
A Sublinear Algorithm for Weakly Approximating Edit
Distance

Tuğkan Batu
�

University of Pennsylvania

batu@cis.upenn.edu

Funda Ergün
Case Western Reserve

University

afe@eecs.cwru.edu

Joe Kilian
NEC Laboratories America

joe@nec­labs.com

Avner Magen
University of Toronto

avner@cs.toronto.edu

Sofya Raskhodnikova
MIT

sofya@mit.edu

Ronitt Rubinfeld
NEC Laboratories America

ronitt@nec­labs.com

Rahul Sami
y

Yale University

sami@cs.yale.edu

ABSTRACT

We show how to determine whether the edit distan
e be-

tween two strings is small in sublinear time. Spe
i�
ally, we

present a test whi
h, given two n-
hara
ter strings A and

B, runs in time o(n) and returns \CLOSE " if their edit

distan
e is O(n

�

), or \FAR" if their edit distan
e is
(n),

where � is a �xed parameter less than 1. Our algorithm for

testing the distan
e works by re
ursively subdividing the

strings into smaller substrings and looking for pairs of sub-

strings in A, B with small edit distan
e. To do this, we

query both strings at random pla
es and use a spe
ial te
h-

nique for \re
y
ling" our samples so that the overall query

omplexity, as well as the running time, stays low. The test

runs in time

~

O

�

n

maxf

�

2

;2��1g

�

for any �xed � < 1. Our

algorithm thus is a �rst step for trading o� a

ura
y for ef-

�
ien
y for edit distan
e
omputation, whi
h is useful when

the input data is very long.

We also show a lower bound of
(n

�=2

) on the query
om-

plexity of every algorithm that distinguishes pairs of string

with edit distan
e at most n

�

from those with edit distan
e

at least n=6.

Categories and Subject Descriptors

F.2 [Theory of Computation℄: Analysis of algorithms

and problem
omplexity

�

Supported by ARO DAAD 19-01-1047 and NSF CCR01-

05337.

y

Supported by ONR grant N00014-01-1-0795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1­58113­674­9/03/0006 ...$5.00.

General Terms

Algorithms, Theory

Keywords

String mat
hing, sublinear algorithms, approximation

1. INTRODUCTION
Let A;B be two strings from a �xed size alphabet �. The

well known edit distan
e between A and B is de�ned as the

minimum number of
hara
ter insertions, deletions and sub-

stitutions required to transform A to B, or vi
e versa (it is

indeed a distan
e, and in parti
ular symmetri
). This mea-

sure of string similarity is widely used in areas su
h as
om-

putational biology, text pro
essing, and web sear
hing. The

edit distan
e is a well studied measure, and
an be
omputed

in quadrati
 time by a dynami
 programming algorithm [4℄.

The task of
omputing or even approximating edit distan
e

signi�
antly faster has gained a lot of attention, espe
ially in

the bioinformati
s
ommunity, where the regular quadrati

algorithm is usually too slow to be used.

EÆ
ient algorithms for the approximation task are
ru
ial

for two reasons: �rst, it is often the
ase that the strings be-

ing
ompared are quite long (hundreds of millions of
hara
-

ters in a genomi
 environment); se
ond, it
an serve as a part

of an exa
t algorithm that works in sublinear amortized time

in the following manner. A
ommon task in bioinformati
s

is, given many pairs of strings, to
ompute edit distan
e

only for pairs of
lose strings. The a
tual distan
e between

most pairs of strings is irrelevant. Weak approximation al-

gorithms are useful in
heaply eliminating those pairs, and

thus allowing an exa
t algorithm to work on an extremely

small fra
tion of the input pairs.

Our results

We show that if one is willing to a

ept a weaker quality

of approximation, one
an solve the edit distan
e problem

surprisingly qui
kly. In fa
t, we give (to our knowledge)

the �rst sublinear time algorithm for approximating the edit

distan
e. In parti
ular, we show that one
an distinguish

pairs of strings of length n whi
h have edit distan
e n

�

from

those whi
h have edit distan
e
(n) in

~

O(n

�=2

) time for

� � 2=3. For any
onstant 1 > � > 2=3, our running time

is

~

O(n

2��1

), whi
h is still sublinear. At the
ore of our

algorithm is a sublinear-time pro
edure whi
h
onstru
ts a

useful impli
it representation of all lo
ations in A at whi
h

there are approximate
opies of a spe
i�
 substring of B;

this pro
edure may be of independent interest.

Finally, we prove that every algorithm that distinguishes

pairs of strings with edit distan
e n

�

from strings with edit

distan
e at least n=6 requires
(n

�=2

) queries. To a
hieve

this, we show the same lower bound for every algorithm that

distinguishes a pair (A;B) of random strings from a pair

(A;B) where A is random and B is a right shift of A by t

positions for a random t 2 [n

�

=2; n

�

℄: This implies the lower

bound for the edit distan
e problem, sin
e two random n-bit

strings have edit distan
e at least n=6 with high probability.

Related work

The edit distan
e problem is
losely related to the longest

ommon subsequen
e and sequen
e alignment problems. Com-

puting the LCS exa
tly is the same as
omputing the edit

distan
e, whereas an analogous statement
annot be made

for approximate
omputations. In [MP℄, Masek and Pater-

son give an O(n

2

= log n) algorithm for exa
tly
omputing

the LCS of two strings of size n.

1

This nearly quadrati

bound remains inta
t for the general
ase, with the
ostly

omputations o

urring when the LCS is of linear length.

There has been a signi�
ant amount of related work on

the slightly di�erent problem of approximate string mat
h-

ing, where one would like to �nd all substrings of the text

string of size n whi
h mat
h the pattern string of sizem with

edit distan
e at most k (insertions, deletions and substitu-

tions of one
hara
ter). We mention here a small sample of

these works. Landau and Vishkin [3℄ gave an O(nk) algo-

rithm for this problem. Chang and Lawler [1℄
onsider the

ase when the text string is random and errors are not too

frequent. In this
ase, they give an algorithm whi
h runs in

sublinear expe
ted time, namely O((n=m)k logm) time for

k < m= logm+O(1). Myers [5℄ improves on their result but

requires linear-time prepro
essing on one of the two strings.

In general, the �rst subquadrati
 time approximate string

mat
hing algorithm was given by Sahinalp and Vishkin [6℄,

running in time O(n�(1+poly(k)�1=m log n)). Cole and Har-

iharan [2℄ improved the running time to O((nk

4

=m)+n+m).

