A Sublinear Algorithm for Weakly Approximating Edit
Distance

o *
Tugkan Batu
University of Pennsylvania

batu@cis.upenn.edu

Funda Ergln
Case Western Reserve
University

Joe Kilian
NEC Laboratories America

joe@nec-labs.com

afe@eecs.cwru.edu

Avner Magen
University of Toronto

avner@cs.toronto.edu

Sofya Raskhodnikova

sofya@mit.edu

Ronitt Rubinfeld
NEC Laboratories America

ronitt@nec-labs.com

Rahul SamiJr
Yale University

sami@cs.yale.edu

ABSTRACT

We show how to determine whether the edit distance be-
tween two strings is small in sublinear time. Specifically, we
present a test which, given two n-character strings A and
B, runs in time o(n) and returns “CLOSE 7 if their edit
distance is O(n®), or “FAR” if their edit distance is Q(n),
where « is a fixed parameter less than 1. Our algorithm for
testing the distance works by recursively subdividing the
strings into smaller substrings and looking for pairs of sub-
strings in A, B with small edit distance. To do this, we
query both strings at random places and use a special tech-
nique for “recycling” our samples so that the overall query
complexity, as well as the running time, stays low. The test

max{§,2a—1}

runs in time O(n) for any fixed o < 1. Our

algorithm thus is a first step for trading off accuracy for ef-
ficiency for edit distance computation, which is useful when
the input data is very long.

We also show a lower bound of ©(n®/?) on the query com-
plexity of every algorithm that distinguishes pairs of string
with edit distance at most n® from those with edit distance
at least n/6.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of algorithms
and problem complexity

*Supported by ARO DAAD 19-01-1047 and NSF CCRO1-
05337.

JrSupported by ONR grant N00014-01-1-0795.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC’03, June 9-11, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

General Terms
Algorithms, Theory

Keywords

String matching, sublinear algorithms, approximation

1. INTRODUCTION

Let A, B be two strings from a fixed size alphabet . The
well known edit distance between A and B is defined as the
minimum number of character insertions, deletions and sub-
stitutions required to transform A to B, or vice versa (it is
indeed a distance, and in particular symmetric). This mea-
sure of string similarity is widely used in areas such as com-
putational biology, text processing, and web searching. The
edit distance is a well studied measure, and can be computed
in quadratic time by a dynamic programming algorithm [4].
The task of computing or even approximating edit distance
significantly faster has gained a lot of attention, especially in
the bioinformatics community, where the regular quadratic
algorithm is usually too slow to be used.

Efficient algorithms for the approximation task are crucial
for two reasons: first, it is often the case that the strings be-
ing compared are quite long (hundreds of millions of charac-
ters in a genomic environment); second, it can serve as a part
of an ezact algorithm that works in sublinear amortized time
in the following manner. A common task in bioinformatics
is, given many pairs of strings, to compute edit distance
only for pairs of close strings. The actual distance between
most pairs of strings is irrelevant. Weak approximation al-
gorithms are useful in cheaply eliminating those pairs, and
thus allowing an exact algorithm to work on an extremely
small fraction of the input pairs.

Our results

We show that if one is willing to accept a weaker quality
of approximation, one can solve the edit distance problem
surprisingly quickly. In fact, we give (to our knowledge)
the first sublinear time algorithm for approximating the edit

distance. In particular, we show that one can distinguish
pairs of strings of length n which have edit distance n® from
those which have edit distance Q(n) in O(n®/?) time for
a < 2/3. For any constant 1 > « > 2/3, our running time
is O(n®>~'), which is still sublinear. At the core of our
algorithm is a sublinear-time procedure which constructs a
useful implicit representation of all locations in A at which
there are approximate copies of a specific substring of B;
this procedure may be of independent interest.

Finally, we prove that every algorithm that distinguishes
pairs of strings with edit distance n® from strings with edit
distance at least n/6 requires Q(n®/?) queries. To achieve
this, we show the same lower bound for every algorithm that
distinguishes a pair (A, B) of random strings from a pair
(A, B) where A is random and B is a right shift of A by ¢
positions for a random ¢ € [n /2, n%]. This implies the lower
bound for the edit distance problem, since two random n-bit
strings have edit distance at least n/6 with high probability.

Related work
The edit distance problem is closely related to the longest

common subsequence and sequence alignment problems. Com-li

puting the LCS exactly is the same as computing the edit
distance, whereas an analogous statement cannot be made
for approximate computations. In [MP], Masek and Pater-
son give an O(n?/logn) algorithm for exactly computing
the LCS of two strings of size n.' This nearly quadratic
bound remains intact for the general case, with the costly
computations occurring when the LCS is of linear length.

There has been a significant amount of related work on
the slightly different problem of approximate string match-
ing, where one would like to find all substrings of the text
string of size n which match the pattern string of size m with
edit distance at most k (insertions, deletions and substitu-
tions of one character). We mention here a small sample of
these works. Landau and Vishkin [3] gave an O(nk) algo-
rithm for this problem. Chang and Lawler [1] consider the
case when the text string is random and errors are not too
frequent. In this case, they give an algorithm which runs in
sublinear expected time, namely O((n/m)klogm) time for
k < m/logm+O(1). Myers [5] improves on their result but
requires linear-time preprocessing on one of the two strings.
In general, the first subquadratic time approximate string
matching algorithm was given by Sahinalp and Vishkin [6],
running in time O(n-(1+poly(k)-1/mlogn)). Cole and Har-
iharan [2] improved the running time to O((nk*/m)-+n-+m).

