction of times a state q 2 Q

1

�

(Q

0

�

) is reached is at least 1=C

�

(M), and with high

probability the observed fraction is not far from its expectation. Similarily to the analysis above

for identifying a length v which is not a period, for an appropriate choice of N and � (set below)

we can determine whenever an entry to be �lled is a distinguishing entry and extend h by the string

corresponding to this entry.

Algorithm Exact-Noisy-Learn(�)

1. N  10 (C(M )=�)

2

log

3

(C(M )) log

4

(n=�);

2. �̂ Estimate-Noise-Rate(�=5; �=4n);

3. h �;

4. while no copy of Exact-Noisy-Learn-with-Reset is completed do:

(a) � Execute-Homing-Sequence(h);

(b) if a copy ENLR

�

of Exact-Noisy-Learn-with-Reset(N; �=(5n

2

)) does not exist,

then create such a new copy;

(c) simulate the next step of ENLR

�

by performing the corresponding walk w; let �

i

(w)

be the output of the state reached, where i is the number of times w has been executed.

(d) if i = N then let f(w) = (1=N )

P

N

i=1

�

i

(w). If jf(w)��̂j > �=4n, and jf(w)�(1��̂)j >

�=4n then do:

i. h h�w;

ii. discard all existing copies of Exact-Noisy-Learn-with-Reset, and go to (2);

/* restart algorithm with extended h */

(e) if the observation table T

�

of ENLR

�

is consistent and closed then output M

T

�

;

/* ENLR

�

has completed */

(f) if T

�

is consistent but not closed, then discard ENLR

�

;

Figure 6: Algorithm Exact-Noisy-Learn. Algorithm Exact-Noisy-Learn-with-Reset is a variant of

Exact-Learn-with-Reset in which given an integer N , each walk to �ll in an entry in the table is

repeated N times and the majority valued is entered.

5.3.1 Bounding the Error and Running Time of the Algorithm

We start by bounding the error of the algorithm. We have the following 5 types of events we

need to prevent from occurring, and we shall bound the probability that each type occurs by �=5.

Whenever bounding the probability that a bad event occurs, we assume that no other bad event

has occurred previously.

1. Our estimation �̂ of �, is not good enough. If we call the procedure Estimate-Noise-Rate with

the con�dence parameter �

0

= �=5 and with the estimation parameter � = �=n, we know by

Lemma 4, that with probability at least 1� �=5, j�̂ � �j � �=n.

2. For some copy ENLR

�

and for one of its e�ective starting states q

�

, there exists a state q

in Q such that no row in T

�

is labeled by a string which reaches q when starting from q

�

. As

in the noise-free case, in the course of the algorithm, h takes on at most n values. For each
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value there are at most n e�ective starting states for all existing copies ENLR

�

. Since we

simulate each copy with the parameter �=(5n

2

), then with probability at least 1 � �=5, the

above type of event does not occur.

3. For some candidate homing sequence h, the �rst distinguishing entry to be �lled is not detected.

In order to ensure that this event does not occur with probability larger than �=5, we do the

following. We �rst ensure that with probability at least 1 � �=10, for each such entry, and

for some pair of e�ective starting states which are distinguished by this entry, the fraction

of times we execute the corresponding walk starting from each of these states is at least

1=(2C(M)log(1=�)). We then ensure that with probability at least 1 � �=10 the fraction of

1's observed does not di�er from its expectation by more than �=(4C(M)log(1=�)). It is

easily veri�ed that in such a case, distinguishing entries are always detected.

We start with the former requirement. Using an analysis slightly di�erent from the one used

in Equation (2), for a given entry and e�ective starting state q

�

, with probability at least

1�


�

N�+ exp

h

�(1=2)N=

�

(C(M))

2

log

2

(1=�)

�i�

, we perform the walk corresponding to

the entry and starting from q

�

at least N=(2C(M)log(1=�)) times. Since we want the above

to hold with probability at least 1 � �=10 for some pair of e�ective starting states, we ask

that � be bounded by �=(20nN) and that

N = 


�

(C(M))

2

log

2

(C(M)) log

3

(n=�)

�

:

As for the second requirement, by Hoe�ding's inequality, it su�ces that

N = 


�

(C(M)=�)

2

log

2

(C(M)) log

3

(n=�)

�

:

4. For some table and some non-distinguishing entry in the table, the majority observed output

is incorrect, or the entry is thought to be distinguishing. We construct at most n

2

tables, each

of size O(nC(M) log(5n

2

=�)). Thus we simply need to set N to be larger than our previous

bound by a factor of 
(log(nC(M)=�)) in order to ensure that this type of event does not

occur with probability greater than �=5.