To put our work in perspe
tive, we note that when the two

strings are assumed to be
lose, dynami
 programming re-

stri
ted to the relevant fra
tion of the matrix
an be applied,

leading to a
onsiderable saving in both time and spa
e. In

our setting this translates to an immediate O(n

1+�

) algo-

rithm. Our algorithm is mu
h more eÆ
ient, but not sur-

prisingly uses the idea behind this naive saving as one of its

omponents.

Our techniques

Our te
hniques are based on the observation that, if two

strings have small edit distan
e, they will have many almost

identi
al (with small Hamming distan
e) substrings whose

lo
ations in the respe
tive strings are similar. We exploit

this property by dividing one of the strings into blo
ks and

1

In fa
t, the strings
an be of di�erent length; we present

the equal-length
ase for simpli
ity.

determining whether most of these blo
ks o

ur in similar

lo
ations in the other string. In order to dete
t substrings

that mat
h a blo
k with small Hamming distan
e, it suf-

�
es to randomly sample both the strings. To redu
e our

query (sample)
omplexity, we use a pro
edure that we
all

a \ruler" that
olle
ts a sublinear pool of samples from both

strings, and then builds a stru
ture
ontaining all mat
hing

pairs of the form (lo
ation in A, blo
k in B). In addition, we

make use of re
ursion while subdividing our blo
ks, whi
h

allows us to further improve the
omplexity of the algorithm.

Finally, we \quantize" the lo
ations in the strings output by

the mat
hing pro
ess for two substrings; that is, we
onsider

only dis
rete \shifts" between the lo
ation of a substring in

one string and in the other. This results in many fewer

ases to
onsider (and, more importantly, to store) in terms

of where a blo
k of one string is lo
ated in the other.

Overview of paper

The rest of this paper is stru
tured as follows: Se
tion 2

de�nes the edit distan
e testing problem. In Se
tion 3 we

develop a sublinear time algorithm for this problem: we de-

s
ribe our basi
 te
hniques in Se
tions 3.1-3.4; in Se
tion 3.5

we show how to mat
h the blo
ks in one string to substrings

in the other, and in Se
tion 3.6 we present our main algo-

rithm that uses these te
hniques to estimate the edit dis-

tan
e. In Se
tion 4, we give a lower bound on the query

omplexity for this problem.

2. PRELIMINARIES
The strings we
onsider are over a
onstant size alphabet

�. For simpli
ity and without loss of generality, we assume

a binary alphabet � = f0; 1g, and the input strings (usually

denoted A;B) of length n. A[i℄ refers to the ith
hara
ter

(bit) of string A, and A[i : : : j℄ refers to the substring of A

delimited by the
hara
ters (bits) at positions i and j.

D(A;B), the edit distan
e between two binary strings A

and B, is the minimal number of single bit insertions, dele-

tions, or repla
ements required to generate B from A, or

vi
e versa.

The edit distance testing problem

We wish to devise an algorithm to distinguish pairs of n-

bit strings A;B that are
lose to ea
h other from pairs that

are far from ea
h other in terms of their edit distan
e. The

required behavior from this algorithm on input A, B, and

parameters �;C, 0 < � < 1; C > 1, is as follows.

� if D(A;B) � n

�

, output CLOSE with probability at

least 2/3.

� if D(A;B) > n=C, output FAR with probability at

least 2/3.

The output of the algorithm is unspe
i�ed for n

�

< D(A;B) �

n=C. We treat C as a �xed
onstant and do not analyze the

dependen
e of our algorithm on C.

3. A TEST FOR EDIT DISTANCE
We now des
ribe a re
ursive algorithm that
he
ks whether

the edit distan
e between two n-bit strings A and B is small

(� n

�

) or large (
(n)). We arbitrarily designate A to be

the referen
e string, against whi
h B is mat
hed. On the

highest level, our algorithm is based on the standard divide

and
onquer paradigm: B is is broken up into substrings,

whi
h are re
ursively mat
hed against A. The mat
hing

for these lo
al pat
hes is pie
ed together to form a mat
hing

(alignment) for the larger string. However, sin
e it would be

too expensive to look at all the subintervals, we randomly

sample a small number of them and rely on the statisti
al

properties of these mat
hings. We then analyze the e�e
t

of the statisti
al un
ertainties that arise as a result of the

sampling.

We start by dis
ussing the relationship between the edit

distan
e of two strings and the similarity of their substrings.

3.1 Approximate matchings and coordinated
matchings

A mat
hing of B against A des
ribes how A
an be ob-

tained from B. In parti
ular, it gives an alignment between

the mat
hing portions of A and B. Consider how a subin-

terval I = B[s : : : e℄
orresponds to A. We may think of I as

being mat
hed against a substring A[s

0

: : : e

0

℄; the mat
hing

involves a sequen
e of operations on A[s

0

: : : e

0

℄ that trans-

form it into I. In general, s 6= s

0

; we refer to the quantity

s

0

� s as the shift of I. The shift is due to external edits

required to mat
h the earlier portions of A and B. We refer

to the number of edit operation needed to transform A[s

0

; e

0

℄

to I as the internal edit distan
e.

2

Note that there may be

many possible low-edit mat
hings of I against A.

We are interested in mat
hings in whi
h the internal edit

distan
e is a small fra
tion of the total number of
hara
ters

being mat
hed.

Definition 1. An interval I = B[s : : : e℄ has a (t; E)

mat
hing with respe
t to A if for some interval A[s

0

: : : e

0

℄,

s

0

= s+ t and D(A[s

0

: : : e

0

℄; I) � E.

If D(A;B) is small, it is apparent that most subintervals in

B will have an approximate mat
hing somewhere in A. Fur-

ther, these mat
hing subintervals must have similar shifts,

be
ause a
hange in the shift value
an only arise from an

edit (spe
i�
ally, insert or delete) operation. This leads us

to
onsider
oordinated mat
hings:

Definition 2. Given a
olle
tion of intervals I = I

1

; : : : ; I

k

;

we say that I has a (t; �; E;D)
oordinated mat
hing with

A if for all but D of the intervals I

i

2 I, I

i

has a (t

i

; E)

mat
hing with A, where jt� t

i

j � �.

We
an de
ompose an interval I of size S into k dis-

joint
ontiguous subintervals, I

1

; : : : ; I

k

, ea
h of size S

0

=

S=k (we assume that kjS). The existen
e of a
oordinated

mat
hing of I indi
ates that most of the intervals therein

are well mat
hed with similar shifts in A. Lemma 1 says

that if these subintervals have a
oordinated mat
hing with

suitable parameters then I has an approximate mat
hing.

