
A Sublinear Algorithm for Weakly Approximating Edit
Distance

Tuğkan Batu
�

University of Pennsylvania

batu@cis.upenn.edu

Funda Ergün
Case Western Reserve

University

afe@eecs.cwru.edu

Joe Kilian
NEC Laboratories America

joe@neclabs.com

Avner Magen
University of Toronto

avner@cs.toronto.edu

Sofya Raskhodnikova
MIT

sofya@mit.edu

Ronitt Rubinfeld
NEC Laboratories America

ronitt@neclabs.com

Rahul Sami
y

Yale University

sami@cs.yale.edu

ABSTRACT

We show how to determine whether the edit distane be-

tween two strings is small in sublinear time. Spei�ally, we

present a test whih, given two n-harater strings A and

B, runs in time o(n) and returns \CLOSE " if their edit

distane is O(n

�

), or \FAR" if their edit distane is 
(n),

where � is a �xed parameter less than 1. Our algorithm for

testing the distane works by reursively subdividing the

strings into smaller substrings and looking for pairs of sub-

strings in A, B with small edit distane. To do this, we

query both strings at random plaes and use a speial teh-

nique for \reyling" our samples so that the overall query

omplexity, as well as the running time, stays low. The test

runs in time

~

O

�

n

maxf

�

2

;2��1g

�

for any �xed � < 1. Our

algorithm thus is a �rst step for trading o� auray for ef-

�ieny for edit distane omputation, whih is useful when

the input data is very long.

We also show a lower bound of 
(n

�=2

) on the query om-

plexity of every algorithm that distinguishes pairs of string

with edit distane at most n

�

from those with edit distane

at least n=6.

Categories and Subject Descriptors

F.2 [Theory of Computation℄: Analysis of algorithms

and problem omplexity

�

Supported by ARO DAAD 19-01-1047 and NSF CCR01-

05337.

y

Supported by ONR grant N00014-01-1-0795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1581136749/03/0006 ...$5.00.

General Terms

Algorithms, Theory

Keywords

String mathing, sublinear algorithms, approximation

1. INTRODUCTION
Let A;B be two strings from a �xed size alphabet �. The

well known edit distane between A and B is de�ned as the

minimum number of harater insertions, deletions and sub-

stitutions required to transform A to B, or vie versa (it is

indeed a distane, and in partiular symmetri). This mea-

sure of string similarity is widely used in areas suh as om-

putational biology, text proessing, and web searhing. The

edit distane is a well studied measure, and an be omputed

in quadrati time by a dynami programming algorithm [4℄.

The task of omputing or even approximating edit distane

signi�antly faster has gained a lot of attention, espeially in

the bioinformatis ommunity, where the regular quadrati

algorithm is usually too slow to be used.

EÆient algorithms for the approximation task are ruial

for two reasons: �rst, it is often the ase that the strings be-

ing ompared are quite long (hundreds of millions of hara-

ters in a genomi environment); seond, it an serve as a part

of an exat algorithm that works in sublinear amortized time

in the following manner. A ommon task in bioinformatis

is, given many pairs of strings, to ompute edit distane

only for pairs of lose strings. The atual distane between

most pairs of strings is irrelevant. Weak approximation al-

gorithms are useful in heaply eliminating those pairs, and

thus allowing an exat algorithm to work on an extremely

small fration of the input pairs.

Our results

We show that if one is willing to aept a weaker quality

of approximation, one an solve the edit distane problem

surprisingly quikly. In fat, we give (to our knowledge)

the �rst sublinear time algorithm for approximating the edit



distane. In partiular, we show that one an distinguish

pairs of strings of length n whih have edit distane n

�

from

those whih have edit distane 
(n) in

~

O(n

�=2

) time for

� � 2=3. For any onstant 1 > � > 2=3, our running time

is

~

O(n

2��1

), whih is still sublinear. At the ore of our

algorithm is a sublinear-time proedure whih onstruts a

useful impliit representation of all loations in A at whih

there are approximate opies of a spei� substring of B;

this proedure may be of independent interest.

Finally, we prove that every algorithm that distinguishes

pairs of strings with edit distane n

�

from strings with edit

distane at least n=6 requires 
(n

�=2

) queries. To ahieve

this, we show the same lower bound for every algorithm that

distinguishes a pair (A;B) of random strings from a pair

(A;B) where A is random and B is a right shift of A by t

positions for a random t 2 [n

�

=2; n

�

℄: This implies the lower

bound for the edit distane problem, sine two random n-bit

strings have edit distane at least n=6 with high probability.

Related work

The edit distane problem is losely related to the longest

ommon subsequene and sequene alignment problems. Com-

puting the LCS exatly is the same as omputing the edit

distane, whereas an analogous statement annot be made

for approximate omputations. In [MP℄, Masek and Pater-

son give an O(n

2

= log n) algorithm for exatly omputing

the LCS of two strings of size n.

1

This nearly quadrati

bound remains intat for the general ase, with the ostly

omputations ourring when the LCS is of linear length.

There has been a signi�ant amount of related work on

the slightly di�erent problem of approximate string math-

ing, where one would like to �nd all substrings of the text

string of size n whih math the pattern string of sizem with

edit distane at most k (insertions, deletions and substitu-

tions of one harater). We mention here a small sample of

these works. Landau and Vishkin [3℄ gave an O(nk) algo-

rithm for this problem. Chang and Lawler [1℄ onsider the

ase when the text string is random and errors are not too

frequent. In this ase, they give an algorithm whih runs in

sublinear expeted time, namely O((n=m)k logm) time for

k < m= logm+O(1). Myers [5℄ improves on their result but

requires linear-time preproessing on one of the two strings.

In general, the �rst subquadrati time approximate string

mathing algorithm was given by Sahinalp and Vishkin [6℄,

running in time O(n�(1+poly(k)�1=m log n)). Cole and Har-

iharan [2℄ improved the running time to O((nk

4

=m)+n+m).