To put our work in perspective, we note that when the two
strings are assumed to be close, dynamic programming re-
stricted to the relevant fraction of the matrix can be applied,
leading to a considerable saving in both time and space. In
our setting this translates to an immediate O(n'*®) algo-
rithm. Our algorithm is much more efficient, but not sur-
prisingly uses the idea behind this naive saving as one of its
components.

Our techniques

Our techniques are based on the observation that, if two
strings have small edit distance, they will have many almost
identical (with small Hamming distance) substrings whose
locations in the respective strings are similar. We exploit
this property by dividing one of the strings into blocks and

'In fact, the strings can be of different length; we present
the equal-length case for simplicity.

determining whether most of these blocks occur in similar
locations in the other string. In order to detect substrings
that match a block with small Hamming distance, it suf-
fices to randomly sample both the strings. To reduce our
query (sample) complexity, we use a procedure that we call
a “ruler” that collects a sublinear pool of samples from both
strings, and then builds a structure containing all matching
pairs of the form (location in A, block in B). In addition, we
make use of recursion while subdividing our blocks, which
allows us to further improve the complexity of the algorithm.
Finally, we “quantize” the locations in the strings output by
the matching process for two substrings; that is, we consider
only discrete “shifts” between the location of a substring in
one string and in the other. This results in many fewer
cases to consider (and, more importantly, to store) in terms
of where a block of one string is located in the other.

Overview of paper

The rest of this paper is structured as follows: Section 2
defines the edit distance testing problem. In Section 3 we
develop a sublinear time algorithm for this problem: we de-
scribe our basic techniques in Sections 3.1-3.4; in Section 3.5
we show how to match the blocks in one string to substrings
in the other, and in Section 3.6 we present our main algo-
rithm that uses these techniques to estimate the edit dis-
tance. In Section 4, we give a lower bound on the query
complexity for this problem.

2. PRELIMINARIES

The strings we consider are over a constant size alphabet
3. For simplicity and without loss of generality, we assume
a binary alphabet ¥ = {0, 1}, and the input strings (usually
denoted A, B) of length n. A[i] refers to the ith character
(bit) of string A, and Afi... j] refers to the substring of A
delimited by the characters (bits) at positions ¢ and j.

D(A, B), the edit distance between two binary strings A
and B, is the minimal number of single bit insertions, dele-
tions, or replacements required to generate B from A, or
vice versa.

The edit distance testing problem

We wish to devise an algorithm to distinguish pairs of n-
bit strings A, B that are close to each other from pairs that
are far from each other in terms of their edit distance. The
required behavior from this algorithm on input A, B, and
parameters a,C, 0 < a < 1,C > 1, is as follows.

o if D(A,B) < n%, output CLOSE with probability at
least 2/3.

e if D(A,B) > n/C, output FAR with probability at
least 2/3.

The output of the algorithm is unspecified for n* < D(A, B) <}

n/C. We treat C as a fixed constant and do not analyze the
dependence of our algorithm on C.

3. A TEST FOR EDIT DISTANCE

We now describe a recursive algorithm that checks whether|l]
the edit distance between two n-bit strings A and B is small
(£ n%) or large (2(n)). We arbitrarily designate A to be
the reference string, against which B is matched. On the
highest level, our algorithm is based on the standard divide

and conquer paradigm: B is is broken up into substrings,
which are recursively matched against A. The matching
for these local patches is pieced together to form a matching
(alignment) for the larger string. However, since it would be
too expensive to look at all the subintervals, we randomly
sample a small number of them and rely on the statistical
properties of these matchings. We then analyze the effect
of the statistical uncertainties that arise as a result of the
sampling.

We start by discussing the relationship between the edit
distance of two strings and the similarity of their substrings.

3.1 Approximate matchings and coordinated
matchings

A matching of B against A describes how A can be ob-
tained from B. In particular, it gives an alignment between
the matching portions of A and B. Consider how a subin-
terval I = Bls...e] corresponds to A. We may think of I as
being matched against a substring A[s’...e']; the matching
involves a sequence of operations on A[s'...e'] that trans-
form it into I. In general, s # s'; we refer to the quantity
s’ — s as the shift of I. The shift is due to external edits
required to match the earlier portions of A and B. We refer
to the number of edit operation needed to transform A[s', ']
to I as the internal edit distance.? Note that there may be
many possible low-edit matchings of I against A.

We are interested in matchings in which the internal edit
distance is a small fraction of the total number of characters
being matched.

DEFINITION 1. An interval I = B[s...e] has a (¢, E)

matching with respect to A if for some interval Als'...€'],
s =s+t and D(A[s'...€'],I) < E.

If D(A, B) is small, it is apparent that most subintervals in
B will have an approximate matching somewhere in A. Fur-
ther, these matching subintervals must have similar shifts,
because a change in the shift value can only arise from an
edit (specifically, insert or delete) operation. This leads us
to consider coordinated matchings:

DEFINITION 2. Given a collection of intervals T = I, ... , It A

we say that Z has a (t,0,E,D) coordinated matching with
A if for all but D of the intervals I; € Z, I; has a (ti, E)
matching with A, where [t —t;| < o.

We can decompose an interval I of size S into k dis-
joint contiguous subintervals, I1,... , I, each of size S’ =
S/k (we assume that k|S). The existence of a coordinated
matching of 7 indicates that most of the intervals therein
are well matched with similar shifts in A. Lemma 1 says
that if these subintervals have a coordinated matching with
suitable parameters then I has an approximate matching.

