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Abstract

We study the problem of estimating the Earth Mover’s Distance (EMD) between probability distribu-
tions when given access only to samples of the distributions. We give closeness testers and additive-error
estimators over domains in [0, 1]d, with sample complexities independent of domain size – permitting
the testability even of continuous distributions over infinite domains. Instead, our algorithms depend on
other parameters, such as the diameter of the domain space, which may be significantly smaller. We also
prove lower bounds showing the dependencies on these parameters to be essentially optimal. Addition-
ally, we consider whether natural classes of distributions exist for which there are algorithms with better
dependence on the dimension, and show that for highly clusterable data, this is indeed the case. Lastly,
we consider a variant of the EMD, defined over tree metrics instead of the usual � 1 metric, and give tight
upper and lower bounds.

1 Introduction

In traditional algorithmic settings, algorithms requiring linear time and/or space are generally considered to
be highly efficient; in some settings sometimes even polynomial time and space requirements are acceptable.
However, today this is often no longer the case. With data being generated at rates of terabytes a second,
sublinear time algorithms have become crucial in many applications. In the increasingly important area of
massive data algorithmics, a number of models have been proposed and studied to address this. One of
these arises when the data can be naturally viewed as a probability distribution (e.g., over IP addresses, or
items sold by an online retailer, etc.) that allows independent and identically distributed (i.i.d.) samples to
be drawn from it. This is the model on which this paper focuses.

Perhaps the most fundamental problem in this model is that of testing whether two distributions are
close. For instance, if an online retailer such as Amazon.com wishes to detect changes in consumer habits,
one way of doing so might be to see if the distribution of sales over all offered items this week, say, is
significantly different from last week’s distribution. This problem has been studied extensively, mostly
under the �1 and �2 distances, with special focus on the dependence of the time and sample complexity on
n, the size of the domain. Algorithms with sublinear dependence on the time and sample complexity exist
to distinguish whether two distributions are identical or ε-far from each other [5, 9, 19]. However, under the
�1 distance, for instance, the sample complexity, though sublinear, is Ω(n2/3) (where n is the domain size)
[5, 19], which may be prohibitively large.

Fortunately, in many situations there is a natural metric on the underlying domain, under which nearby
points should be treated as “less different” than faraway points. This motivates a metric known as Earth
Mover’s Distance (EMD), first introduced in the vision community as a measure of (dis)similarity between
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images that more accurately reflects human perception than more traditional �1 [12]. It has since proven
to be important in computer graphics and vision [13, 14, 15, 7, 17, 18, 16], and has natural applications to
other areas of computer science. As a result, its computational aspects have recently drawn attention from
the algorithms community as well [2, 11, 6, 10]. However, previous work has generally focused on the more
classical model of approximating the EMD when given the input distributions explicitly; that is, when the
probability of any domain element can be queried. As far as we know, no work has been done on estimating
EMD and closeness testing with respect to EMD in the setting in which one has access only to i.i.d. samples
from the distributions.

In this model, it is easy to see that we cannot hope to compute a multiplicative approximation, even with
arbitrarily many samples, since that would require us to distinguish between arbitrarily close distributions
and identical ones. However, if we settle for additive error, we show in this paper that, in contrast to the
�1 distance, we can estimate EMD using a number of samples independent of the domain size. Instead,
our sample complexity depend only on the diameter of the domain space, which in many cases can be
significantly smaller. The consequence is that this allows us to effectively deal with distributions over
extremely large domains, and even, under a natural generalization of EMD, continuous distributions over
infinite domains.

Specifically, if p and q are distributions over M ⊂ [0, 1]d, we can

• test whether p = q or EMD(p, q) > ε with Õ((2d/ε)2d/3) samples, and

• estimate EMD(p, q) to within an additive error of ε with Õ((4d/ε)d+2) samples.

We also prove a lower bound of Ω((1/ε)2d/3) samples for closeness testing with respect to EMD, implying
our tester above is essentially optimal in its dependence on 1/ε. When d is small, the bounds behave slightly
different. In particular, when d = 1 or 2, upper and lower bounds for the tester converge at a tight Θ((1/ε)2).
Additionally, in the appendix we consider assumptions on the data that might make the problem easier, and
give an improved algorithm for highly clusterable input distributions.

