
Approximating the Weight of the Eu
lidean Minimum Spanning Tree in

Sublinear Time

Artur Czumaj

�

Funda Erg�un

y

Lan
e Fortnow

z

Avner Magen

x

Ilan Newman

{

Ronitt Rubinfeld

z

Christian Sohler

k

Abstra
t

We
onsider the problem of
omputing the weight of a Eu
lidean minimum spanning tree for a

set of n points in R

d

. We fo
us on the setting where the input point set is supported by
ertain

basi
 (and
ommonly used) geometri
 data stru
tures that
an provide eÆ
ient a

ess to the input

in a stru
tured way. We present an algorithm that estimates with high probability the weight of

a Eu
lidean minimum spanning tree of a set of points to within 1 + " using only

e

O(

p

npoly(1="))

queries for
onstant d. The algorithm assumes that the input is supported by a minimal bounding

ube en
losing it, by orthogonal range queries, and by
one approximate nearest neighbors queries.

1 Introdu
tion

As the power and
onne
tivity of
omputers in
rease and the
ost of memory be
omes
heaper, we

have be
ome inundated with large amounts of data. Although traditionally linear time algorithms

were sought to solve our problems, it is no longer
lear that a linear time algorithm is good enough in

every setting. The question then is whether we
an solve anything of interest in sublinear time, when

the algorithm is not even given time to read all of the input data. The answer is yes; in re
ent years,

several sublinear time algorithms have been presented whi
h solve a wide range of property testing and

approximation problems.

In this paper we
onsider the problem of estimating the weight of a minimum spanning tree, where

the input is a set of points in the Eu
lidean spa
e R

d

. Sin
e the lo
ation of a single point may

dramati
ally in
uen
e the value of the weight of the Eu
lidean minimum spanning tree (emst), we

annot hope to get a reasonable approximation in sublinear time with only a

ess to the lo
ations of the

points. This is true even when we
onsider probabilisti
 algorithms. However, it is often the
ase that

massive databases, parti
ularly in a geometri

ontext,
ontain sophisti
ated data stru
tures on top of

the raw data, that support various forms of queries. Examples of su
h queries are the nearest neighbor

�

Department of Computer S
ien
e, New Jersey Institute of Te
hnology, Newark, NJ 07102, USA. Email:
zu-

maj�
is.njit.edu. Resear
h supported in part by NSF grant CCR-0105701.

y

Ele
tri
al Engineering and Computer S
ien
e Department, Case Western Reserve University, Cleveland, OH 44107,

USA. Email: afe�ee
s.
wru.edu. Part of this work was done while the author was at NEC Resear
h, Prin
eton, NJ 08540,

USA. Resear
h supported in part by NSF grant CCR-0311548.

z

NEC Resear
h, Prin
eton, NJ 08540, USA. Email: fortnow, ronitt�resear
h.nj.ne
.
om.

x

Department of Computer S
ien
e, University of Toronto, Toronto, Ontario M5S 3G4, Canada. Email:

avner�
s.toronto.edu. This work was done while the author was at NEC Resear
h, Prin
eton, NJ 08540, USA.

{

Department of Computer S
ien
e, University of Haifa, Haifa, Israel. Email: ilan�
s.haifa.a
.il. Part of this work was

done while the author was at NEC Resear
h, Prin
eton, NJ 08540, USA.

k

Heinz Nixdorf Institute and Fa
ulty of Computer S
ien
e, Ele
tri
al Engineering and Mathemati
s, University of

Paderborn, D-33102 Paderborn, Germany. Email:
sohler�uni-paderborn.de. Resear
h partly supported by DFG grant

Me 872/8-1 and EU grant IST-1999-14186 (ALCOM-FT).

1

of a point, or the point with the highest value in a
oordinate. Consequently, in this paper, we assume

that algorithms have a

ess to
ertain
ommonly used data stru
tures whi
h aid the algorithm in its

omputation. This may be
onsidered a motivation for maintaining su
h data stru
tures, parti
ularly

if they aid in other tasks as well.

1.1 Results

In this paper we des
ribe three algorithms for estimating the weight of a Eu
lidean minimum spanning

tree over n given points in a Eu
lidean spa
e R

d

, where the algorithms are given a

ess to basi

geometri
 data stru
tures supporting the input. Throughout the paper we assume that d is a
onstant,

though our analysis
an be easily
arried over for arbitrary values of d. It should be noted that our

algorithms do not supply a low weight spanning tree (whi
h takes linear spa
e to represent), but only

estimate its weight.

We �rst
onsider the
ase when the algorithm is given, in addition to a

ess to the input point set, (1)

a minimal bounding
ube that
ontains all points in the input set and (2) a

ess to an orthogonal range

query data stru
ture whi
h, given an axis-parallel
ube, answers whether there is an input point within

the
ube. In this model, we give a deterministi
O(n

1=2

)-time algorithm for the 2-dimensional
ase whi
h

outputs a value w su
h that

1

�

emst(P) � Ln

�

� w � � emst(P) + Ln

�

, where � = �(n

1=8

log n),

L is the side-length of a minimal axis parallel bounding
ube of the point set, and
 is an arbitrary

onstant. We also show that any deterministi
 algorithm that uses o(n

1=2

) orthogonal range queries

annot signi�
antly improve the quality of approximation.

We next
onsider the
ase where, in addition to the above data stru
tures, we are also given (3)

a

ess to a
one nearest neighbor data stru
ture, whi
h given a point p and a
one C, returns a

nearest point to p in the
one p + C. Our se
ond algorithm
ombines the extra power of the
one

nearest neighbor data stru
tures with ideas from the re
ent randomized sublinear-time algorithm for

estimating the mst in general graphs [10℄. The algorithm outputs a value whi
h with high probability

is within a 1 + " fa
tor of the emst and it runs in O(�="

3

) time, where � is the spread of P (ratio

between maximum and minimum distan
e between points in P); observe that �
an be arbitrarily

large.