Lemma 1. Let A; I; I

1

; : : : ; I

k

; S and S

0

be as above. If

I

1

; : : : ; I

k

have a (t; �; �S

0

; Æk)
oordinated mat
hing with A,

then I has a (t; �S) approximate mat
hing with A, where

� =

�

2�

S

0

+ �+ Æ

�

:

2

This is no longer a distan
e fun
tion. The
orresponding

mat
hing of the internal edit distan
e is also des
ribed in

the bioinformati
s literature as lo
al alignment.

Proof. (Sket
h) We
onstru
t a mat
hing for I by stit
h-

ing together the mat
hings for I

1

; : : : ; I

k

,
orre
ting for gaps,

overlaps and unmat
hing subintervals.

Let I = B[s : : : e℄ and I

i

= B[s

i

: : : e

i

℄. If I

i

has a (t

i

; �)

approximate mat
hing, we denote by I

0

i

= A[s

0

i

: : : e

0

i

℄ the

substring of A that is transformed into I

i

(
hoosing arbi-

trarily if there are multiple mat
hes). I

0

i

an be transformed

into I

i

using �S

0

edit operations. If I

i

does not have a (t

i

; �)

mat
hing (for t

i

2 [t � �; t+ �℄), we de�ne t

i

= t and I

0

i

to

be A[s

i

+ t : : : e

i

+ t℄, i.e., the region obtained by translating

the interval [s

i

: : : e

i

℄ by t. We
an trivially transform I

0

i

to

I

i

using S

0

edit operations.

We transform the interval A[s+ t : : : e

0

k

℄ into I as follows.

If s

0

1

= s+ t, then we simply transform I

0

1

into I

1

using the

same edit operations as for that mat
hing. If s

0

1

< s + t,

then the s + t � s

0

1

�rst
hara
ters of I

0

are missing from

A[s+t : : : e

k

℄; we add these to the beginning of A[s+t : : : e

0

k

℄

using s+t�s

0

1

insert operations, and then pro
eed as before.

Similarly, if s

0

1

> s+ t, we trim the �rst s

0

1

� s� t
hara
ters

from A[s+ t : : : e

0

k

℄ and pro
eed as before. We are left with

the remaining portion of A[s + t : : : e

0

k

℄ (A[e

0

1

+ 1 : : : e

0

k

℄),

whi
h must be transformed into the remaining portion of I

(B[e

1

+ 1 : : : e

k

℄).

To
omplete the transformation, we transform I

0

i

into I

i

,

for i = 2; : : : ; k, in the same manner, yielding I. At ea
h

stage, we trim or add to the remaining string so that I

0

i

is a

pre�x, and then perform the transformation from I

0

i

to I

i

.

It remains to
ompute the number of edits required by this

transformation. The number of edits required to transform

I

0

i

to I

i

, for all i for whi
h there are is an approximate mat
h,

is at most �S

0

k. For at most Æk intervals, I

0

i

and I

i

don't

have a good mat
h; the trivial transformation
osts at most

S

0

� Æk = ÆS

0

k.

We must also a

ount for the js

0

i

� (s+ t)j edit operations

required prior to transforming I

0

1

and the js

0

i

�(e

0

i�1

)+1j edit-

ing operations required to align the remaining string prior

to transforming I

i

, for i > 1. By the de�nition of a
oordi-

nated mat
hing, js

0

i

� (s+ t)j � �. Sin
e s

0

i

= s

i

+ t

i

we
an

write,

js

0

i

� (e

0

i�1

+ 1)j

= j(s

i

+ t

i

)� (s

0

i�1

+ (e

0

i�1

� s

0

i�1

) + 1)j

= j(s

i

+ t

i

)� (s

i�1

+ t

i�1

+ (e

0

i�1

� s

0

i�1

) + 1)j

� jt

i

� t

i�1

j + j(e

0

i�1

� s

0

i�1

+ 1)� (s

i

� s

i�1

)j:

It follows from the de�nition of a
oordinated mat
hing that

jt

i

� t

i�1

j � 2�. The latter term is simply the absolute

di�eren
e between the length of I

i�1

(s

i

� s

i�1

) and the

length of jI

0

i�1

j (e

0

i�1

�s

0

i�1

)+1). If I

0

i�1

an be transformed

into I

i�1

using �S

0

edit operations, this di�eren
e
annot be

more than �S

0

, and if no su
h mat
hing exists, then I

0

i�1

will

have the same length as I

i�1

by de�nition. Thus, at most

2� + �S

0

operation are required per interval, giving at most

2�k + �S

0

k operations in all.

Re
alling that S = S

0

k, we have at most

�

2�

S

0

+ � + Æ

�

S

edits required, implying the lemma.

2

Lemma 2 shows that if a good mat
hing for an interval

exists then there must be a
oordinated mat
hing among its

subintervals.

Lemma 2. Let A; I;I = I

1

; : : : ; I

k

; S and S

0

be as above.

Let
 > 1 and S >
E. If I has a (t; E) mat
hing with A

then I has a (t; E;
E=k; k=
)
oordinated mat
hing with A.

Proof. (Sket
h) Let I = B[s : : : e℄. We
onsider the

mat
hing from A[s + t : : : q℄ to I that has edit distan
e E.

We for ea
h I

i

onsider the smallest interval I

0

i

of A
ontain-

ing all the
hara
ters that are mat
hed to
hara
ters in I

i

. If

no su
h
hara
ters exist, we no not assign I

i

. We
laim that

this
orresponden
e indu
es a (t; E;
E=k; k=
)
oordinated

mat
hing.

First, we note that the I

0

i

s are disjoint, sin
e our edit oper-

ations do not
hange the ordering of the
hara
ters of A that

are mat
hed. The edit operations transforming A[s+ t : : : q℄

into I transform ea
h I

0

i

into I

i

. Ea
h edit operation a�e
ts

only one (I

0

i

; I

i

) pair or unassigned I

i

- either it deletes a

hara
ter from at most one I

0

i

or it inserts a
hara
ter into

exa
tly one I

i

. Hen
e, the sum of edit distan
es between I

0

i

and I along with the sum of edits assigned to unassigned I

i

is

at most E. If more than k=
 had edit distan
e greater than

E=k, or were unassigned (with an edit
ost of S

0

>
E=k),

this would
ause the sum to be greater than E, a
ontradi
-

tion.

It remains to show that the translation (shift) t

i

between

ea
h I

0

i

and I

i

satis�es jt

i

� tj � E. Now,
onsider what

happens if we edit A[s+ t : : : q℄ to obtain I, �rst by deleting

the unmat
hed
hara
ters, one by one, and then inserting

the new
hara
ters, one by one. At ea
h step, we
an re
om-

pute the mat
hings and hen
e the shifts for ea
h (I

0

i

; I

i

) pair.