LemMA 1. Let A, I I,... ,I;,S and S’ be as above. If
I, ..., I have a (t,0,€S’,0k) coordinated matching with A,
then I has a (t,BS) approzimate matching with A, where

B = <§ +e+5).

2This is no longer a distance function. The corresponding
matching of the internal edit distance is also described in
the bioinformatics literature as local alignment.

ProoOF. (Sketch) We construct a matching for I by stitch-
ing together the matchings for I, ... , I}, correcting for gaps,
overlaps and unmatching subintervals.

Let I = B[s...e] and I; = BJs;...e;]. If I; has a (t;,¢€)
approximate matching, we denote by I; = A[s;...ej] the
substring of A that is transformed into I; (choosing arbi-
trarily if there are multiple matches). I; can be transformed
into I; using €S’ edit operations. If I; does not have a (t;,¢)
matching (for ¢; € [t — o,t + o]), we define ¢; = ¢ and I] to
be A[si+t...e; +1], i.e., the region obtained by translating
the interval [s; ...e;] by t. We can trivially transform I; to
I; using S’ edit operations.

We transform the interval A[s+t¢...e}] into I as follows.
If s1 = s + ¢, then we simply transform I| into I; using the
same edit operations as for that matching. If s{ < s+ ¢,
then the s + ¢t — s} first characters of I' are missing from
A[s+t...ex]; we add these to the beginning of A[s+t...e}]
using s+t — s’ insert operations, and then proceed as before.
Similarly, if s{ > s+t, we trim the first si — s —t characters
from Afs+t...e}] and proceed as before. We are left with
the remaining portion of Afs + t...e}] (Alel + 1...¢ek]),
which must be transformed into the remaining portion of I
(B[61 +1.. ek])

To complete the transformation, we transform I into I;,
for ¢ = 2,... ,k, in the same manner, yielding I. At each
stage, we trim or add to the remaining string so that I} is a
prefix, and then perform the transformation from I to I;.

It remains to compute the number of edits required by this
transformation. The number of edits required to transform
I! to I;, for all i for which there are is an approximate match,
is at most e€S'k. For at most dk intervals, I} and I; don’t
have a good match; the trivial transformation costs at most
S’ -0k = 6S'k.

We must also account for the |s; — (s +t)| edit operations
required prior to transforming I1 and the |s;—(e;_;)+1]| edit-
ing operations required to align the remaining string prior
to transforming I;, for ¢ > 1. By the definition of a coordi-
nated matching, |s; — (s +t)| < o. Since s; = s; +1; we can
write,

lsi — (€ic1+ 1)

|(si +ti) — (sic1 + (ei—1 — si—1) + 1)
[(si+ti) — (sic1+tic1 + (€51 — 8i_1) + 1)
[ti —tic1| +|(eioy — si_y +1) — (si — si-1)].

IN

It follows from the definition of a coordinated matching that
|t; — ti—1] < 20. The latter term is simply the absolute
difference between the length of I;_1 (s; — si—1) and the
length of |I;_,| (ej_, —si_1)+1). If I;_, can be transformed
into I;_; using €S’ edit operations, this difference cannot be
more than €S’, and if no such matching exists, then I;_; will
have the same length as I;_; by definition. Thus, at most
20 + €S’ operation are required per interval, giving at most
20k + €S’k operations in all.
Recalling that S = S'k, we have at most (% +e+ 6)8
edits required, implying the lemma.
O

Lemma 2 shows that if a good matching for an interval
exists then there must be a coordinated matching among its
subintervals.

LEMMA 2. Let A, I,Z=1,...,I;,S and S’ be as above.
Let ¢ > 1 and S > cE. If I has a (t,E) matching with A

then T has a (t, E,cE/k,k/c) coordinated matching with A.

ProoOF. (Sketch) Let I = Bls...e]. We consider the
matching from A[s +¢...q] to I that has edit distance E.
We for each I; consider the smallest interval I} of A contain-
ing all the characters that are matched to characters in I;. If
no such characters exist, we no not assign I;. We claim that
this correspondence induces a (¢, E,cE/k, k/c) coordinated
matching.

First, we note that the I's are disjoint, since our edit oper-
ations do not change the ordering of the characters of A that
are matched. The edit operations transforming A[s+¢...]
into I transform each I into I;. Each edit operation affects
only one (I7,I;) pair or unassigned I; - either it deletes a
character from at most one I} or it inserts a character into
exactly one I;. Hence, the sum of edit distances between I}
and I along with the sum of edits assigned to unassigned I; is
at most E. If more than k/c had edit distance greater than
cE [k, or were unassigned (with an edit cost of S’ > cE/k),
this would cause the sum to be greater than E, a contradic-
tion.

It remains to show that the translation (shift) ¢; between
each I; and I; satisfies |t; — t| < E. Now, consider what
happens if we edit A[s+¢...q] to obtain I, first by deleting
the unmatched characters, one by one, and then inserting
the new characters, one by one. At each step, we can recom-
pute the matchings and hence the shifts for each (I}, I;) pair.
Each operation can change any ¢; by at most 1 each way.
However, at the end of this process, when A[s+t...q] =1,
t; = t, so the original values of ¢; could not be more than E
away from ¢. m|

A special case of this lemma is the existence of coordinated
matchings where the intervals have no internal edit distance
at all.

LemMA 3. Let A, I, I,... ,I,S and S’ be as above. If I
has a (t, E) matching with A, and k > E, then I,... I}
have a (t,E,0, E) coordinated matching with A.