Besides the continuous domain, we also consider the EMD over tree metrics, which can be considered as
a generalization of the �1 setting. While simple, tree metrics are extremely powerful. Bartal [3] showed how
to probabilistically embed arbitrary graph metrics to tree metrics with distortion O(log2 n). The distortion
was later improved by Fakcharoenphol, Rao, and Talwar [8] to O(log n). Thanks to these results, many
computational problems on graph metrics can be reduced to the same problems on tree metrics. In this paper,
we give an optimal (up to polylogarithmic factors) algorithm for estimating the EMD over tree metrics. For
tree metrics with bounded diameter, we give an optimal reduction from closeness testing for the EMD over
tree metrics to closeness testing for �1.

2 Preliminaries

Definition 1. A supply-demand network is a directed bipartite graph G = (S ∪ T,E) consisting of supply
vertices S and demand vertices T , with supply (probability) distribution p on S and demand (probability)
distribution q on T , and edge set E = S × T , with associated weights w : E → R

+. A satisfying flow for
G is a mapping f : E → R

+ such that for each s ∈ S and each t ∈ T ,∑
t′∈T

f((s, t′)) = p(s), and

∑
s′∈S

f((s′, t)) = q(t).
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The cost of satisfying flow f is given by

C(f) =
∑
e∈E

f(e)w(e).

We define the Earth Mover’s Distance (EMD) as follows.

Definition 2. Let p and q be probability distributions on points in a finite metric space (M, δ). Then
let G be the supply-demand network given by supply vertices S = {sx | x ∈ M} and demand vertices
T = {tx | x ∈ M}, with supply distribution p̂ : sx �→ p(x) and demand distribution q̂ : tx �→ q(x), and
edge weights w : (sx, ty) �→ δ(x, y). Define EMD(p, q) to be the minimum cost of all satisfying flows for
G.

It is straightforward to verify that the EMD as defined above is a metric on all probability distributions
on M . Note, moreover, that to upperbound the EMD it suffices to exhibit any satisfying flow.

It is also possible to define the EMD between any two probability measures p and q on an infinite
(continuous) metric space (M, δM), M ⊂ [0, 1]d, by using the Wasserstein metric:

EMD(p, q) = inf
γ∈Γ(p,q)

∫
M×M

δM(x, y)dγ(x, y),

where Γ(p, q) denotes the collection of all measures on M × M with marginals p and q on the first and
second factors, respectively. By using an ε/4-net, (M, δM) can be discretized into a finite metric (M, δ)
in such a way that the EMD between any two probability distributions only changes by at most ε/2; thus,
an EMD-closeness tester over (M, δ) with error parameter ε/2 is also a valid EMD-closeness tester over
(M, δ) with error parameter ε. Henceforth, we will therefore consider only the finite case, understanding
that any result obtained will also apply to the continuous case.

Finally, we define a closeness tester and additive-error estimator for the EMD in the usual way as follows.

Definition 3. Let p, q be two distributions on metric space M . An EMD-closeness tester is an algorithm
which takes as input samples from p and q, together with parameter ε > 0, and guarantees with probability
at least 2/3 that (1) if p = q, then it accepts, and (2) if EMD(p, q) > ε, then it rejects. An additive-error
estimator for EMD is an algorithm which, given the same inputs, returns a value in the range [EMD(p, q)−
ε,EMD(p, q) + ε] with probability at least 2/3.

3 EMD over hypercubes

In this section we will consider the EMD over a (finite) space M ⊂ [0, 1]d endowed with the �1 metric (note
that the �1 metric used here is to measure the distance between two points in the hypercube and is different
from the �1 distance between two distributions). We will give both a closeness tester and an additive-error
estimator, and prove matching lower bounds.

3.1 Closeness testing

We start with several lemmas and facts that will allow us to tie the EMD with respect to to �1.

Lemma 4. If p and q are distributions on any finite space M , where M has minimum distance δ and
diameter 1, then

||p − q||1
2

· δ ≤ EMD(p, q) ≤ ||p − q||1
2

.
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Proof. Observe that there is a minimum-cost satisfying flow f from S to T (as defined in Definition 2) such
that the total amount sent by f through edges with non-zero cost is exactly ‖p− q‖1/2. The lemma directly
follows, since such non-zero cost is at least δ and at most 1.