Our main
ontribution is the third algorithm that does not have any dependen
y on � and requires

only
one approximate nearest neighbor queries whi
h we de�ne in the next se
tion. For a
onstant

d, the algorithm runs in

e

O(

p

npoly(1=")) time and outputs an approximation of the emst weight to

within a multipli
ative fa
tor of 1+" with high probability. The algorithm
ombines the ideas from our

�rst two algorithms. It partitions the input points into
omponents and estimates the emst separately

by
onsidering pairs of points that lie in the same
omponent and pairs of points that belong to di�erent

omponents. To estimate the emst within
omponents, we use an extension of our se
ond algorithm.

To estimate the weight required to
onne
t the
omponents we use a variant of our �rst algorithm. The

ombination of these two algorithms leads to a signi�
ant improvement in the quality of approximation

(
ompared to the �rst algorithm) and in the running time (
ompared to the se
ond algorithm).

We noti
e also that our algorithms lead to sublinear-time (2 + ")-approximation algorithms for

two other
lassi
al geometri
 problems: Eu
lidean TSP and the Eu
lidean Steiner tree problem. These

results follow from the well known relationship between the weight of emst and the weight of Eu
lidean

TSP and of Eu
lidean Steiner tree (see, e.g., [21℄). Indeed, it is known that in metri
 spa
es the weight

of Eu
lidean TSP is between the weight of the emst and twi
e the emst weight. Similarly, it is known

that in metri
 spa
es the emst weight is between the weight of the Steiner tree and twi
e of its weight.

On the plane, one
an improve this result by using the fa
t that the emst weight is upper bounded by

at most 2=

p

3 times the weight of the Eu
lidean Steiner tree [12℄.

2

1.2 Relation to previous works

The Eu
lidean minimum spanning tree problem is a
lassi
al problem in
omputational geometry and

has been extensively studied in the literature for more than two de
ades. It is easy to see that to

�nd the emst of n points, O(dn

2

) time suÆ
es, by redu
ing the problem to �nding the mst in dense

graphs. In the simplest
ase where d = 2 (on the plane), Shamos and Hoey [20℄ show that the emst

problem
an be solved in O(n logn) time. For d � 3, no

e

O(n)-time algorithm is known and it is a

major open question whether an O(n log n)-time algorithm exists even for d = 3 [15℄; in fa
t, it is

even
onje
tured (see, e.g., [15℄) that no o(n

4=3

)-time algorithm does exist. Yao [23℄ was the �rst who

broke the O(n

2

)-time barrier for d � 3 and designed an

e

O(n

1:8

)-time algorithm for d = 3. This bound

has been later improved and the fastest
urrently known (randomized) algorithm a
hieves the running

time of

e

O(n

4=3

) [2℄ for d = 3 (and the running time tends to O(n

2

) as d grows). Signi�
antly better

bounds
an be a
hieved if one allows to approximate the output. Callahan and Kosaraju [7℄ give a

O(n log n+ n log(1=") "

�d=2

)-time algorithm that �nds an approximate Eu
lidean minimum spanning

tree to within a multipli
ative fa
tor of 1 + ".

Our algorithms rely on a re
ent randomized algorithm of [10℄ that, given a
onne
ted graph in

adja
en
y list representation with average degree d, edge weights in the range [1 : : : W ℄, and a parameter

0 < " <

1

2

, approximates, with high probability, the weight of a minimum spanning tree in time

e

O(dW "

�3

) within a fa
tor of 1 + ". The time bound does not dire
tly depend on the number of

verti
es or edges in the graph. We emphasize, however, that our representation is quite di�erent, and

in general would give a graph with average degree n. Therefore, a dire
t appli
ation of this result to

the emst problem does not lead to a sublinear-time algorithm.

We noti
e also that a similar model of
omputation to that used in our paper has been used re
ently

in [11℄.

1.3 Dynami
 algorithms

Our model of
omputation is also interesting in the
ontext of dynami
 algorithms. There exist fully

dynami
 algorithms that maintain the emst subje
t to point insertions and deletions; [14℄ gives an

algorithm with amortized time

e

O(

p

n) and O(n

1�"

) per update operation for d � 4 and d > 4 re-

spe
tively. A disadvantage of this algorithm (and of all typi
al dynami
 algorithms) is that it requires

as mu
h as

e

O(

p

n) time per input update, making the algorithm very
ostly in situations where the

emst queries are very rare. The data stru
tures we require in our setting are dynami
ally maintained

by standard geometri
 databases anyway. Thus, if the database supports all required data stru
tures

in polylogarithmi
 time, the amortized time required by our algorithm is

e

O(

p

n=U), where U is the

typi
al number of updates per one emst
al
ulation. We note again that our algorithm does not supply

the minimum spanning tree, but returns only its approximate weight.

Organization of the paper. We start by presenting an algorithm that only needs a

ess to a

minimal bounding
ube of the point set P and to an orthogonal range query ora
le in Se
tion 3.

In Se
tion 5, we present a simple algorithm that uses additionally the
one nearest neighbor ora
le.

Finally, in Se
tion 6, we dis
uss the main
ontribution of this paper, a sublinear time algorithm that

uses a minimal bounding
ube ora
le, the orthogonal range query ora
le and the
one approximate

nearest neighbor ora
le.

3

2 Preliminaries

For a given set P of points in a Eu
lidean spa
e R

d

, a (Eu
lidean) graph on P
an be modeled as a

weighted undire
ted graph G = (P;E), where P is a vertex set, E is a subset of the (unordered) pairs

of points in P , and the length/weight of edge fp; qg is equal to the Eu
lidean distan
e between points

p and q, denoted jpqj. The weight of the graph is the sum of the weights of its edges.