DiscussioN: We use Lemmata 1 and 2 in concert to de-
tect good matchings. Suppose string A and B have a good

matching. We break B up into subintervals and use Lemma 2

to argue that these intervals have a good coordinated match-
ing. In the next section we show how to efficiently de-
tect a good coordinated matching. Once detected, we use
Lemma 1 to infer the existence of a good matching between
A and B. The properties of the inferred matching will be
far weaker than the one that actually exists, but sufficiently
good to distinguish between the two cases we consider. To
obtain the strongest result, we apply this technique recur-
sively, taking care that the degradation in the guarantee
does not grow too large.

3.2 Detecting coordinated matchings via sam-
pling

The crux of our algorithm is to approximately detect a
coordinated matching with a very few queries. Given a set
of intervals Z = I1,... ,I;, we wish to determine for which
t, Z has a (t,0, E,D) coordinated matching. We actually
accomplish an approximate version of this task: For all ¢,
if Z has a (t,0, E, D) coordinated matching we with high

probability detect that it has a (¢,0, E, D + €k) coordinated
matching, for any constant ¢ > 0.

To implement our detection routine, COORD-MATCHES, we
assume for now that we have a subroutine, MATCHES(A, I, E)]
that determines for which ¢, I has a (¢, E) matching with A.
We will later implement MATCHES recursively using COORD-
MATCHES. Our actual subroutines only approximate this be-
havior; we later adapt our technique to accommodate this
approximation.

A key observation is that a randomly selected set of O(log n)|j

subintervals will approximate the behavior of the entire set.
We use the following simple consequence of the Chernoff
bound.

LEMMA 4. For any positive € and c, there exists d such
that the following is true. Suppose that a randomly chosen
element of a set S has some property Z with probability p.
If we uniformly sample (with replacement) dlogn elements
from S, the fraction p’ of these samples with property Z
satisfies p—€/2 < p' < p+ €/2 with probability 1 — 1/n°.

We give the sampling procedure COORD-MATCHES in Fig-
ure 1. The parameters A,7 and o are as in Definition 2.
The parameters € and ¢ control the accuracy and reliability
of the estimate, as analyzed in Lemma 5.

LeMMA 5. With probability 1 — 1/n°"! over the random
coins of COORD-MATCHES, the output T of COORD-MATCHES
(A,Z,0,E,D,¢€,c) has the following two properties:

1. IfT has a (t,0, E, D) coordinated matching thent € T'.

2. If t € T then Z has a (t,0,E,D + €k) coordinated
matching.

Proor. For any t, if at most D intervals I; do not have a
(ti,) matching where |t; — t| < o then by Lemma 4, with
probability at least 1 —1/n° at most a D/k +¢€/2 fraction of
the Iijs do not have such a matching, in which case ¢t € T'.
Similarly, if more than D+ ¢k intervals do not have a (¢;, E)-
matching with |¢; — t| < o, then with probability at least
1 —1/n at least a (D/k +¢) — ¢/2 fraction of the I;;s do
not have such a matching, in which case ¢ € T. Thus, for
both types of errors, the probability of making a mistake is
thus at most 1/n°. Since there are at most n possible errors
possible (for each ¢ the number of non-matches can be either
t00 big or too small, but not both), the lemma follows from
the union bound. a

3.3 Quantizing shifts

Our MATCHES and COORD-MATCHES algorithms may con-
ceivably give an output set T consisting of n elements. While
not affecting the query complexity, this by itself is more time
than we wish to take. Further, observe that for detecting
strings with the edit distance of at most n, we may restrict
the allowed shifts to [-n® ... + n®%]. However, to achieve
a o(n”) running time, we must further restrict the set of
possible outputs. We do this by specifying a quantization
parameter, @, which governs the precision of the output.

DEFINITION 3. The @-quantization of ¢, denoted t[Q], is
the unique value Qk (k an integer) satisfying —Q/[2 < t —
Qk < Q/2. The Q-quantization of a set consists of the
Q-quantization of its values. If an interval has a (t, E)

COORD-MATCHES(A,Z, 0, E, D, ¢,c)

2. For each I;;, compute 1 = MATCHES(A, [;;, E).

MERGE(T1, ... ,T},0,A)

1. Let d be as in Lemma 4 for the given € and ¢, and [= dlogn. Choose i1, ... ,%; uniformly and independently from [1...k].

3. Return T' = MERGE(T1, ... ,1},0,A), where A = (D/k + €/2)l and MERGE is defined below.

1. Return the set T, where t € T iff T; N[t — o ...t + o] =0 for at most A sets Tj.

Figure 1: Sampling algorithm for (approximately) finding coordinated matches.

matching with A, we say that it has an (t{Q], E) quantized
matching with A. We say that o set of intervals, Z has
a (t,0, E, D) quantized coordinated matching with A if t =
t[Q] and for all but D of the intervals I; € I, I; has a (t;, E)
quantized matching with A, where |t — t;| < 0. We define
QMERGE as the Q-quantization of the output of MERGE.

The key observation to make is that coordinated match-
ings already allow for some “wiggle room,” in the shifts al-
lowed for the intervals. Adding moderate amounts of quanti-
zation doesn’t change this wiggle room significantly. Propo-
sition 1 quantifies this relationship; its proof follows imme-
diately from the fact that quantization only alters a number
by at most Q/2.

ProposiTION 1. If interval Z has a (t,0,E,D) coordi-
nated matching with respect to A then it has a (t[Q], 0 +
Q/2,E, D) quantized coordinated matching with A. If T has
a (t,0,E, D) quantized coordinated matching with A then it
has a (t,0 + Q/2, E, D) coordinated matching with A.