Definition 5. Given distribution p over M ⊂ [0, 1]d and a positive integer i, let G(i) be a grid with side
length 1

2i over [0, 1]d centered at the origin. Define the i-coarsening of p, denoted p(i), to be the distribution
over the grid cells of G(i) such that, for each grid cell c of G(i), p(i)(c) =

∑
u∈c p(u).

The p(i)’s can be thought of as coarse approximations of p where all points in the same grid cell are
considered to be the same point. We then have the following result from [11] relating the EMD of two
distributions to a weighted sum of the �1 distances of their i-coarsenings.

Fact 6. [11] For any two distributions p and q over M ⊂ [0, 1]d, for any ε > 0

EMD(p, q) ≤ d

⎛
⎝log (2d/ε)∑

i=1

1
2i−1

·
∥∥∥p(i) − q(i)

∥∥∥
1

⎞
⎠+

ε

2
.

Having thus established the relationship between the EMD and �1 metrics, we can make use of the result
from [5] for testing closeness of distributions in �1. Alternatively, via a simple Chernoff bound analysis
(similar to [4]), we can show that a whole distribution can be approximated efficiently, giving us another
closeness tester for �1 with worse dependence on n but better dependence on ε. Putting these together, we
have the following:

Fact 7. Given access to samples from two distributions p and q over M , where |M | = n, and pa-
rameters ε, δ > 0, there exists an algorithm, denoted �1-Closeness-Tester(p, q, ε, δ), that takes
Õ(min{n2/3ε−4, nε−2}) samples and guarantees with probability at least 1 − δ that (1) if p = q, then it
accepts, and (2) if |p − q‖1 > ε, then it rejects.

Algorithm 1: EMD-Closeness-Tester(p, q, ε)

for i = 1 to log(2d/ε) do1

if �1-Closeness-Tester(p(i), q(i), ε2i−2

d log(2d/ε) ,
1

3 log(2d/ε) ) rejects then reject2

end3

accept4

We then use Algorithm 1 as a subroutine for our EMD-closeness tester (Algorithm 1), giving us the
following theorem.

Theorem 8. Algorithm 1 is an EMD-closeness tester for distributions over M ⊂ [0, 1]d that has sample
complexity

(i) Õ((1/ε)2) if d = 1 or 2,

(ii) Õ((1/ε)3) if d = 3,

(iii) Õ((1/ε)4) if d = 4 or 5, and

(iv) Õ((2d/ε)2d/3) if d ≥ 6.
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Algorithm 2: EMD-Estimation(p, q, ε)

Let G be the grid on [0, 1]d with side length ε
4d , and let P and Q be the distributions induced by p1

and q on G, with weights in each cell concentrated at the center
Take O((4d/ε)d+2) samples from P and O((4d/ε)d+2) samples from Q, and let P̃ and Q̃ be the2

resulting empirical distributions
return EMD(P̃ , Q̃)3

Proof. We start with correctness. If p = q, then p(i) = q(i) for all i, so by the union bound, the probability
that the algorithm rejects is at most log(2d/ε) · 1

3 log(2d/ε) = 1/3.
If, on the other hand, EMD(p, q) > ε, then by Fact 6,

d

⎛
⎝log(2d/ε)∑

i=1

1
2i−1

·
∥∥∥p(i) − q(i)

∥∥∥
1

⎞
⎠ >

ε

2
.

It follows by the averaging argument that there exists an index i such that

∥∥∥p(i) − q(i)
∥∥∥

1
>

ε2i−2

d log(2d/ε)
.

Hence, for that index i, the �1-closeness tester in Line 2 will reject (with probability 2/3).
Now let us analyze the number of samples the algorithm needs. In the ith iteration of the main loop,

p(i) and q(i) has a domain with ni = 2di elements, and we need to run an �1-closeness tester with a distance
parameter of εi = ε2i−2

log(2d/ε) . Applying Fact 7, we get a sample complexity of the minimum of

Õ(n2/3
i ε−4

i ) = Õ

(
2(2d/3−4)i

(
d

ε

)4
)

and

Õ(niε
−2
i ) = Õ

(
2(d−2)i

(
d

ε

)2
)

.