Throughout the paper we denote by K

P

the
omplete (undire
ted) graph on P where the edge

weights are the Eu
lidean distan
es between the endpoints. A graph G on a set of points P is
alled a

Eu
lidean minimum spanning tree (emst) of P if it is a minimum-weight spanning subgraph of K

P

. We

denote by emst(P) both the emst of P and the weight of the emst of P . Similarly, for a given graph

G we will denote by mst(G) the minimum spanning tree of G as well as the weight of the minimum

spanning tree of G.

For a given point set P , we denote by � the spread of P , that is, the ratio between the maximum

and the minimum distan
es between points in P . We let BC be a minimal bounding
ube of P (whi
h

is made available via the minimal bounding
ube ora
le) and let L denote its side length.

2.1 Models of
omputation

In this paper we use some basi
 geometri
 data stru
tures supporting a

ess to the input point set.

Given a point set P in R

d

, we use data stru
tures supporting the following types of queries:

� minimal bounding
ube of P: returns the lo
ation of a minimum size axis-parallel d-dimensional

ube
ontaining P , that is, returns the lo
ation of a
ube C = [a

1

; a

1

+R℄� [a

2

; a

2

+R℄� : : :�

[a

d

; a

d

+R℄ that
ontains P su
h that no axis-parallel
ube of edge length smaller than R
ontains

P .

� (orthogonal) range query ora
le: for a given axis-parallel
ube C, tests if C
ontains a point

from P .

�
one (1 + Æ)-approximate nearest neighbor ora
le: Æ is any non-negative real number and

it is assumed that a set of
ones C with apexes at the origin is given in advan
e. The
one

(1 + Æ)-approximate nearest neighbor ora
le, for a given point p 2 P and a given
one C 2 C,

returns a (1+ Æ)-approximate nearest neighbor

1

of p in (P n fpg)\ (p+C). (We denote by p+C

the translated
one fa + p : a 2 Cg.) If (P n fpg) \ (p + C) is empty, then a spe
ial value is

returned.

In the spe
ial
ase where Æ = 0, the ora
le gives the true nearest neighbor, and is simply
alled

the
one nearest neighbor ora
le.

2.1.1 Implementing supporting data stru
tures

To make our model of
omputations viable, we dis
uss here how our supporting data stru
tures (ora
les)

an be implemented eÆ
iently using standard geometri
 data stru
tures.

Minimal bounding
ube. The query about the minimal bounding
ube of a set of points P 2 R

d

an be supported by many standard geometri
 data stru
tures. Indeed, the only information required

to �nd the minimal bounding
ube is to know the minimum and maximum d-dimensional
oordinates

of all input points. Therefore, many standard geometri
 data stru
tures
an support this query in time

O(d) or O(d log n).

1

For a point p 2 P and a set of points Q � R

d

, a (1 + Æ)-approximate nearest neighbor of p in Q is any point q 2 Q

su
h that for every x 2 Q it holds that jpqj � (1 + Æ) � jpxj.

4

Orthogonal range query ora
le. There are many eÆ
ient data stru
tures supporting the orthog-

onal range query ora
le and a
tually, orthogonal range queries are perhaps the most widely supported

geometri
 queries (for survey expositions, see, e.g., [1, 3, 6℄). One of the �rst data stru
tures for or-

thogonal range sear
hing is the quadtree. Despite its bad worst-
ase behavior, the quadtree is still used

in many appli
ations be
ause it provides an easy-to-implement linear-spa
e data stru
ture that often

has a very good performan
e. The best known data stru
tures for orthogonal range sear
hing based on

ompressed range trees and some other te
hniques su
h as �ltering sear
h
an be found in [8, 9℄. The

query time is O(log

d�1

n). If one uses standard range trees with the fra
tional
as
ading te
hnique

then the same bound on the query time
an be a
hieved [18, 22℄.

Cone nearest neighbor ora
le. In the seminal paper on Eu
lidean minimum spanning trees, Yao

[23℄ examined algorithms for
one nearest neighbor in the
ones with the angular diameter �=4. Cone

nearest neighbor queries have been also studied extensively in follow-up papers dealing with the emst

problem (see, e.g., [2℄).

Cone approximate nearest neighbor ora
le. Cone approximate nearest neighbor queries have

been widely investigated. They play an important role in the
ontext of
onstru
tion of Eu
lidean

spanners (see, e.g., [4, 5, 13, 19℄). And thus, among others, Ruppert and Seidel [19℄ show how to

answer a query in amortized time O(n log

d�1

n) per
one in C; a similar
onstru
tion is presented in

[5℄. Arya et. al. [4℄ present a fully dynami
 algorithm whi
h in polylogarithmi
 time supports
one

approximate nearest neighbor queries. Noti
e also that a single
one approximate nearest neighbor

query
an be answered using a logarithmi
 number of simplex (triangular) range queries, whi
h is

another
lassi
al geometri
 data stru
ture (see, e.g., [1, 3, 6℄).

3 Estimating the emst with bounding
ube and range queries

In this se
tion we des
ribe a natural approa
h to the approximation of emst(P) using minimum

bounding
ube ora
le and orthogonal range queries. This approa
h, by itself, does not give a good

enough multipli
ative approximation, but is used as a building blo
k in the sublinear algorithm we

present later. For simpli
ity, we only des
ribe in detail the two-dimensional
ase (d = 2); the algorithm

an be generalized to arbitrary d in an obvious way. The algorithm we supply is deterministi
 and

outputs a value w su
h that

1

�

emst(P) � � � w � �emst(P) + �, where � = O(n

1=8

log n), and

� = Ln

�

, where L is the side-length of a minimal bounding
ube of P and
 is a
onstant. The

algorithm has a running time of O(n

1=2

). We also show that any algorithm that uses the same running

time (in fa
t, the same amount of queries and arbitrary large running time)
annot signi�
antly improve

the quality of the approximation.