Intuitively, if we don’t make the quantization factor too
large then we can make qualitatively the same inferences
using quantized shifts as we can using unquantized shifts.

3.4 Recursively using coordinated matches

Our COORD-MATCHES algorithm makes calls to MATCHES,
which has to find good matches for individual intervals; we
now describe how the MATCHES procedure is implemented.
Using Lemma 1, we can detect a good match for an interval I
by breaking I into subintervals, detecting good coordinated
matchings for these intervals, and inferring the existence
of good matches for I. That is, we call COORD-MATCHES
using a suitable decomposition of I and using suitable error
tolerances. While running COORD-MATCHES, we make calls
to MATCHES on a subset of these subintervals, which are
approximated via a call to COORD-MATCHES on a suitable
decomposition of these subintervals, and so on. This process
yields a multi-stage algorithm in which matches found in a
given stage are used to generate matches in the earlier stage.

At each stage, we match smaller intervals, and require that
the matches have smaller internal edit distances. Eventually,
we seek (¢, E) matches in which E < 1 (hence, E might as
well be 0). But note that if an interval I has a (¢,0) matching
with respect to A, then A must contain interval I unchanged
except for a translation or shift by ¢ positions. In this case,
we compute the set of allowable ¢ values directly, using the
algorithm SHIFTS described below; this forms the final stage
of the recursion. We now turn to the description of this
algorithm.

3.5 Finding approximate block shifts via ruler
procedure

This subsection describes an algorithm to efficiently find
substrings in A that approximately match a block (interval)
in B. This procedure is at the core of our edit distance
testing algorithm.

The approximate matching problem is as follows (for sim-
plicity, we will drop the term ’approximate’). Given a block
I =BJs...e]oflength b =e—s+1in B; and a constant ¢z >
1, find all indices s’ such that A[s'...(s'+b—1)] matches I,
in the sense that the two substrings have Hamming-distance
at most b/ce. Note that, if D(A, B) < n%, it is enough to
consider s' € [s —n%, s +n%].

Thus, we now need to solve the following. Given a string
I of length b, and a string A’ = A[(s — n%)...(s + n* +
b —1)], we want to find all shifts t of I within A’, such that
A'[t+1...t + b] matches I. That is, we want to find all
length b substrings of A’ with Hamming distance at most
b/cz from I. Naively, we can randomly sample O(logn)
indices i to determine (with high probability) if the substring
A'[(t+1)...(t+b)] matches I, for a given ¢, and try all 2n®
possible shifts ¢. This requires 2(n%) queries to A. Below
we reduce the number of queries by a “ruler” procedure.

Suppose we would like to compare pairs of characters
A'[i], I[§] such that some pairs A'[i],I[j] are checked for
every ¢ — j from 0 to v = 2n®. Here is how to achieve
this with \/u queries to each string, provided that b >>
Vu: In A', character positions divisible by \/u are queried:
A'[\/u], A'[24/u], ..., A'[u]. In I, \/u consecutive positions
are queried: I[1...\/u]. Intuitively, queries to A" act as
“centimeter” marks on the ruler, and queries to I act as
“millimeter” marks. For every ¢ = 0,1,...,u, there is a
pair of queried positions A'[i],I[j] with ¢ — j = ¢. Let
cen = [t/+/u] and mil = ¢ mod\/u. Then Alcen - +/u] and
B[/u — mil] are queried positions exactly distance ¢ apart.

We can extend this idea to test whether the entire block
matches with shift [, using the random sampling idea men-
tioned earlier: Pick | = ©(logn) numbers mi, mo, ... ,my
randomly from the range [0,b — \/u]. For each tick mark
on the ruler, construct a fingerprint by querying at [offsets
instead of just 1; for example, in A’, the fingerprint of the
centimeter mark \/u is the sequence of [bits

(A Vu+m), A'Vu+ma], ..., A'[Vu+m)).

Now, we can detect with high probability whether the block
matches with shift ¢ by comparing the fingerprints of cen
and mil as defined above.

Up to this point we have assumed b >> /u. We use
the same idea when b < /u; the only difference is that

we need to make the ruler asymmetric. In this case, we
can have only O(b) millimeter tick marks, and so we need
Q(u/b) centimeter tick marks. Thus, in general we can find
all matching shifts [by using O(max{+/u, u/b} log n) queries.

Efficient implementation of the ruler

We now describe a data structure that allows us to effi-
ciently execute the ruler procedure. Recall that we want to
detect when a tick mark ¢ in A’ has the same fingerprint as
a tick mark j in I. To do this, we maintain a binary search
tree, with a leaf corresponding to each fingerprint f encoun-
tered thus far. (In practice, a hash tree may be better, but
it does not change the asymptotic performance.) Each leaf
contains pointers to two linked lists: the A-list contains in-
dices i (in A’) that resulted in fingerprint f, and the B-list
contains indices j (in I) that yielded f. It takes O(logn)
time per tick mark, and thus O(max{\/u,u/b}logn) time
overall, to build up this data structure.

When all tick marks have been processed, the data struc-
ture contains an implicit representation of all shifts ¢ such
that I matches A'[t + 1...t + b], in the following sense: for
each fingerprint f, every combination of an index ¢ from
f’s A-list and j from f’s B-list describe a matching shift
t = j — 1. However, it is still potentially expensive to go
from this to an ezplicit list of all matching ¢ values. The
problem is simply that there may be Q(u) such values.