If d ≤ 2, both quantities are maximized when i = 1; if d ≥ 6, they are maximized when i = log(2d/ε); and
if d = 3, 4 or 5, the first is maximized when i = 1 and the second when i = log(2d/ε). The complexities in
the theorem immediately follow.

3.2 Additive-error estimation

As we have seen, for �1-closeness testing, sometimes it is to our advantage to simply estimate each prob-
ability value, rather than use the more sophisticated algorithm of [5]. This seemingly naive approach has
another advantage: it gives an actual numeric estimate of the distances, instead of just an accept/reject an-
swer. Here, we use this approach to obtain an additive-error estimator of the EMD between two distributions
over M ⊂ [0, 1]d as follows.

Theorem 9. Algorithm 2 is an additive-error estimator for EMD with sample complexity O((4d/ε)d+2).
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Algorithm 3: �1-Closeness-Tester(p, q, ε = 1)

Let G be a grid on [0, 1]d with side length n−1/d1

Let f be an arbitrary injection from [n] into the lattice points of G2

Let P and Q be distributions on the lattice points of G induced by f on p and q, resp.3

return A(P,Q, 1
2n−1/d)4

Proof. Observe that |G| = (4d/ε)d, so G has 2(4d/ε)d
subsets. By the Chernoff bound, with the O((4d/ε)d+2)

samples from p, we can guarantee for each S ⊆ G that |P (S) − P̃ (S)| > ε
4d with probability at most

2−(4d/ε)d
/3. By the union bound, with probability at least 2/3, all subsets of G will be approximated to

within an additive ε
4d . In that case,

‖P − P̃‖1 =
∑
c∈G

|P (c) − P̃ (c)| = 2max
S⊆G

|P (S) − P̃ (S)| ≤ ε

2d
.

We then have, by Lemma 4, EMD(P, P̃ ) ≤ ε/4. Further, since each cell has radius ε/4, we have
EMD(p, P ) ≤ ε/4, giving us by the triangle inequality, EMD(p,P̃ ) ≤ ε/2. Similarly, EMD(q, Q̃) ≤
ε/2, so again by triangle inequality, we get

|EMD(p, q) − EMD(P̃ , Q̃)| ≤ EMD(p, P̃ ) + EMD(q, Q̃) = ε,

completing our proof.

3.3 Lower bounds

We can show that our tester is optimal for the 1-dimensional and 2-dimensional domains by a simple argu-
ment:

Theorem 10. Let A be an EMD-closeness tester for distributions over any domain M of diameter 1. Then
A requires Ω((1/ε)2) samples.

Proof. Let x, y ∈ M be at distance 1 apart. Consider two distributions p and q over {x, y} given by
p(x) = p(y) = 1/2, q(x) = 1/2 + ε and q(y) = 1/2 − ε. Clearly EMD(p, q) = ε, and it is a folklore fact
that distinguishing p from q requires Ω((1/ε)2) samples.

Next we prove that for high dimensional domains, our tester is also essentially optimal in its dependence
on 1/ε.

Theorem 11. There is no EMD-closeness tester that works on any M ⊂ [0, 1]d with sample complexity
o((1/ε)2d/3).

Proof. Suppose A is such an EMD-closeness tester that requires only o((1/ε)2d/3) samples. Then consider
the �1-closeness tester for ε = 1 in Algorithm 3.

Correctness is easy to see: if p = q, then clearly P = Q as well and the tester accepts; alternatively, if
‖p − q‖1 = 1, then by Lemma 4 and the observation that ‖P − Q‖1 = ‖p − q‖1,

EMD(P,Q) ≥ ‖P − Q‖1

2
· n−1/d =

1
2
n−1/d,
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so the tester rejects, as required.
To take a sample from P (or Q), we simply take a sample x from p (or q) and return f(x). Hence, the

sample complexity of this tester is

o

⎛
⎝( 1

1
2n−1/d

)2d/3
⎞
⎠ = o(n2/3).

But this contradicts the lower bound for �1-closeness testing from [5, 19], completing our proof.

4 EMD over trees

So far we have considered only underlying �1-spaces. We will now see what can be done for EMD over
tree-metrics, and prove the following result.