3.1 The quad-tree algorithm

We apply a standard quad-tree subdivision to the bounding
ube BC (see, e.g., [6, Chapter 14℄). That

is, we �rst partition BC into four disjoint blo
ks (squares) of equal size. We
an
he
k whi
h blo
ks

ontain points from P via orthogonal range queries. We then further subdivide the nonempty blo
ks,

and iterate this pro
ess as long as fewer than

p

n queries are made. This indu
es a tree stru
ture on the

blo
ks, where a blo
k at level i has side length L=2

i

. Let k be the depth of this tree. We may assume

that all nonempty blo
ks at level k�1 were subdivided into subblo
ks (of level k) and ea
h subblo
k of

level k was queried. Let B be the set of nonempty blo
ks at level k and let b = jBj. Clearly b = O(

p

n).

We now run any minimum spanning tree algorithm (as we will see later, a (1 + ")-approximation is

5

good enough) on the
enters of the blo
ks in B. This would result in a value L. We set U = L+s

p

b n,

where s = L � 2

�k

and output the value w =

p

LU as an approximation for T

�

= emst(P).

Claim 1 For an arbitrary
onstant
,

1

�

T

�

� � � w � �T

�

+ �, where � = O(n

1=8

logn) and

� = Ln

�

.

Proof. First note that the minimum spanning tree of any n points in a d-dimensional
ube with

side-length h is O(hn

d�1

d

) and this bound is tight (i.e., it is a
hievable for some inputs), see, e.g., [17℄.

Now, we set L

�

be the weight of a minimum weight tree that tou
hes every blo
k in B. It is easy to

see that L

�

� T

�

� U (the last inequality is by the above upper bound and using
onvexity).

Assume now that b �

p

n=(4(
 + 1) logn); then it
an be seen that L upper bounds L

�

and

approximates it within an additive term of O(s b), and hen
e within a
onstant fa
tor, say Æ. Namely,

a � b � s � L

�

� L � Æ � L

�

for some
onstants a and Æ.

Hen
e, as U is an upper bound on T

�

, the approximation fa
tor is � = maxfU=w;w=L

�

g. By our

hoi
e of w and the fa
t that L approximates L

�

up to a
onstant we get � = O

�

U

w

�

= O

�

q

U

L

�

�

=

O

�

�

s

p

b n

L

�

1=2

�

= O

�

(n=b)

1=4

�

(where the last inequality follows by plugging in the expression for U

and L and the previous follows from the fa
t that L approximates L

�

within a
onstant fa
tor). Now,

by the above bound on L and on b we obtain that � �

~

O(n

1=8

). Note that, if we used an approximation

L

0

guaranteed to be within a
onstant fa
tor of L, we would still get the same result.

Assume now that b <

p

n=(4(
 + 1) logn). Then it
an be seen that the depth of the quad-tree

is at least (
 + 1) logn and hen
e s � L � n

�(
+1)

. Therefore, the additive term is upper bounded by

U � L � O(s �

p

b n) = O(n

�(
+1)

� L � n) = O(L � n

�

). �

A note on the running time is due here. We use O(

p

n) queries in the
ourse of
onstru
ting the

quad-tree. Next, we have to �nd the minimum spanning tree (or any (1 + Æ) approximation to it for

any �xed Æ). In the two-dimensional
ase this
an be done in

e

O(

p

n) time [20℄, and this term dominates

the total
omplexity.

Higher dimensions: In the
ase of dimension d > 2 the quad-tree has to be repla
ed with a 2

d

-ary

tree. The algorithm will be run similarly to the above until O(2

d

p

n) queries have been made, and all

re
tangles at the bottom level have been queried. Then, L is set similarly to the two-dimensional
ase,

and U = L+ s � n

d�1

d

� b

1=d

. The approximation w for T

�

is taken to be the same. To have an eÆ
ient

running time, a
onstant approximation for L
an be used, rather then the exa
t value. This
an be

done in time O(n log n) by Callahan and Kosaraju result [7℄.

It is easy to see that the following repla
es Claim 1 with an analogous proof.

Claim 2 For an arbitrary
onstant
,

1

�

T

�

� � � w � �T

�

+ �, where � = O(2

d=2

� n

(d�1)=4d

log n)

and � = Ln

�

.

As it turns out, the above quality of approximation is nearly optimal for the given time bound as

shown by the following
laim (shown only for the two-dimensional
ase, a similar result is true for the

d-dimensional
ase as well).

Claim 3 Any deterministi
 algorithm for approximating emst(P) in the two-dimensional
ase that

uses O(

p

n) orthogonal range queries has an approximation fa
tor of
(n

1=8

).

6

Proof. Consider any deterministi
 algorithm that uses at most

p

n range queries. Consider the

following adversary for supplying the answer to the queries: The adversary will subdivide the unit

square into a mesh of squares, ea
h of side length s =

n

1=4

10

, namely into 100n

1=2

squares, denoted

blo
ks. The adversary
ommits itself to lo
ate n

1=2

=100 input points in ea
h blo
k. In what follows,

the adversary will mark some blo
ks in whi
h he will
ommit to the internal lo
ation of points. The

invariant that is kept is that in unmarked blo
ks, any
on�guration of input points is still
onsistent

with the answers so far.

At the beginning no blo
k is marked. Now, for ea
h queried re
tangle, if the query interse
ts an

unmarked blo
k then the adversary will answer \not-empty." In addition it will
hoose one unmarked

blo
k that interse
ts the given query, mark it and
ommit to have all points in that blo
k, in an

arbitrary single point in the interse
tion. If the query interse
ts only previously marked blo
ks, then if

it
ontains any of the previous lo
ations in whi
h the adversary has already
ommitted to have input

points then a \non-empty" answer will be given (this is for
ed). If the query does not in
lude any of

the previous lo
ations in whi
h the adversary has
ommitted to have input points then the adversary

will answer \empty."

Keeping up this way, it is easy to see that the adversary
an supply
onsistent answers to all

p

n

queries.