To put our work in perspetive, we note that when the two

strings are assumed to be lose, dynami programming re-

strited to the relevant fration of the matrix an be applied,

leading to a onsiderable saving in both time and spae. In

our setting this translates to an immediate O(n

1+�

) algo-

rithm. Our algorithm is muh more eÆient, but not sur-

prisingly uses the idea behind this naive saving as one of its

omponents.

Our techniques

Our tehniques are based on the observation that, if two

strings have small edit distane, they will have many almost

idential (with small Hamming distane) substrings whose

loations in the respetive strings are similar. We exploit

this property by dividing one of the strings into bloks and

1

In fat, the strings an be of di�erent length; we present

the equal-length ase for simpliity.

determining whether most of these bloks our in similar

loations in the other string. In order to detet substrings

that math a blok with small Hamming distane, it suf-

�es to randomly sample both the strings. To redue our

query (sample) omplexity, we use a proedure that we all

a \ruler" that ollets a sublinear pool of samples from both

strings, and then builds a struture ontaining all mathing

pairs of the form (loation in A, blok in B). In addition, we

make use of reursion while subdividing our bloks, whih

allows us to further improve the omplexity of the algorithm.

Finally, we \quantize" the loations in the strings output by

the mathing proess for two substrings; that is, we onsider

only disrete \shifts" between the loation of a substring in

one string and in the other. This results in many fewer

ases to onsider (and, more importantly, to store) in terms

of where a blok of one string is loated in the other.

Overview of paper

The rest of this paper is strutured as follows: Setion 2

de�nes the edit distane testing problem. In Setion 3 we

develop a sublinear time algorithm for this problem: we de-

sribe our basi tehniques in Setions 3.1-3.4; in Setion 3.5

we show how to math the bloks in one string to substrings

in the other, and in Setion 3.6 we present our main algo-

rithm that uses these tehniques to estimate the edit dis-

tane. In Setion 4, we give a lower bound on the query

omplexity for this problem.

2. PRELIMINARIES
The strings we onsider are over a onstant size alphabet

�. For simpliity and without loss of generality, we assume

a binary alphabet � = f0; 1g, and the input strings (usually

denoted A;B) of length n. A[i℄ refers to the ith harater

(bit) of string A, and A[i : : : j℄ refers to the substring of A

delimited by the haraters (bits) at positions i and j.

D(A;B), the edit distane between two binary strings A

and B, is the minimal number of single bit insertions, dele-

tions, or replaements required to generate B from A, or

vie versa.

The edit distance testing problem

We wish to devise an algorithm to distinguish pairs of n-

bit strings A;B that are lose to eah other from pairs that

are far from eah other in terms of their edit distane. The

required behavior from this algorithm on input A, B, and

parameters �;C, 0 < � < 1; C > 1, is as follows.

� if D(A;B) � n

�

, output CLOSE with probability at

least 2/3.

� if D(A;B) > n=C, output FAR with probability at

least 2/3.

The output of the algorithm is unspei�ed for n

�

< D(A;B) �

n=C. We treat C as a �xed onstant and do not analyze the

dependene of our algorithm on C.

3. A TEST FOR EDIT DISTANCE
We now desribe a reursive algorithm that heks whether

the edit distane between two n-bit strings A and B is small

(� n

�

) or large (
(n)). We arbitrarily designate A to be

the referene string, against whih B is mathed. On the

highest level, our algorithm is based on the standard divide



and onquer paradigm: B is is broken up into substrings,

whih are reursively mathed against A. The mathing

for these loal pathes is pieed together to form a mathing

(alignment) for the larger string. However, sine it would be

too expensive to look at all the subintervals, we randomly

sample a small number of them and rely on the statistial

properties of these mathings. We then analyze the e�et

of the statistial unertainties that arise as a result of the

sampling.

We start by disussing the relationship between the edit

distane of two strings and the similarity of their substrings.

3.1 Approximate matchings and coordinated
matchings

A mathing of B against A desribes how A an be ob-

tained from B. In partiular, it gives an alignment between

the mathing portions of A and B. Consider how a subin-

terval I = B[s : : : e℄ orresponds to A. We may think of I as

being mathed against a substring A[s

0

: : : e

0

℄; the mathing

involves a sequene of operations on A[s

0

: : : e

0

℄ that trans-

form it into I. In general, s 6= s

0

; we refer to the quantity

s

0

� s as the shift of I. The shift is due to external edits

required to math the earlier portions of A and B. We refer

to the number of edit operation needed to transform A[s

0

; e

0

℄

to I as the internal edit distane.

2

Note that there may be

many possible low-edit mathings of I against A.

We are interested in mathings in whih the internal edit

distane is a small fration of the total number of haraters

being mathed.

Definition 1. An interval I = B[s : : : e℄ has a (t; E)

mathing with respet to A if for some interval A[s

0

: : : e

0

℄,

s

0

= s+ t and D(A[s

0

: : : e

0

℄; I) � E.

If D(A;B) is small, it is apparent that most subintervals in

B will have an approximate mathing somewhere in A. Fur-

ther, these mathing subintervals must have similar shifts,

beause a hange in the shift value an only arise from an

edit (spei�ally, insert or delete) operation. This leads us

to onsider oordinated mathings:

Definition 2. Given a olletion of intervals I = I

1

; : : : ; I

k

;

we say that I has a (t; �; E;D) oordinated mathing with

A if for all but D of the intervals I

i

2 I, I

i

has a (t

i

; E)

mathing with A, where jt� t

i

j � �.

We an deompose an interval I of size S into k dis-

joint ontiguous subintervals, I

1

; : : : ; I

k

, eah of size S

0

=

S=k (we assume that kjS). The existene of a oordinated

mathing of I indiates that most of the intervals therein

are well mathed with similar shifts in A. Lemma 1 says

that if these subintervals have a oordinated mathing with

suitable parameters then I has an approximate mathing.