Theorem 12. If p and q are distributions over the nodes of a tree T , with edge weight function w(·), then
there exists an ε-additive-error estimator for EMD(p, q) that requires onlyÕ((Wn/ε)2) samples, where
W = maxe w(e), n is the number of nodes of T , and EMD(p, q) is defined with respect to the tree metric
of T . Moreover, up to polylog factors, this is optimal.

Proof. First, let us consider an unweighted tree T over n points (i.e., where every edge has unit weight),
with distributions p and q on the vertices. Observe that the minimum cost flow between p and q on T is
simply the flow that sends through each edge e just enough to balance p and q on each subtree on either side
of e. In other words, if Te is an arbitrary one of the two trees comprising T − e,

EMD(p, q) =
∑

e

|p(Te) − q(Te)|.

Then, with Õ(n2/ε2) samples we can, for every Te, estimate p(Te) and q(Te) to within ± ε
2(n−1) . This gives

us an ε-additive estimator for EMD(p, q).
Generalizing to the case of a weighted tree, where edge e has weight w(e), we have

EMD(p, q) =
∑

e

w(e)|p(Te) − q(Te)|.

It then suffices to estimate each p(Te) and q(Te) term to within ± ε
2w(e)(n−1) . Thus, Õ((Wn/ε)2) samples

suffice, where W = maxe w(e).
Note that what we get is not only a closeness tester but also an additive-error estimator. In fact, even if

we only want a tester, this is the best we can do: in the case where T is a line graph (with diameter n − 1),
the standard biased-coin lower bound implies we need Ω(n2/ε2) samples.

For trees with bounded diameter, it is possible to get a better bound for testing. Assuming that the
diameter of the tree is bounded by Δ, we have the following theorem.

Theorem 13. If p and q are distributions over the nodes of an unweighted tree T , then there exists a
closeness tester for EMD(p, q) that, assuming an �1-closeness tester with query complexity Õ(n2/3ερ),
requires Õ(n2/3Δ−ρ−2/3ερ) samples, where n is the number of nodes of T , Δ is the diameter of T , and
EMD(p, q) is defined with respect to the tree metric of T .
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Algorithm 4: EMD-Closeness-Tester(p, q, ε)

if �1-Closeness-Tester(pC, qC, ε
2Δ , 1

6) rejects then reject1

for i = 1 to 2Δ do2

if �1-Closeness-Tester(pFi, qFi , ε
4Δ , 1

12Δ) rejects then reject3

end4

accept5

Definition 14. A k-cover of a tree T is a set of subtrees of T such that each vertex of T belongs to at least
one subtree and the size of each subtree is at most k.

Lemma 15. For positive integer k, any tree T of size n has a 2k-cover of size at most �n/k�. Moreover,
any pair of subtrees in the cover is edge-disjoint and intersect in at most one vertex.

Proof. We will use (strong) induction on n. For a tree of size up to 2k, the singleton cover consisting of just
itself satisfies our lemma. Now consider a tree T of size n > 2k. Let us root T at an arbitrary vertex r, and
start walking from r down any leaf-bound path. Let v be the last vertex on this path for which the subtree
rooted at v, denoted Tv, is of size at least 2k, and let Cv denote its children.

If |Tu| ≥ k for any u ∈ Cv, then T − Tu is a tree of size at most n− k, so by inductive hypothesis it has
a 2k-cover of size at most �(n − k)/k� = �n/k� − 1. Adding Tu to this cover makes it a 2k-cover of T of
size at most �n/k�, satisfying our lemma.

In case |Tu| ≤ k−1 for every u ∈ Cv, construct a subset A ⊂ Cv as follows: add elements u ∈ Cv to A
in arbitrary order until

∑
u∈A |Tu| ≥ k. Because each u we add contributes at most k − 1 to this sum, when

this is procedure terminates, we will have
∑

u∈A |Tu| ∈ [k, 2k − 2]. The subtree T ′ formed by v together
with every Tu, u ∈ A, is therefore of size |T ′| ∈ [k + 1, 2k − 1]. Applying the inductive hypothesis to the
tree T ′′ := T −T ′+{v}, which has size |T ′′| ≤ n− (k+1)+1 = n−k, gives us a 2k-cover (of T ′′) of size
at most �n/k� − 1, so adding T ′ gives us a 2k-cover of T of size at most �n/k�, completing our proof.

