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Abstract

We propose a framework for studying property testing of collections of distributions, where the
number of distributions in the collection is a parameter of the problem. Previous work on property
testing of distributions considered single distributions or pairs of distributions. We suggest two models
that differ in the way the algorithm is given access to samples from the distributions. In one model the
algorithm may ask for a sample from any distribution of its choice, and in the other the choice of the
distribution is random.

Our main focus is on the basic problem of distinguishing between the case that all the distributions in
the collection are the same (or very similar), and the case that it is necessary to modify the distributions
in the collection in a non-negligible manner so as to obtain this property. We give almost tight upper and
lower bounds for this testing problem, as well as study an extension to a clusterability property. One of
our lower bounds directly implies a lower bound on testing independence of a joint distribution, a result
which was left open by previous work.

∗School of Computer Science, Tel Aviv University. E-mail: reuti.levi@gmail.com. Research supported by the Israel
Science Foundation grant nos. 1147/09 and 246/08

†School of Electrical Engineering, Tel Aviv University. E-mail: danar@eng.tau.ac.il. Research supported by the Israel
Science Foundation grant number 246/08.

‡CSAIL, MIT, Cambridge MA 02139 and the Blavatnik School of Computer Science, Tel Aviv University. E-mail:
ronitt@csail.mit.edu. Research supported by NSF grants 0732334 and 0728645, Marie Curie Reintegration grant PIRG03-
GA-2008-231077 and the Israel Science Foundation grant nos. 1147/09 and 1675/09.



1 Introduction

In recent years, several works have investigated the problem of testing various properties of data that is
most naturally thought of as samples of an unknown distribution. More specifically, the goal in testing a
specific property is to distinguish the case that the samples come from a distribution that has the property
from the case that the samples come from a distribution that is far (usually in terms of `1 norm, but other
norms have been studied as well) from any distribution that has the property. To give just a few examples,
such tasks include testing whether a distribution is uniform [GR00, Pan08] or similar to another known
distribution [BFR+10], and testing whether a joint distribution is independent [BFF+01]. Related tasks
concern sublinear estimation of various measures of a distribution, such as its entropy [BDKR05, GMV09]
or its support size [RRSS09]. Recently, general techniques have been designed to obtain nearly tight lower
bounds on such testing and estimation problems [Val08a, Val08b].

These types of questions have arisen in several disparate areas, including physics [Ma81, SKSB98,
NBS04], cryptography and pseudorandom number generation [Knu69], statistics [Csi67, Har75, WW95,
Pan04, Pan08, Pan03], learning theory [Yam95], property testing of graphs and sequences (e.g.,[GR00,
CS07, KS08, NS07, RRRS07, FM08]) and streaming algorithms (e.g., [AMS99, FKSV99, FS00, GMV09,
CMIM03, CK04, BYJK+02, IM08, BO10a, BO10b, BO08, IKOS09]). In these works, there has been
significant focus on properties of distributions over very large domains, where standard statistical techniques
based on learning an approximation of the distribution may be very inefficient.

In this work we consider the setting in which one receives data which is most naturally thought of
as samples of several distributions, for example, when studying purchase patterns in several geographic
locations, or the behavior of linguistic data among varied text sources. Such data could also be generated
when samples of the distributions come from various sensors that are each part of a large sensor-net. In these
examples, it may be reasonable to assume that the number of such distributions might be quite large, even
on the order of a thousand or more. However, for the most part, previous research has considered properties
of at most two distributions [BFR+00, Val08a]. We propose new models of property testing that apply
to properties of several distributions. We then consider the complexity of testing properties within these
models, beginning with properties that we view as basic and expect to be useful in constructing building
blocks for future work. We focus on quantifying the dependence of the sample complexities of the testing
algorithms in terms of the number of distributions that are being considered, as well as the size of the domain
of the distributions.

1.1 Our Contributions

1.1.1 The Models

We begin by proposing two models that describe possible access patterns to multiple distributions
D1, . . . , Dm over the same domain [n]. In these models there is no explicit description of the distribu-
tion – the algorithm is only given access to the distributions via samples. In the first model, referred to as
the sampling model, at each time step, the algorithm receives a pair of the form (i, j) where i is selected
uniformly in [m] and j ∈ [n] is distributed according to Di. In the second model, referred to as the query
model, at each time step, the algorithm is allowed to specify i ∈ [m] and receives j that is distributed accord-
ing to Di. It is immediate that any algorithm in the sampling model can also be used in the query model. On
the other hand, as is implied by our results, there are property testing problems which have a significantly
larger sample complexity in the sampling model than in the query model.

In both models the task is to distinguish between the case that the tested distributions have the property
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and the case that they are ε-far from having the property, for a given distance parameter ε. Distance to the
property is measured in terms of the average `1-distance between the tested distributions and the closest
collection of distributions that have the property. In all of our results, the dependence of the algorithms on
the distance parameter ε is (inverse) polynomial. Hence, for the sake of succinctness, in all that follows we
do not mention this dependence explicitly. We note that the sampling model can be extended to allow the
choice of the distribution (that is, the index i) to be non-uniform (i.e., be determined by a weight wi) and
the distance measure is adapted accordingly.

1.1.2 Testing Equivalence in the sampling model

One of the first properties of distributions studied in the property testing model is that of determining whether
two distributions over domain [n] are identical (alternatively, very close) or far (according to the `1-distance).
In [BFR+10], an algorithm is given that uses Õ(n2/3) samples and distinguishes between the case that the
two distributions are ε-far and the case that they are O(ε/

√
n)-close. This algorithm has been shown to

be nearly tight (in terms of the dependence on n) by Valiant [Val08b]. Valiant also shows that in order
to distinguish between the case that the distributions are ε-far and the case that they are β-close, for two
constants ε and β, requires almost linear dependence on n.

Our main focus is on a natural generalization, which we refer to as the equivalence property of dis-
tributions D1, . . . , Dm, in which the goal of the tester is to distinguish the case in which all distributions
are the same (or, slightly more generally, that there is a distribution D∗ for which 1

m

∑m
i=1 ‖Di −D∗‖1 ≤

poly(ε)/
√

n), from the case in which there is no distribution D∗ for which 1
m

∑m
i=1 ‖Di − D∗‖1 ≤ ε. To

solve this problem in the (uniform) sampling model with sample complexity Õ(n2/3m) (which ensures with
high probability that each distribution is sampled Ω̃(n2/3 log m) times), one can make m − 1 calls to the
algorithm of [BFR+10] to check that every distribution is close to D1.

OUR ALGORITHMS. We show that one can get a better sample complexity dependence on m. Specifically,
we give two algorithms, one with sample complexity Õ(n2/3m1/3 +m) and the other with sample complex-
ity Õ(n1/2m1/2+n). The first result in fact holds for the case that for each sample pair (i, j), the distribution
Di (which generated j) is not selected necessarily uniformly, and furthermore, it is unknown according to
what weight it is selected. The second result holds for the case where the selection is non-uniform, but the
weights are known. Moreover, the second result extends to the case in which it is desired that the tester pass
distributions that are close for each element, to within a multiplicative factor of (1± ε/c) for some constant
c > 1, and for sufficiently large frequencies. Thus, starting from the known result for m = 2, as long as
n ≥ m, the complexity grows as Õ(n2/3m1/3 + m) = Õ(n2/3m1/3), and once m ≥ n, the complexity is
Õ(n1/2m1/2 + n) = Õ(n1/2m1/2) (which is lower than the former expression when m ≥ n).

Both of our algorithms build on the close relation between testing equivalence and testing independence
of a joint distribution over [m] × [n] which was studied in [BFF+01]. The Õ(n2/3m1/3 + m) algorithm
follows from [BFF+01] after we fill in a certain gap in the analysis of their algorithm due to an imprecision
of a claim given in [BFR+00]. The Õ(n1/2m1/2 +n) algorithm exploits the fact that i is selected uniformly
(or, more generally, according to a known weight wi) to improve on the Õ(n2/3m1/3 +m) algorithm (in the
case that m ≥ n).

ALMOST MATCHING LOWER BOUNDS. We show that the behavior of the upper bound on the sample com-
plexity of the problem is not just an artifact of our algorithms, but rather (almost) captures the complexity
of the problem. Namely, we give almost matching lower bounds of Ω(n2/3m1/3) for n = Ω(m log m) and
Ω(n1/2m1/2) (for every n and m). The latter lower bound can be viewed as a generalization of a lower
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bound given in [BFR+10], but the analysis is somewhat more subtle.
Our lower bound of Ω(n2/3m1/3) consists of two parts. The first is a general theorem concerning

testing symmetric properties of collections of distributions. This theorem extends a central lemma of
Valiant [Val08b] on which he builds his lower bounds, and in particular the lower bound of Ω(n2/3) for test-
ing whether two distributions are identical or far from each other (i.e., the case of equivalence for m = 2).
The second part is a construction of two collections of distributions to which the theorem is applied (where
the construction is based on the one proposed in [BFF+01] for testing independence). As in [Val08b], the
lower bound is shown by focusing on the similarity between the typical collision statistics of a family of
collections of distributions that have the property and a family of collections of distributions that are far
from having the property. However, since many more types of collisions are expected to occur in the case
of collections of distributions, our proof outline is more intricate and requires new ways of upper bounding
the probabilities of certain types of events.

1.1.3 Testing Clusterability in the query model

The second property that we consider is a natural generalization of the equivalence property. Namely, we
ask whether the distributions can be partitioned into at most k subsets (clusters), such that within in cluster
the distance between every two distributions is (very) small. We study this property in the query model,
and give an algorithm whose complexity does not depend on the number of distributions and for which the
dependence on n is Õ(n2/3). The dependence on k is almost linear. The algorithms works by combining the
diameter clustering algorithm of [ADPR03] (for points in a general metric space where the algorithm has
access to the corresponding distance matrix) with the closeness of distributions tester of [BFR+10]. Note
that the results of [Val08b] imply that this is tight to within polylogarithmic factors in n.

1.1.4 Implications of our results

As noted previously, in the course of proving the lower bound of Ω(n2/3m1/3) for the equivalence prop-
erty, we prove a general theorem concerning testability of symmetric properties of collections of distribu-
tions (which extends a lemma in [Val08b]). This theorem may have applications to proving other lower
bounds on collections of distributions. Further byproducts of our research regard the sample complexity
of testing whether a joint distribution is independent, More precisely, the following question is considered
in [BFR+10]: Let Q be a distribution over pairs of elements drawn from [m]× [n] (without loss of general-
ity, assume n ≥ m); what is the sample complexity in terms of m and n required to distinguish independent
joint distributions, from those that are far from the nearest independent joint distribution (in term of `1 dis-
tance)? The lower bound claimed in [BFF+01], contains a known gap in the proof. Similar gaps in the lower
bounds of [BFR+10] for testing the closeness of distributions and of [BDKR05] for estimating the entropy
of a distribution were settled by the work of [Val08b], which applies to symmetric properties. Since inde-
pendence is not a symmetric property, the work of [Val08b] cannot be directly applied here. In this work, we
show that the lower bound of Ω(n2/3m1/3) indeed holds. Furthermore, by the aforementioned correction of
the upper bound of Õ(n2/3m1/3) from [BFF+01], we get nearly tight bounds on the complexity of testing
independence.

1.2 Other related work

Other works on testing and estimating properties of (single or pairs of) distributions include [Bat01, GMV09,
BKR04, RS04, AAK+07, RX10, BNNR09, ACS10, AIOR09].
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1.3 Open Problems and Further Research

There are several possible directions for further research on testing properties of collections of distributions,
and we next give a few examples. One natural extension of our results is to give algorithms for testing the
property of clusterability for k > 1 in the sampling model. One may also consider testing properties of
collections of distributions that are defined by certain measures of distributions, and may be less sensitive to
the exact form of the distributions. For example, a very basic measure is the mean (expected value) of the
distribution, when we view the domain [n] as integers instead of element names, or when we consider other
domains. Given this measure, we may consider testing whether the distributions all have similar means (or
whether they should be modified significantly so that this holds). It is not hard to verify that this property
can be quite easily tested in the query model by selecting Θ(1/ε) distributions uniformly and estimating the
mean of each. On the other hand, in the sampling model an Ω(

√
m) lower bound is quite immediate even

for n = 2 (and a constant ε). We are currently investigating whether the complexity of this problem (in the
sampling model) is in fact higher, and it would be interesting to consider other measures as well.

1.4 Organization

We start by providing notation and definitions in Section 2. In Section 3 we give the lower bound of
Ω(n2/3m1/3) for testing equivalence in the uniform sampling model, which is the main technical contribu-
tion of this paper. In Section 4 we give our second lower bound (of Ω(n1/2m1/2)) for testing equivalence
and our algorithms for the problem follow in Sections 5 and 6. We conclude with our algorithm for testing
clusterability in the query model in Section 7.

2 Preliminaries

Let [n] def= {1, . . . , n}, and let D = (D1, . . . , Dm) be a list of m distributions, where Di : [n] → [0, 1] and∑n
j=1 Di(j) = 1 for every 1 ≤ i ≤ m. For a vector v = (v1, . . . , vn) ∈ Rn, let ‖v‖1 =

∑n
i=1 |vi| denote

the `1 norm of the vector v.
For a property P of lists of distributions and 0 ≤ ε ≤ 1, we say that D is ε-far from (having) P if

1
m

∑m
i=1 ‖Di−D∗

i ‖1 > ε for every list D∗ = (D∗
1, . . . , D

∗
m) that has the property P (note that ‖Di−D∗

i ‖1
is twice the the statistical distance between the two distributions).

Given a distance parameter ε, a testing algorithm for a property P should distinguish between the case
that D has the property P and the case that it is ε-far from P . We consider two models within which this
task is performed.

1. The Query Model. In this model the testing algorithm may indicate an index 1 ≤ i ≤ m of its
choice and it gets a sample j distributed according to Di.

2. The Sampling Model. In this model the algorithm cannot select (“query”) a distribution of its
choice. Rather, it may obtain a pair (i, j) where i is selected uniformly (we refer to this as the
Uniform sampling model) and j is distributed according to Di.

We also consider a generalization in which there is an underlying weight vector w = (w1, . . . , wm)
(where

∑m
i=1 wi = 1), and the distribution Di is selected according to w. In this case the notion of

ε-far needs to be modified accordingly. Namely, we say that D is ε-far from P with respect to w if∑m
i=1 wi · ‖Di −D∗

i ‖1 > ε for every list D∗ = (D∗
1, . . . , D

∗
m) that has the property P .
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We consider two variants of this non-uniform model: The Known-Weights sampling model, in which
w is known to the algorithm, and the Unknown-Weights sampling model in which w is known.

A main focus of this work is on the following property. We shall say that a list D = (D1 . . . Dm) of m
distributions over [n] belongs to Peq

m,n (or has the property Peq
m,n) if Di = Di′ for all 1 ≤ i, i′ ≤ m.