Ea
h operation
an
hange any t

i

by at most 1 ea
h way.

However, at the end of this pro
ess, when A[s+ t : : : q℄ = I,

t

i

= t, so the original values of t

i

ould not be more than E

away from t. 2

A spe
ial
ase of this lemma is the existen
e of
oordinated

mat
hings where the intervals have no internal edit distan
e

at all.

Lemma 3. Let A; I; I

1

; : : : ; I

k

; S and S

0

be as above. If I

has a (t; E) mat
hing with A, and k � E, then I

1

; : : : ; I

k

have a (t; E; 0; E)
oordinated mat
hing with A.

Dis
ussion: We use Lemmata 1 and 2 in
on
ert to de-

te
t good mat
hings. Suppose string A and B have a good

mat
hing. We breakB up into subintervals and use Lemma 2

to argue that these intervals have a good
oordinated mat
h-

ing. In the next se
tion we show how to eÆ
iently de-

te
t a good
oordinated mat
hing. On
e dete
ted, we use

Lemma 1 to infer the existen
e of a good mat
hing between

A and B. The properties of the inferred mat
hing will be

far weaker than the one that a
tually exists, but suÆ
iently

good to distinguish between the two
ases we
onsider. To

obtain the strongest result, we apply this te
hnique re
ur-

sively, taking
are that the degradation in the guarantee

does not grow too large.

3.2 Detecting coordinated matchings via sam­
pling

The
rux of our algorithm is to approximately dete
t a

oordinated mat
hing with a very few queries. Given a set

of intervals I = I

1

; : : : ; I

k

, we wish to determine for whi
h

t, I has a (t; �; E;D)
oordinated mat
hing. We a
tually

a

omplish an approximate version of this task: For all t,

if I has a (t; �; E;D)
oordinated mat
hing we with high

probability dete
t that it has a (t; �; E;D+ �k)
oordinated

mat
hing, for any
onstant � > 0.

To implement our dete
tion routine,
oord-mat
hes, we

assume for now that we have a subroutine, mat
hes(A; I;E),

that determines for whi
h t, I has a (t; E) mat
hing with A.

We will later implement mat
hes re
ursively using
oord-

mat
hes. Our a
tual subroutines only approximate this be-

havior; we later adapt our te
hnique to a

ommodate this

approximation.

A key observation is that a randomly sele
ted set of O(log n)

subintervals will approximate the behavior of the entire set.

We use the following simple
onsequen
e of the Cherno�

bound.

Lemma 4. For any positive � and
, there exists d su
h

that the following is true. Suppose that a randomly
hosen

element of a set S has some property Z with probability p.

If we uniformly sample (with repla
ement) d log n elements

from S, the fra
tion p

0

of these samples with property Z

satis�es p� �=2 � p

0

� p+ �=2 with probability 1� 1=n

.

We give the sampling pro
edure
oord-mat
hes in Fig-

ure 1. The parameters A; I and � are as in De�nition 2.

The parameters � and

ontrol the a

ura
y and reliability

of the estimate, as analyzed in Lemma 5.

Lemma 5. With probability 1 � 1=n

�1

over the random

oins of
oord-mat
hes, the output T of
oord-mat
hes

(A; I; �; E;D; �;
) has the following two properties:

1. If I has a (t; �; E;D)
oordinated mat
hing then t 2 T .

2. If t 2 T then I has a (t; �; E;D + �k)
oordinated

mat
hing.

Proof. For any t, if at most D intervals I

i

do not have a

(t

i

; E) mat
hing where jt

i

� tj � � then by Lemma 4, with

probability at least 1�1=n

at most a D=k+ �=2 fra
tion of

the I

i

j

s do not have su
h a mat
hing, in whi
h
ase t 2 T .

Similarly, if more than D+�k intervals do not have a (t

i

; E)-

mat
hing with jt

i

� tj � �, then with probability at least

1 � 1=n

at least a (D=k + �) � �=2 fra
tion of the I

i

j

s do

not have su
h a mat
hing, in whi
h
ase t 62 T . Thus, for

both types of errors, the probability of making a mistake is

thus at most 1=n

. Sin
e there are at most n possible errors

possible (for ea
h t the number of non-mat
hes
an be either

too big or too small, but not both), the lemma follows from

the union bound. 2

3.3 Quantizing shifts
Our mat
hes and
oord-mat
hes algorithms may
on-

eivably give an output set T
onsisting of n elements. While

not a�e
ting the query
omplexity, this by itself is more time

than we wish to take. Further, observe that for dete
ting

strings with the edit distan
e of at most n

�

, we may restri
t

the allowed shifts to [�n

�

: : : + n

�

℄. However, to a
hieve

a o(n

�

) running time, we must further restri
t the set of

possible outputs. We do this by spe
ifying a quantization

parameter, Q, whi
h governs the pre
ision of the output.

Definition 3. The Q-quantization of t, denoted t[Q℄, is

the unique value Qk (k an integer) satisfying �Q=2 < t �

Qk � Q=2. The Q-quantization of a set
onsists of the

Q-quantization of its values. If an interval has a (t; E)

oord-mat
hes(A; I; �; E;D; �;
)

1. Let d be as in Lemma 4 for the given � and
, and l = d log n. Choose i

1

; : : : ; i

l

uniformly and independently from [1 : : : k℄.

2. For ea
h I

i

j

,
ompute T

j

= mat
hes(A; I

i

j

; E).

3. Return T = merge(T

1

; : : : ; T

l

; �;�), where � = (D=k + �=2)l and merge is de�ned below.

merge(T

1

; : : : ; T

l

; �;�)

1. Return the set T , where t 2 T i� T

j

\ [t� � : : : t+ �℄ = ; for at most � sets T

j

.

Figure 1: Sampling algorithm for (approximately) �nding
oordinated mat
hes.

mat
hing with A, we say that it has an (t[Q℄; E) quantized

mat
hing with A. We say that a set of intervals, I has

a (t; �; E;D) quantized
oordinated mat
hing with A if t =

t[Q℄ and for all but D of the intervals I

i

2 I, I

i

has a (t

i

; E)

quantized mat
hing with A, where jt � t

i

j � �. We de�ne

qmerge as the Q-quantization of the output of merge.

The key observation to make is that
oordinated mat
h-

ings already allow for some \wiggle room," in the shifts al-

lowed for the intervals. Adding moderate amounts of quanti-

zation doesn't
hange this wiggle room signi�
antly. Propo-

sition 1 quanti�es this relationship; its proof follows imme-

diately from the fa
t that quantization only alters a number

by at most Q=2.