Lemma 1. Let A; I; I

1

; : : : ; I

k

; S and S

0

be as above. If

I

1

; : : : ; I

k

have a (t; �; �S

0

; Æk) oordinated mathing with A,

then I has a (t; �S) approximate mathing with A, where

� =

�

2�

S

0

+ �+ Æ

�

:

2

This is no longer a distane funtion. The orresponding

mathing of the internal edit distane is also desribed in

the bioinformatis literature as loal alignment.

Proof. (Sketh) We onstrut a mathing for I by stith-

ing together the mathings for I

1

; : : : ; I

k

, orreting for gaps,

overlaps and unmathing subintervals.

Let I = B[s : : : e℄ and I

i

= B[s

i

: : : e

i

℄. If I

i

has a (t

i

; �)

approximate mathing, we denote by I

0

i

= A[s

0

i

: : : e

0

i

℄ the

substring of A that is transformed into I

i

(hoosing arbi-

trarily if there are multiple mathes). I

0

i

an be transformed

into I

i

using �S

0

edit operations. If I

i

does not have a (t

i

; �)

mathing (for t

i

2 [t � �; t+ �℄), we de�ne t

i

= t and I

0

i

to

be A[s

i

+ t : : : e

i

+ t℄, i.e., the region obtained by translating

the interval [s

i

: : : e

i

℄ by t. We an trivially transform I

0

i

to

I

i

using S

0

edit operations.

We transform the interval A[s+ t : : : e

0

k

℄ into I as follows.

If s

0

1

= s+ t, then we simply transform I

0

1

into I

1

using the

same edit operations as for that mathing. If s

0

1

< s + t,

then the s + t � s

0

1

�rst haraters of I

0

are missing from

A[s+t : : : e

k

℄; we add these to the beginning of A[s+t : : : e

0

k

℄

using s+t�s

0

1

insert operations, and then proeed as before.

Similarly, if s

0

1

> s+ t, we trim the �rst s

0

1

� s� t haraters

from A[s+ t : : : e

0

k

℄ and proeed as before. We are left with

the remaining portion of A[s + t : : : e

0

k

℄ (A[e

0

1

+ 1 : : : e

0

k

℄),

whih must be transformed into the remaining portion of I

(B[e

1

+ 1 : : : e

k

℄).

To omplete the transformation, we transform I

0

i

into I

i

,

for i = 2; : : : ; k, in the same manner, yielding I. At eah

stage, we trim or add to the remaining string so that I

0

i

is a

pre�x, and then perform the transformation from I

0

i

to I

i

.

It remains to ompute the number of edits required by this

transformation. The number of edits required to transform

I

0

i

to I

i

, for all i for whih there are is an approximate math,

is at most �S

0

k. For at most Æk intervals, I

0

i

and I

i

don't

have a good math; the trivial transformation osts at most

S

0

� Æk = ÆS

0

k.

We must also aount for the js

0

i

� (s+ t)j edit operations

required prior to transforming I

0

1

and the js

0

i

�(e

0

i�1

)+1j edit-

ing operations required to align the remaining string prior

to transforming I

i

, for i > 1. By the de�nition of a oordi-

nated mathing, js

0

i

� (s+ t)j � �. Sine s

0

i

= s

i

+ t

i

we an

write,

js

0

i

� (e

0

i�1

+ 1)j

= j(s

i

+ t

i

)� (s

0

i�1

+ (e

0

i�1

� s

0

i�1

) + 1)j

= j(s

i

+ t

i

)� (s

i�1

+ t

i�1

+ (e

0

i�1

� s

0

i�1

) + 1)j

� jt

i

� t

i�1

j + j(e

0

i�1

� s

0

i�1

+ 1)� (s

i

� s

i�1

)j:

It follows from the de�nition of a oordinated mathing that

jt

i

� t

i�1

j � 2�. The latter term is simply the absolute

di�erene between the length of I

i�1

(s

i

� s

i�1

) and the

length of jI

0

i�1

j (e

0

i�1

�s

0

i�1

)+1). If I

0

i�1

an be transformed

into I

i�1

using �S

0

edit operations, this di�erene annot be

more than �S

0

, and if no suh mathing exists, then I

0

i�1

will

have the same length as I

i�1

by de�nition. Thus, at most

2� + �S

0

operation are required per interval, giving at most

2�k + �S

0

k operations in all.

Realling that S = S

0

k, we have at most

�

2�

S

0

+ � + Æ

�

S

edits required, implying the lemma.

2

Lemma 2 shows that if a good mathing for an interval

exists then there must be a oordinated mathing among its

subintervals.

Lemma 2. Let A; I;I = I

1

; : : : ; I

k

; S and S

0

be as above.

Let  > 1 and S > E. If I has a (t; E) mathing with A



then I has a (t; E; E=k; k=) oordinated mathing with A.

Proof. (Sketh) Let I = B[s : : : e℄. We onsider the

mathing from A[s + t : : : q℄ to I that has edit distane E.

We for eah I

i

onsider the smallest interval I

0

i

of A ontain-

ing all the haraters that are mathed to haraters in I

i

. If

no suh haraters exist, we no not assign I

i

. We laim that

this orrespondene indues a (t; E; E=k; k=) oordinated

mathing.

First, we note that the I

0

i

s are disjoint, sine our edit oper-

ations do not hange the ordering of the haraters of A that

are mathed. The edit operations transforming A[s+ t : : : q℄

into I transform eah I

0

i

into I

i

. Eah edit operation a�ets

only one (I

0

i

; I

i

) pair or unassigned I

i

- either it deletes a

harater from at most one I

0

i

or it inserts a harater into

exatly one I

i

. Hene, the sum of edit distanes between I

0

i

and I along with the sum of edits assigned to unassigned I

i

is

at most E. If more than k= had edit distane greater than

E=k, or were unassigned (with an edit ost of S

0

> E=k),

this would ause the sum to be greater than E, a ontradi-

tion.

It remains to show that the translation (shift) t

i

between

eah I

0

i

and I

i

satis�es jt

i

� tj � E. Now, onsider what

happens if we edit A[s+ t : : : q℄ to obtain I, �rst by deleting

the unmathed haraters, one by one, and then inserting

the new haraters, one by one. At eah step, we an reom-

pute the mathings and hene the shifts for eah (I

0

i

; I

i

) pair.