5. For some execution of a candidate sequence h (where execution here will actually denote the

m consecutive executions of h), the output computed for h is incorrect. The maximum length

of h is O(n

2

C(M) log(5n

2

=�)), and the number of values taken by v when computing  

j

v

is

n. h takes on at most n values, and for each value h is executed at most njT jN times where

jT j denotes the maximum size of each table and is O(nC(M) log(5n

2

=�)). By Hoe�ding's

inequality, if

m = 


 

�

n

�

�

2

log

nC(M)N log(n=�)

�

!

; (9)

then with probability at least 1� �=5 every  

j

v

is at most �=4n away from its expected value.

From the discussion following Equation (8) this su�ces for the correct computation of the

output sequence corresponding to h.

The running time of the algorithm is bounded by: the running time of Procedure Estimate-

Noise-Rate, plus the number of phases of the algorithm (one for each value of h) which is n,

multiplied by the running time of each phase. The running time of the noise estimation procedure

is O(Ln

2

) = O (n

4

�

�4

log(n=�)). The running time of each phase is bounded by the product of:
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the number of copies in each phase (which is at most n), the number of entries added to each

table (which is O (nC(M) log(5n

2

=�))), the maximum length of each walk to �ll in an entry (which

is O (C(M) log(5n

2

=�))), N , the maximum length of h (which is O (n

2

C(M) log(5n

2

=�))), and m

added on to the maximum length of the random walk performed (which is C(M) log(1=�)). Using

our bounds onN , � andm, the total running time is hence O

�

n

7

(C(M))

5

�

�4

log

7

(n=�)log

3

(C(M))

�

.

We have thus proven the following theorem:

Theorem 3 Algorithm Exact-Noisy-Learn is an exact learning algorithm in the presence of noise

for DFAs, and its running time is: O

�

n

7

(C(M))

5

�

�4

log

7

(n=�)log

3

(C(M))

�

.
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A Rivest and Zuckerman's example

We describe below a pair of automata, constructed by Rivest and Zuckerman [20], which have the

following properties. Both automata have small cover time (order of n logn), but the probability

that a random string distinguishes between the two is exponentially small. The automata are

depicted in Figure 7.

The �rst automaton, M

1

, is de�ned as follows. It has n = 3k states that are ordered in k + 1

columns where k is odd. Each state is denoted by q[i; j], where 0 � i � k is the column the state

belongs to, and 1 � j � 3 is its height in the column. The starting state, q[0; 1] is the only state in

column 0. In column 1 there are two states, q[1; 1] and q[1; 2], and in all other columns there are
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0

1

M2

q[0,1] q[k,1]q[1,1]

q[1,2]

q[2,1]

q[2,2]

q[2,3]

q[3,1]

q[3,2]

q[3,3]

q[k,2]

q[k,3]

q[k-1,1]

q[k-1,2]

q[k-1,3]

0/1

. . .

0 0 0

0

0

0 0

0

1

1

1

1

1 1

1

1

0

1

M1

q[0,1] q[k,1]q[1,1]

q[1,2]

q[2,1]

q[2,2]

q[2,3]

q[3,1]

q[3,2]

q[3,3]

q[k,2]

q[k,3]

q[k-1,1]

q[k-1,2]

q[k-1,3]

0/1

. . .

0 0 0

0

0

0 0

0

1

1

1

1

1 1

1

1

Figure 7: Automata M

1

and M

2

described in the Appendix

three states. All states have output 0 except for the state q[k; 1] which has output 1. The transition

function, �(�; �), is de�ned as follows. For 0 � i < k,

� (q[i; j]; 0) = q[i+ 1; max(1; i� 1)] ;

and

� (q[i; j]; 1) = q[i+ 1; min(3; i+ 1)] :

All transition from the last column are to q[0; 1], i.e., for � 2 f0; 1g, � (q[k; j]; �) = q[0; 1].

The second automaton,M

2

, is de�ned the same as M

1

, except for the outgoing edges of q[0; 1],

which are switched. Namely, in M

2

, � (q[0; 1]; 0) = q[1; 2], and � (q[0; 1]; 1) = q[1; 1].

The underlying graphs ofM

1

andM

2

, have a strong synchronizing property: any walk performed

in parallel on the two graphs, in which there are either two consecutive 0's or two consecutive 1's

(where the latter does not include the �rst two symbols), will end up in the same state on both

graphs. Therefore, the only way to distinguish between the automata is that after any outgoing edge

of q[0; 1] is traversed, to perform a walk corresponding to the sequence (10)

k�1

2

. The probability

this sequence is chosen on a random walk of polynomial length is clearly exponentially small.
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