At the end, sin
e there are 10

p

n blo
ks while the adversary has marked at most

p

n blo
ks, in

9

p

n blo
ks there is
omplete freedom as to where the input points are lo
ated within su
h blo
k. Now

noti
e that if the adversary
hooses to lo
ate all points within a blo
k in one (arbitrary) point then the

minimum spanning tree is of
ost O(n

1=4

), while, if it
hooses to lo
ate the points in ea
h unmarked

blo
k spread uniformly within the blo
k, then the
ost of the tree is
(n

1=2

). Hen
e the lower bound

follows. �

Finally, we note that our
hoi
e of using O(

p

n) orthogonal range queries was arbitrary; one
an

use a di�erent number of queries and obtain a whole range of tradeo�s between the running time and

the quality of approximation.

4 Two related previous results

We now des
ribe two previous results that we utilize in our emst algorithms: the
on
ept of Yao graphs

[23℄ and an algorithm for approximating the mst in bounded degree graphs due to Chazelle et al. [10℄.

4.1 Yao graphs

Yao graphs are Eu
lidean graphs that relate the emst to the
one nearest neighbor ora
le presented

in Se
tion 2.1. Fix an integer d � 2. Let C be a
olle
tion of d-dimensional
ones with apex at

the origin su
h that (a) ea
h
one has angular diameter

2

at most �, where � is some �xed angle,

and (b)

S

C2C

C = R

d

. There is always su
h a
olle
tion C of O(d

3=2

� sin

�d

(�=2) � log(d sin

�1

(�=2)))

ones (not ne
essarily disjoint); note that for
onstant d and � this bound is O(1). Yao [23℄ gives

one possible
onstru
tion for su
h a
olle
tion. For a point p 2 R

d

and a
one C 2 C, let C

p

be

p + C = fa + p : a 2 Cg, that is, a translation of C so that its apex is at p. Let N

P

hp;Ci be the

nearest neighbor of p in the set (P n fpg) \ C

p

. Given a point set P and a
olle
tion of
ones C, the

Yao graph of P (with respe
t to C) is the Eu
lidean graph G with vertex set P and (undire
ted) edge

set E = f(p; q) j 9C 2 C su
h that q = N

P

hp;Cig. That is, ea
h p 2 P is
onne
ted to its nearest

2

The angular diameter of a
one C in R

d

having its apex at point p 2 R

d

is de�ned as the maximum angle between

any two ve
tors

�!

px and

�!

py, x; y 2 C.

7

neighbor in ea
h
one whi
h has p at its apex. The following result due to Yao [23℄ motivates our use

of these graphs.

Claim 4 [23℄ Let P be a point set in R

d

. Let G be the undire
ted Yao graph for P with � < �=3. Then,

the Eu
lidean minimum spanning tree of P is a subgraph of the Yao graph G. �

4.2 Chazelle et al.: approximate MST in low-degree graphs

Our algorithms make use of a re
ent algorithm for estimating the weight of mst in graphs due to

Chazelle et al. [10℄. This algorithm assumes that the input graph (i) is represented by an adja
en
y

list, (ii) has degree at most � (the full version of [10℄ allows � to be the average degree), and (iii)

has known minimum and maximum edge weights, where the ratio of the maximum edge weight to the

minimum is �. Then, for 0 < " <

1

2

, the algorithm estimates the weight of the minimum spanning tree

with a relative error of at most ", with probability at least

3

4

, and runs in time O(� �� � log(� �=")="

3

).

(The authors also give a nearly mat
hing lower bound of
(� � �="

2

) on the time
omplexity of any

"-approximation algorithm for the mst.)

Let H = (V;E), be an input graph having n verti
es with maximum degree � and edge weights in

the interval [1;�℄. For any w 2 R, let H

(w)

denote the maximal subgraph of H
ontaining edges of

weight at most w, and

w

denote the number of
onne
ted
omponents in H

(w)

. The main ingredient

of the algorithm from [10℄ is a pro
edure approx-number-
onne
ted-
omponents run on H

(w)

for estimating

w

for w = (

1

2

+ i) � " with i = 1; 2; : : : ;�=". For integer weights, the weight of the mst of H is equal to

n��+

P

��1

j=1

j

. The algorithm uses the above estimations to produ
e a value whi
h, with probability

at least

3

4

, is a (1� ")-approximation of the mst of H.

Pro
edure approx-number-
onne
ted-
omponents works by sampling O(1="

2

) verti
es in H. For ea
h

sampled vertex u, a random estimator X

u

is
omputed by traversing H

(w)

from u (for example, using

breadth-�rst sear
h) with a sto
hasti
 stopping rule. X

u

is a random variable whose distribution is a

fun
tion of only the size of the
onne
ted
omponent
ontaining u (i.e., the number of verti
es rea
hed

from u in the traversal) in H

(w)

. The simple relation between these sizes and

w

together with the fa
t

that the distribution of X

u

is
on
entrated around the expe
ted value yields the
onne
tion between X

u

and

w

. Pro
edure approx-number-
onne
ted-
omponents runs in expe
ted timeO(� "

�2

log(�=")). Therefore,

the expe
ted running time of the algorithm in [10℄ is O(� � "

�3

log(�=")).

5 A simple estimation for EMST using Yao graphs

The algorithm we present in this se
tion is
on
eptually an important
omponent of the sublinear

algorithm we design later in Se
tion 6. It
ombines the two results des
ribed in Se
tion 4. Our

algorithm uses the
one nearest neighbor ora
le and a
hieves a query
omplexity of 2

O(d)

�

e

O(�="

2

).