Eah operation an hange any t

i

by at most 1 eah way.

However, at the end of this proess, when A[s+ t : : : q℄ = I,

t

i

= t, so the original values of t

i

ould not be more than E

away from t. 2

A speial ase of this lemma is the existene of oordinated

mathings where the intervals have no internal edit distane

at all.

Lemma 3. Let A; I; I

1

; : : : ; I

k

; S and S

0

be as above. If I

has a (t; E) mathing with A, and k � E, then I

1

; : : : ; I

k

have a (t; E; 0; E) oordinated mathing with A.

Disussion: We use Lemmata 1 and 2 in onert to de-

tet good mathings. Suppose string A and B have a good

mathing. We breakB up into subintervals and use Lemma 2

to argue that these intervals have a good oordinated math-

ing. In the next setion we show how to eÆiently de-

tet a good oordinated mathing. One deteted, we use

Lemma 1 to infer the existene of a good mathing between

A and B. The properties of the inferred mathing will be

far weaker than the one that atually exists, but suÆiently

good to distinguish between the two ases we onsider. To

obtain the strongest result, we apply this tehnique reur-

sively, taking are that the degradation in the guarantee

does not grow too large.

3.2 Detecting coordinated matchings via sam
pling

The rux of our algorithm is to approximately detet a

oordinated mathing with a very few queries. Given a set

of intervals I = I

1

; : : : ; I

k

, we wish to determine for whih

t, I has a (t; �; E;D) oordinated mathing. We atually

aomplish an approximate version of this task: For all t,

if I has a (t; �; E;D) oordinated mathing we with high

probability detet that it has a (t; �; E;D+ �k) oordinated

mathing, for any onstant � > 0.

To implement our detetion routine, oord-mathes, we

assume for now that we have a subroutine, mathes(A; I;E),

that determines for whih t, I has a (t; E) mathing with A.

We will later implement mathes reursively using oord-

mathes. Our atual subroutines only approximate this be-

havior; we later adapt our tehnique to aommodate this

approximation.

A key observation is that a randomly seleted set of O(log n)

subintervals will approximate the behavior of the entire set.

We use the following simple onsequene of the Cherno�

bound.

Lemma 4. For any positive � and , there exists d suh

that the following is true. Suppose that a randomly hosen

element of a set S has some property Z with probability p.

If we uniformly sample (with replaement) d log n elements

from S, the fration p

0

of these samples with property Z

satis�es p� �=2 � p

0

� p+ �=2 with probability 1� 1=n



.

We give the sampling proedure oord-mathes in Fig-

ure 1. The parameters A; I and � are as in De�nition 2.

The parameters � and  ontrol the auray and reliability

of the estimate, as analyzed in Lemma 5.

Lemma 5. With probability 1 � 1=n

�1

over the random

oins of oord-mathes, the output T of oord-mathes

(A; I; �; E;D; �; ) has the following two properties:

1. If I has a (t; �; E;D) oordinated mathing then t 2 T .

2. If t 2 T then I has a (t; �; E;D + �k) oordinated

mathing.

Proof. For any t, if at most D intervals I

i

do not have a

(t

i

; E) mathing where jt

i

� tj � � then by Lemma 4, with

probability at least 1�1=n



at most a D=k+ �=2 fration of

the I

i

j

s do not have suh a mathing, in whih ase t 2 T .

Similarly, if more than D+�k intervals do not have a (t

i

; E)-

mathing with jt

i

� tj � �, then with probability at least

1 � 1=n



at least a (D=k + �) � �=2 fration of the I

i

j

s do

not have suh a mathing, in whih ase t 62 T . Thus, for

both types of errors, the probability of making a mistake is

thus at most 1=n



. Sine there are at most n possible errors

possible (for eah t the number of non-mathes an be either

too big or too small, but not both), the lemma follows from

the union bound. 2

3.3 Quantizing shifts
Our mathes and oord-mathes algorithms may on-

eivably give an output set T onsisting of n elements. While

not a�eting the query omplexity, this by itself is more time

than we wish to take. Further, observe that for deteting

strings with the edit distane of at most n

�

, we may restrit

the allowed shifts to [�n

�

: : : + n

�

℄. However, to ahieve

a o(n

�

) running time, we must further restrit the set of

possible outputs. We do this by speifying a quantization

parameter, Q, whih governs the preision of the output.

Definition 3. The Q-quantization of t, denoted t[Q℄, is

the unique value Qk (k an integer) satisfying �Q=2 < t �

Qk � Q=2. The Q-quantization of a set onsists of the

Q-quantization of its values. If an interval has a (t; E)



oord-mathes(A; I; �; E;D; �; )

1. Let d be as in Lemma 4 for the given � and , and l = d log n. Choose i

1

; : : : ; i

l

uniformly and independently from [1 : : : k℄.

2. For eah I

i

j

, ompute T

j

= mathes(A; I

i

j

; E).

3. Return T = merge(T

1

; : : : ; T

l

; �;�), where � = (D=k + �=2)l and merge is de�ned below.

merge(T

1

; : : : ; T

l

; �;�)

1. Return the set T , where t 2 T i� T

j

\ [t� � : : : t+ �℄ = ; for at most � sets T

j

.

Figure 1: Sampling algorithm for (approximately) �nding oordinated mathes.

mathing with A, we say that it has an (t[Q℄; E) quantized

mathing with A. We say that a set of intervals, I has

a (t; �; E;D) quantized oordinated mathing with A if t =

t[Q℄ and for all but D of the intervals I

i

2 I, I

i

has a (t

i

; E)

quantized mathing with A, where jt � t

i

j � �. We de�ne

qmerge as the Q-quantization of the output of merge.

The key observation to make is that oordinated math-

ings already allow for some \wiggle room," in the shifts al-

lowed for the intervals. Adding moderate amounts of quanti-

zation doesn't hange this wiggle room signi�antly. Propo-

sition 1 quanti�es this relationship; its proof follows imme-

diately from the fat that quantization only alters a number

by at most Q=2.