3 A Lower Bound of Ω(n2/3m1/3) for Testing Equivalence in the Uniform
Sampling Model when n = Ω(m log m)

In this section we prove the following theorem:

Theorem 1 Any testing algorithm for the property Peq
m,n in the uniform sampling model for every ε ≤ 1/20

and for n > cm log m where c is some sufficiently large constant, requires Ω(n2/3m1/3) samples.

The proof of Theorem 1 consists of two parts. The first is a general theorem (Theorem 2) concerning
testing symmetric properties of lists of distributions. This theorem extends a lemma of Valiant [Val08b,
Lem. 4.5.4] (which leads to what Valiant refers to as the “Wishful Thinking Theorem”). The second part
is a construction of two lists of distributions to which Theorem 2 is applied. Our analysis uses a technique
called Poissonization [Szp01] (which was used in the past in the context of lower bounds for testing and
estimating properties of distributions in [RRSS09, Val08a, Val08b]), and hence we first introduce some
preliminaries concerning Poisson distributions. We later provide some intuition regarding the benefits of
Poissonization.

3.1 Preliminaries concerning Poisson distributions

For a positive real number λ, the Poisson distribution poi(λ) takes the value x ∈ N (where N =
{0, 1, 2, . . .}) with probability poi(x;λ) = e−λλx/x!. The expectation and variance of poi(λ) are both
λ. For λ1 and λ2 we shall use the following bound on the `1 distance between the corresponding Poisson
distributions (for a proof see for example [RRSS09, Claim A.2]):

‖poi(λ1)− poi(λ2)‖1 ≤ 2|λ1 − λ2| . (1)

For a vector ~λ = (λ1, . . . , λd) of positive real numbers, the corresponding multivariate Poisson dis-
tribution poi(~λ) is the product distribution poi(λ1) × . . . × poi(λd). That is, poi(~λ) assigns each vector
~x = x1 . . . , xd ∈ Nd the probability

∏d
i=1 poi(xi;λi).

We shall sometimes consider vectors ~λ whose coordinates are indexed by vectors ~a = (a1, . . . , am) ∈
Nm, and will use ~λ(~a) to denote the coordinate of ~λ that corresponds to ~a. Thus, poi(~λ(~a)) is a univariate
Poisson distribution. With a slight abuse of notation, for a subset I ⊆ [d] (or I ⊆ Nm), we let poi(~λ(I))
denote the multivariate Poisson distributions restricted to the coordinates of ~λ in I .

For any two d-dimensional vectors ~λ+ = (λ+
1 , . . . , λ+

d ) and ~λ− = (λ−1 , . . . , λ−d ) of positive real values,
we get from the proof of [Val08b, Lemma 4.5.3] that,

∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤

d∑
j=1

∥∥∥poi(λ+
j )− poi(λ−j )

∥∥∥
1

,

for our purposes we shall use the following generalized lemma.
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Lemma 1 For any two d-dimensional vectors ~λ+ = (λ+
1 , . . . , λ+

d ) and ~λ− = (λ−1 , . . . , λ−d ) of positive real
values, and for any partition {Ii}`i=1 of [d],

∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤
∑̀
i=1

∥∥∥poi(~λ+(Ii))− poi(~λ−(Ii))
∥∥∥

1
.

Proof: Let {Ii}`i=1 be a partition of [d], let~i denote (i1, . . . id), by the triangle inequality we have that for
every k ∈ [`],∣∣∣poi(~i ; ~λ+)− poi(~i ; ~λ−)

∣∣∣ =
∣∣∣ ∏

j∈[d]

poi(ij ;λ+
j )−

∏
j∈[d]

poi(ij ;λ−j )
∣∣∣

≤
∣∣∣ ∏

j∈[d]

poi(ij ;λ+
j )−

∏
j∈[d]\Ik

poi(ij ;λ+
j )
∏
j∈Ik

poi(ij ;λ−j )
∣∣∣

+
∣∣∣ ∏

j∈[d]\Ik

poi(ij ;λ+
j )
∏
j∈Ik

poi(ij ;λ−j )−
∏
j∈[d]

poi(ij ;λ−j )
∣∣∣ .

Hence, we obtain that∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
=

∑
~i∈Nd

∣∣∣poi(~i ; ~λ+)− poi(~i ; ~λ−)
∣∣∣

≤
∥∥∥poi(~λ+(Ik))− poi(~λ−(Ik))

∥∥∥
1

+
∥∥∥poi(~λ+([d] \ Ik))− poi(~λ−([d] \ Ik))

∥∥∥
1

.

Thus, the lemma follows by induction on `.
We shall also make use of the following Lemma.

Lemma 2 For any two d-dimensional vectors ~λ+ = (λ+
1 , . . . , λ+

d ) and ~λ− = (λ−1 , . . . , λ−d ) of positive real
values,

∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤ 2

√√√√2
d∑

j=1

(λ−j − λ+
j )2

λ−j
.

Proof: In order to prove the lemma we shall use the KL-divergence between distributions. Namely, for two
distributions p1 and p2 over a domain X , DKL(p1‖p2)

def=
∑

x∈X p1(x) · ln p1(x)
p2(x) . Let ~λ+ = (λ+

1 . . . , λ+
d ),

~λ− = (λ−1 . . . , λ−d ) and let~i denote (i1, . . . id). We have that

ln
poi(~i ; ~λ+)

poi(~i ; ~λ−)
=

d∑
j=1

ln
(

eλ−j −λ+
j

(
λ+

j /λ−j

)ij
)

=
d∑

j=1

(
(λ−j − λ+

j ) + ij · ln(λ+
j /λ−j )

)

≤
d∑

j=1

(
(λ−j − λ+

j ) + ij · (λ+
j /λ−j − 1)

)
,
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where in the last inequality we used the fact that lnx ≤ x− 1 for every x > 0. Therefore, we obtain that

DKL

(
poi(~λ+)‖poi(~λ−)

)
=

∑
~i∈Nd

poi(~i ; ~λ+) · ln poi(~i ; ~λ+)

poi(~i ; ~λ−)

≤
d∑

j=1

(
(λ−j − λ+

j ) + λ+
j · (λ

+
j /λ−j − 1)

)
(2)

=
d∑

j=1

(λ−j − λ+
j )2

λ−j
,

where in Equation (2) we used the facts that
∑

i∈N poi(i;λ) = 1 and
∑

i∈N poi(i;λ) · i = λ. The `1 distance
is related to the KL-divergence by ‖D −D′‖1 ≤ 2

√
2DKL (D‖D′) and thus we obtain the lemma.

The next lemma bounds the probability that a Poisson random variable is significantly smaller than its
expected value.

Lemma 3 Let X ∼ poi(λ), then,
Pr[X < λ/2] < (3/4)λ/4 .

Proof: Consider the matching between j and j + λ/2 for every j = 0, . . . , λ/2− 1. We consider the ratio
between poi(j;λ) and poi(j + λ/2;λ):

poi(j + λ/2;λ)
poi(j;λ)

=
e−λ · λj+λ/2/(j + λ/2)!

e−λ · λj/j!

=
λλ/2

(j + λ/2)(j + λ/2− 1) · · · (j + 1)

=
λ

j + λ/2
· λ

j + λ/2− 1
· · · λ

j + 1

≥ λ

λ− 1
· λ

λ− 2
· · · λ

λ/2

>

(
λ

(3/4)λ

)λ/4

= (4/3)λ/4

This implies that

Pr[X < λ/2] =
Pr[X < λ/2]

Pr[λ/2 ≤ X < λ]
· Pr[λ/2 ≤ X < λ]

<
Pr[X < λ/2]

Pr[λ/2 ≤ X < λ]

< (3/4)λ/4 ,

and the proof is completed.
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The next two notations will play an important technical role in our analysis. For a list of distributions
D = (D1 . . . Dm), an integer κ and a vector ~a = (a1, . . . , am) ∈ Nm, let

pD,κ(j;~a) def=
m∏

i=1

poi(ai;κ ·Di(j)) . (3)

That is, for a fixed choice of a domain element j ∈ [n], consider performing m independent trials, one for
each distribution Di, where in trial i we select a non-negative integer according to the Poisson distribution
poi(λ) for λ = κ ·Di(j). Then pD,κ(j;~a) is the probability of the joint event that we get an outcome of ai

in trial i, for each i ∈ [m]. Let ~λD,κ be a vector whose coordinates are indexed by all ~a ∈ Nm, such that

~λD,κ(~a) =
n∑

j=1

pD,κ(j;~a) . (4)

That is, ~λD,κ(~a) is the expected number of times we get the joint outcome (a1, . . . , am) if we perform the
probabilistic process defined above independently for every j ∈ [n].

3.2 Testability of symmetric properties of lists of distributions

In this subsection we prove the following theorem (which is used to prove Theorem 1).

Theorem 2 Let D+ and D− be two lists of m distributions over [n], all of whose frequencies are at most
δ

κ·m where κ is some positive integer and 0 < δ < 1. If∥∥∥poi
(
~λD

+,κ
)
− poi

(
~λD

−,κ
)∥∥∥

1
<

16
30
− 352δ

5
, (5)

then testing in the uniform sampling model any symmetric property of distributions such that D+ has the
property, while D− is Ω(1)-far from having the property requires Ω(κ ·m) samples.

A HIGH-LEVEL DISCUSSION OF THE PROOF OF THEOREM 2. For an element j ∈ [n] and a distribution
Di, i ∈ [m], let αi,j be the number of times the pair (i, j) appears in the sample (when the sample is selected
according to some sampling model). Thus (α1,j , . . . , αm,j) is the sample histogram of the element j. The
histogram of the elements’ histograms is called the fingerprint of the sample. That is, the fingerprint indi-
cates, for every ~a ∈ Nm, the number of elements j such that (α1,j , . . . , αm,j) = ~a. As shown in [BFR+10],
when testing symmetric properties of distributions, it can be assumed without loss of generality that the
testing algorithm is provided only with the fingerprint of the sample. Furthermore, since the number, n, of
elements is fixed, it suffices to give the tester the fingerprint of the sample without the ~0 = (0, . . . , 0) entry.

For example, consider the distributions D1 and D2 over {1, 2, 3} such that D1[j] = 1/3 for every
j ∈ {1, 2, 3}, D2[1] = D2[2] = 1/2 and D2[3] = 0. Assume that we sample (D1, D2) four times, according
to the uniform sampling model and we get the samples (1, 1), (2, 1), (2, 2), (1, 3), where the first coordinate
denotes the distribution, and the second coordinate denotes the element. Then the sample histogram of
element 1 is (1, 1) because 1 was selected once by D1 and once by D2. For the elements 2, 3 we have the
sample histograms (0, 1) and (1, 0), respectively. The fingerprint of the sample is (0, 1, 1, 0, 1, 0, 0, . . .) for
the following order of histograms: ((0, 0), (0, 1), (1, 0), (2, 0)(1, 1), (0, 2), (3, 0), . . .).

In order to prove Theorem 2, we would like to show that the distributions of the fingerprints when the
sample is generated according toD+ and when it is generated according toD− are similar, for a sample size
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that is below the lower bound stated in the theorem. For each choice of element j ∈ [n] and a distribution Di,
the number of times the sample (i, j) appears, i.e. αi,j , depends on the number of times the other samples
appear simply because the total number of samples is fixed. Furthermore, for each histogram ~a, the number
of elements with sample histogram identical to ~a is dependent on the number of times the other histograms
appear, because the number of samples is fixed. For instance, in the example above, if we know that we
have the histogram (0, 1) once and the histogram (1, 1) once, then we know that third histogram cannot be
(2, 0). In addition, it is dependent because the number of elements is fixed.

We thus see that the distribution of the fingerprints is rather difficult to analyze (and therefore it is
difficult to bound the statistical distance between two different such distributions). Therefore, we would like
to break as much of the above dependencies. To this end we define a slightly different process for generating
the samples that involves Poissonization [Szp01]. In the Poissonized process the number of samples we take
from each distribution Di, denoted by κ′i, is distributed according to the Poisson distribution. We prove that,
while the overall number of samples the Poissonized process takes is bigger just by a constant factor from
the uniform process, we get with very high probability that κ′i > κi, for every i, where κi is the number
of samples taken from Di. This implies that if we prove a lower bound for algorithms that receive samples
generated by the Poissonized process, then we obtain a related lower bound for algorithms that work in the
uniform sampling model.

As opposed to the process that takes a fixed number of samples according to the uniform sampling
model, the benefit of the Poissonized process is that the αi,j’s determined by this process are independent.
Therefore, the type of sample histogram that element j has is completely independent of the types of sample
histograms the other elements have. We get that the fingerprint distribution is a generalized multinomial
distribution, which has been studied by Roos [Roo99] (the connection is due to Valiant [Val08a]).

Definition 1 In the Poissonized uniform sampling model with parameter κ (which we’ll refer to as the
κ-Poissonized model), given a list D = (D1, . . . , Dm) of m distributions, a sample is generated as follows:

• Draw κ1, . . . , κm ← poi(κ)

• Return κi samples distributed according to Di for each i ∈ [m].

Lemma 4 Assume there exists a tester T in the uniform sampling model for a property P of lists of m
distributions, that takes a sample of size s = κm where κ ≥ c for some sufficiently large constant c, and
works for every ε ≥ ε0 where ε0 is a constant (and whose success probability is at least 2/3). Then there
exists a tester T ′ for P in the Poissonized uniform sampling model with parameter 4κ, that works for every
ε ≥ ε0 and whose success probability is at least 19

30 .

Proof: Roughly speaking, the tester T ′ tries to simulate T if it has a sufficiently large sample, and otherwise
it guesses the answer. More precisely, consider a tester T ′ that receives κ′ samples where κ′ ∼ poi(4κm).
By Lemma (3) we have that,

Pr
[
κ′ < κm

]
≤ (3/4)κm .

If κ′ ≥ κm then T ′ simulates T on the first κm samples that it got. Otherwise it outputs “accept” or “reject”
with equal probability.

The probability that κ′ ≥ κm is at least 1−(3/4)κm, which is greater than 4
5 for κ > c and a sufficiently

large constant c. Therefore, the success probability of T ′ is at least 4
5 ·

2
3 + 1

5 ·
1
2 = 19

30 , as desired.

Given Lemma 4 it suffices to consider samples that are generated in the Poissonized uniform sampling
model. The process for generating a sample {α1,j , . . . , αm,j}j∈[n] (recall that αi,j is the number of times
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that element j was selected by distribution Di) in the κ-Poissonized model is equivalent to the following
process: For each i ∈ [m] and j ∈ [n], independently select αi,j according to poi(κ · Di(j)) (see [Fel67,
p. 216]). Thus the probability of getting a particular histogram ~aj = (a1,j , . . . , am,j) for element j is
pD,κ(j;~aj) (as defined in Equation (3)). We can represent the event that the histogram of element j is ~aj

by a Bernoulli random vector ~bj that is indexed by all ~a ∈ Nm, is 1 in the coordinate corresponding to ~aj ,
and is 0 elsewhere. Given this representation, the fingerprint of the sample corresponds to

∑n
j=1

~bj . In fact,

we would like ~bj to be of finite dimension, so we have to consider only a finite number (sufficiently large)
of possible histograms. Under this relaxation,~bj = (0, . . . , 0) would correspond to the case that the sample
histogram of element j is not in the set of histograms we consider. Roos’s theorem, stated next, shows that
the distribution of the fingerprints can be approximated by a multivariate Poisson distribution (the Poisson
here is related to the fact that the fingerprints’ distributions are generalized multinomial distributions and
not related to the Poisson from the Poissonization process). For simplicity, the theorem is stated for vectors
~bj that are indexed directly, that is~bj = (bj,1, . . . , bj,h).