Sin
e by Claim 4 the undire
ted Yao graph G for P
ontains all edges of the emst of P , it is natural

to try to apply the algorithm of Chazelle et al. to G to estimate the weight of the emst of P . To do

that eÆ
iently, instead of generating G at the beginning of the algorithm, we generate the edges of

G (using the
one nearest neighbor queries) only when the edges are needed in the algorithm. That

is, whenever the algorithm needs edges adja
ent in G to a vertex p, we use the
one nearest neighbor

query to obtain the nearest neighbor of p in ea
h
one in fp+ Cg

C2C

. Motivated by Claim 4, we set

the angular diameter of the
ones to �=4. This
reates parts of an impli
it dire
ted Yao graph G on P

with edges (p; q) su
h that there is a C 2 C where q = N

P

hp;Ci.

The above approa
h has a number of problems. First, the algorithm of Chazelle et al. requires

the input graph to be undire
ted and represented by an adja
en
y list, whereas in our model, we have

fast a

ess only to the out-going edges at a vertex in G. Furthermore, the running time is linear in �,

8

whi
h
an be arbitrarily large. The following lemma helps in over
oming the �rst diÆ
ulty, while the

se
ond one is ta
kled in the main algorithm in Se
tion 6. The proof of Lemma 1, being a spe
ial
ase

of Claim 5, is omitted.

Lemma 1 Let n

`

u

be the number of verti
es in K

P

that are rea
hable from u using only edges of weight

at most `. Let m

`

u

be the number of verti
es in dire
ted Yao graph G rea
hable from u using only edges

of weight at most `. Then m

`

u

= n

`

u

. �

Equipped with this lemma, we
an modify the algorithm due to Chazelle et al. to obtain its eÆ
ient

implementation in our model. The only di�eren
e is in pro
edure approx-number-
onne
ted-
omponents. We

still sample O(1="

2

) verti
es and randomly traverse H

(w)

from the sampled verti
es. To implement the

traversing algorithm we explore the graph in a breadth-�rst sear
h fashion by going to the outgoing

neighbors of the verti
es that are
loser than the
urrent threshold weight w. Su
h a pro
edure
an

be easily implemented in our model by using the
one nearest neighbor queries; the running time

is proportional to the number of the edges traversed. To estimate the value of

w

we use the same

estimators as in [10℄. Sin
e for ea
h vertex u in the sample, the distribution of X

u

depends only on m

w

u

,

the number of the verti
es rea
hable from u in H

(w)

, by Lemma 1, we
an
on
lude that X

u

has the

same distribution as in the algorithm of Chazelle et al. [10℄. Therefore, the quality of this algorithm of

the estimation of emst of P is the same as in the algorithm of Chazelle et al. [10℄. Sin
e the maximum

out-degree of the dire
ted Yao graph is 2

O(d)

, the modi�ed pro
edure approx-number-
onne
ted-
omponents

has identi
al
omplexity to that of running the original algorithm of Chazelle et al. in a (undire
ted)

graph with maximum degree 2

O(d)

. Thus, we obtain the following theorem.

Theorem 1 Let P be a set of points in R

d

. Assume the value � of the spread of P is known and a

ess

to a
one nearest neighbor ora
le for P is given. Then, there is an algorithm that outputs a value �

whi
h, with probability at least

3

4

, approximates the values of emst(P) to within a fa
tor of 1� " with

query
omplexity

e

O

�

2

O(d)

� �="

3

�

. �

For
onstant d and ", this
omplexity is

e

O(�), whi
h is sublinear for � = o(n). However, for

example, on the plane, � is known to be
(

p

n), and in general, � may be arbitrarily large. In the next

se
tion, we dis
uss our main
ontribution, whi
h is a truly sublinear-time approximation algorithm

whose
omplexity is independent of �.

6 Sublinear-time approximation algorithm

In this se
tion we show how the two algorithms from Se
tions 3 and 4
an
omplement ea
h other.

In addition to improving the running time, our algorithm requires a weaker
omputational model, in

whi
h the
one nearest neighbor query is repla
ed by the
one (1 + Æ)-approximate nearest neighbor

query.

6.1 Overview of the algorithm

In Se
tion 6.2, we begin by partitioning a minimal bounding
ube BC of P into blo
ks of equal size;

we then
onsider only blo
ks
ontaining points from P . Next, we group blo
ks that are \
lose" to ea
h

other together,
alling the resulting
lusters
onne
ted blo
k-
omponents. The algorithm then pro
eeds

in two phases. First, in Se
tion 6.5, we show how to approximate the weight of a minimum spanning

forest (msf) of the
onne
ted blo
k-
omponents by using the ideas of Se
tion 5. We then, in Se
tion 6.6,

approximate the optimal way to
onne
t di�erent
onne
ted blo
k-
omponents. We prove in Lemma 2

9

Figure 1: Blo
k-partitioning,
onne
ted blo
k-
omponents and a s
hemati
s to the sublinear algorithm.

that the msf of the
onne
ted blo
k-
omponents
ombined with the optimal set of edges joining them

approximates the emst of P .

In our analysis, throughout the entire se
tion we assume that 0 < " <

1

15

.

6.2 Partitioning the bounding
ube

After the translation and s
aling of the points in P we
an assume that BC, the bounding
ube of P , is

[0; n="℄

d

. In parti
ular, the side length is L = n=" and we have a trivial lower bound emst(P) � n=".

We follow the approa
h from Se
tion 3 with small modi�
ations, by extending it to higher dimen-

sions and applying a di�erent stopping pro
edure. We �rst partition BC into 2

d

disjoint blo
ks of equal

size, then partition iteratively the nonempty ones into 2

d

disjoint sub
ubes, and so on. Call a blo
k at

level i an a
tive blo
k if it
ontains a point from P . Let b

k

be the number of a
tive blo
ks at level k

(number of blo
ks that
ontain points from P), and �

k

= L=2

k

be the side length of blo
ks in the kth

level of the subdivision. Let b

�

= maxf"

d=2�3

p

n; 2

d+1

g. We stop our subdivision at the �rst level k

0

su
h that either b

k

0

� b

�

or �

k

0

< 2 ". Let b = b

k

0

and � = �

k

0

. Noti
e that b � 2

d

b

�

and � � ". By

our arguments from Se
tion 3, the a
tive blo
ks at level k

0

an be found by querying the range query

ora
le O(b 2

d

log(n=("�)) times.