Proposition 1. If interval I has a (t; �; E;D)
oordi-

nated mat
hing with respe
t to A then it has a (t[Q℄; � +

Q=2; E;D) quantized
oordinated mat
hing with A. If I has

a (t; �; E;D) quantized
oordinated mat
hing with A then it

has a (t; � +Q=2; E;D)
oordinated mat
hing with A.

Intuitively, if we don't make the quantization fa
tor too

large then we
an make qualitatively the same inferen
es

using quantized shifts as we
an using unquantized shifts.

3.4 Recursively using coordinated matches
Our
oord-mat
hes algorithm makes
alls to mat
hes,

whi
h has to �nd good mat
hes for individual intervals; we

now des
ribe how the mat
hes pro
edure is implemented.

Using Lemma 1, we
an dete
t a good mat
h for an interval I

by breaking I into subintervals, dete
ting good
oordinated

mat
hings for these intervals, and inferring the existen
e

of good mat
hes for I. That is, we
all
oord-mat
hes

using a suitable de
omposition of I and using suitable error

toleran
es. While running
oord-mat
hes, we make
alls

to mat
hes on a subset of these subintervals, whi
h are

approximated via a
all to
oord-mat
hes on a suitable

de
omposition of these subintervals, and so on. This pro
ess

yields a multi-stage algorithm in whi
h mat
hes found in a

given stage are used to generate mat
hes in the earlier stage.

At ea
h stage, we mat
h smaller intervals, and require that

the mat
hes have smaller internal edit distan
es. Eventually,

we seek (t; E) mat
hes in whi
h E < 1 (hen
e, E might as

well be 0). But note that if an interval I has a (t; 0) mat
hing

with respe
t to A, then Amust
ontain interval I un
hanged

ex
ept for a translation or shift by t positions. In this
ase,

we
ompute the set of allowable t values dire
tly, using the

algorithm shifts des
ribed below; this forms the �nal stage

of the re
ursion. We now turn to the des
ription of this

algorithm.

3.5 Finding approximate block shifts via ruler
procedure

This subse
tion des
ribes an algorithm to eÆ
iently �nd

substrings in A that approximately mat
h a blo
k (interval)

in B. This pro
edure is at the
ore of our edit distan
e

testing algorithm.

The approximate mat
hing problem is as follows (for sim-

pli
ity, we will drop the term 'approximate'). Given a blo
k

I = B[s : : : e℄ of length b = e�s+1 in B; and a
onstant

2

>

1, �nd all indi
es s

0

su
h that A[s

0

: : : (s

0

+ b�1)℄ mat
hes I,

in the sense that the two substrings have Hamming-distan
e

at most b=

2

. Note that, if D(A;B) < n

�

, it is enough to

onsider s

0

2 [s � n

�

; s+ n

�

℄.

Thus, we now need to solve the following. Given a string

I of length b, and a string A

0

= A[(s � n

�

) : : : (s + n

�

+

b� 1)℄, we want to �nd all shifts t of I within A

0

, su
h that

A

0

[t+ 1 : : : t + b℄ mat
hes I. That is, we want to �nd all

length b substrings of A

0

with Hamming distan
e at most

b=

2

from I. Naively, we
an randomly sample O(log n)

indi
es i to determine (with high probability) if the substring

A

0

[(t+1) : : : (t+ b)℄ mat
hes I, for a given t, and try all 2n

�

possible shifts t. This requires
(n

�

) queries to A. Below

we redu
e the number of queries by a \ruler" pro
edure.

Suppose we would like to
ompare pairs of
hara
ters

A

0

[i℄; I[j℄ su
h that some pairs A

0

[i℄; I[j℄ are
he
ked for

every i � j from 0 to u = 2n

�

. Here is how to a
hieve

this with

p

u queries to ea
h string, provided that b >>

p

u: In A

0

,
hara
ter positions divisible by

p

u are queried:

A

0

[

p

u℄; A

0

[2

p

u℄; : : : ; A

0

[u℄. In I,

p

u
onse
utive positions

are queried: I[1 : : :

p

u℄. Intuitively, queries to A

0

a
t as

\
entimeter" marks on the ruler, and queries to I a
t as

\millimeter" marks. For every t = 0; 1; : : : ; u, there is a

pair of queried positions A

0

[i℄; I[j℄ with i � j = t. Let

en = bt=

p

u
 and mil = t mod

p

u. Then A[
en �

p

u℄ and

B[

p

u�mil℄ are queried positions exa
tly distan
e t apart.

We
an extend this idea to test whether the entire blo
k

mat
hes with shift l, using the random sampling idea men-

tioned earlier: Pi
k l = �(log n) numbers m

1

;m

2

; : : : ;m

l

randomly from the range [0; b �

p

u℄. For ea
h ti
k mark

on the ruler,
onstru
t a �ngerprint by querying at l o�sets

instead of just 1; for example, in A

0

, the �ngerprint of the

entimeter mark

p

u is the sequen
e of l bits

(A

0

[

p

u+m

1

℄; A

0

[

p

u+m

2

℄; : : : ; A

0

[

p

u+m

l

℄):

Now, we
an dete
t with high probability whether the blo
k

mat
hes with shift t by
omparing the �ngerprints of
en

and mil as de�ned above.

Up to this point we have assumed b >>

p

u. We use

the same idea when b �

p

u; the only di�eren
e is that

we need to make the ruler asymmetri
. In this
ase, we

an have only O(b) millimeter ti
k marks, and so we need

(u=b)
entimeter ti
k marks. Thus, in general we
an �nd

all mat
hing shifts l by usingO(maxf

p

u; u=bg log n) queries.

EÆ
ient implementation of the ruler

We now des
ribe a data stru
ture that allows us to eÆ-

iently exe
ute the ruler pro
edure. Re
all that we want to

dete
t when a ti
k mark i in A

0

has the same �ngerprint as

a ti
k mark j in I. To do this, we maintain a binary sear
h

tree, with a leaf
orresponding to ea
h �ngerprint f en
oun-

tered thus far. (In pra
ti
e, a hash tree may be better, but

it does not
hange the asymptoti
 performan
e.) Ea
h leaf

ontains pointers to two linked lists: the A-list
ontains in-

di
es i (in A

0

) that resulted in �ngerprint f , and the B-list

ontains indi
es j (in I) that yielded f . It takes O(log n)

time per ti
k mark, and thus O(maxf

p

u; u=bg log n) time

overall, to build up this data stru
ture.