Theorem 3 ([Roo99]) Let DSn be the distribution of the sum Sn of n independent Bernoulli random vectors
~b1, . . . ,~bn in Rh where Pr

[
~bj = ~e`

]
= pj,` and Pr

[
~bj = (0, . . . , 0)

]
= 1 −

∑h
`=1 pj,` (here ~e` satisfies

ej,` = 1 and ej,`′ = 0 for every `′ 6= `). Suppose we define an h-dimensional vector ~λ = (λ1, . . . , λh) as
follows: λ` =

∑n
j=1 pj,`. Then

∥∥∥DSn − poi(~λ)
∥∥∥

1
≤ 88

5

h∑
`=1

∑n
j=1 p2

j,`∑n
j=1 pj,`

. (6)

We next show how to obtain a bound on sums of the form given in Equation (6) under appropriate
conditions.

Lemma 5 Given a list D = (D1, . . . , Dm) of m distributions over [n] and a real number 0 < δ ≤ 1/2
such that for all i ∈ [m] and for all j ∈ [n], Di(j) ≤ δ

m·κ for some integer κ, we have that

∑
~a∈Nm\~0

∑n
j=1 pD,κ(j;~a)2∑n
j=1 pD,κ(j;~a)

≤ 2δ . (7)

Proof: ∑
~a∈Nm\~0

∑n
j=1 pD,κ(j;~a)2∑n
j=1 pD,κ(j;~a)

≤
∑

~a∈Nm\~0

max
j

(
pD(j;~a)

)
=

∑
~a∈Nm\~0

max
j

(
m∏

i=1

poi(ai;κ ·Di(j))

)

≤
∑

~a∈Nm\~0

(
δ

m

)a1+...+am

≤
∞∑

a=1

ma

(
δ

m

)a

≤ 2δ , (8)
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where the inequality in Equation (8) holds for δ ≤ 1/2 and the inequality in Equation (8) follows from:

poi(a;κ ·Di(j)) =
e−κ·Di(j)(κ ·Di(j))a

a!
≤ (κ ·Di(j))a

≤
(

δ

m

)a

,

and the proof is completed.

Proof of Theorem 2: By the first premise of the theorem, D+
i (j), D+

i (j) ≤ δ
κm for every i ∈ [m] and

j ∈ [n]. By Lemma 5 this implies that Equation (7) holds both for D = D+ and for D = D−. Combining
this with Theorem 3 we get that the `1 distance between the fingerprint distribution when the sample is
generated according to D+ (in the κ-Poissonized model, see Definition 1) and the distribution poi

(
~λD

+,κ
)

is at most 88
5 ·2δ = 176

5 δ, and an analogous statement holds forD−. By applying the premise in Equation (5)

(concerning the `1 distance between poi
(
~λD

+,κ
)

and poi
(
~λD

−,κ
)

) and the triangle inequality, we get that

the `1 distance between the two fingerprint distributions is smaller than 2 · 176
5 δ + 16

30 −
352δ

5 = 16
30 , which

implies that the statistical difference is smaller than 8
30 , and thus it is not possible to distinguish betweenD+

and D− in the κ-Poissonized model with success probability at least 19
30 . By Lemma 4 we get the desired

result.

3.3 Proof of Theorem 1

In this subsection we show how to apply Theorem 2 to two lists of distributions, D+ and D−, which we will
define shortly, where D+ ∈ Peq = Peq

m,n while D− is (1/20)-far from Peq. Recall that by the premise of
Theorem 1, n ≥ cm log m for some sufficiently large constant c > 1. In the proof it will be convenient to
assume that m is even and that n (which corresponds in the lemma to 2t) is divisible by 4. It is not hard to
verify that it is possible to reduce the general case to this case. In order to define D−, we shall need the next
lemma.

Lemma 6 For every two even integers m and t, there exists a 0/1-valued matrix M with m rows and t
columns for which the following holds:

1. In each row and each column of M , exactly half of the elements are 1 and the other half are 0.

2. For every integer 2 ≤ x < m/2, and for every subset S ⊆ [m] of size x, the number of columns

j such that M [i, j] = 1 for every i ∈ S is at least t ·
(

1
2x

(
1− 2x2

m

)
−
√

2x ln m
t

)
, and at most

t ·
(

1
2x +

√
2x ln m

t

)
.

Proof: Consider selecting a matrix M randomly as follows: Denote the first t/2 columns of M by F . For
each column in F , pick, independently from the other t/2−1 columns in F , a random half of its elements to
be 1, and the other half of the elements to be 0. Columns t/2+1, . . . , t are the negations of rows 1, . . . , t/2,
respectively. Thus, in each row and each column of M , exactly half of the elements are 1 and the other half
are 0.

11



Consider a fixed choice of x. For each column j between 1 and t, each subset of columns S ⊆ [m] of
size x, and b ∈ {0, 1}, define the indicator random variable IS,j,b to be 1 if and only if M [i, j] = b for every
i ∈ S. Hence,

Pr[IS,j,b = 1] =
1
2
·
(

1
2
− 1

m

)
· . . . ·

(
1
2
− x− 1

m

)
.

Clearly, Pr[IS,j,b = 1] < 1
2x . On the other hand,

Pr[IS,j,b = 1] ≥
(

1
2
− x

m

)x

=
1
2x

(
1− 2x

m

)x

≥ 1
2x

(
1− 2x2

m

)
.

where the last inequality is due to Bernoulli’s inequality which states that (1 + x)n > 1 + nx, for every real
number x > −1 6= 0 and an integer n > 1 ([MV70]).

Let ES,b denote the expected value of
∑t/2

j=1 IS,j,b. From the fact that columns t/2 + 1, . . . , t are the

negations of columns 1, . . . , t/2 it follows that
∑t

j=t/2+1 IS,j,1 =
∑t/2

j=1 IS,j,0. Therefore, the expected
number of columns 1 ≤ j ≤ t such that M [i, j] = 1 for every i ∈ S is simply ES,1 + ES,0 (that is, at most

t · 1
2x and at least t · 1

2x

(
1− 2x2

m

)
). By the additive Chernoff bound,

Pr

[∣∣∣ t/2∑
j=1

IS,j,b − ES,b

∣∣∣ >√ tx lnm

2

]
< 2 exp(−2(t/2)(2x lnm)/t)

= 2m−2x .

Thus, by taking a union bound (over b ∈ {0, 1}),

Pr

[∣∣∣ t∑
j=1

IS,j,1 − (ES,1 + ES,0)
∣∣∣ > √2tx lnm

]
< 4m−2x .

By taking a union bound over all subsets S we get that M has the desired properties with probability greater
than 0.

We first define D+, in which all distributions are identical. Specifically, for each i ∈ [m]:

D+
i (j) def=


1

n2/3m1/3 if 1 ≤ j ≤ n2/3m1/3

2
1
n if n

2 < j ≤ n
0 o.w.

(9)

We now turn to defining D−. Let M be a matrix as in Lemma 6 for t = n/2. For every i ∈ [m]:

D−
i (j) def=


1

n2/3m1/3 if 1 ≤ j ≤ n2/3m1/3

2
2
n if n

2 < j ≤ n
and M [i, j − n/2] = 1

0 o.w.

(10)
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For both D+ and D−, we refer to the elements 1 ≤ j ≤ n2/3m1/3

2 as the heavy elements, and to the elements
n
2 ≤ j ≤ n, as the light elements. Observe that each heavy element has exactly the same probability weight,

1
n2/3m1/3 , in all distributions D+

i and D−
i . On the other hand, for each light element i, while D+

i (j) = 1
n

(for every i), in D− we have that D+
i (j) = 2

n for half of the distributions, the distributions selected by the
M , and D+

i (j) = 0 for half of the distributions, the distributions which are not selected by M . We later use
the properties of M to bound the `1 distance between the fingerprints’ distributions of D+ and D−.

A HIGH-LEVEL DISCUSSION. To gain some intuition before delving into the detailed proof, consider first
the special case that m = 2 (which was studied by Valiant [Val08a], and indeed the construction is the
same as the one he analyzes (and was initially proposed in [BFR+00])). In this case each heavy element has
probability weight Θ(1/n2/3) and we would like to establish a lower bound of Ω(n2/3) on the number of
samples required to distinguish between D+ and D−. That is, we would like to show that the corresponding
fingerprints’ distributions when the sample is of size o(n2/3) are very similar.

The first main observation is that since the probability weight of light elements is Θ(1/n) in bothD+ and
D−, the probability that a light element will appear more than twice in a sample of size o(n2/3) is very small.
That is (using the fingerprints of histograms notation we introduced previously), for each ~a = (a1, a2) such
that a1 +a2 > 2, the sample will not include (with high probability) any light element j such that α1,j = a1

and α2,j = a2 (for both D+ and D−). Moreover, for every x ∈ {1, 2}, the expected number of elements j
such that (α1,j , α2,j) = (x, 0) is the same in D+ and D−, as well as the variance (from symmetry, the same
applies to (0, x)). Thus, most of the difference between the fingerprints’ distributions is due to the numbers
of elements j such that (α1,j , α2,j) = (1, 1). For this setting we do expect to see a non-negligble difference
for light elements between D+ and D− (in particular, we cannot get the (1, 1) histogram for light elements
in D−, as opposed to D+).

Here is where the heavy elements come into play. Recall that in both D+ and D− the heavy elements
have the same probability weight, so that the expected number of heavy elements i such that (a1,j , a2,j) =
(1, 1) is the same forD+ andD−. However, intuitively, the variance of these numbers for the heavy elements
“swamps” the differences between the light elements so that it is not possible to distinguish between D+

andD−. The actual proof, which formalizes (and quantifies) this intuition, considers the difference between
the values of the vectors ~λD

+,k and ~λD
−,k (as defined in Equation (4)) in the coordinates corresponding to

~a such that a1 + a2 = 2. We can then apply Lemmas 1 and 2 to obtain Equation (5) in Theorem 2.
Turning to m > 2, it is no longer true that in a sample of size o(n2/3m1/3) we will not get histogram

vectors ~a such that
∑m

i=1 ai > 2 for light elements. Thus we have to deal with many more vectors ~a (of
dimension m) and to bound the total contribution of all of them to the difference between fingerprints ofD+

and ofD−. To this end we partition the set of all possible histograms’ vectors into several subsets according
to their Hamming weight

∑m
i=1 ai and depending on whether all a′is are in {0, 1}, or there exists a least one

ai such that ai ≥ 2. In particular, to deal with the former (whose number, for each choice of Hamming
weight x is relatively large, i.e., roughly mx), we use the properties of the matrix M based on which D−
is defined. We note that from the analysis we see that, similarly to when m = 2, we need the variance of
the heavy elements to play a role just for the cases where

∑m
i=1 ai = 2 while in the other cases the total

contribution of the light elements is rather small.
In the remainder of this section we provide the details of the analysis.

Before establishing that indeed D− is Ω(1)-far from Peq, we introduce some more notation (which will
be used throughout the remainder of the proof of Theorem 1). Let Sx be the set of vectors that contain
exactly x coordinates that are 1, and all the rest are 0 (which corresponds to an element that was sampled
once or 0 times by each distribution). Let Ax be the set of vector that their coordinates sum up to x but must
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contain at least one coordinate that is 2 (which corresponds to an element that was samples at least twice by
at least one distribution). More formally, for any integer x, we define the following two subsets of Nm:

Sx
def=
{

~a ∈ Nm :
∑m

i=1 ai = x and
∀i ∈ [m], ai < 2

}
,

and

Ax
def=
{

~a ∈ Nm :
∑m

i=1 ai = x and
∃i ∈ [m], ai ≥ 2

}
For ~a ∈ Nm, let sup(~a) def= {i : ai 6= 0} denote the support of ~a, and let

IM (~a) def=
{

j : D−
i (j) =

2
n
∀i ∈ sup(~a)

}
. (11)

Note that in terms of the matrix M (based on which D− is defined), IM (~a) consists of the columns in M
whose restriction to the support of ~a contains only 1’s. In terms of the D−, it corresponds to the set of light
elements that might have a sample histogram of ~a (when sampling according to D−).

Lemma 7 For every m > 5 and for n ≥ c lnm for some sufficiently large c, we have that
∑m

i=1 ‖D
−
i −

D∗‖1 > m/20 for every distribution D∗ over [n]. That is, the list D− is (1/20)-far from Peq.

Proof: Consider any ~a ∈ S2. By Lemma 6, setting t = n/2, the size of IM (~a), i.e. the number of light

elements ` such that D−
i [`] = 2

n for every i ∈ sup(~a), is at most n
2

(
1
4 +

√
8 ln m

n

)
. The same lower bound

holds for the number of light elements ` such that D−
i [`] = 0 for every i ∈ sup(~a). This implies that for

every i 6= i′ in [m], for at least n
2 − n

(
1
4 +

√
8 ln m

n

)
of the light elements, `, we have that D−

i [`] = 2
n

while D−
i′ [`] = 0, or that D−

i′ [`] = 2
n while D−

i [`] = 0 . Therefore, ‖D−
i −D−

i′ ‖1 ≥
1
2 − 2

√
8 ln m

n , which

for n ≥ c lnm and a sufficiently large constant c, is at least 1
8 . Thus, by the triangle inequality we have that

for every D∗,
∑m

i=1 ‖D
−
i −D∗‖1 ≥ bm2 c ·

1
8 , which greater than m/20 for m > 5.

In what follows we work towards establishing that Equation (5) in Theorem 2 holds forD+ andD−. Set
κ = δ · n2/3

m2/3 , where δ is a constant to be determined later. We shall use the shorthand ~λ+ for ~λD
+,κ, and ~λ−

for ~λD
−,κ (recall that the notation ~λD,κ was introduced in Equation (4)). By the definition of ~λ+, for each

~a ∈ Nm,

~λ+(~a) =
n∑

j=1

m∏
i=1

(κ ·D+
i (j))ai

eκ·D+
i (j) · ai!

=
n2/3m1/3/2∑

j=1

m∏
i=1

(δ/m)ai

eδ/m · ai!
+

n∑
j=n/2+1

m∏
i=1

(δ/(n1/3m2/3))ai

eδ/(n1/3m2/3) · ai!