If we need to know each individual ¢ value precisely, there
is no way to avoid this problem. To get around this, the
algorithm described in Section 3.6 only uses quantized shift
values, i.e., values of ¢ rounded to multiples of some inte-
ger . Reporting distinct multiples of @ for which some ¢
matched, reduces the worst-case size of the output list to
Q(u/Q). It is easy to take advantage of this reduction with
our data-structure: first prune the B-list so that it never has
two j values that get rounded off to the same multiple of @,
and then, if @@ > g, also prune the A-list such that it never
has two ¢ values that get rounded off to the same multiple of
@. The final algorithm is shown in Figure 2. The following
theorem summarizes the performance of this algorithm:

THEOREM 1. Procedure SHIFTS finds all quantized shifts
t of interval I in A', with high probability. It runs in time
O(max{\/u,u/b,u/Q}logn), where u = |A'| —b.

Proor. If t is a shift corresponding to an exact match,
then the preceding discussion of the ruler shows that the
corresponding quantized shift value will be found. If ¢ is a
shift corresponding to a Hamming distance of greater than
2b/c2, then at least b/c» of the Hamming errors must occur
after the first g characters of I. Hence, any one m; will find
a mismatch with probability at least 1/c». Setting d = 2,
the probability of the fingerprints matching for ¢ is then at
most n—IZ There are less than n possible shift values, and
so the probability of finding any incorrect shift ¢ is at most
%. Higher values of d can be used to obtain error bounds
of at most % for any constant ¢, hence the high probability
result. The running time bound follows by taking the sum
of the time to construct the implicit representation of all
shifts, and the time to produce the output. O

3.6 The edit distance testing algorithm

We now have all the tools we need to build our algorithm
for testing edit distance. The algorithm is shown in Figure 3.

The top-level procedure is a routine DECIDE that takes as in-
put the two strings A and B, and the parameter a. DECIDE
calls MATCHES to search for a match of B in A with edit dis-
tance at most n%; if such a match is found, CLOSE is output,
otherwise FAR is output. MATCHES is a recursive procedure,
recursing through the procedure COORD-MATCHES. The re-
cursion terminates when the required internal edit distance
in each block is less than 1; in this case, MATCHES uses SHIFTS
to directly find the matches.

Depth of recursion:

At each level of the recursive decomposition, the size of
the interval input to MATCHES goes down by a factor of
Q(n*~'). Thus for any constant o < 1, there is a constant
number r of levels of recursion required to reach a state in
which the intervals have size O(n'™%); at this point, E < 1
and hence SHIFTS will be called, terminating the recursion.

We assign a height to each invocation of procedure MATCHESH

as follows: the final invocation that calls SHIFTS has height
0, the level above that has height 1, and so on till we get
that the height of the top-level invocation of MATCHES is
r. We also define the height of an invocation of COORD-
MATCHES to be the height of the MATCHES procedure that
invoked it.

Correctness of the algorithm

‘We need to show that with a suitable choice of constants ¢y
and e (perhaps dependent on «), procedure DECIDE correctly
solves the edit distance testing problem. We first prove that
if D(A, B) < n®, the algorithm outputs CLOSE.

LEMMA 6. IfD(A, B) < n%, the algorithm outputs CLOSE}}
with high probability, for any parameter values ¢ < 1 and
c1 > 1.

PROOF. (Sketch) Note that it is sufficient to prove that
if there is a (quantized) (¢,) matching of B with respect
to A, the top-level invocation of MATCHES will find it, with
high probability. We prove this statement by induction on
the height h of the invocation of MATCHES. For h = 0, this is
true because of the correctness of the SHIFTS procedure. As-
suming it is true for height (h—1), we show that it is true for
height h as well: Let MATCHES(A, I, E) be a height h invoca-
tion, and suppose that I has a (¢, F) matching with respect
to A. Then, by Lemma 2, there exists a coordinated match-
ing with the parameters specified in Step (2c) of MATCHES.
Then, using a variant of Lemma 4, we see that most of the
sampled intervals have some match with translation ¢; close
to t. Now, consider the recursive calls to MATCHES made by
COORD-MATCHES. By the inductive assumption, they will
report these matches ¢; with high probability. Now, using
Lemma 5, we know that they will find these translations
ti, and hence COORD-MATCHES will report ¢ among its out-
put 7. Hence, the translation ¢ is the output of the level h
MATCHES, with high probability. O

It remains to show that the algorithm outputs FAR with
high probability when D(A, B) > n/C, for an appropriate
choice of constants.

LEMMA 7. There exist values for the constants € and c1
(dependent only on o and C), such that if the algorithm out-
puts CLOSE (with high probability), then D(A, B) < n/C.

sHIFTS(A', I,Q, c2)
/* Find all shifts of I in A" with Hamming distance < 2|I|/c2, quantized in multiples of Q */

1. Let b = |I|, u = |A’| — b, and g = min{b/c2,/u}.

2. Let l =d-logn/(—log(l — 1/c2)), for some constant d > 2. Choose integers m1,ma,... ,m; independently and uniformly
at random in [0,b — g].

3. Initialize the fingerprint search tree.

4. For ¢ =g,2g,...,u do
— Compute fingerprint f(¢) = (A'[i + m1],... , A'[i + my]).
— Locate f(¢) in the search tree, creating a new leaf if necessary.
— Add 7 to the A-list for f(i).

5 Forj=1,2,...,9do
— Compute fingerprint f(j) = (I[j + ma],..., [+my]).
— Locate f(j) in the search tree, creating a new leaf if necessary.
— Add j to the B-list for f(j).