When all ti
k marks have been pro
essed, the data stru
-

ture
ontains an impli
it representation of all shifts t su
h

that I mat
hes A

0

[t+ 1 : : : t+ b℄, in the following sense: for

ea
h �ngerprint f , every
ombination of an index i from

f 's A-list and j from f 's B-list des
ribe a mat
hing shift

t = j � i. However, it is still potentially expensive to go

from this to an expli
it list of all mat
hing t values. The

problem is simply that there may be
(u) su
h values.

If we need to know ea
h individual t value pre
isely, there

is no way to avoid this problem. To get around this, the

algorithm des
ribed in Se
tion 3.6 only uses quantized shift

values, i.e., values of t rounded to multiples of some inte-

ger Q. Reporting distin
t multiples of Q for whi
h some t

mat
hed, redu
es the worst-
ase size of the output list to

(u=Q). It is easy to take advantage of this redu
tion with

our data-stru
ture: �rst prune the B-list so that it never has

two j values that get rounded o� to the same multiple of Q,

and then, if Q > g, also prune the A-list su
h that it never

has two i values that get rounded o� to the same multiple of

Q. The �nal algorithm is shown in Figure 2. The following

theorem summarizes the performan
e of this algorithm:

Theorem 1. Pro
edure shifts �nds all quantized shifts

t of interval I in A

0

, with high probability. It runs in time

O(maxf

p

u; u=b; u=Qg log n), where u = jA

0

j � b.

Proof. If t is a shift
orresponding to an exa
t mat
h,

then the pre
eding dis
ussion of the ruler shows that the

orresponding quantized shift value will be found. If t is a

shift
orresponding to a Hamming distan
e of greater than

2b=

2

, then at least b=

2

of the Hamming errors must o

ur

after the �rst g
hara
ters of I. Hen
e, any one m

i

will �nd

a mismat
h with probability at least 1=

2

. Setting d = 2,

the probability of the �ngerprints mat
hing for t is then at

most

1

n

2

. There are less than n possible shift values, and

so the probability of �nding any in
orre
t shift t is at most

1

n

. Higher values of d
an be used to obtain error bounds

of at most

1

n

for any
onstant
, hen
e the high probability

result. The running time bound follows by taking the sum

of the time to
onstru
t the impli
it representation of all

shifts, and the time to produ
e the output. 2

3.6 The edit distance testing algorithm
We now have all the tools we need to build our algorithm

for testing edit distan
e. The algorithm is shown in Figure 3.

The top-level pro
edure is a routine de
ide that takes as in-

put the two strings A and B, and the parameter �. de
ide

alls mat
hes to sear
h for a mat
h of B in A with edit dis-

tan
e at most n

�

; if su
h a mat
h is found, CLOSE is output,

otherwise FAR is output. mat
hes is a re
ursive pro
edure,

re
ursing through the pro
edure
oord-mat
hes. The re-

ursion terminates when the required internal edit distan
e

in ea
h blo
k is less than 1; in this
ase, mat
hes uses shifts

to dire
tly �nd the mat
hes.

Depth of recursion:

At ea
h level of the re
ursive de
omposition, the size of

the interval input to mat
hes goes down by a fa
tor of

(n

��1

). Thus for any
onstant � < 1, there is a
onstant

number r of levels of re
ursion required to rea
h a state in

whi
h the intervals have size O(n

1��

); at this point, E < 1

and hen
e shifts will be
alled, terminating the re
ursion.

We assign a height to ea
h invo
ation of pro
edure mat
hes

as follows: the �nal invo
ation that
alls shifts has height

0, the level above that has height 1, and so on till we get

that the height of the top-level invo
ation of mat
hes is

r. We also de�ne the height of an invo
ation of
oord-

mat
hes to be the height of the mat
hes pro
edure that

invoked it.

Correctness of the algorithm

We need to show that with a suitable
hoi
e of
onstants

1

and � (perhaps dependent on �), pro
edure de
ide
orre
tly

solves the edit distan
e testing problem. We �rst prove that

if D(A;B) � n

�

, the algorithm outputs CLOSE.

Lemma 6. If D(A;B) � n

�

, the algorithm outputs CLOSE

with high probability, for any parameter values � < 1 and

1

> 1.

Proof. (Sket
h) Note that it is suÆ
ient to prove that

if there is a (quantized) (t; E) mat
hing of B with respe
t

to A, the top-level invo
ation of mat
hes will �nd it, with

high probability. We prove this statement by indu
tion on

the height h of the invo
ation of mat
hes. For h = 0, this is

true be
ause of the
orre
tness of the shifts pro
edure. As-

suming it is true for height (h�1), we show that it is true for

height h as well: Let mat
hes(A; I; E) be a height h invo
a-

tion, and suppose that I has a (t; E) mat
hing with respe
t

to A. Then, by Lemma 2, there exists a
oordinated mat
h-

ing with the parameters spe
i�ed in Step (2
) of mat
hes.

Then, using a variant of Lemma 4, we see that most of the

sampled intervals have some mat
h with translation t

i

lose

to t. Now,
onsider the re
ursive
alls to mat
hes made by

oord-mat
hes. By the indu
tive assumption, they will

report these mat
hes t

i

with high probability. Now, using

Lemma 5, we know that they will �nd these translations

t

i

, and hen
e
oord-mat
hes will report t among its out-

put T . Hen
e, the translation t is the output of the level h

mat
hes, with high probability. 2

It remains to show that the algorithm outputs FAR with

high probability when D(A;B) > n=C, for an appropriate

hoi
e of
onstants.

Lemma 7. There exist values for the
onstants � and

1

(dependent only on � and C), su
h that if the algorithm out-

puts CLOSE (with high probability), then D(A;B) < n=C.

shifts(A

0

; I;Q;

2

)

/* Find all shifts of I in A

0

with Hamming distan
e < 2jIj=

2

, quantized in multiples of Q */

1. Let b = jIj, u = jA

0

j � b, and g = minfb=

2

;

p

ug.

2. Let l = d � log n=(� log(1� 1=

2

)), for some
onstant d > 2. Choose integers m

1

;m

2

; : : : ;m

l

independently and uniformly

at random in [0; b� g℄.

3. Initialize the �ngerprint sear
h tree.

4. For i = g; 2g; : : : ; u do

{ Compute �ngerprint f(i) = (A

0

[i+m

1

℄; : : : ; A

0

[i+m

l

℄).

{ Lo
ate f(i) in the sear
h tree,
reating a new leaf if ne
essary.

{ Add i to the A-list for f(i).