=
n2/3m1/3

2eδ

m∏
i=1

(δ/m)ai

ai!
+

n

2eδ(m/n)1/3

m∏
i=1

(δ/(n1/3m2/3))ai

ai!
.

By the construction of M , for every light j,
∑m

i=1 D−
i (j) = 2

n ·
m
2 = m

n . Therefore,

~λ−(~a) =
n2/3m1/3

2eδ

m∏
i=1

(δ/m)ai

ai!
+

1
eδ(m/n)1/3

∑
j∈IM (~a)

m∏
i=1

(2δ/(n1/3m2/3))ai

ai!
.
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Hence, ~λ+(~a) and ~λ−(~a) differ only on the term which corresponds to the contribution of the light elements.
Equations (12) and (12) demonstrate why we choose M with the specific properties defined in Lemma 6.
First of all, in order for every D−

i to be a probability distribution, we want each row of M to sum up to
exactly n/2. We also want each column of M to sum up to exactly m/2, in order to get

∏m
i=1 e−κ·D+

i (j) =∏m
i=1 e−κ·D−

i (j). Finally, we would have liked |IM (~a)| ·
∏m

i=1 2ai to equal n/2 for every ~a. This would
imply that ~λ+(~a) and ~λ−(~a) are equal. As we show below, this is in fact true for every ~a ∈ S1. For vectors
~a ∈ Sx where x > 1, the second condition in Lemma 6 ensures that |IM (~a)| is sufficiently close to n

2 ·
1
2x .

This property of M is not necessary in order to bound the contribution of the vectors in Ax. The bound that
we give for those vectors is less tight, but since there are fewer such vectors, it suffices.

We start by considering the contribution to Equation (5) of histogram vectors ~a ∈ S1 (i.e., vectors of
the form (0, . . . , 0, 1, 0, . . . , 0)) which correspond to the number of elements that are sampled only by one
distribution, once. We prove that in the Poissonized uniform sampling model, for every ~a ∈ S1 the number
of elements with such sample histogram is distributed exactly the same in D+ and D−.

Lemma 8 ∑
~a∈S1

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1
= 0 .

Proof: For every ~a ∈ S1, the size of IM (~a) is n
4 , thus,

∑
j∈IM (~a)

m∏
i=1

(2δ/(n1/3m2/3))ai

ai!
=

n

2

m∏
i=1

(δ/(n1/3m2/3))ai

ai!
.

By Equations (12) and (12), it follows that
∣∣∣~λ+(~a)− ~λ−(~a)

∣∣∣ = 0 for every ~a ∈ S1. The lemma follows by
applying Equation (1).

We now turn to bounding the contribution to Equation (5) of histogram vectors ~a ∈ A2 (i.e., vectors of
the form (0, . . . , 0, 2, 0, . . . , 0) which correspond to the number of elements that are sampled only by one
distribution, twice.

Lemma 9 ∥∥∥poi(~λ+(A2))− poi(~λ−(A2))
∥∥∥

1
≤ 3δ .

Proof: For every ~a ∈ A2, the size of IM (~a) is n
4 , thus,

∑
j∈IM (~a)

m∏
i=1

(2δ/(n1/3m2/3))ai

ai!
= n

m∏
i=1

(δ/(n1/3m2/3))ai

ai!
. (12)

By Equations (12), (12) and (12) it follows that

~λ−(~a)− ~λ+(~a) =
n

2eδ(m/n)1/3

m∏
i=1

(δ/(n1/3m2/3))ai

ai!

=
n1/3δ2

4eδ(m/n)1/3
m4/3

, (13)
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and that

~λ−(~a) ≥ n2/3m1/3

2eδ

m∏
i=1

(δ/m)ai

ai!

=
n2/3δ2

4eδm5/3
. (14)

By Equations (13) and (14) we have that(
~λ−(~a)− ~λ+(~a)

)2

~λ−(~a)
≤ eδ−2δ(m/n)1/3

δ2

4m

≤ δ2

m
. (15)

By Equation (15) and the fact that |A2| = m we get

∑
~a∈A2

(
~λ−(~a)− ~λ+(~a)

)2

~λ−(~a)
≤ m · δ

2

m
= δ2

The lemma follows by applying Lemma 2.

Recall that for a subset I of Nm, poi(~λ(I)) denotes the multivariate Poisson distributions restricted to
the coordinates of ~λ that are indexed by the vectors in I . We separately deal with Sx where 2 ≤ x < m/2,
and x ≥ m/2, where our main efforts are with respect to the former, as the latter correspond to very low
probability events.

Lemma 10 For m ≥ 16, n ≥ cm lnm (where c is a sufficiently large constant) and for δ ≤ 1/16

∥∥∥poi(~λ+
(m/2⋃

x=2

Sx)
)
− poi(~λ−

(m/2⋃
x=2

Sx)
)∥∥∥

1
≤ 32δ .

Proof: Let ~a be a vector in Sx then by the definition of Sx, every coordinate of ~a is 0 or 1. Therefore we
make the following simplification of Equation (12): For each ~a ∈

⋃m/2−1
x=2 Sx,

~λ+(~a) =
n2/3m1/3

2eδ
·
(

δ

m

)x

+
n

2eδ(m/n)1/3
·
(

δ

n1/3m2/3

)x

.

By Lemma 6, for every ~a ∈
⋃m/2−1

x=2 Sx the size of IM (~a) is at most n
2 ·
(

1
2x +

√
4x ln m

n

)
and at least

n
2 ·
(

1
2x − 2x2

2xm −
√

4x ln m
n

)
. By Equation (12) this implies that

~λ−(~a) =
n2/3m1/3

2eδ
·
(

δ

m

)x

+
n

2eδ(m/n)1/3
·
(

1
2x

+ η

)(
2δ

n1/3m2/3

)x

,
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where −
(

2x2

2xm +
√

4x ln m
n

)
≤ η ≤

√
4x ln m

n and thus |η| ≤
√

x
m ·

(
2x2

2x
√

m
+
√

4m ln m
n

)
. By the facts

that n ≥ cm lnm for some sufficiently large constant c, and that 2x2

2x
√

m
≤ 1

2 for every 2 ≤ x < m/2 and

m ≥ 16, we obtain that |η| ≤
√

x
m . So we have that

(~λ+(~a)− ~λ−(~a))2 ≤
(

n

2eδ(m/n)1/3
·
(

2δ

n1/3m2/3

)x

·
√

x

m

)2

≤ n2

4
·
(

4δ2

n2/3m4/3

)x

· x

m
,

and that

~λ−(~a) ≥ n2/3m1/3

2eδ
·
(

δ

m

)x

,

Then we get, for δ ≤ 1/2, that(
~λ+(~a)− ~λ−(~a)

)2

~λ−(~a)
≤ eδn4/3

2m1/3
·
(

4δ

n2/3m1/3

)x

· x

m

≤ n4/3

m1/3
·
(

4δ

n2/3m1/3

)x

· x

m

≤ n4/3

m4/3
·

(
4x1/xδ

n2/3m1/3

)x

≤ n4/3

m4/3
·
(

8δ

n2/3m1/3

)x

.

Summing over all ~a ∈
⋃m/2−1

x=2 Sx we get:

∑
~a∈

Sm/2−1
x=2 Sx

(~λ−(~a)− ~λ+(~a))2

~λ−(~a)
≤

∞∑
x=2

n4/3

m4/3
·

(
8δm2/3

n2/3

)x

=
∞∑

x=0

64δ2 ·

(
8δm2/3

n2/3

)x

(16)

≤ 64δ2

1− 8δ

≤ 128δ2 (17)

where in Equation (16) we used the fact that n > m, and Equation (17) holds for δ ≤ 1/16. The lemma
follows by applying Lemma 2.

Lemma 11 For n ≥ m, m ≥ 12 and δ ≤ 1/4,∑
x≥m/2

∑
~a∈Sx

∥∥∥poi(~λ+(~a))− poi(~λ−(~a))
∥∥∥

1
≤ 32δ3 .

17



Proof: We first observe that |Sx| ≤ mx/x for every x ≥ 6. To see why this is true, observe that |Sx| equals
the number of possibilities of arranging x balls in m bins, i.e.,

|Sx| =
(

m + x− 1
x

)
≤ (m + x)x

x!
≤ (2m)x

x!
=

2x

(x− 1)!
· m

x

x
≤ mx

x
,

where we have used the premise that m ≥ 12 and thus x ≥ 6. By Equations (12) and (12) (and the fact that
|x− y| ≤ max{x, y} for every positive real numbers x,y),

∑
x≥m/2

∑
~a∈Sx

∣∣∣~λ+(~a)− ~λ−(~a)
∣∣∣ ≤ ∑

x≥m/2

∑
~a∈Sx

n

2

m∏
i=1

(
2δ

n1/3m2/3

)ai

=
∑

x≥m/2

∑
~a∈Sx

n

2

(
2δ

n1/3m2/3

)Pm
i=1 ai

≤
∞∑

x=m/2

mx

x
· n
2

(
2δ

n1/3m2/3

)x

≤
∞∑

x=m/2

2mx

m
· n
2

(
2δ

n1/3m2/3

)x

=
n

m

∞∑
x=m/2

(
2δm1/3

n1/3

)x

= 8δ3
∞∑

x=m/2−3

(
2δm1/3

n1/3

)x

≤ 8δ3

1− 2δ
(18)

≤ 16δ3 (19)

where in Equation (18) we used the fact that n ≥ m and Equation (19) holds for δ ≤ 1/4. The lemma
follows by applying Equation (1).

We finally turn to the contribution of ~a ∈ Ax such that x ≥ 3.

Lemma 12 For n ≥ m and δ ≤ 1/4,∑
x≥3

∑
~a∈Ax

∥∥∥poi(~λ+(~a))− poi(~λ−(~a))
∥∥∥

1
≤ 16δ3 .

Proof: We first observe that |Ax| ≤ mx−1 for every x. To see why this is true, observe that |Ax| equals
the number of possibilities of arranging x− 1 balls, where one ball is a “special” (“double”) ball in m bins.
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By Equations (12) and (12) (and the fact that |x− y| ≤ max{x, y} for every positive real numbers x,y),

∑
x≥3

∑
~a∈Ax

∣∣∣~λ+(~a)− ~λ−(~a)
∣∣∣ ≤ ∑

x≥3

∑
~a∈Ax

n

2

m∏
i=1

(
2δ

n1/3m2/3

)ai

=
∑
x≥3

∑
~a∈Ax

n

2

(
2δ

n1/3m2/3

)Pm
i=1 ai

≤
∞∑

x=3

mx−1 · n
2

(
2δ

n1/3m2/3

)x

=
n

2m

∞∑
x=3

(
2δm1/3

n1/3

)x

= 4δ3
∞∑

x=0

(
2δm1/3

n1/3

)x

≤ 4δ3

1− 2δ
(20)

≤ 8δ3 (21)

where in Equation (20) we used the fact that n ≥ m and Equation (21) holds for δ ≤ 1/4. The lemma
follows by applying Equation (1).

We are now ready to finalize the proof of Theorem 1.
Proof of Theorem 1: Let D+ and D− be as defined in Equations (9) and (10), respectively, and recall
that κ = δ · n2/3

m2/3 (where δ will be set subsequently). By the definition of the distributions in D+ and D−,
the probability weight assigned to each element is at most 1

n2/3m1/3 = δ
κ·m , as required by Theorem 2. By

Lemma 7, D− is (1/20)-far from Peq. Therefore, it remains to establish that Equation (5) holds for D+ and
D−. Consider the following partition of Nm:{~a}~a∈S1 , A2,

m/2⋃
x=2

Sx, {~a}~a∈S
x≥m/2 Sx

, {~a}~a∈S
x≥3 Ax

 ,

where {~a}~a∈T denotes the list of all singletons of elements in T . By Lemma 1 it follows that∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤

∑
~a∈S1

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1

+
∥∥∥poi(~λ+(A2)− poi(~λ−(A2))

∥∥∥
1

+
∥∥∥poi(~λ+(

m/2⋃
x=2

Sx))− poi(~λ−(
m/2⋃
x=2

Sx))
∥∥∥

1

+
∑

x≥m/2

∑
~a∈Sx

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1

+
∑
x≥3

∑
~a∈Ax

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1
.
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For δ < 1/16 we get by Lemmas 8–12 that∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1
≤ 35δ + 48δ3 ,

which is less than 16
30 −

352δ
5 for δ = 1/200.

3.4 A lower bound for testing Independence

Corollary 4 Given a joint distribution Q over [m] × [n] impossible to test if Q is independent or 1/48-far
from independent using o(n2/3m1/3) samples.

Proof: Follows directly from Lemma 15 and Theorem 1.

4 A Lower Bound of Ω(n1/2m1/2) for Testing Equivalence in the Uniform
Sampling Model

In this section we prove the following theorem:

Theorem 5 Testing the property Peq
m,n in the uniform sampling model for every ε ≤ 1/2 and m ≥ 64

requires Ω(n1/2m1/2) samples.

We assume without loss of generality that n is even (or else, we set the probability weight of the element
n to 0 in all distributions considered, and work with n − 1 that is even). Define Hn to be the set of all
distributions over [n] that have probability 2

n on exactly half of the elements and 0 on the other half. Define
Hm

n to be the set of all possible lists of m distributions from Hn. Define Um
n to consist of only a single

list of m distributions each of which is identical to Un, where Un denotes the uniform distribution over [n].
Thus the single list in Um

n belongs to Peq
m,n. On the other hand we show, in Lemma 13, that Hm

n contains
mostly lists of distributions that are Ω(1)-far from Peq

m,n. However, we also show, in Lemma 14, that any
tester in the uniform sampling model that takes less than n1/2m1/2/6 samples cannot distinguish between
D that was uniformly drawn fromHm

n and D = (Un, . . . , Un) ∈ Um
n . Details follow.

Lemma 13 For every m ≥ 3, with probability at least
(
1− 2√

m

)
over the choice of D ∈ Hm

n we have that

D is (1/2)-far from Peq
m,n.