6. Quantizing: For each fingerprint f, scan the B-list for f and round each j value to the nearest multiple of @, deleting
repeated values; if Q > g, also scan the A-list for f and round each ¢ value to the nearest multiple of @, deleting repeated
values.

7. For each fingerprint f, each ¢ in f’s A-list, and each (rounded) j in f’s B-list, output ¢t =i — j.

Figure 2: “Ruler” procedure for finding approximate block shifts.

DECIDE(A, B, a, C)
0. Choose sufficiently small €, and sufficiently large ¢; (for the given a and C).
1. Choose quantization parameter Q = € - min{n'=%,n®/2},
2. Compute T' = MATCHES(A, B,n%).
3. If T is nonempty, then output CLOSE, else output FAR.

MATCHES(A, I, E)
1. If E < 1, use SHIFTS to compute 7.
2. IfE>1,
2a. Set k = min{en!=,2¢; E}.
2b. Decompose I into a set Z of contiguous disjoint intervals of size |I|/k.
2c. Compute T' = COORD-MATCHES(A,Z,E,c1E/k,k/c1).
3. Return 7'

Figure 3: The Edit Distance Testing Algorithm

Proor. (Sketch, of Lemma 7) First, as the quantization
is at most € times the size of the smallest interval size in
the recursion, it alters the constants but not the qualitative
matching results. Second, as long as the underlying SHIFTS
algorithm and interval sampling procedures took sufficiently
many samples (O(logn)), the effects of their imprecision
could be reduced to € amounts as well. For the rest of the
discussion, we ignore these issues.

The other potential source of error is in inferring the ex-
istence of a matching from a coordinated matching, at each
level of the recursion. We use Lemma 1 to bound this error;
this involves a careful analysis of the 8 factors that arise at
each level of the recursion.

We consider the values of S, o, E, and (D/k) in each
invocation of COORD-MATCHES. Let A = ¢-n'~%. In each of
the first » — 2 levels, MATCHES subdivides the interval into
A intervals. At height r (the top level), we have

§' =S o= B=n 2 (D/k) = é
Now, let us write g5 for the factor 8 in Lemma 1, corre-
sponding to the values of S', 0, E, and (D/k) at height h.
We have

2n* A 1 1
Br="2 peb — =3+ —
C1 C1
Proceeding in this manner, we find at level 2,

r_ n _ « Cl\r—2 _« Cl\r—1 _ 1
S = oo =" '(X) yE=n '(X) 7(D/k)—a
2n r—2
g, = aA, 1

C1

s 1
2 e tet+ —
c1

At this level, we must have 2¢; E < A, or else the recursion
would not terminate at level r. Hence, the pattern changes
here; However, observing that o reduces by a factor of A/c1
and S’ reduces by a factor 2c1 E < A, o/S’ can increase by
at most another factor of ¢, and so we have

B <2t e+e+ 1
C1

Note that as r is fixed (by «), we can pick values of ¢1 and
€ to achieve (31 as small as we wish: we first select a suitable
value of c¢i1, and then select ¢ based on the chosen c¢;. In
particular, we can pick values such that 8; < % Further,
observe that 3,,...,82 < Bi1.

Now, suppose algorithm DECIDE outputs CLOSE. This
means that at each level of the recursion, we have a coordi-
nated matching. Consider an instance of COORD-MATCHES
at height 1, and apply Lemma 1. This says that the corre-
sponding interval at height 2 has a matching with additional
edit distance at most ; times the length of the interval.
Adding up the edits over all intervals in a level, and over all
levels of recursion, we see that the total edit distance of A
from B is less than Bin.r < % O

Combining Lemma 6 and 7, we get the following theorem:

THEOREM 2. For any fired o < 1, we can choose con-
stants € and c1 such that procedure DECIDE solves the edit
distance testing problem with high probability.

3.7 Running time analysis

In this section, we provide the running time analysis of our
algorithms. The analysis is based on three cases, depending
on the value of «.

Case (i): a < 1/2

In this case, there will only be one level of recursion. At
the top level, B will be broken into intervals of size O(n®);
the expected number of edits per interval is less than 1, and
so in the next level the SHIFTS procedure will be used to find
the matches of these intervals. Thus, there are dlogn calls
to SHIFTS; for the specified @, each call takes O(no‘/2 logn)
time. In addition, there is one call to QMERGE, which takes
O(n®/?logn) time, thus giving us a total running time of
O(n/? log® n).

Case (ii): 1/2 < a < 2/3

When 1/2 < a < 2/3, there will be two levels of recursion.
At the top level, we break B into intervals of size cin®. In
the second level, each selected interval is further broken into
subintervals of size n®/2. Finally, we find matches for these
subintervals using suiFrs. Thus, there are O(log®n) calls
to SHIFTS; again, each call takes O(n®/?logn) time. There
are also O(log n) calls to QMERGE. All together, the running
time is O(n®/?log® n).

Case (iii): o> 2/3

We now consider the general case, when there are r > 2
levels of recursion. We note that there two sources of degra-
dation in this recursive algorithm. First, we incur a time
and query overhead of (logn)" 9 because of the random
sampling at each level of recursion. The second, more sig-
nificant degradation comes from the SHIFTS procedure at
the final stage of the recursion. Each invocation of SHIFTS
has to find all (quantized) shifts in the range [—n®...n?%]
of a block of size O(n'~*). However, for a > 2/3, we have
n'™® < /n®, and so the ruler used in the SHIFTS procedure
has to be asymmetric. As a result, the running time of each
invocation is O(n**~*logn). Thus, the edit distance testing
algorithm has an overall running time of O(nz"‘_l).