6.3 Spanners and
onne
ted blo
k-
omponents

For any t � 1, a t-spanner (see, e.g., [7, 13, 16℄) for a set S of points in a Eu
lidean spa
e is any

Eu
lidean graph G with the vertex set S su
h that for every pair of points x; y 2 S there is a path in

G between x and y of total length at most t � jxyj.

In our analysis, we will frequently use
enters of blo
ks as the representatives of the blo
ks. Let

B be the set of
enters of a
tive blo
ks and let SPN be a (1 + "=4)-spanner of B with O(b (4=")

d�1

)

edges. Su
h a spanner
an be found in time O(b log b+ b log(1=") "

�d

) =

e

O(

p

n "

3�d=2

) [7℄.

Call two blo
ks
lose if the distan
e between their
enters in the graph SPN is at most � � �,

where � = 14

p

d=". We use equivalen
e
lasses of the relation
lose to de�ne the
onne
ted blo
k-

omponents. That is, two blo
ks are in the same
onne
ted blo
k-
omponent if there is a sequen
e of

a
tive blo
ks between them, where every
onse
utive pair of blo
ks in the sequen
e is
lose. We shall

abuse notation and refer also to the partition of P indu
ed by the
onne
ted
omponents as
onne
ted

blo
k-
omponents. Noti
e that all
onne
ted blo
k-
omponents
an be found in time proportional to

the number of edges in SPN , whi
h is O(b (4=")

d�1

).

10

6.4 The EMST of P and
onne
ted blo
k-
omponents

We refer to the spanning forest of a graph G as a union of spanning trees of the
onne
ted
omponents

of G. A minimum spanning forest of G, denoted by msf(G), is a spanning forest of G of minimum

weight.

Let E

in

be the set of edges of K

P

whose endpoints lie within the same
onne
ted blo
k-
omponent.

Let W = (� +

p

d)�. We now relate blo
k-
omponents to the distan
es between points.

Observation 1 Let p and q be an arbitrary pair of points in P .

1. If jpqj � (�� 4

p

d)� then p and q are in the same
onne
ted blo
k-
omponent.

2. If p and q are in the same
onne
ted blo
k-
omponent then there is a path between p and q

onsisting of edges in E

in

that are all of length at most (� +

p

d)� =W .

3. If jpqj > (�+

p

d)� =W and p and q are in the same
onne
ted blo
k-
omponent, then emst(P)

does not
ontain the edge pq.

Proof. For any point p 2 P , we let

p

denote the
enter of the blo
k at level k

0

that
ontains p.

To see the �rst assertion, noti
e that if jp qj � (��4

p

d)� then j

p

q

j � jp qj�

p

d� � (��3

p

d)�.

Therefore, the distan
e in SPN between

p

and

q

is at most (1 + "=4) (� � 3

p

d)� � ��, whi
h

implies the �rst
laim. Next, this also implies the existen
e of a path

p

=

(0)

;

(1)

; : : : ;

(s)

=

q

in

SPN su
h that j

(i)

(i+1)

j � � �� for all i. Clearly, the
orresponding path p = p

(0)

; p

(1)

; : : : ; p

(s)

= q

with

(i)

=

p

(i)

shows the se
ond assertion, sin
e jp

(i)

p

(i+1)

j � j

(i)

(i+1)

j+

p

d� � �� +

p

d�. The

third assertion follows from the se
ond one and the fa
t that the (stri
tly) largest edge in a
y
le in a

graph
annot be part of its mst. �

In our algorithm we use the following graphs:

� G

blo
k

is the graph
ontaining all edges in E

in

of weight at most W . By Observation 1, the

onne
ted
omponents of msf(G

blo
k

) are identi
al to the
onne
ted blo
k-
omponents and the

minimum spanning forest of these
omponents is the same as msf(G

blo
k

).

� G

Æ

is the dire
ted (1+ Æ)-Yao graph that is obtained from K

P

using the
one (1+ Æ)-approximate

nearest neighbor ora
le. We use the same de�nitions as in the de�nition of dire
ted Yao graphs and

we formally de�ne N

(1+Æ)

P

hp;Ci to be the point that is returned by the
one (1 + Æ)-approximate

nearest neighbor ora
le for p and C. If (P nfpg)\C

p

= ;, then N

(1+Æ)

P

hp;Ci is unde�ned. Then,

G

Æ

is a dire
ted Eu
lidean graph on P with the edge set
ontaining an edge (p; q) if there is C 2 C

su
h that q = N

(1+Æ)

P

hp;Ci.

� M is the minimum weight subgraph of K

P

that, when added to G

blo
k

; forms a
onne
ted graph.

� G

out

is the same as K

P

ex
ept that the weights of edges in E

in

are
onsidered to be zero. Observe

that the weight of mst(G

out

) is identi
al to the weight of M.

The following lemma displays the two-level nature of the algorithm that we will present.

Lemma 2 The sum of the weights of msf(G

blo
k

) and mst(G

out

) is a (1 + "=2)-approximation of

emst(P).

Proof. We show that the union of msf(G

blo
k

) and M is a spanning tree of K

P

whose weight

approximates the weight of emst(P) to within a fa
tor of 1 + "=2. From that the lemma follows

immediately.

11

x

β

xx 2
3

yb

a

α

c

γ

z=x1

Figure 2: Illustration to the proof of Claim 5. The �gure shows the rea
hability in G

Æ

. The dashed

line is the path showing the
onne
tivity of x and y in G

Æ

((1+Æ) �)

.