Proof: We need to prove that with probability at least
(
1− 2√

m

)
over the choice of D ∈ Hm

n , for every

v = (v1, . . . , vn) ∈ Rn which corresponds to a distribution (i.e., vj ≥ 0 for every j ∈ [n] and
∑n

j=1 vj = 1),

1
m

m∑
i=1

‖Di − v‖1 >
1
2

. (22)

We shall actually prove a slightly more general statement. Namely, that Equation (22) holds for every vector
v ∈ Rn. We define the function, medD : [n] → [0, 1], such that medD(j) = µ 1

2
(D1(j), . . . , Dm(j)),

where µ 1
2
(x1, . . . , xm) denotes the median of x1, . . . , xm (where if m is even, it is the value in position m

2
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in sorted non-decreasing order). The sum
∑m

i=1 |xi−c| is minimized when c = µ 1
2
(x1, . . . , xm). Therefore,

for every D and every vector v ∈ Rn,

m∑
i=1

∥∥Di −medD
∥∥

1
≤

m∑
i=1

‖Di − v‖1 . (23)

Recall that for every D = (D1, . . . , Dm) in Hm
n , and for each (i, j) ∈ [m] × [n], we have that either

Di(j) = 2
n , or Di(j) = 0. Thus, medD(j) = 0 when Di(j) = 0 for at least half of the i’s in [m] and

medD(j) = 2
n otherwise. We next show that for every (i, j) ∈ [m]× [n], the probability over D ∈ Hm

n that
Di(j) will have the same value as medD(j) is at most a bit bigger than half. More precisely, we show that
for every (i, j) ∈ [m]× [n]:

PrD∈Hm
n

[
Di(j) 6= medD(j)

]
≥ 1

2

(
1− 1√

m

)
. (24)

Fix (i, j) ∈ [m]× [n], and consider selecting D uniformly at random fromHm
n . Suppose we first determine

the values Di′(j) for i′ 6= i, and set Di(j) in the end. For each (i′, j) the probability that Di′(j) = 0 is 1/2,
and the probability that Di′(j) = 2

n is 1/2. If more than m/2 of the outcomes are 0, or more than m/2 are
2
n , then the value of medD(j) is already determined. Conditioned on this we have that the probability that
Di(j) 6= medD(j) is exactly 1/2. On the other hand, if at most m/2 are 0 and at most m/2 are 2

n (that is,
for odd m there are (m − 1)/2 that are 0 and (m − 1)/2 that are 2

n , and for even m there are m/2 of one
kind and (m/2)− 1 of the other) then necessarily medD(j) = Di(j). We thus bound the probability of this
event. First consider the case that m is odd (so that m− 1 is even).

Pr
[
Bin

(
m,

1
2

)
=

m

2

]
=
(

m
m
2

)
· 1
2m

=
m!

m
2 !m

2 !
· 1
2m

. (25)

By Stirling’s approximation, m! =
√

2πm
(

m
e

)m
eλm , where λm is a parameter that satisfies 1

12m+1 <

λm < 1
12m , thus,

m!
m
2 !m

2 !
· 1
2m

<

√
2πm(m

e )me
1

12m

(
√

2πm/2(m/2
e )m/2e

1
12m/2+1 )2

· 1
2m

(26)

=
e

1
12m

− 2
6m+1√

πm/2
(27)

<
1√

πm/2
(28)

≤ 1√
m

, (29)

where Inequalities (28) and (29) hold for m ≥ 3. In case m is even, the probability (over the choice of Di′(j)
for i′ 6= i) that medD(j) is determined by Di(j) is Pr

[
Bin

(
m, 1

2

)
= m+1

2

]
≤ Pr

[
Bin

(
m, 1

2

)
= m

2

]
.
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Hence, Equation (24) holds for all m and we obtain the following bound on the expectation

ED∈Hm
n

[
m∑

i=1

∥∥Di −medD
∥∥

1

]
=

m∑
i=1

n∑
j=1

ED∈Hm
n

[∣∣Di(j)−medD(j)
∣∣] (30)

= m · n · PrD∈Hm
n

[
Dj(i) 6= medD(i)

]
· 2
n

(31)

≥ m · n · 1
2

(
1− 1√

m

)
· 2
n

(32)

= m−
√

m , (33)

while the maximum value is bounded as
m∑

i=1

∥∥Di −medD
∥∥

1
=

m∑
i=1

n∑
j=1

∣∣Di(j)−medD(j)
∣∣ (34)

≤
n∑

j=1

m

2
2
n

(35)

= m . (36)

Assume for the sake of contradiction that

PrD∈Hm
n

[
m∑

i=1

∥∥Di −medD
∥∥

1
≤ m/2

]
>

2√
m

, (37)

then by Equation (36) we have,

ED∈Hm
n

[
m∑

i=1

∥∥Di −medD
∥∥

1

]
<

2√
m
· m

2
+
(

1− 2√
m

)
·m (38)

= m−
√

m , (39)

which contradicts Equation (33).
Recall that for an element j ∈ [n] and a distribution Di, i ∈ [m], we let ai,j denote the number of times

the pair (i, j) appears in the sample (when the sample is selected in the uniform sampling model). Thus
(a1,j , . . . , am,j) is the sample histogram of the element j. Since the sample points are selected indepen-
dently, a sample is simply the union of the histograms of the different elements, or equivalently, a matrix M
in Nm×n.

Lemma 14 Let U be the distribution of the histogram of q samples taken from the uniform distribution over
[m]×[n], and letH be the distribution of the histogram of q samples taken from a random list of distributions
inHm

n . Then,

‖U −H‖1 ≤
4q2

mn
. (40)

Proof: For every matrix M ∈ Nm×n, let AM be the event of getting the histogram M i.e. M [i, j] = x if
element j is chosen exactly x times from distribution Di in the sample; For every ~x = (x1, . . . , xm) ∈ Nm,
let B~x be the event of getting a histogram M with exactly xi samples from distribution Di i.e., such that
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for every i ∈ [m],
∑

j∈[n] M [i, j] = xi; Let C be the event of getting a histogram M such that there exists
(i, j) ∈ [m] × [n] such that M [i, j] ≥ 2; Let V = {B~x : PrH

(
B~x ∩ C

)
> 0} (where C denotes the event

complementary to C). Recall that if we take strictly less than n/2 samples then conditioned on the event
that there are no collisions in the sample, a sample from Un and a sample from a random distribution inHn

are distributed exactly the same. This simple observation is not true for samples fromH and U , and instead
we use the following, more subtle, observation: For every B~x ∈ V , given the occurrence of B~x ∩ C, i.e.,
given the histogram projected on the first coordinate and given that there were no collisions, samples from
H and U are distributed the same. We shall use this fact in order to bound the statistical distance betweenH
and U . We next formalize this.

‖U −H‖1 =
∑

AM⊆C

|PrU (AM )− PrH (AM )|+
∑

AM⊆C

|PrU (AM )− PrH (AM )| (41)

≤ PrU (C) + PrH (C) +
∑

AM⊆C

|PrU (AM )− PrH (AM )| . (42)

We start by bounding the third term in Equation (42).∑
AM⊆C

|PrU (AM )− PrH (AM )| =
∑
B~x

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| (43)

=
∑

B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| (44)

+
∑

B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| . . (45)

We next bound the expression in Equation (44).∑
B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )|

=
∑

B~x∈V

PrU (B~x)
∑

AM⊆B~x∩C

PrU
(
AM |B~x ∩ C

)
·
∣∣PrU

(
C|B~x

)
− PrH

(
C|B~x

)∣∣ (46)

=
∑

B~x∈V

PrU (B~x)
∣∣PrU

(
C|B~x

)
− PrH

(
C|B~x

)∣∣ (47)

=
∑

B~x∈V

PrU (B~x) |(1− PrU (C|B~x))− (1− PrH (C|B~x))| (48)

=
∑

B~x∈V

PrU (B~x) |PrU (C|B~x)− PrH (C|B~x)| (49)

≤ PrU (C) + PrH (C) , (50)
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where in Equation (46) we used the fact that for every B~x ∈ V,M ∈ Nm×n, PrU (B~x) = PrH (B~x) and
PrU

(
AM |B~x ∩ C

)
= PrH

(
AM |B~x ∩ C

)
. Turning to the expression in Equation (45),∑

B~x∈V

∑
AM⊆B~x∩C

|PrU (AM )− PrH (AM )| =
∑

B~x∈V

∑
AM⊆B~x∩C

PrU (AM ) (51)

≤
∑

B~x∈V

PrU (B~x) (52)

=
∑

B~x∈V

PrH(B~x) (53)

=
∑

B~x∈V

PrH(B~x ∩ C) (54)

≤ PrH(C) , (55)

where the first equality follows from the fact that B~x ∈ V , hence by the definition of V we get that
PrH (AM ) = 0. We thus obtain that ‖U −H‖1 ≤ 2PrU (C) + 3PrH(C). If we take q uniform inde-
pendent samples from [`], then by a union bound over the q samples, the probability to get a collision is at
most 1

` + 2
` + . . .+ q−1

` which is q2

2` . Thus, 2PrU (C)+3PrH (C) ≤ 2 · q2

2mn +3 · q2

mn = 4q2

mn , and the lemma
follows.

Proof of Theorem 5: Assume there is a tester, T , for the property Peq
m,n in the uniform sampling model,

which takes q ≤ m1/2n1/2/6 samples. By Lemma 13,

PrD∈Hm
n

[A accepts D] ≤ 2√
m
· 1 +

(
1− 2√

m

)
· 1
3

(56)

=
1
3

(
1 +

4√
m

)
(57)

≤ 1
2

, (58)

where the last inequality holds for m ≥ 64. By Lemma 14, for q ≤ m1/2n1/2/6, 1
2 ‖U −H‖1 ≤

1
18 , while

by Equation (58),
(
PrD∈Um

n
[A accepts D]− PrD∈Hm

n
[A accepts D]

)
≥ 2

3 −
1
2 > 1

18 .

5 Algorithms for Testing Equivalence in the Sampling Model

In this section we state our two main theorems (Theorems 6 and 7) regarding testing Equivalence in the
sampling model. We prove Theorem 6 in this section. In Section 6 we prove a stronger version of Theorem 7
(Theorem 14) as well as a stronger version of Theorem 6 (Theorem 15). We have chosen to bring the proof
of Theorem 6, in addition to the proof of Theorem 15, because it is simpler than the latter.

Theorem 6 Let D be a list of m distributions over [n]. It is possible to test whether D ∈ Peq in the
unknown-weights sampling model using a sample of size Õ((n2/3m1/3 + m) · poly(1/ε)).

Theorem 7 Let D be a list of m distributions over [n]. It is possible to test whether D ∈ Peq in the
known-weights sampling model using a sample of size Õ((n1/2m1/2 + n) · poly(1/ε)).
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Thus, when the weight vector ~w is known, and in particular when all weights are equal (the uniform
sampling model) we get a combined upper bound of Õ(min{n2/3m1/3 + m,n1/2m1/2 + n} · poly(1/ε)).
Namely, as long as n ≥ m the complexity (in terms of the dependence on n and m) grows as Õ(n2/3m1/3),
and when m ≥ n it grows as Õ(n1/2m1/2).

In order to prove Theorem 6 we shall consider a (related) property of joint distributions over [m]× [n].
Specifically, we are interested in determining whether a distribution Q over [m]×[n] is a product distribution
Q1×Q2, where Q1 is a distribution over [m] and Q2 is a distribution over [n] (i.e., Q(i, j) = Q1(i) ·Q2(j)
for every (i, j) ∈ [m] × [n]). In other words, if we denote by π1Q the marginal distribution according to
Q of the first coordinate, i, and by π2Q the marginal distribution of the second coordinate, j, then we ask
whether π1Q and π2Q are independent. With a slight abuse of the terminology, we shall say in such a case
that Q is independent.

As we observe in Lemma 15, the problem of testing independence of a joint distribution and the problem
of testing equivalence of a list of distributions in the (not necessarily uniform) sampling model, are closely
related. In the proof of the lemma we shall use the following proposition.

Proposition 8 ([BFF+01]) Let p,q be distributions over [m]×[n]. If ‖p−q‖1 ≤ ε/3 and q is independent,
then ‖p− π1p× π2p‖1 ≤ ε.

Lemma 15 If there exists an algorithm T for testing whether a joint distribution Q over [m]× [n] is inde-
pendent using a sample of size s(m,n, ε), then there exists an algorithm T ′ for testing whether D ∈ Peq in
the unknown-weights sampling model using a sample of size s(m,n, ε/3).

If T is provided with (and uses) an explicit description of the marginal distribution π1Q, then the claim
holds for T ′ in the known-weights sampling model.

Proof: Given a sample {(i`, j`)}s`=1(m,n, ε/3) generated according to D in the sampling model with a
weight vector ~w = (w1, . . . , wm), the algorithm T ′ simply runs T on the sample and returns the answer that
T gives. If ~w is known, then T ′ provides T with ~w (as the marginal distribution of i). If D1, . . . , Dm are
identical and equal to some D∗, then for each (i, j) ∈ [m]× [n] we have that the probability of getting (i, j)
in the sample is wi ·D∗(j). That is, the joint distribution of the first and second coordinates is independent
and therefore T (and hence T ′) accepts with probability at least 2/3.

On the other hand, suppose that D is ε-far from Peq, that is,
∑m

i=1 wj · ‖Di −D∗‖1 > ε for every
distribution, D∗ over [n]. In such a case, in particular we have that

∑m
i=1 wi ·

∥∥Di −D
∥∥

1
> ε, where D is

the distribution over [n] such that D(j) =
∑m

i=1 wi ·Di(j). By Proposition 8, the joint distribution Q over i
and j (determined by the list D and the sampling process) is ε/3-far from independent, so T (and hence T ′)
rejects with probability greater than 2/3.

5.1 Proof of Theorem 6

By Lemma 15, in order to prove Theorem 6 it suffices to design an algorithm for testing independence of
a joint distribution (with the complexity stated in the theorem). Indeed, testing independence was studied
in [BFF+01]. However, there was a certain flaw in one of the claims on which their analysis built (Theorem
15 in [BFF+01], which is attributed to [BFR+00]), and hence we fix the flaw next (building on [BFR+10],
which is the full version of [BFR+00]).

Given a sampling access to a pair of distributions p and q and bounds on their `∞-norm bp and bq,
respectively, the algorithm Bounded-`∞-Closeness-Test (Algorithm 1 in Figure 1) tests the closeness of p
and q. The sample complexity of the algorithm depends on bp and bq, as described in the next theorem.
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For a multiset of sample points F over a domain R and an element i ∈ R, let occ(j, F ) de-
note the number of times that j appears in the sample F and define the collision count of F to be
coll(F ) def=

∑
j∈R

(
occ(j,F )

2

)
.

Theorem 9 Let p and q be two distributions over the same finite domain R. Suppose that ‖p‖∞ ≤ bp
and ‖q‖∞ ≤ bq where bq ≥ bp. For every ε ≤ 1/4 , Algorithm Bounded-`∞-Closeness-Test
(p,q, bp, bq, |R|, ε) is such that:

1. If ‖p− q‖1 ≤ ε/(2|R|1/2), then the test accepts with probability at least 2/3.

2. If ‖p− q‖1 > ε, then the test rejects with probability at least 2/3.

The algorithm takes O
(
|R| · b1/2

p /ε2 + |R|2 · bq · bp/ε4
)

sample points from each distribution.