Proof of Theorem 13. Applying Lemma 15, let C = {T1, . . . , Tm} be a 2Δ-cover of T , where Δ is the
diameter of T . Define pC to be the distribution over C induced by p, where a node of T belonging to
multiple subtrees in C is assigned to one of them arbitrarily. Specifically, and wlog, let

pC(Ti) =
∑

u∈Ti\(T1∪···∪Ti−1)

p(u).

Define qC similarly. Note that m ≤ �n/Δ�, and |Ti| ≤ 2Δ for every i ∈ [m]. We can label the edges in each
Ti with distinct values from [2Δ]. Note that since the subtrees are edge-disjoint, we do not need to worry
about conflict resolution. Now, breaking all edges in T labeled some fixed i ∈ [2Δ] results in a forest Fi
with at most 2m trees, and we can define pFi and qFi similarly to the above. We then claim that Algorithm
4 is the specified closeness tester for EMDT (p, q).

We start by computing the sample complexity of the algorithm. Recall that pC and qC , as well as pFi

and qFi , for i ∈ [2Δ], are all defined over O(n/Δ) points. Moreover, we will not assume any independence
between our calls to �1-Closeness-Tester, so we can reuse samples from p and q to generate samples
for all the above distributions. Hence, our algorithm’s sample complexity is dominated by one of the calls
to �1-Closeness-Tester inside the loop, or

Õ

(( n

Δ

)2/3 ( ε

4Δ

)ρ
)

= Õ(n2/3Δ−ρ−2/3ερ),
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Proof.

. . .

..
.

..
.

..
.

Δ
2

n

Figure 1: A regular star tree with n leaves and diameter Δ.

as claimed.
It remains to prove correctness. Consider first the case where p = q. Then by construction, pC = qC

and pFi = qFi for every i ∈ [2Δ], so all our calls to �1-Closeness-Tester accept with the specified
error probabilities. Taking a union bound over all errors gives us a rejection probability of at most 1/3, as
required.

Next, assume EMDT (p, q) > ε. We claim that at least one of the calls to �1-Closeness-Tester
should reject, so that by the same correctness guarantees as above, they all answer as they should and we
correctly reject with probability at least 2/3. Suppose, in contradiction to our claim, that ‖pC − qC‖1 ≤ ε

2Δ
and ‖pFi − qFi‖1 ≤ ε

4Δ for every i ∈ [2Δ]. Then consider the following flow from p to q: (1) within
each subtree Ti ∈ C, move probability weight so as to match p to q as much as possible (modulo the
difference in total probability weight, |pC(Ti) − qC(Ti)|), then (2) move the unmatched probability weight
across different subtrees to completely match q. Observe that step (1), similarly to the proof of Theorem 12,
is done by moving just enough weight across each edge to balance the two sides, so we can bound the total
cost of (1) over all subtrees by ε

4Δ · 2Δ = ε
2 . Now, in step (2), we are moving a total probability weight of

≤ ε
2Δ across a distance of ≤ Δ, so this contributes a cost of no more than ε

2 . This gives us a total cost of
≤ ε, contradicting our assumption.

Theorem 16. There is no closeness tester for EMD over a tree of size n and diameter Δ using o(n2/3Δ−ρ−2/3ερ)
samples, assuming a lower bound of Ω(n2/3ερ) for �1-closeness testing.

Assume, for contradiction, that there is a closeness tester A for EMD over a tree (of size n and diameter
Δ) using o(n2/3Δ−ρ−2/3ερ) samples. We construct a closeness tester for �1 over [n] as follows. Let T be
a regular star graph (tree) with n wings, each consisting of Δ/2 vertices (see Figure 1). Note that T is of
size nΔ/2 + 1 and diameter Δ. We then map each i ∈ [n] to the ith leaf of T , and run A on the induced
distributions on T , with closeness parameter Δε/2. Notice every leaf of T is at distance exactly Δ from
every other leaf, so EMD of these distributions (on T ) is exactly Δ/2 times the �1 distance of the originals,
and our described �1-closeness tester is correct. Moreover, A, and therefore the �1-closeness tester, uses
only

o((nΔ)2/3Δ−ρ−2/3(Δε)ρ) = o(n2/3ερ)

samples, contradicting the lower bound for �1-closeness testing.
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5 Clusterable distributions

In this section, we return to the domain of hypercubes. For general distributions over hypercubes, the main
technique of our algorithms is to forcibly divide the distributions’ support into several small “clusters”. It is
therefore natural to consider what improvements are possible when the distributions are inherently cluster-
able. We are able to obtain a substantial improvement from the exponential dependence on the dimension d
that we had in the general case. But first, we need the following stand-alone lemma.