Proposition 1. If interval I has a (t; �; E;D) oordi-

nated mathing with respet to A then it has a (t[Q℄; � +

Q=2; E;D) quantized oordinated mathing with A. If I has

a (t; �; E;D) quantized oordinated mathing with A then it

has a (t; � +Q=2; E;D) oordinated mathing with A.

Intuitively, if we don't make the quantization fator too

large then we an make qualitatively the same inferenes

using quantized shifts as we an using unquantized shifts.

3.4 Recursively using coordinated matches
Our oord-mathes algorithm makes alls to mathes,

whih has to �nd good mathes for individual intervals; we

now desribe how the mathes proedure is implemented.

Using Lemma 1, we an detet a good math for an interval I

by breaking I into subintervals, deteting good oordinated

mathings for these intervals, and inferring the existene

of good mathes for I. That is, we all oord-mathes

using a suitable deomposition of I and using suitable error

toleranes. While running oord-mathes, we make alls

to mathes on a subset of these subintervals, whih are

approximated via a all to oord-mathes on a suitable

deomposition of these subintervals, and so on. This proess

yields a multi-stage algorithm in whih mathes found in a

given stage are used to generate mathes in the earlier stage.

At eah stage, we math smaller intervals, and require that

the mathes have smaller internal edit distanes. Eventually,

we seek (t; E) mathes in whih E < 1 (hene, E might as

well be 0). But note that if an interval I has a (t; 0) mathing

with respet to A, then Amust ontain interval I unhanged

exept for a translation or shift by t positions. In this ase,

we ompute the set of allowable t values diretly, using the

algorithm shifts desribed below; this forms the �nal stage

of the reursion. We now turn to the desription of this

algorithm.

3.5 Finding approximate block shifts via ruler
procedure

This subsetion desribes an algorithm to eÆiently �nd

substrings in A that approximately math a blok (interval)

in B. This proedure is at the ore of our edit distane

testing algorithm.

The approximate mathing problem is as follows (for sim-

pliity, we will drop the term 'approximate'). Given a blok

I = B[s : : : e℄ of length b = e�s+1 in B; and a onstant 

2

>

1, �nd all indies s

0

suh that A[s

0

: : : (s

0

+ b�1)℄ mathes I,

in the sense that the two substrings have Hamming-distane

at most b=

2

. Note that, if D(A;B) < n

�

, it is enough to

onsider s

0

2 [s � n

�

; s+ n

�

℄.

Thus, we now need to solve the following. Given a string

I of length b, and a string A

0

= A[(s � n

�

) : : : (s + n

�

+

b� 1)℄, we want to �nd all shifts t of I within A

0

, suh that

A

0

[t+ 1 : : : t + b℄ mathes I. That is, we want to �nd all

length b substrings of A

0

with Hamming distane at most

b=

2

from I. Naively, we an randomly sample O(log n)

indies i to determine (with high probability) if the substring

A

0

[(t+1) : : : (t+ b)℄ mathes I, for a given t, and try all 2n

�

possible shifts t. This requires 
(n

�

) queries to A. Below

we redue the number of queries by a \ruler" proedure.

Suppose we would like to ompare pairs of haraters

A

0

[i℄; I[j℄ suh that some pairs A

0

[i℄; I[j℄ are heked for

every i � j from 0 to u = 2n

�

. Here is how to ahieve

this with

p

u queries to eah string, provided that b >>

p

u: In A

0

, harater positions divisible by

p

u are queried:

A

0

[

p

u℄; A

0

[2

p

u℄; : : : ; A

0

[u℄. In I,

p

u onseutive positions

are queried: I[1 : : :

p

u℄. Intuitively, queries to A

0

at as

\entimeter" marks on the ruler, and queries to I at as

\millimeter" marks. For every t = 0; 1; : : : ; u, there is a

pair of queried positions A

0

[i℄; I[j℄ with i � j = t. Let

en = bt=

p

u and mil = t mod

p

u. Then A[en �

p

u℄ and

B[

p

u�mil℄ are queried positions exatly distane t apart.

We an extend this idea to test whether the entire blok

mathes with shift l, using the random sampling idea men-

tioned earlier: Pik l = �(log n) numbers m

1

;m

2

; : : : ;m

l

randomly from the range [0; b �

p

u℄. For eah tik mark

on the ruler, onstrut a �ngerprint by querying at l o�sets

instead of just 1; for example, in A

0

, the �ngerprint of the

entimeter mark

p

u is the sequene of l bits

(A

0

[

p

u+m

1

℄; A

0

[

p

u+m

2

℄; : : : ; A

0

[

p

u+m

l

℄):

Now, we an detet with high probability whether the blok

mathes with shift t by omparing the �ngerprints of en

and mil as de�ned above.

Up to this point we have assumed b >>

p

u. We use

the same idea when b �

p

u; the only di�erene is that



we need to make the ruler asymmetri. In this ase, we

an have only O(b) millimeter tik marks, and so we need


(u=b) entimeter tik marks. Thus, in general we an �nd

all mathing shifts l by usingO(maxf

p

u; u=bg log n) queries.

EÆient implementation of the ruler

We now desribe a data struture that allows us to eÆ-

iently exeute the ruler proedure. Reall that we want to

detet when a tik mark i in A

0

has the same �ngerprint as

a tik mark j in I. To do this, we maintain a binary searh

tree, with a leaf orresponding to eah �ngerprint f enoun-

tered thus far. (In pratie, a hash tree may be better, but

it does not hange the asymptoti performane.) Eah leaf

ontains pointers to two linked lists: the A-list ontains in-

dies i (in A

0

) that resulted in �ngerprint f , and the B-list

ontains indies j (in I) that yielded f . It takes O(log n)

time per tik mark, and thus O(maxf

p

u; u=bg log n) time

overall, to build up this data struture.