Proof: Following the analysis of [BFR+00, Lemma 5], we have that:

Algorithm 1: Bounded-`∞-Closeness-Test
Input: p, q, bp, bq, |R|, ε

1 Take samples F 1
p and F 2

p from p, each of size t, where t = O
(
|R| · b1/2

p /ε2 + |R|2 · bq · bp/ε4
)

;

2 Take samples F 2
q and F 2

q from q, each of size t;
/* rp is the the number of self collisions in F 1

p. */

3 Let rp = coll(F 1
p);

/* rq is the the number of self collisions in F 1
q. */

4 Let rq = coll(F 1
q);

/* sp,q is the number of collisions between F 2
p and F 2

q. */

5 Let sp,q =
∑

j∈R(occ(j, F 2
p) · occ(j, F 2

q));

6 Define r
def= 2t

t−1(rp + rq);

7 Define s
def= 2sp,q;

8 if rq > (7/4)
(

t
2

)
bp then output REJECT ;

9 Define δ
def= ε/|R|1/2;

10 if r − s > t2δ2/2 then output REJECT ;
11 output ACCEPT ;

Figure 1: The algorithm for testing `1 distance when `∞ is bounded

Exp[r − s] = t2‖p− q‖22 , (59)

and we have the following bounds on the variances of rp, rq and s (for some constant c):

Var[s] ≤ ct2
∑
`∈R

p(`)q(`) + ct3
∑
`∈R

(p(`)q(`)2 + p(`)2q(`)) , (60)

Var[rp] ≤ ct2
∑
`∈R

p(`)2 + ct3
∑
`∈R

p(`)3 , (61)
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and
Var[rq] ≤ ct2

∑
`∈R

q(`)2 + ct3
∑
`∈R

q(`)3 . (62)

Using the bounds we have on the `∞ norms of p and q we get (possibly for a larger constant c):

Var[s] ≤ ct2‖p‖∞ + ct3(‖p‖∞‖q‖22 + ‖p‖2∞) ≤ ct2bp + ct3(bp‖q‖22 + b2
p) , (63)

Var[rp] ≤ ct2‖p‖22 + ct3‖p‖∞‖p‖22 ≤ ct2‖p‖∞ + ct3‖p‖2∞ ≤ ct2bp + ct3b2
p , (64)

and
Var[rq] ≤ ct2‖q‖22 + ct3‖q‖∞‖q‖22 ≤ ct2‖q‖22 + ct3bq‖q‖22 . (65)

By Equations (63) and (65), a tighter bound on ‖q‖22 will imply a tighter bound on Var[s] and Var[rq].
To this end, the check in Step 8 in the algorithm was added to the original `2-Distance-Test of [BFR+00].
This check is beneficial in achieving a tighter bound on the sample complexity. First, prove that the tester
distinguishes with high constant probability between the case that ‖q‖22 > 2bp and the case that ‖q‖22 ≤
(3/2)bp by rejecting (with high probability) when rq > (7/4)

(
t
2

)
bp. Notice that by the triangle inequality

‖p − q‖2 ≥ ‖q‖2 − ‖p‖2 . Thus, if ‖q‖22 > (3/2)bp and ‖p‖22 ≤ bp then it follows that ‖p − q‖2 ≥√
(3/2)b1/2

p − b
1/2
p . Therefore, by the fact that bp ≥ 1/|R|, we obtain that ‖p − q‖1 ≥ ‖p − q‖2 ≥(√

(3/2)− 1
)

/|R|1/2 which is greater than ε/(2|R|1/2) for ε ≤ 1/4. Consider first the case that ‖q‖22 >

2bp, so that Exp[rq] > 2
(

t
2

)
bp. Then we can bound the probability that the tester accepts, that is, that

rq ≤ (7/4)
(

t
2

)
bp, by the probability that rq < (7/8)Exp[rq]. In the case that ‖q‖22 ≤ (3/2)bp, so that

Exp[rq] ≤ (3/2)
(

t
2

)
bp, we can bound the probability that the tester rejects, that is, that rq > (7/4)

(
t
2

)
bp,

by the probability that rq > (7/6)Exp[rq]. Then the probability to accept when ‖q‖22 > 2bp and reject
when ‖q‖22 ≤ bp is upper bounded by Pr[|rq − Exp[rq]| > Exp[rq]/8]. Now, using the upper bound on the
variance of rq that we have (the first bound in Equation (65)), the fact that for every distribution q over R,
‖q‖22 ≤ 1/|R| and Exp[rq] =

(
t
2

)
‖q‖22, we have that

Pr[|rq − Exp[rq]| > Exp[rq]/8] ≤ 64Var[rq]
Exp2[rq]

(66)

≤ c · (t2‖q‖22 + t3‖q‖∞‖q‖22)
t4‖q‖42

(67)

=
c

t2‖q‖22
+

c‖q‖∞
t‖q‖22

(68)

≤ c|R|
t2

+
c|R|‖q‖∞

t
, (69)

To make this a small constant, we choose t so that:

t = Ω
(
|R|1/2 + |R|bq

)
. (70)

Next, we prove that the tester distinguishes between the case that ‖p − q‖2 > δ and ‖p − q‖2 ≤ δ/2
by rejecting when r − s > t2δ2/2. We have that Exp[r − s] = t2‖p − q‖22. Chebyshev gives us that
Pr[|A − Exp[A]| > ρ] ≤ Var[A]/ρ2, and so, for the case ‖p − q‖2 > δ (i.e. Exp[r − s] > t2δ2) we have
that

Pr[r − s < t2δ2/2] ≤ Pr[|(r − s)− Exp[r − s]| < t2δ2/2] (71)

≤ 4Var[r − s]
t4δ4

, (72)
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and similarly, for the case ‖p− q‖2 ≤ δ/2 (i.e. Exp[r − s] ≤ t2δ2/4) we have that

Pr[r − s ≥ t2δ2/2] ≤ Pr[|(r − s)− Exp[r − s]| < t2δ2/4] (73)

≤ 16Var[r − s]
t4δ4

. (74)

That is, we want Var[r−s]
t4δ4 which is of the order of Var[r−s]·|R|2

t4ε4
to be a small constant. If we use Var[r −

s] = 4t2

(t−1)2
(Var[rp] + Var[rq]) + Var[s], then we need to ensure that each of Var[rp]·|R|2

t4ε4
, Var[rq]·|R|2

t4ε4
and

Var[s]·|R|2
t4ε4

is a small constant, which by Equations (63), (64), (65), and the premise that ‖q‖22 ≤ 2bp, holds
when

t = Ω
(
|R| · b1/2

p /ε2 + |R|2 · bq · bp/ε4
)

, (75)

since both bp, bq ≥ 1/|R|, this dominates the sample complexity.

As a corollary of Theorem 9 we obtain:

Theorem 10 Let Q be a distribution over [m] × [n] such that Q satisfies: ‖π1Q‖∞ ≤ b1, ‖π2Q‖∞ ≤ b2

and b2 ≤ b1. There is a test that takes O(nmb
1/2
1 b

1/2
2 /ε2 + n2m2b1b

2
2/ε4) samples from Q, such that if Q is

independent, then the test accepts with probability at least 2/3 and if Q is ε-far from independent, then the
test rejects with probability at least 2/3.

Proof: By the premise of the theorem we have that ‖Q‖∞ ≤ b2 and that ‖π1Q× π2Q‖∞ ≤ b1·b2. Applying
Theorem 9 we can test if Q is identical to π1Q×π2Q using sample of size O(nmb

1/2
1 b

1/2
2 /ε2+n2m2b1b

2
2/ε4)

from1 Q. If Q is independent, then Q equals π1Q × π2Q and the tester accepts with probability at least
2/3. If Q is ε-far from independent, then in particular Q is ε-far from π1Q× π2Q and the tester rejects with
probability at least 2/3.

Applying Theorem 10 with b1 = 1/m, b2 = 1/n2/3m1/3, and combining that in the sample analysis of the
procedure TestLightIndependence [BFF+01], the following theorem is obtained:

Theorem 11 ( [BFF+01]) There is an algorithm that given a distribution Q over [m]× [n] and an ε > 0,

• If Q is independent then the test accepts with high probability.

• If Q is ε-far from independent then the test rejects with high probability.

The algorithm uses Õ((n2/3m1/3 + m)poly(ε−1)) samples.

Finally, Theorem 6 follows by combining Theorem 11 with Lemma 15.

6 Algorithms for Tolerant Testing of Equivalence in the Sampling Model

Given a list of distributions D, a tolerant equivalence tester is guaranteed to accept, with high probability,
if the distributions in D are close (and not necessarily identical), and reject D, with high probability, if
the distributions in D are far. In this section we prove Theorems 14 and 15. Theorem 14 states that
there is a tolerant equivalence tester taking Õ(n1/2m1/2 + n) samples in the known-weights sampling
model. Theorem 15 states that there is a tolerant equivalence tester taking Õ(n2/3m1/3 + m) samples
in the unknown-weights sampling model. A tolerant equivalence tester is also a non-tolerant equivalence
tester, so Theorems 14 and 15 are stronger versions of Theorems 7 and 6, respectively.

1We obtain a sample from π1Q×π2Q by simply taking two independent samples from Q, (i1, j1) and (i2, j2) and considering
(i1, j2) as a sample from π1Q× π2Q.
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6.1 An Algorithm for Tolerant Testing of Identity in the Sampling Model

Consider the problem where given sample access to a distribution p and an explicit description of a dis-
tribution q, the algorithm should accept ,with high probability, if p and q are identical, and should reject,
with high probability, if p and q are far. This is called Identity Testing and is defined in [BFF+01]. If
the algorithm is guaranteed to accept p and q that are close, and not necessarily identical, we refer to it as
a tolerant identity test. We will use the tolerant identity test as a subroutine in the algorithms for tolerant
testing of equivalence.

We next present and prove Theorem 12, which states that there is a tolerant identity tester taking Õ(
√

n)
samples. The theorem is a restatement of theorems in [Whi] and [BFF+01]. The specific tolerance of
Theorem 12 is somewhat complex and in order to state it we introduce the following new definitions.

Definition 2 For two parameters α, β ∈ (0, 1), we say that a distribution p is an (α, β)-multiplicative
approximation of a distribution q (over the same domain R) if the following holds.

• For every i ∈ R such that q(i) ≥ α we have that q(i) · (1− β) ≤ p(i) ≤ q(i) · (1 + β).

• For every i ∈ R such that q(i) < α we have that p(i) < α · (1 + β).

Definition 3 For α ∈ (0, 1), we say that a distribution p is an α-additive approximation of a distribution q
(over the same domain R) if for every i ∈ R, |p(i)− q(i)| ≤ α .

Theorem 12 (Adapted from [Whi], [BFF+01]) Given sample access to p, a black-box distribution over
a finite domain R, and q, an explicitly specified distribution over R, for every 0 < ε ≤ 1/3, algorithm
Test-Tolerant-Identity (p,q, n, ε) is such that:

1. If ‖p− q‖1 > 13ε, the algorithm rejects with high constant probability.

2. If q is an (ε/n, ε/24)-multiplicative approximation of some q′ such that ‖p− q′‖1 ≤
72ε2

`
√

n
, where

` = log(n/ε)/ log(1 + ε), the algorithm accepts with high constant probability (in particular, if q is
an (ε/n, ε/24)-multiplicative approximation of p or if ‖p− q‖1 ≤

72ε2

`
√

n
, the test accepts with high

constant probability) .

The algorithm takes Õ(
√

npoly(ε−1)) samples from p.

In the proof of Theorem 12 we shall use the following definitions and lemmas.

Definition 4 ([BFF+01]) Given an explicit distribution p over R, Bucket(p, R, α, β) is the partition
{R0, . . . , R`} of R with ` = log(1/α)/ log(1 + β), R0 = {i : p(i) ≤ α}, such that for all j in [`],

Rj =
{
i : α(1 + β)j−1 < p(i) ≤ α(1 + β)j

}
(76)

Definition 5 ([BFF+01]) Given a distribution p over R, and a partition R = {R1, . . . , R`} of R, the
coarsening p〈R〉 is the distribution over [`] with distribution p〈R〉(i) = p(Ri).

Theorem 13 ([BFF+01]) Let p be a black-box distribution over a finite domain R and let S be a sample
set from p. coll(S)/

(|S|
2

)
approximates ‖p‖22 to within a factor of (1 ± ε), with probability at least 1 − δ,

provided that |S| ≥ c
√
|R|ε−2 log(1/δ) for some sufficiently large constant c.
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Lemma 16 ([BFF+01]) Let p,q be distributions over R and let R′ ⊆ R, then ‖p|R′ − q|R′‖1 ≤ 2‖p −
q‖1/p(R′).

Lemma 17 ([BFF+01]) For any distribution p over R, ‖p‖22 − ‖UR‖22 = ‖p− UR‖22.

Let p be a distribution over some finite domain R, and let R′ be a subset of R such that p(R′) > 0
where p(R′) =

∑
i∈R′ p(i). Denote by p|R′ the restriction of p to R′, i.e., p|R′ is a distribution over R′

such that for every i ∈ R′, p|R′(i) = p(i)
p(R′) .

Lemma 18 (Based on [BFF+01]) Let p,q be distributions over R and let R′ ⊆ R, then
∑

i∈R′ |p(i) −
q(i)| ≤ |p(R′)− q(R′)|+ q(R′)‖p|R′ − q|R′‖1 .

Proof: ∑
i∈R′

|p(i)− q(i)| ≤
∑
i∈R′

∣∣∣∣p(i)(p(R′)− q(R′))
p(R′)

∣∣∣∣+ ∑
i∈R′

∣∣∣∣p(i)q(R′)
p(R′)

− q(i)
∣∣∣∣ (77)

= |p(R′)− q(R′)|+
∑
i∈R′

∣∣∣∣p(i)q(R′)
p(R′)

− q(i)
∣∣∣∣ (78)

= |p(R′)− q(R′)|+
∑
i∈R′

q(R′) ·
∣∣∣∣ p(i)
p(R′)

− q(i)
q(R′)

∣∣∣∣ (79)

= |p(R′)− q(R′)|+ q(R′) ·
∥∥p|R′ − q|R′

∥∥
1

, (80)

and the lemma is established.

Lemma 19 Let p,q be distributions over a finite domain R and let R′ ⊆ R be a subset of R such that for
every i ∈ R′ it holds that

q(i) ∈ p(i) · [1− ε, 1 + ε] , (81)

Then for every i ∈ R′,

q|R′(i) ∈ p|R′(i) ·
[
(1− ε)
(1 + ε)

,
(1 + ε)
(1− ε)

]
(82)

Proof: Equation (81) implies that q(R′) ∈ p(R′) [1− ε, 1 + ε] and therefore p(R′)
q(R′) ∈

[
1

1+ε ,
1

1−ε

]
. Thus,

we obtain that q(i)
q(R′) ∈

p(i)
p(R′) ·

[
(1−ε)
(1+ε) ,

(1+ε)
(1−ε)

]
, and the lemma follows.

Proof of Theorem 12: The algorithm Test-Tolerant-Identity is given in Figure 15. Let E1 be the event
that for every i in [`] we have that mi approximates ‖p|Ri

‖22 to within a factor of (1± ε2). By Theorem 13,
if Si is such that |Si| ≥ c

√
nε−4 log ` then E1 occurs with probability at least 8/9. Let E2 be the event

that for every i in [`] we have that |(|Si|/|S|)− p(Ri)| ≤ ε/(2`). By Hoeffding’s inequality E2 occurs
with probability at least 8/9 for |S| = Ω̃(`2ε−2). Let E3 be the event that p̃〈R〉 and q̃〈R〉 are ε/(2`)-
additive approximations of p〈R〉 and q〈R〉, respectively. By taking Θ(ε−2`2 log `) samples, E3 occurs with
probability at least 8/9.