4. AQUERY COMPLEXITY LOWER BOUNDJ

FOR THE EDIT DISTANCE PROBLEM

This section proves the following lower bound for the edit
distance problem defined in Section 2:

THEOREM 3. Any algorithm for the edit distance problem
requires Q(n®’?) queries.

In fact, we show Q(n®/?) lower bound for the possibly easier
problem of distinguishing a pair (A, B) of random strings
from a pair (A, B) where A is random and B is a right
shift of A by ¢ positions for a random ¢t € [n%/2,n*]. Since
two random strings have a linear edit distance, Theorem 3
follows.

LEMMA 8. With probability at least 1 —o(1), two random
n-bit strings have edit distance > n/6.

ProoOF. (of Lemma 8) It is enough to show that for a
fixed n-bit string X, the fraction of strings within edit dis-
tance n/6 of X is o(1). A string that is at most d away from

X, is obtained by choosing d locations, and for each of the
locations, picking one the deletion, replacement, insertion of
a new bit, or no-edit operation. Thus, the number of strings

within edit distance d from X is at most (Z) - 5%, Sub-

stituting d = n/6 and recalling that (5) < 212" where
H,(p) = —plogp—(1—p)log(1l—p), we get that the number
of strings obtained from X with at most n/6 edit operations
is at most

n n/6 (Ho(1/6)+1/2)n __ n
5 <2 =o0(2").
(n/6> - o(2")

O

We define two distributions F and C on pairs of strings.
Let F be a distribution on pairs of random n-bit strings. Let
C be a distribution on pairs of n-bit strings (A, B) where A
is random and B is a right shift of A by ¢ positions for a
random ¢ € [n%/2,n%]. By lemma 8, with high probability,
F produces a pair of strings with edit distance at least n/6
while C is over pairs of strings with edit distance at most
n®. The following lemma shows that any low complexity
algorithm cannot distinguish these two distributions.

LEMMA 9. Fiz ¢ < in®/?
rithm A,

. Then for every q-query algo-

Pr [A(z) =1] — Pr [A(z) =1]| <

z—F wC

DO =

ProoF. Let A be a g-query algorithm that has access to
two m-bit strings. Namely, A is a (possibly probabilistic)
mapping from query-answer histories

[(ily Slyal): B ,(ih,Sh,ah)]

t0 (in+1, Sh+1) for h < ¢, and to {CLOSE, FAR} for h = q.
A query of A is in the form (is, sp), where 1 < i, < n and
sp € {'A’'B’}, to denote the i}® location of the string sy,.
An answer ay, is the corresponding bit.

Let Hy denote the distribution on query-answer histories
of length ¢ of A on inputs selected from F. Define Hc¢ sim-
ilarly. It is enough to show that ||Hx, Hc|| (the statistical
difference between Hy and Hc) is o(1).

A query (in, sp) (under input distribution C) is called re-
vealing when the queried bit was already queried in the other
string, i.e., if s, =‘A’ and the algorithm has already queried
(in + t,'B’) or if s, =‘B’ and the algorithm has already
queried (ip, — t,°A’). If A ever asks a revealing query, we
assume it outputs “CLOSE”. This assumption only makes
A’s job easier.

We assume, without loss of generality, that .4 does not
repeat queries. Under this assumption, each answer under
F is always a random bit. Conditioned on the event that A
does not make a revealing query, each answer under C is also
a random bit. By showing an upper bound on the probabil-
ity that A makes a revealing query in its computation, we
upper bound ||Hz, Hel|.

Consider queries of A under F. After h queries, none
of which are revealing, pairs of bits (A[i], B[j]) for at most
h?/4 offsets |i — j| have been queried. So, there are at least
(n®/2) — h* /4 shifts that have not been checked. At most h
of these remaining shifts can be checked by the new query.
Thus, at this point, the probability of a revealing query is
at most 4h/(2n®* — h?). Therefore, the probability that a

a/2

revealing query is made in any sequence of ¢ < %n queries
is at most
q q
4h 4h
> ez S > e — Lo
h=1 h=1
32 .
h=1
32 _, 1 1
< =n%on® <o
- 7 8 2
O

Theorem 3 follows from Lemmas 8 and 9.

5. REFERENCES

[1] W. Chang and E. Lawler. Approximate string matching
in sublinear expected time. In Proceedings of the 31st
IEEE Annual Symposium on Foundations of Computer
Science, pages 116-124, Saint Louis, Missouri, 1990.
IEEE Computer Society Press.

[2] R. Cole and R. Hariharan. Approximate string
matching: A simpler faster algorithm. In Proceedings of
the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 463-472, San Francisco, California,
Jan. 1998.

[3] G. M. Landau and U. Vishkin. Introducing efficient
parallelism into approximate string matching and a
new serial algorithm. In Proceedings of the Eighteenth
annual ACM Symposium on Theory of Computing,
pages 220-230, Berkeley, California, May 1986. ACM
Press, New York.

[4] W. J. Masek and M. S. Paterson. A faster algorithm
computing string edit distances. Journal of Computer
and System Sciences, 20:18-31, 1980.

[6] E. W. Myers. A sublinear algorithm for approximate
keyword searching. Algorithmica, 12(4/5):345-374,
Oct./Nov. 1994.

[6] S. C. Sahinalp and U. Vishkin. Efficient approximate
and dynamic matching of patterns using a labeling
paradigm. In 37th Annual Symposium on Foundations
of Computer Science, pages 320-328, Burlington,
Vermont, Oct. 1996. IEEE Computer Society Press.