When all tik marks have been proessed, the data stru-

ture ontains an impliit representation of all shifts t suh

that I mathes A

0

[t+ 1 : : : t+ b℄, in the following sense: for

eah �ngerprint f , every ombination of an index i from

f 's A-list and j from f 's B-list desribe a mathing shift

t = j � i. However, it is still potentially expensive to go

from this to an expliit list of all mathing t values. The

problem is simply that there may be 
(u) suh values.

If we need to know eah individual t value preisely, there

is no way to avoid this problem. To get around this, the

algorithm desribed in Setion 3.6 only uses quantized shift

values, i.e., values of t rounded to multiples of some inte-

ger Q. Reporting distint multiples of Q for whih some t

mathed, redues the worst-ase size of the output list to


(u=Q). It is easy to take advantage of this redution with

our data-struture: �rst prune the B-list so that it never has

two j values that get rounded o� to the same multiple of Q,

and then, if Q > g, also prune the A-list suh that it never

has two i values that get rounded o� to the same multiple of

Q. The �nal algorithm is shown in Figure 2. The following

theorem summarizes the performane of this algorithm:

Theorem 1. Proedure shifts �nds all quantized shifts

t of interval I in A

0

, with high probability. It runs in time

O(maxf

p

u; u=b; u=Qg log n), where u = jA

0

j � b.

Proof. If t is a shift orresponding to an exat math,

then the preeding disussion of the ruler shows that the

orresponding quantized shift value will be found. If t is a

shift orresponding to a Hamming distane of greater than

2b=

2

, then at least b=

2

of the Hamming errors must our

after the �rst g haraters of I. Hene, any one m

i

will �nd

a mismath with probability at least 1=

2

. Setting d = 2,

the probability of the �ngerprints mathing for t is then at

most

1

n

2

. There are less than n possible shift values, and

so the probability of �nding any inorret shift t is at most

1

n

. Higher values of d an be used to obtain error bounds

of at most

1

n



for any onstant , hene the high probability

result. The running time bound follows by taking the sum

of the time to onstrut the impliit representation of all

shifts, and the time to produe the output. 2

3.6 The edit distance testing algorithm
We now have all the tools we need to build our algorithm

for testing edit distane. The algorithm is shown in Figure 3.

The top-level proedure is a routine deide that takes as in-

put the two strings A and B, and the parameter �. deide

alls mathes to searh for a math of B in A with edit dis-

tane at most n

�

; if suh a math is found, CLOSE is output,

otherwise FAR is output. mathes is a reursive proedure,

reursing through the proedure oord-mathes. The re-

ursion terminates when the required internal edit distane

in eah blok is less than 1; in this ase, mathes uses shifts

to diretly �nd the mathes.

Depth of recursion:

At eah level of the reursive deomposition, the size of

the interval input to mathes goes down by a fator of


(n

��1

). Thus for any onstant � < 1, there is a onstant

number r of levels of reursion required to reah a state in

whih the intervals have size O(n

1��

); at this point, E < 1

and hene shifts will be alled, terminating the reursion.

We assign a height to eah invoation of proedure mathes

as follows: the �nal invoation that alls shifts has height

0, the level above that has height 1, and so on till we get

that the height of the top-level invoation of mathes is

r. We also de�ne the height of an invoation of oord-

mathes to be the height of the mathes proedure that

invoked it.

Correctness of the algorithm

We need to show that with a suitable hoie of onstants 

1

and � (perhaps dependent on �), proedure deide orretly

solves the edit distane testing problem. We �rst prove that

if D(A;B) � n

�

, the algorithm outputs CLOSE.

Lemma 6. If D(A;B) � n

�

, the algorithm outputs CLOSE

with high probability, for any parameter values � < 1 and



1

> 1.

Proof. (Sketh) Note that it is suÆient to prove that

if there is a (quantized) (t; E) mathing of B with respet

to A, the top-level invoation of mathes will �nd it, with

high probability. We prove this statement by indution on

the height h of the invoation of mathes. For h = 0, this is

true beause of the orretness of the shifts proedure. As-

suming it is true for height (h�1), we show that it is true for

height h as well: Let mathes(A; I; E) be a height h invoa-

tion, and suppose that I has a (t; E) mathing with respet

to A. Then, by Lemma 2, there exists a oordinated math-

ing with the parameters spei�ed in Step (2) of mathes.

Then, using a variant of Lemma 4, we see that most of the

sampled intervals have some math with translation t

i

lose

to t. Now, onsider the reursive alls to mathes made by

oord-mathes. By the indutive assumption, they will

report these mathes t

i

with high probability. Now, using

Lemma 5, we know that they will �nd these translations

t

i

, and hene oord-mathes will report t among its out-

put T . Hene, the translation t is the output of the level h

mathes, with high probability. 2

It remains to show that the algorithm outputs FAR with

high probability when D(A;B) > n=C, for an appropriate

hoie of onstants.

Lemma 7. There exist values for the onstants � and 

1

(dependent only on � and C), suh that if the algorithm out-

puts CLOSE (with high probability), then D(A;B) < n=C.



shifts(A

0

; I;Q; 

2

)

/* Find all shifts of I in A

0

with Hamming distane < 2jIj=

2

, quantized in multiples of Q */

1. Let b = jIj, u = jA

0

j � b, and g = minfb=

2

;

p

ug.

2. Let l = d � log n=(� log(1� 1=

2

)), for some onstant d > 2. Choose integers m

1

;m

2

; : : : ;m

l

independently and uniformly

at random in [0; b� g℄.

3. Initialize the �ngerprint searh tree.

4. For i = g; 2g; : : : ; u do

{ Compute �ngerprint f(i) = (A

0

[i+m

1

℄; : : : ; A

0

[i+m

l

℄).

{ Loate f(i) in the searh tree, reating a new leaf if neessary.

{ Add i to the A-list for f(i).

5. For j = 1; 2; : : : ; g do

{ Compute �ngerprint f(j) = (I[j +m

1

℄; : : : ; I[j +m

l

℄).

{ Loate f(j) in the searh tree, reating a new leaf if neessary.

{ Add j to the B-list for f(j).