Let p and q be as described in Case 1, i.e. ‖p − q‖1 > 13ε. Suppose the algorithm accepts p and
q. Conditioned on E1 ∩ E3, this implies that for each partition Ri for which Steps 8 - 10 were preformed,
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Algorithm 2: Test-Tolerant-Identity
Input: Sampling access to p, and explicit description of q, and parameters n, ε

1 R def= {R0, · · · , R`} = Bucket(q, n, ε/n, ε/24) ;
2 Let S be a set of Θ̃(

√
nε−5 log n) samples from p ;

3 Let H be the set of all x such that q(x) > ε(1 + ε)/n;
4 foreach Ri ⊆ H do
5 Let Si = S ∩Ri ;
6 if q(Ri) ≥ ε/` then
7 Let c be the constant from Theorem 13 ;
8 if |Si| < c

√
nε−4 log ` then output REJECT ;

9 Let mi = coll(Si)/
(|Si|

2

)
;

10 if mi > (1+ε2)2

|Ri| then output REJECT ;
11 end
12 end
13 Take Θ(ε−2` log `) samples and obtain a ε/(4`)-additive approximations p̃〈R〉 and q̃〈R〉 of p〈R〉

and q〈R〉, respectively;
14 if ‖p̃〈R〉 − q̃〈R〉‖1 > 3ε/2 then output REJECT ;
15 output ACCEPT ;

which are those for which q(Ri) ≥ ε/`, we have ‖p|Ri
‖22 ≤

(1+ε2)2

|Ri| ·
1

1−ε2
, which is at most 1+4ε2

|Ri| for
0 < ε ≤ 1/3. Thus, by Lemma 17 it follows that

‖p|Ri
− U|Ri

‖22 = ‖p|Ri
‖22 − ‖U|Ri

‖22 ≤
4ε2

|Ri|
. (83)

From the bucketing definition we have that for every i ∈ [`],

‖q|Ri
− U|Ri

‖22 ≤
ε2

|Ri|
. (84)

By the triangle inequality we obtain from Equations (83) and (84) that ‖p|Ri
− q|Ri

‖22 ≤ 9ε2

|Ri| and thus
‖p|Ri

− q|Ri
‖1 ≤ 3ε. We also have that the sum of q(Ri) over all Ri for which Steps 8 - 10 were not

preformed is at most `·(ε/`)+n·(ε(1+ε)2/n) < 4ε. For those Ri we use the trivial bound ‖p|Ri
−q|Ri

‖1 ≤
2. Also, ‖p〈R〉 − q〈R〉‖1 ≤ 2ε by Step 14. So by Lemma 18 we get that ‖p − q‖1 ≤ 13ε in contradiction
to our assumption. Therefore, the test accepts p and q with probability at most 1/3 (the bound on the
probability of Ē1 ∪ Ē2 ∪ Ē3).

We next turn to proving the second item in the theorem. Suppose q is an (ε/n, (ε/24))-multiplicative
approximation of some q′ such that p is 72ε2

`
√

n
-close to q′. Conditioned on E2, every Ri that enters Step 8

also passes this step, since otherwise we get, in contradiction to our assumption, that q(Ri) ≥ ε/` while
p(Ri) ≤ 2ε/(3`). From the bucketing definition we have that for every i ∈ [`] and for every x ∈ Ri,

q(x) ∈ q(Ri)
|Ri|

·
[

1
(1 + (ε/24))

, (1 + (ε/24))
]

. (85)
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Since q is an (ε/n, ε/24)-multiplicative approximation of q′, we get by Lemma 19 that for every Ri ⊆ H
and every x ∈ H ,

q(x)
q(Ri)

∈ q′(x)
q′(Ri)

·
[
(1− (ε/24))
(1 + (ε/24))

,
(1 + (ε/24))
(1− (ε/24))

]
(86)

Combining Equations (85) and (86) we get that

q′(x) ∈ q′(Ri)
|Ri|

·
[

(1− (ε/24))
(1 + (ε/24))2

,
(1 + (ε/24))2

(1− (ε/24))

]
, (87)

and thus for 0 < ε ≤ 1/2,
q′(x)
q′(Ri)

∈
[
(1− (ε/2))
|Ri|

,
(1 + (ε/2))
|Ri|

]
. (88)

By Equation (88) we obtain that for every Ri ⊆ H

‖q′|Ri
− U|Ri

‖2 ≤ ε/(2
√
|Ri|) . (89)

For all subsets Ri ⊆ H with q(Ri) ≥ ε/` we have that q′(Ri) ≥ ε/((1 + ε)`), combined with the fact that
‖p− q′‖1 ≤ 72ε2

`
√

n
we get by Lemma 16 (for sufficiently large n) that

‖p|Ri
− q′|Ri

‖1 ≤ ε/(2
√

n) . (90)

This implies that
‖p|Ri

− q′|Ri
‖2 ≤ ‖p|Ri

− q′|Ri
‖1 ≤ ε/(2

√
n) < ε/(2

√
|Ri|) . (91)

By the triangle inequality we get that

‖p|Ri
− U|Ri

‖2 ≤ ‖p|Ri
− q′|Ri

‖2 + ‖q′|Ri
− U|Ri

‖2 ≤ ε/
√
|Ri| . (92)

Therefore, by Lemma 17 it follows that

‖p|Ri
‖22 = ‖p|Ri

− U|Ri
‖22 + ‖U|Ri

‖22 ≤ (1 + ε2)/|Ri| . (93)

Therefore, conditioned on E1 ∩ E2 all such subsets will pass Step 10. Since q is ε/2-close to q′, by the
triangle inequality p is ε-close to q and thus conditioned on E3 the algorithm will pass Step (14) as well.
Thus the algorithm accepts with probability at least 2/3.

Finally, the sample complexity is Õ(
√

nε−5) from Step (2), which dominates the sample complexity of
Step (13).

6.2 An Algorithm for Tolerant Testing of Equivalence in the Known-Weights Sampling
Model

In this section we prove Theorem 14. We note that in the proof of the theorem we essentially describe a
tolerant tester for the property of independence of two random variables.

Theorem 14 Let D be a list of m distributions over [n] and let ~w be a weight vector over [m]. Denote by
QD, ~w the joint distribution over [m] × [n] such that QD, ~w(i, j) = wi ·Di(j). There is a test that works in
the Known-Weights sampling model, which takes Õ((n1/2m1/2 +n)poly(1/ε)) samples fromD, and whose
output satisfies the following:
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• If D is ε2

24`
√

n
-close to being in Peq, where ` = log(n/ε)/ log(1 + ε), or if QD, ~w is an (ε/n, ε/120)-

multiplicative approximation of π1Q
D, ~w × π2Q

D, ~w, then the test accepts with probability at least
2/3

• If D is 19ε-far from being in Peq, then the test rejects with probability at least 2/3.

In the proof of Theorem 14 we shall use the following lemma:

Lemma 20 Let Q be a joint distribution over [m]× [n]. Let Q̃1 be a (α1, β1)-multiplicative approximation
of π1Q. Let Q̃2 be a (α2, β2)-multiplicative approximation of π2Q. Denote by A1 the set of all i ∈ [m] such
that Q̃1(i) ≥ α1(1 + β1). Denote by A2 the set of all j ∈ [n] such that Q̃2(j) ≥ α2(1 + β2). For every
B1 ⊆ A1 and every B2 ⊆ A2,

(
Q̃1 × Q̃2

)
|B1×B2

is a
(
0, 2(β1+β2)

(1−β1)·(1−β2)

)
-multiplicative approximation of

(π1Q× π2Q)|B1×B2
.

Proof: For every (i, j) ∈ B1 ×B2 we have that

Q̃1(i) · Q̃2(j) ∈ π1Q(i) · π2Q(j) · [(1− β1) · (1− β2), (1 + β1) · (1 + β2)] . (94)

From the facts that (1+β1)·(1+β2)
(1−β1)·(1−β2) = 1 + 2(β1+β2)

(1−β1)·(1−β2) and (1−β1)·(1−β2)
(1+β1)·(1+β2) > 1 − 2(β1+β2)

(1−β1)·(1−β2) , and from
Lemma 19 the lemma follows.

Algorithm 3: Tolerant Testing of Equivalence in the Known-Weights Sampling Model
Input: Parameter 0 < ε ≤ 1/3, sampling access to a list of distributions, D, over [n], in the

Known-Weights sampling model
1 Let Q denote QD, ~w;
2 Take Θ(ε−3n log n) samples and obtain a (ε/n, ε/120)-multiplicative approximation, Q̃2, of

π2Q ;
3 Let H be the set of all j ∈ [n] such that Q̃2(j) > ε(1 + ε)/n and let L be [n] \H;

4 Call Test-Tolerant-Identity with parameters: Q[m]×H ,
(

~w × Q̃2
)
|[m]×H

, |H| ·m, ε, 1/9 ;

5 if Test-Tolerant-Identity rejects then output REJECT ;

6 I def= {[m]×H, [m]× L};
7 Take Θ(ε−2) samples and obtain a (ε/2)-additive approximations Q̃1×2

〈I〉 and Q̃〈I〉 of

(π1Q× π2Q)〈I〉 and Q〈I〉, respectively;

8 if
∥∥∥Q̃1×2

〈I〉 − Q̃〈I〉

∥∥∥
1

> 2ε then output REJECT ;

9 output ACCEPT;

Figure 2: The algorithm for tolerant testing of equivalence in the known-weights sampling model

Proof of Theorem 14: The test referred to in the statement of the theorem is Algorithm 3 (see Figure 2). Let
E1 be the event that Q̃2 is an (ε/n, ε/120)-multiplicative approximation of π2Q, as defined in Definition 2.
By applying Chernoff’s inequality and the union bound, E1 occurs with probability at least 8/9 (for a
sufficiently large constant in the Θ(·) notation for the sample size). By Lemma 20, conditioned on E1,
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we have that
(

~w × Q̃2
)
|[m]×H

is a (0, ε/24)-multiplicative approximation of (π1Q× π2Q)|[m]×H . Thus,∥∥∥∥(~w × Q̃2
)
|[m]×H

− (~w × π2Q)|[m]×H

∥∥∥∥
1

≤ ε . Let E2 be the event that the application of Test-Tolerant-

Identity returned a correct answer, as defined by Theorem 12. We run the amplified version of Test-
Tolerant-Identity , therefore the additional parameter, which is the confidence parameter, is set to 1/9,
i.e. E2 occurs with probability at least 8/9.

Let D be 19ε-far from being in Peq and assume the test accepts. Conditioned on E2 this implies that∥∥∥∥Q|[m]×H −
(

~w × Q̃2
)
|[m]×H

∥∥∥∥
1

≤ 13ε . By the triangle inequality, we obtain that conditioned on E1∩E2,

∥∥∥Q|[m]×H − (~w × π2Q)|[m]×H

∥∥∥
1
≤ ε + 13ε < 14ε . (95)

Conditioned on E1 we have that Q([m]× L) ≤ ε, and therefore

Q([m]× L) ·
∥∥∥Q[m]×L − (~w × π2Q)[m]×L

∥∥∥
1
≤ 2ε . (96)

Let E3 be the event that Q̃1×2
〈I〉 and Q̃〈I〉 are ε/2-additive approximations of (π1Q × π2Q)〈I〉 and Q〈I〉,

respectively. By taking Θ(ε−2) samples, E3 occurs with probability at least 8/9. Conditioned on E3, we
have that ∥∥(π1Q× π2Q)〈I〉 −Q〈I〉

∥∥
1
≤ 3ε . (97)

Combining Equations (95) - (97), by Lemma 18, we have that

‖(π1Q× π2Q)−Q‖1 ≤ 3ε + 14ε + 2ε = 19ε . (98)

Hence D is 19ε-close to being in Peq, in contradiction to our assumption. It follows that the test accepts
with probability at most 1/3.

On the other hand, consider the case that either D is ε2

24`
√

n
-close to being in Peq, or that π1Q

D, ~w ×
π2Q

D, ~w is an (ε/n, ε/120)-multiplicative approximation of QD, ~w, and assume that the test rejects. In case
the test rejects in Step (5) then conditioned on E2, we get by Theorem 12 that

(
~w × Q̃2

)
|[m]×H

is not

an (ε/n, ε/24)-multiplicative approximation of any q′ such that
∥∥Q|[m]×H − q′

∥∥
1
≤ 72ε2

`
√

n
. Conditioned

on E1, we have that
(

~w × Q̃2
)

[m]×H
is an (ε/n, ε/24)-multiplicative approximation of (~w × π2Q)[m]×H .

Thus, conditioned on E1 ∩ E2, we obtain that ‖Q− ~w × π2Q‖1 > 72ε2

`
√

n
. By Proposition 8 this implies that

D is 24ε2

`
√

n
-far from being in Peq. By setting q′ = Q|[m]×H we also have that

(
~w × Q̃2

)
|[m]×H

is not an

(ε/n, ε/24)-multiplicative approximation of Q|[m]×H . For the sake of simplicity, denote
(

~w × Q̃2
)

by A

and (~w × π2Q) by B. Hence, there exists (i, j) ∈ [m]×H that satisfies either

A|[m]×H(i, j) > (1 + (ε/24))Q|[m]×H(i, j) (99)

or
A|[m]×H(i, j) < (1− (ε/24))Q|[m]×H(i, j) . (100)
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By Lemma 20, we get that A|[m]×H is a (0, ε/30)-multiplicative approximation of B|[m]×H . Therefore, by
Equations (99) and (99), either it holds that

Q|[m]×H(i, j) <
1 + (ε/30)
1 + (ε/24)

B|[m]×H(i, j) (101)

or that

Q|[m]×H(i, j) >
1− (ε/30)
1− (ε/24)

B|[m]×H(i, j) . (102)

Since Q([m] × H) = B([m] × H), we obtain from Equations (101) and (102) that either Q(i, j) <
1+(ε/30)
1+(ε/24)B(i, j) or Q(i, j) > 1−(ε/30)

1−(ε/24)B(i, j), which by a simple calculation implies that Q is not a
(ε/n, ε/120)-multiplicative approximation of ~w × π2Q.

Alternatively, in case the test rejects in Step 8 then by the triangle inequality we get that conditioned on
E3, Q is ε-far from π1Q × π2Q. In both cases we get a contradiction to our assumption and therefore the
algorithm acceptsD with probability at most 1/3 (which is the upper bound on the probability of Ē1∪ Ē2∪
Ē3).

The sample complexity of Step 5 is bounded by Õ(n1/2m1/2poly(ε−1)) so the overall sample complex-
ity is Õ((n1/2m1/2 + n)poly(ε−1)).