Lemma 17. Let p and q be distributions on M with diameter 1, and M = {M1, . . . ,Mk} be a partition of
M wherein diam(Mi) ≤ Γ for every i ∈ [k]. Let P and Q be distributions on M induced by p and q, resp.

Then EMD(p, q) ≤ ||P−Q||1
2 + Γ.

Proof. Let us define distribution p′ by moving some of the probability weight of p between Mi’s (taking
from and depositing anywhere within the respective Mi’s) in such a way that p′ induces Q on M. This is
effectively a flow from P to Q where all distances are bounded by 1, so by Lemma 4 it can be done at cost
at most ||P−Q||1

2 . It follows that EMD(p, p′) ≤ ||P−Q||1
2 .

Then, having equalized the probability weights of each Mi, let us move the probability weight of p′

within each Mi to precisely match q. This might require moving everything (i.e., 1), but the distance anything
is moved is at most Γ, so EMD(p′, q) ≤ Γ and the lemma follows by triangle inequality.

In the following, p and q are assumed to be distributions over [0, 1]d.

Theorem 18. If the combined support of distributions p and q can be partitioned into k clusters of diameter
ε/2, and we are given the k centers, then there exists an EMD-closeness tester for p and q that requires only
Õ(k2/3(d/ε)4) samples.

Proof. Let us denote the set of centers by C = {C1, . . . , Ck}. Consider the distributions P and Q on C
induced by p and q, respectively, by assigning each point to its nearest center. If EMD(p, q) > ε, by
Lemma 17, ‖P−Q‖1

2 (d) > ε/2. We can, of course, obtain samples from P and Q by sampling from p and q,
respectively, and returning the nearest center. Our problem thus reduces to �1-testing for (ε

d)-closeness over
k points, which requires Õ(k2/3(d/ε)4) samples using the �1-tester from [5].

If we do not assume knowledge of the cluster centers, then we are still able to obtain the following only
slightly weaker result.

Theorem 19. If the combined support of p and q can be partitioned into k clusters of diameter ε/4, then
even without knowledge of the centers there exists an EMD-closeness tester for p and q that requires only
Õ(kd/ε + k2/3(d/ε)4) ≤ Õ(k(d/ε)4) samples.

To prove this, we need the following result by Alon et al. that was implicit in Algorithm 1 from [1].

Lemma 20. (Algorithm 1 from [1]) There exists an algorithm which, given distribution p, returns k′ ≤ k
representative points if p is (k, b)-clusterable, or rejects with probability 2/3 if p is γ-far from (k, 2b)-
clusterable, and which requires only O(k log k/γ) samples from p. Moreover, if the k′ points are returned,
they are with probability 2/3 the centers of a (k, 2b)-clustering of all but a γ-weight of p.

Proof. (of Theorem 19) By the lemma, if our distributions are (k, ε/4)-clusterable, usingÕ(kd/ε) samples
we obtain a (k′, ε/2)-clustering of all but an ε

4d -fraction of the support of p and q, with centers C′. Note
that the unclustered probability mass contributes at most ε/4 to the EMD. The theorem then follows from
an identical argument as that of Theorem 18 (since we now know the centers).
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Note that in general, if we assume (k, b)-clusterability, this implies ((2b/ε)dk, ε/2)-clusterability (by
packing �1 balls), where knowledge of the super-cluster centers also implies knowledge of the sub-cluster
centers. Similarly, in the unknown centers case, (k, b)-clusterability implies ((4b/ε)dk, ε/4)-clusterability.
Unfortunately, in both cases we reintroduce exponential dependence on d, so clusterability only really helps
when the cluster diameters are as assumed above.
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