6. Quantizing: For eah �ngerprint f , san the B-list for f and round eah j value to the nearest multiple of Q, deleting

repeated values; if Q > g, also san the A-list for f and round eah i value to the nearest multiple of Q, deleting repeated

values.

7. For eah �ngerprint f , eah i in f 's A-list, and eah (rounded) j in f 's B-list, output t = i� j.

Figure 2: \Ruler" proedure for �nding approximate blok shifts.

deide(A;B; �; C)

0. Choose suÆiently small �, and suÆiently large 

1

(for the given � and C).

1. Choose quantization parameter Q = � �minfn

1��

; n

�=2

g.

2. Compute T = mathes(A;B; n

�

).

3. If T is nonempty, then output CLOSE, else output FAR.

mathes(A; I;E)

1. If E < 1, use shifts to ompute T .

2. If E � 1,

2a. Set k = minf�n

1��

; 2

1

Eg.

2b. Deompose I into a set I of ontiguous disjoint intervals of size jIj=k.

2. Compute T = oord-mathes(A; I; E; 

1

E=k;k=

1

).

3. Return T .

Figure 3: The Edit Distane Testing Algorithm



Proof. (Sketh, of Lemma 7) First, as the quantization

is at most � times the size of the smallest interval size in

the reursion, it alters the onstants but not the qualitative

mathing results. Seond, as long as the underlying shifts

algorithm and interval sampling proedures took suÆiently

many samples (O(log n)), the e�ets of their impreision

ould be redued to � amounts as well. For the rest of the

disussion, we ignore these issues.

The other potential soure of error is in inferring the ex-

istene of a mathing from a oordinated mathing, at eah

level of the reursion. We use Lemma 1 to bound this error;

this involves a areful analysis of the � fators that arise at

eah level of the reursion.

We onsider the values of S

0

, �, E, and (D=k) in eah

invoation of oord-mathes. Let � = � � n

1��

. In eah of

the �rst r � 2 levels, mathes subdivides the interval into

� intervals. At height r (the top level), we have

S

0

=

n

�

; � = n

�

; E = n

�

�



1

�

; (D=k) =

1



1

Now, let us write �

h

for the fator � in Lemma 1, orre-

sponding to the values of S

0

; �; E; and (D=k) at height h.

We have

�

r

=

2n

�

�

n

+ � +

1



1

= 3�+

1



1

Proeeding in this manner, we �nd at level 2,

S

0

=

n

�

r�1

; � = n

�

� (



1

�

)

r�2

; E = n

�

� (



1

�

)

r�1

; (D=k) =

1



1

�

2

=

2n

�



r�2

1

�

n

+ �+

1



1

= 2

r�2

1

� �+ �+

1



1

At this level, we must have 2

1

E < �, or else the reursion

would not terminate at level r. Hene, the pattern hanges

here; However, observing that � redues by a fator of �=

1

and S

0

redues by a fator 2

1

E < �, �=S

0

an inrease by

at most another fator of 

1

, and so we have

�

1

� 2

r�1

1

� �+ �+

1



1

Note that as r is �xed (by �), we an pik values of 

1

and

� to ahieve �

1

as small as we wish: we �rst selet a suitable

value of 

1

, and then selet � based on the hosen 

1

. In

partiular, we an pik values suh that �

1

<

1

rC

. Further,

observe that �

r

; : : : ; �

2

< �

1

.

Now, suppose algorithm deide outputs CLOSE. This

means that at eah level of the reursion, we have a oordi-

nated mathing. Consider an instane of oord-mathes

at height 1, and apply Lemma 1. This says that the orre-

sponding interval at height 2 has a mathing with additional

edit distane at most �

1

times the length of the interval.

Adding up the edits over all intervals in a level, and over all

levels of reursion, we see that the total edit distane of A

from B is less than �

1

n:r <

n

C

. 2

Combining Lemma 6 and 7, we get the following theorem:

Theorem 2. For any �xed � < 1, we an hoose on-

stants � and 

1

suh that proedure deide solves the edit

distane testing problem with high probability.

3.7 Running time analysis
In this setion, we provide the running time analysis of our

algorithms. The analysis is based on three ases, depending

on the value of �.

Case (i): � < 1=2

In this ase, there will only be one level of reursion. At

the top level, B will be broken into intervals of size O(n

�

);

the expeted number of edits per interval is less than 1, and

so in the next level the shifts proedure will be used to �nd

the mathes of these intervals. Thus, there are d log n alls

to shifts; for the spei�ed Q, eah all takes O(n

�=2

log n)

time. In addition, there is one all to qmerge, whih takes

O(n

�=2

log n) time, thus giving us a total running time of

O(n

�=2

log

2

n).

Case (ii): 1=2 < � < 2=3

When 1=2 < � < 2=3, there will be two levels of reursion.

At the top level, we break B into intervals of size 

1

n

�

. In

the seond level, eah seleted interval is further broken into

subintervals of size n

�=2

. Finally, we �nd mathes for these

subintervals using shifts. Thus, there are O(log

2

n) alls

to shifts; again, eah all takes O(n

�=2

log n) time. There

are also O(log n) alls to qmerge. All together, the running

time is O(n

�=2

log

3

n).

Case (iii): � > 2=3

We now onsider the general ase, when there are r > 2

levels of reursion. We note that there two soures of degra-

dation in this reursive algorithm. First, we inur a time

and query overhead of (log n)

r+O(1)

, beause of the random

sampling at eah level of reursion. The seond, more sig-

ni�ant degradation omes from the shifts proedure at

the �nal stage of the reursion. Eah invoation of shifts

has to �nd all (quantized) shifts in the range [�n

�

: : : n

�

℄

of a blok of size O(n

1��

). However, for � > 2=3, we have

n

1��

<

p

n

�

, and so the ruler used in the shifts proedure

has to be asymmetri. As a result, the running time of eah

invoation is O(n

2��1

log n). Thus, the edit distane testing

algorithm has an overall running time of

~

O

�

n

2��1

�

.