6.3 An Algorithm for Tolerant Testing of Equivalence in the Unknown-Weights Sampling
Model

In this section we prove the following theorem:

Theorem 15 Let D be a list of m distributions over [n]. It is possible to distinguish between the case that
D is 36ε3

`
√

n
-close to being in Peq, where ` = log(n/ε)/ log(1 + ε) and the case that D is 25ε-far from being

in Peq in the unknown-weights sampling model using a sample of size Õ((n2/3m1/3 + m) · poly(1/ε)).

Proof of Theorem 15: The algorithm referred to in the statement of the theorem is Algorithm 4
(given in Figure 3). We note that we run the amplified version of Test-Tolerant-Identity and Bounded-
`∞-Closeness-Test and that the additional parameter in the application of Test-Tolerant-Identity and
Bounded-`∞-Closeness-Test is the confidence parameter. Let E1 be the event that Q̃1 is an (ε/m, ε/250)-
multiplicative approximation of π1Q. By taking a sample of size Θ(ε−3m log m), E1 occurs with proba-
bility at least 20/21. Let E2 be the event that Q̃2 is an (ε/n2/3m1/3, ε/250)-multiplicative approximation
of π2Q. For a sample of size Θ(ε−3n2/3m1/3 log n), we get, by Chernoff’s inequality, that E2 occurs with
probability at least 20/21. By Lemma 20, for every 0 < ε ≤ 1/3, we get, condition on E1 ∩ E2, that(
Q̃1 × Q̃2

)
|H1×H2

is a (0, ε/24)-multiplicative approximation of (π1Q× π2Q)|H1×H2
. Thus, conditioned

on E1 ∩ E2, we have that ∥∥∥∥(Q̃1 × Q̃2
)
|H1×H2

− (π1Q× π2Q)|H1×H2

∥∥∥∥
1

≤ ε . (103)

Let E3 be the event that the application of Test-Tolerant-Identity returned a correct answer, as defined by
Theorem 12. E3 occurs with probability at least 20/21.
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Algorithm 4: Tolerant Testing of Equivalence in the Unknown-Weights Sampling Model
Input: Parameter 0 < ε ≤ 1/8, sampling access to a list of distributions, D, over [n], in the

Unknown-Weights sampling model
1 Let Q denote QD, ~w;
2 Take Θ(ε−3m log m) samples and obtain an (ε/m, ε/250)-multiplicative approximation Q̃1 of π1Q ;

3 R def= {R0, · · · , R`} = Bucket(Q̃1,m, (1 + ε)ε/m, ε) ;
4 Let L1 = R0 and let H1 = [m] \ L1;
5 Take Θ(ε−3n2/3m1/3 log n) samples and obtain an (ε/(n2/3m1/3), ε/250)-multiplicative

approximation Q̃2 of π2Q ;
6 Let H2 be the set of all j ∈ [n] such that Q̃2(j) > ε(1 + ε)/(n2/3m1/3) and let L2 = [n] \H2;
7 Take Θ(ε−2) samples and let γ be the fraction of samples in H1 ×H2;
8 if γ ≥ 3ε/2 then
9 Call Test-Tolerant-Identity with parameters: Q|H1×H2

, (Q̃1 × Q̃2)|H1×H2
, |H1| · |H2| ,ε, 1/21 ;

10 if Test-Tolerant-Identity rejects then output REJECT ;
11 end
12 Let S be a set of Θ̃(`2ε−2) samples;
13 foreach Ri do
14 Let Si = S ∩ (Ri × L2);
15 if |Si|/|S| ≥ ε/` then
16 Call Bounded-`∞-Closeness-Test with parameters: (π1Q× π2Q)|Ri×L2

, Q|Ri×L2
,

4`/(εn2/3m1/3|Ri|), 2`/(εn2/3m1/3), |L2| · |Ri|, ε, 1/(21`);
17 if Bounded-`∞-Closeness-Test rejects then output REJECT ;
18 end
19 end

20 I def= {H1 ×H2, L1 ×H2, R0 × L2, · · · , R` × L2};
21 Take Θ(ε−2`2 log `) samples and obtain an ε/(2`)-additive approximations Q̃1×2

〈I〉 and Q̃〈I〉 of

(π1Q× π2Q)〈I〉 and Q〈I〉, respectively;

22 if
∥∥∥Q̃1×2

〈I〉 − Q̃〈I〉

∥∥∥
1

> 2ε then output REJECT ;

23 output ACCEPT;

Figure 3: The algorithm for tolerant testing of equivalence in the unknown-weights sampling model

Let D be 25ε-far from being in Peq and assume the algorithm accepts. Then either Test-Tolerant-
Identity returns accept or γ < 3ε/2. Consider the case that Test-Tolerant-Identity returns accept. Con-

ditioned on E3, by Theorem 12, we have that
∥∥∥∥(Q̃1 × Q̃2

)
|H1×H2

−Q|H1×H2

∥∥∥∥
1

≤ 13ε. By the triangle

inequality and Equation (103) we obtain that∥∥∥(π1Q× π2Q)|H1×H2
−Q|H1×H2

∥∥∥
1
≤ 13ε + ε = 14ε . (104)
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Consider the case γ < 3ε/2. Let E4 be the event that |γ −Q(H1 ×H2)| ≤ ε/2. By taking Θ(ε−2) samples,
E4 occurs with probability at least 20/21. Then we have that

Q(H1 ×H2) ≤ 2ε . (105)

Let E5 be the event that all applications of Bounded-`∞-Closeness-Test returned a correct answer, as
defined by Theorem 9. By the union bound, E5 occurs with probability at least 20/21. Conditioned on E5,
we obtain that every Ri that passes Step 17 satisfies the following∥∥(π1Q× π2Q)|Ri×L2

−Q|Ri×L2

∥∥
1
≤ ε . (106)

Let E6 to be the event that for every i in [`] we have that |(|Si|/|S|)−Q(L2 ×Ri)| ≤ ε/(2`). By Hoeffd-
ing’s inequality E6 occurs with probability at least 20/21 for |S| = Ω̃(`2ε−2). From the fact that for every
Ri that doesn’t enter Step 17 we have that |Si|/|S| < ε/`, we obtain, conditioned on E6, that

Q(Ri × L2) ≤ 3ε/(2`) . (107)

Let E7 be the event that Q̃1×2
〈I〉 and Q̃〈I〉 are ε/(2`)-additive approximations of (π1Q × π2Q)〈I〉 and Q〈I〉,

respectively. By taking Θ(ε−2`2 log `) samples, E7 occurs with probability at least 20/21. Since we assume
that the algorithm accepts D then, in particular, D passes Step 22. Therefore, conditioned on E7, we have
that ∥∥(π1Q× π2Q)〈I〉 −Q〈I〉

∥∥
1
≤ 3ε . (108)

Conditioned on E1 ∩ E2, for 0 < ε ≤ 1/5 we have that

Q(L1 ×H2) ≤ 3ε/2 . (109)

For every I ∈ I we have the following trivial bound∥∥(π1Q× π2Q)|I −Q|I
∥∥

1
≤ 2 . (110)

Combining Equations (104) - (110), by Lemma 18, we have that

‖(π1Q× π2Q)−Q‖1 ≤ 3ε + 14ε + 2ε + ` · 3ε/(2`) · 2 + 3ε/2 · 2 = 25ε . (111)

Therefore, D is 25ε-close to being in Peq in contradiction to our assumption. It follows that the algorithm
accepts D with probability at most 1/3.

On the other hand, letD be 36ε3

`
√

n
-close to being in Peq and assume the algorithm rejects. Conditioned on

E1∩E2, we have that (Q̃1×Q̃2)|H1×H2
is a (0, ε/24)-multiplicative approximation of (π1Q×π2Q)|H1×H2

.
Therefore, conditioned on E1 ∩ E2 ∩ E3 ∩ E4, if we reject in Step 10, then we obtain by Theorem 12 that

∥∥Q|H1×H2
−
(
π1Q× π2Q

)
|H1×H2

∥∥
1

> 72 · ε2

`
√

n
. (112)

It follows, by Lemma 16, that ‖π1Q× π2Q−Q‖1 > π1Q(H1)·π2Q(H2)
2 · 72 · ε2

`
√

n
≥ 36ε3

`
√

n
. If we reject in

Step 17, then conditioned on E5∩E6, there is Ri such that Q(Ri×L2) ≥ ε/` in which the following holds,∥∥∥(π1Q× π2Q)|Ri×L2
−Q|Ri×L2

∥∥∥
1

> ε/(2
√

n) . (113)
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Thus, by Lemma 16, ‖π1Q× π2Q−Q‖1 > Q(Ri×L2)
2 · ε/(2

√
n) ≥ ε2/(4`

√
n) . If we reject in Step 22,

then conditioned on E7 it follows that ‖π1Q× π2Q−Q‖1 > ε . Thus we get a contradiction to our
assumption (that the algorithm rejects), which implies that the algorithm accepts D with probability at
least 2/3. To achieve (1 − δ) confidence, the amplified algorithm takes the majority result of Θ(log 1/δ)
applications of the original algorithm. In addition, both algorithms are applied on restricted domains (H1 ×
H2 in Test-Tolerant-Identity and Ri × L2 in Bounded-`∞-Closeness-Test ). This affects the sample
complexity only by a factor of poly(1/ε, log n). For every Ri that enters Step 16, the number of required
samples from the domain Ri × L2 in that step is bounded by Õ((n2/3 · |Ri|1/2/m1/6 + n2/3 · |Ri|/m2/3) ·
poly(1/ε)). Thus, since ` is logarithmic in n and 1/ε, the number of samples required by all the applications
of Bounded-`∞-Closeness-Test is bounded by Õ(n2/3m2/3 ·poly(1/ε)). Therefore, the sample complexity
is Õ((n2/3m1/3 + m) · poly(1/ε)) as required.

7 Testing (k, β)-Clusterability in the Query Model

In this section we consider an extension of the property Peq
m,n studied in the previous sections. Namely,

rather than asking whether all distributions in a list D are the same, we ask whether there exists a partition
of D into at most k lists, such that within each list all distributions are the the same (or close). That is, we
are interested in the following a clustering problem:

Definition 6 Let D be a list of m distributions over [n]. We say that D is (k, β)-clusterable if there exists a
partition of D to k lists ,{Di}ki=1 such that for every i ∈ [k] and every D,D′ ∈ Di, ‖D −D′‖1 ≤ β.

In particular, for k = 1 and β = 0, we get the property Peq
m,n. We study testing (k, β)-clusterability (for

k ≥ 1) in the query model. The question for k > 1 in the (uniform) sampling model remains open.
We start by noting that if we allow a linear (or slightly higher) dependence on n, then it is possible (by

adapting the algorithm we give below), to obtain a tester that works for any ε and β The complexity of this
tester is Õ(n · k · poly(1/ε))). However, if we want a dependence on n that grows slower than n1−o(1), then
it is not possible to get such a result even for m = 2 (and k = 1). This is true since distinguishing between
the case that a pair of distributions are β-close and the case that they are β′-far for constant β and β′ requires
n1−o(1) samples [Val08b]. We also note that for β = 0 the dependence on n must be at least Ω(n2/3) (for
m = 2 and k = 1) [Val08b]. Our algorithm works for β = 0 and slightly more generally, for β = O(ε/

√
n),

has no dependence on m, has almost linear dependence on k, and its dependence on n grows like Õ(n2/3).

Theorem 16 Algorithm Test-Clusterability (see Figure 4) is a testing algorithm for (k, β)-clusterability
of a list of distributions in the query model, which works for every ε > 8βn1/2, and performs Õ(n2/3 · k ·
poly(1/ε)) sampling queries.

We build on the following theorem.

Theorem 17 ([BFR+00]) Given parameter δ, and sampling access to distributions p,q over [n], there is a
test, `1-Distance-Test (p, q, ε, δ), which takes O(ε−4n2/3 log n log δ−1) samples from each distribution and
for which the following holds.

• If ‖p− q‖1 ≤ ε/(4n1/2), then the test accepts with probability at least 1− δ.

• If ‖p− q‖1 > ε, then the test rejects with probability at least 1− δ.
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Our algorithm is an adaptation of the diameter-clustering tester of [ADPR03], which applies to clustering
vectors in Rd, and is given in Figure 4. While often clustering algorithms rely on a method of evaluating
distances between the objects that they cluster, the algorithm from [BFR+00] only distinguishes pairs of
distributions that are very close from those that are ε-far (in `1 distance). Still, this is enough information in
conjunction with the algorithm of [ADPR03] to construct a good distribution (k, b)-clusterability tester.

Algorithm 5: Test-Clusterability
Input: Parameters k, β, ε, and access in the query model to a list D of m distributions over [n]

1 Pick rep1 uniformly from D;
2 i := 1;
3 find new rep := true;
4 while (i < k + 1) and (find new rep = true) do
5 Uniformly and independently select a set, D′, of 2 ln(6(k + 1))/ε distributions from D;
6 foreach D ∈ D′ do
7 find new rep := true;
8 for ` := 1 to i do
9 if `1-Distance-Test (D, rep`, ε/2, ε/12(k + 1) ln(6(k + 1))) then

10 find new rep := false;
11 end
12 end
13 if find new rep = true then
14 i := i + 1;
15 repi = D;
16 break ;
17 end
18 end
19 end
20 if i ≤ k then output ACCEPT ;
21 else output REJECT ;

Figure 4: The algorithm for testing clusterability

Proof of Theorem 16: Assume all applications of `1-Distance-Test returned a correct answer, as defined
by Theorem 17. By the union bound, this happens with probability at least 5/6. Let us refer to this event
as E1. Conditioned on E1, the clustering algorithm rejects only if it finds k + 1 distributions in D such that
the `1 distance between every two of them is greater than ε/2

4n1/2 ≥ β. Thus, if D is (k, β)-clusterable, then
it will be accepted with probability at least 5/6.

We thus turn to the case that D is ε-far from being (k, β)-clusterable. In this case we claim that as
long as there are t ≤ k representatives, rep1, . . . , rept, the number of distributions Di ∈ D such that
‖Di− rep`‖1 > ε/2 is at least εm/2. To verify this, assuming in contradiction that there are less than εm/2
such distributions. But then, by modifying each of these distributions so that it equals rep1, and modifying
each of the other distributions so that it equals the representative it is most close it, we get a list that is
(k, 0)-clusterable (at a total cost of less than εm).

Since in each iteration of the while loop, there are less than k+1 representative distributions, at least εm
2

of the distributions inD are ε
2 -far from any of the former representative distributions. Therefore, conditioned
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on E1, for every iteration of the while loop, the probability that a new representative is not found is less than
(1− ε/2)2 ln(6(k+1))/ε < eln(6(k+1)) = 1/6(k + 1). By applying the union bound, the algorithm rejects
D with probability greater than 2/3. Since there are O(log k/ε) iterations, and in each there is a single
application of the `1-distance test, by Theorem 17 the total number of samples used is as stated.
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