5. For j = 1; 2; : : : ; g do

{ Compute �ngerprint f(j) = (I[j +m

1

℄; : : : ; I[j +m

l

℄).

{ Lo
ate f(j) in the sear
h tree,
reating a new leaf if ne
essary.

{ Add j to the B-list for f(j).

6. Quantizing: For ea
h �ngerprint f , s
an the B-list for f and round ea
h j value to the nearest multiple of Q, deleting

repeated values; if Q > g, also s
an the A-list for f and round ea
h i value to the nearest multiple of Q, deleting repeated

values.

7. For ea
h �ngerprint f , ea
h i in f 's A-list, and ea
h (rounded) j in f 's B-list, output t = i� j.

Figure 2: \Ruler" pro
edure for �nding approximate blo
k shifts.

de
ide(A;B; �; C)

0. Choose suÆ
iently small �, and suÆ
iently large

1

(for the given � and C).

1. Choose quantization parameter Q = � �minfn

1��

; n

�=2

g.

2. Compute T = mat
hes(A;B; n

�

).

3. If T is nonempty, then output CLOSE, else output FAR.

mat
hes(A; I;E)

1. If E < 1, use shifts to
ompute T .

2. If E � 1,

2a. Set k = minf�n

1��

; 2

1

Eg.

2b. De
ompose I into a set I of
ontiguous disjoint intervals of size jIj=k.

2
. Compute T =
oord-mat
hes(A; I; E;

1

E=k;k=

1

).

3. Return T .

Figure 3: The Edit Distan
e Testing Algorithm

Proof. (Sket
h, of Lemma 7) First, as the quantization

is at most � times the size of the smallest interval size in

the re
ursion, it alters the
onstants but not the qualitative

mat
hing results. Se
ond, as long as the underlying shifts

algorithm and interval sampling pro
edures took suÆ
iently

many samples (O(log n)), the e�e
ts of their impre
ision

ould be redu
ed to � amounts as well. For the rest of the

dis
ussion, we ignore these issues.

The other potential sour
e of error is in inferring the ex-

isten
e of a mat
hing from a
oordinated mat
hing, at ea
h

level of the re
ursion. We use Lemma 1 to bound this error;

this involves a
areful analysis of the � fa
tors that arise at

ea
h level of the re
ursion.

We
onsider the values of S

0

, �, E, and (D=k) in ea
h

invo
ation of
oord-mat
hes. Let � = � � n

1��

. In ea
h of

the �rst r � 2 levels, mat
hes subdivides the interval into

� intervals. At height r (the top level), we have

S

0

=

n

�

; � = n

�

; E = n

�

�

1

�

; (D=k) =

1

1

Now, let us write �

h

for the fa
tor � in Lemma 1,
orre-

sponding to the values of S

0

; �; E; and (D=k) at height h.

We have

�

r

=

2n

�

�

n

+ � +

1

1

= 3�+

1

1

Pro
eeding in this manner, we �nd at level 2,

S

0

=

n

�

r�1

; � = n

�

� (

1

�

)

r�2

; E = n

�

� (

1

�

)

r�1

; (D=k) =

1

1

�

2

=

2n

�

r�2

1

�

n

+ �+

1

1

= 2

r�2

1

� �+ �+

1

1

At this level, we must have 2

1

E < �, or else the re
ursion

would not terminate at level r. Hen
e, the pattern
hanges

here; However, observing that � redu
es by a fa
tor of �=

1

and S

0

redu
es by a fa
tor 2

1

E < �, �=S

0

an in
rease by

at most another fa
tor of

1

, and so we have

�

1

� 2

r�1

1

� �+ �+

1

1

Note that as r is �xed (by �), we
an pi
k values of

1

and

� to a
hieve �

1

as small as we wish: we �rst sele
t a suitable

value of

1

, and then sele
t � based on the
hosen

1

. In

parti
ular, we
an pi
k values su
h that �

1

<

1

rC

. Further,

observe that �

r

; : : : ; �

2

< �

1

.

Now, suppose algorithm de
ide outputs CLOSE. This

means that at ea
h level of the re
ursion, we have a
oordi-

nated mat
hing. Consider an instan
e of
oord-mat
hes

at height 1, and apply Lemma 1. This says that the
orre-

sponding interval at height 2 has a mat
hing with additional

edit distan
e at most �

1

times the length of the interval.

Adding up the edits over all intervals in a level, and over all

levels of re
ursion, we see that the total edit distan
e of A

from B is less than �

1

n:r <

n

C

. 2

Combining Lemma 6 and 7, we get the following theorem:

Theorem 2. For any �xed � < 1, we
an
hoose
on-

stants � and

1

su
h that pro
edure de
ide solves the edit

distan
e testing problem with high probability.

3.7 Running time analysis
In this se
tion, we provide the running time analysis of our

algorithms. The analysis is based on three
ases, depending

on the value of �.

Case (i): � < 1=2

In this
ase, there will only be one level of re
ursion. At

the top level, B will be broken into intervals of size O(n

�

);

the expe
ted number of edits per interval is less than 1, and

so in the next level the shifts pro
edure will be used to �nd

the mat
hes of these intervals. Thus, there are d log n
alls

to shifts; for the spe
i�ed Q, ea
h
all takes O(n

�=2

log n)

time. In addition, there is one
all to qmerge, whi
h takes

O(n

�=2

log n) time, thus giving us a total running time of

O(n

�=2

log

2

n).

Case (ii): 1=2 < � < 2=3

When 1=2 < � < 2=3, there will be two levels of re
ursion.

At the top level, we break B into intervals of size

1

n

�

. In

the se
ond level, ea
h sele
ted interval is further broken into

subintervals of size n

�=2

. Finally, we �nd mat
hes for these

subintervals using shifts. Thus, there are O(log

2

n)
alls

to shifts; again, ea
h
all takes O(n

�=2

log n) time. There

are also O(log n)
alls to qmerge. All together, the running

time is O(n

�=2

log

3

n).

Case (iii): � > 2=3

We now
onsider the general
ase, when there are r > 2

levels of re
ursion. We note that there two sour
es of degra-

dation in this re
ursive algorithm. First, we in
ur a time

and query overhead of (log n)

r+O(1)

, be
ause of the random

sampling at ea
h level of re
ursion. The se
ond, more sig-

ni�
ant degradation
omes from the shifts pro
edure at

the �nal stage of the re
ursion. Ea
h invo
ation of shifts

has to �nd all (quantized) shifts in the range [�n

�

: : : n

�

℄

of a blo
k of size O(n

1��

). However, for � > 2=3, we have

n

1��

<

p

n

�

, and so the ruler used in the shifts pro
edure

has to be asymmetri
. As a result, the running time of ea
h

invo
ation is O(n

2��1

log n). Thus, the edit distan
e testing

algorithm has an overall running time of

~

O

�

n

2��1

�

.