4. A QUERY COMPLEXITY LOWER BOUND

FOR THE EDIT DISTANCE PROBLEM
This setion proves the following lower bound for the edit

distane problem de�ned in Setion 2:

Theorem 3. Any algorithm for the edit distane problem

requires 
(n

�=2

) queries.

In fat, we show 
(n

�=2

) lower bound for the possibly easier

problem of distinguishing a pair (A;B) of random strings

from a pair (A;B) where A is random and B is a right

shift of A by t positions for a random t 2 [n

�

=2; n

�

℄: Sine

two random strings have a linear edit distane, Theorem 3

follows.

Lemma 8. With probability at least 1� o(1), two random

n-bit strings have edit distane � n=6.

Proof. (of Lemma 8) It is enough to show that for a

�xed n-bit string X, the fration of strings within edit dis-

tane n=6 of X is o(1). A string that is at most d away from



X, is obtained by hoosing d loations, and for eah of the

loations, piking one the deletion, replaement, insertion of

a new bit, or no-edit operation. Thus, the number of strings

within edit distane d from X is at most

�

n

d

�

� 5

d

. Sub-

stituting d = n=6 and realling that

�

n

�n

�

� 2

H

2

(�)n

where

H

2

(p) = �p log p�(1�p) log(1�p), we get that the number

of strings obtained from X with at most n=6 edit operations

is at most

 

n

n=6

!

5

n=6

� 2

(H

2

(1=6)+1=2)n

= o(2

n

):

2

We de�ne two distributions F and C on pairs of strings.

Let F be a distribution on pairs of random n-bit strings. Let

C be a distribution on pairs of n-bit strings (A;B) where A

is random and B is a right shift of A by t positions for a

random t 2 [n

�

=2; n

�

℄: By lemma 8, with high probability,

F produes a pair of strings with edit distane at least n=6

while C is over pairs of strings with edit distane at most

n

�

. The following lemma shows that any low omplexity

algorithm annot distinguish these two distributions.

Lemma 9. Fix q <

1

2

n

�=2

. Then for every q-query algo-

rithm A,

�

�

�

Pr

x F

[A(x) = 1℄� Pr

x C

[A(x) = 1℄

�

�

�

�

1

2

:

Proof. Let A be a q-query algorithm that has aess to

two n-bit strings. Namely, A is a (possibly probabilisti)

mapping from query-answer histories

[(i

1

; s

1

; a

1

); : : : ; (i

h

; s

h

; a

h

)℄

to (i

h+1

; s

h+1

) for h < q, and to fCLOSE; FARg for h = q.

A query of A is in the form (i

h

; s

h

), where 1 � i

h

� n and

s

h

2 f`A',`B'g, to denote the i

th

h

loation of the string s

h

.

An answer a

h

is the orresponding bit.

Let H

F

denote the distribution on query-answer histories

of length q of A on inputs seleted from F . De�ne H

C

sim-

ilarly. It is enough to show that jjH

F

; H

C

jj (the statistial

di�erene between H

F

and H

C

) is o(1).

A query (i

h

; s

h

) (under input distribution C) is alled re-

vealing when the queried bit was already queried in the other

string, i.e., if s

h

=`A' and the algorithm has already queried

(i

h

+ t;`B') or if s

h

=`B' and the algorithm has already

queried (i

h

� t;`A'). If A ever asks a revealing query, we

assume it outputs \CLOSE". This assumption only makes

A's job easier.

We assume, without loss of generality, that A does not

repeat queries. Under this assumption, eah answer under

F is always a random bit. Conditioned on the event that A

does not make a revealing query, eah answer under C is also

a random bit. By showing an upper bound on the probabil-

ity that A makes a revealing query in its omputation, we

upper bound jjH

F

; H

C

jj.

Consider queries of A under F . After h queries, none

of whih are revealing, pairs of bits (A[i℄; B[j℄) for at most

h

2

=4 o�sets ji� jj have been queried. So, there are at least

(n

�

=2)�h

2

=4 shifts that have not been heked. At most h

of these remaining shifts an be heked by the new query.

Thus, at this point, the probability of a revealing query is

at most 4h=(2n

�

� h

2

). Therefore, the probability that a

revealing query is made in any sequene of q <

1

2

n

�=2

queries

is at most

q

X

h=1

4h

2n

�

� h

2

<

q

X

h=1

4h

2n

�

�

1

4

n

�

�

32

7

n

��

q

X

h=1

h

�

32

7

n

��

�

1

8

n

�

<

1

2

2

Theorem 3 follows from Lemmas 8 and 9.

5. REFERENCES
[1℄ W. Chang and E. Lawler. Approximate string mathing

in sublinear expeted time. In Proeedings of the 31st

IEEE Annual Symposium on Foundations of Computer

Siene, pages 116{124, Saint Louis, Missouri, 1990.

IEEE Computer Soiety Press.

[2℄ R. Cole and R. Hariharan. Approximate string

mathing: A simpler faster algorithm. In Proeedings of

the Ninth Annual ACM-SIAM Symposium on Disrete

Algorithms, pages 463{472, San Franiso, California,

Jan. 1998.

[3℄ G. M. Landau and U. Vishkin. Introduing eÆient

parallelism into approximate string mathing and a

new serial algorithm. In Proeedings of the Eighteenth

annual ACM Symposium on Theory of Computing,

pages 220{230, Berkeley, California, May 1986. ACM

Press, New York.

[4℄ W. J. Masek and M. S. Paterson. A faster algorithm

omputing string edit distanes. Journal of Computer

and System Sienes, 20:18{31, 1980.

[5℄ E. W. Myers. A sublinear algorithm for approximate

keyword searhing. Algorithmia, 12(4/5):345{374,

Ot./Nov. 1994.

[6℄ S. C. Sahinalp and U. Vishkin. EÆient approximate

and dynami mathing of patterns using a labeling

paradigm. In 37th Annual Symposium on Foundations

of Computer Siene, pages 320{328, Burlington,

Vermont, Ot. 1996. IEEE Computer Soiety Press.