4. A QUERY COMPLEXITY LOWER BOUND

FOR THE EDIT DISTANCE PROBLEM
This se
tion proves the following lower bound for the edit

distan
e problem de�ned in Se
tion 2:

Theorem 3. Any algorithm for the edit distan
e problem

requires
(n

�=2

) queries.

In fa
t, we show
(n

�=2

) lower bound for the possibly easier

problem of distinguishing a pair (A;B) of random strings

from a pair (A;B) where A is random and B is a right

shift of A by t positions for a random t 2 [n

�

=2; n

�

℄: Sin
e

two random strings have a linear edit distan
e, Theorem 3

follows.

Lemma 8. With probability at least 1� o(1), two random

n-bit strings have edit distan
e � n=6.

Proof. (of Lemma 8) It is enough to show that for a

�xed n-bit string X, the fra
tion of strings within edit dis-

tan
e n=6 of X is o(1). A string that is at most d away from

X, is obtained by
hoosing d lo
ations, and for ea
h of the

lo
ations, pi
king one the deletion, repla
ement, insertion of

a new bit, or no-edit operation. Thus, the number of strings

within edit distan
e d from X is at most

�

n

d

�

� 5

d

. Sub-

stituting d = n=6 and re
alling that

�

n

�n

�

� 2

H

2

(�)n

where

H

2

(p) = �p log p�(1�p) log(1�p), we get that the number

of strings obtained from X with at most n=6 edit operations

is at most

n

n=6

!

5

n=6

� 2

(H

2

(1=6)+1=2)n

= o(2

n

):

2

We de�ne two distributions F and C on pairs of strings.

Let F be a distribution on pairs of random n-bit strings. Let

C be a distribution on pairs of n-bit strings (A;B) where A

is random and B is a right shift of A by t positions for a

random t 2 [n

�

=2; n

�

℄: By lemma 8, with high probability,

F produ
es a pair of strings with edit distan
e at least n=6

while C is over pairs of strings with edit distan
e at most

n

�

. The following lemma shows that any low
omplexity

algorithm
annot distinguish these two distributions.

Lemma 9. Fix q <

1

2

n

�=2

. Then for every q-query algo-

rithm A,

�

�

�

Pr

x F

[A(x) = 1℄� Pr

x C

[A(x) = 1℄

�

�

�

�

1

2

:

Proof. Let A be a q-query algorithm that has a

ess to

two n-bit strings. Namely, A is a (possibly probabilisti
)

mapping from query-answer histories

[(i

1

; s

1

; a

1

); : : : ; (i

h

; s

h

; a

h

)℄

to (i

h+1

; s

h+1

) for h < q, and to fCLOSE; FARg for h = q.

A query of A is in the form (i

h

; s

h

), where 1 � i

h

� n and

s

h

2 f`A',`B'g, to denote the i

th

h

lo
ation of the string s

h

.

An answer a

h

is the
orresponding bit.

Let H

F

denote the distribution on query-answer histories

of length q of A on inputs sele
ted from F . De�ne H

C

sim-

ilarly. It is enough to show that jjH

F

; H

C

jj (the statisti
al

di�eren
e between H

F

and H

C

) is o(1).

A query (i

h

; s

h

) (under input distribution C) is
alled re-

vealing when the queried bit was already queried in the other

string, i.e., if s

h

=`A' and the algorithm has already queried

(i

h

+ t;`B') or if s

h

=`B' and the algorithm has already

queried (i

h

� t;`A'). If A ever asks a revealing query, we

assume it outputs \CLOSE". This assumption only makes

A's job easier.

We assume, without loss of generality, that A does not

repeat queries. Under this assumption, ea
h answer under

F is always a random bit. Conditioned on the event that A

does not make a revealing query, ea
h answer under C is also

a random bit. By showing an upper bound on the probabil-

ity that A makes a revealing query in its
omputation, we

upper bound jjH

F

; H

C

jj.

Consider queries of A under F . After h queries, none

of whi
h are revealing, pairs of bits (A[i℄; B[j℄) for at most

h

2

=4 o�sets ji� jj have been queried. So, there are at least

(n

�

=2)�h

2

=4 shifts that have not been
he
ked. At most h

of these remaining shifts
an be
he
ked by the new query.

Thus, at this point, the probability of a revealing query is

at most 4h=(2n

�

� h

2

). Therefore, the probability that a

revealing query is made in any sequen
e of q <

1

2

n

�=2

queries

is at most

q

X

h=1

4h

2n

�

� h

2

<

q

X

h=1

4h

2n

�

�

1

4

n

�

�

32

7

n

��

q

X

h=1

h

�

32

7

n

��

�

1

8

n

�

<

1

2

2

Theorem 3 follows from Lemmas 8 and 9.

5. REFERENCES
[1℄ W. Chang and E. Lawler. Approximate string mat
hing

in sublinear expe
ted time. In Pro
eedings of the 31st

IEEE Annual Symposium on Foundations of Computer

S
ien
e, pages 116{124, Saint Louis, Missouri, 1990.

IEEE Computer So
iety Press.

[2℄ R. Cole and R. Hariharan. Approximate string

mat
hing: A simpler faster algorithm. In Pro
eedings of

the Ninth Annual ACM-SIAM Symposium on Dis
rete

Algorithms, pages 463{472, San Fran
is
o, California,

Jan. 1998.

[3℄ G. M. Landau and U. Vishkin. Introdu
ing eÆ
ient

parallelism into approximate string mat
hing and a

new serial algorithm. In Pro
eedings of the Eighteenth

annual ACM Symposium on Theory of Computing,

pages 220{230, Berkeley, California, May 1986. ACM

Press, New York.

[4℄ W. J. Masek and M. S. Paterson. A faster algorithm

omputing string edit distan
es. Journal of Computer

and System S
ien
es, 20:18{31, 1980.

[5℄ E. W. Myers. A sublinear algorithm for approximate

keyword sear
hing. Algorithmi
a, 12(4/5):345{374,

O
t./Nov. 1994.

[6℄ S. C. Sahinalp and U. Vishkin. EÆ
ient approximate

and dynami
 mat
hing of patterns using a labeling

paradigm. In 37th Annual Symposium on Foundations

of Computer S
ien
e, pages 320{328, Burlington,

Vermont, O
t. 1996. IEEE Computer So
iety Press.