Clearly, the union of msf(G

blo
k

) andM forms a spanning tree of K

P

. To prove the se
ond part of

the
laim, let us
onsider an undire
ted graph G

�

obtained from K

P

by de
reasing to (�� 4

p

d)� the

weight of every edge in E

in

having weight larger than (� � 4

p

d)� and smaller than or equal to W .

(Note that we
hange only the weights of the edges in G

blo
k

.) Sin
e the weight of every edge de
reases

by a fa
tor of at most

W

(��4

p

d) �

=

(�+

p

d)�

(��4

p

d)�

� 1+"=2, we have mst(G

�

) � emst(P)=(1+"=2). Noti
e

further that by Observation 1, ea
h edge in G

�

that is not in G

blo
k

has weight larger than (��4

p

d)�.

This means that mst(G

�

) must
ontain a minimal spanning forest of G

blo
k

, and hen
e the weight of

the union of msf(G

blo
k

) and M is a (1 + "=2) approximation of emst(P). �

6.5 First level { estimating the weight of msf(G

blo
k

)

In this se
tion we show how to estimate the weight of the mst within a single blo
k
omponent. This,

ombined for all blo
k
omponents, yields an estimate on the weight of msf(G

blo
k

). Sin
e our model

does not allow
onstant-time a

ess to the edges of G

blo
k

, we will use the dire
ted Yao graph G

Æ

to

estimate the weight of msf(G

blo
k

). Our analysis will explore the relationship between G

Æ

and G

blo
k

.

For a weighted graph H denote by � � H the graph H with edge weights multiplied by �. Re
all

that H

(r)

denotes the subgraph of H
onsisting of the edges of weight at most r, and

r

is the number

of
onne
ted
omponents in G

(r)

blo
k

. Let n

r

u

andm

r

u

be the number of verti
es in G

(r)

blo
k

and in G

Æ

(r)

that

are rea
hable from u respe
tively. Noti
e that

r

=

P

u2P

1=n

r

u

. Analogously, de�ne

�

r

=

P

u2P

1=m

r

u

.

Also, let
̂

r

be the number of
onne
ted
omponents in (1 + Æ) �G

(r)

blo
k

.

It follows from [10℄ (see also Se
tion 4) that

msf(G

(r)

blo
k

) � n� r

r

+

r�1

X

i=1

i

� msf(G

(r)

blo
k

) + n : (1)

Sin
e we only have a

ess to G

Æ

, we
an only deal with the

�

r

's rather than the

r

's. To bound the

error due to this repla
ement, now we relate rea
hability in G

Æ

to rea
hability in G

blo
k

.

Claim 5 Let " �

1

5

and Æ �

1

10

. Then for every r and every u 2 P , n

r=(1+Æ)

u

� m

r

u

� n

r

u

. In parti
ular,

r=(1+Æ)

�

�

r

�

r

.

Proof. Let us �rst noti
e that m

r

u

� n

r

u

follows dire
tly from the de�nition. To show that n

r=(1+Æ)

u

�

m

r

u

, it suÆ
es to show that for every � , if a vertex y is rea
hable in G

(�)

blo
k

from a vertex x, then y is

12

rea
hable from x in G

Æ

((1+Æ) �)

. Assume that y is rea
hable from x in G

(�)

blo
k

; this implies that x and y

are in the same
onne
ted blo
k-
omponent. Assume further, without loss of generality, that � � W

(indeed, if � > W then G

(�)

blo
k

= G

(W)

blo
k

).

Let z be the (1 + Æ)-approximate nearest neighbor of x (returned by the
one approximate nearest

neighbor ora
le) in the
one C

x

ontaining y. Clearly, if z = y, then the
laim holds. So let us assume

that z 6= y. Let a = jxzj, b = jxyj,
 = jyzj, and � = ℄(xyz), � = ℄(xzy), and
 = ℄(yxz), see Figure

2. Noti
e that sin
e y and z are
ontained in the
one C

x

with the angular diameter �=4, we have

 � �=4.

We �rst show the following three inequalities: (i) a � (1 + Æ) b, (ii)
 < b, and (iii) minfa;
g �

b=(1 + "). Inequality (i) follows dire
tly from the de�nition of the
one approximate nearest neighbor

ora
le. To prove inequality (ii), let us suppose that
 � b. Then, � �
, and sin
e
 � �=4, we

obtain that � � �=2. This in turn implies that a �

p

b

2

+

2

�

p

2 b, whi
h
ontradi
ts the �rst

inequality that a � (1 + Æ) b � 1:1 � b. For inequality (iii), we �rst use the law of
osines to get

2

= a

2

+ b

2

� 2 a b
os
 � a

2

+ b

2

�

p

2 a b, sin
e
 � �=4. To show minfa;
g � b=(1 + ") we assume

a > b=(1 + ") and show
 � b=(1 + "). Sin
e a > b=(1 + ") �

p

2

2

b, the expression a

2

+ b

2

�

p

2ab

in
reases with a. Therefore, by inequality (i) we obtain

2

� a

2

+ b

2

�

p

2ab � ((1 + Æ)b)

2

+ b

2

�

p

2(1 + Æ)b

2

= b

2

((2 �

p

2)(1 + Æ) + Æ

2

) � (b=(1 + "))

2

;

where the last inequality holds for " �

1

5

and Æ �

1

10

.

Now, we prove the
laim using inequalities (i{iii). Assume, without loss of generality, that jxyj � � ;

otherwise apply the following arguments to all edges on the path between x and y in G

(�)

blo
k

(all the

edges on this path are of length at most �). We de�ne indu
tively the sequen
e x = x

0

; x

1

; x

2

; : : : y

su
h that for every i, if x

i

6= y, then x

i+1

is the (1 + Æ)-approximate nearest neighbor of x

i

in the
one

C

x

i

ontaining y. By inequality (ii), the sequen
e jx

i

yj is stri
tly de
reasing. This immediately implies

that x

i

= y for some i, and so the sequen
e is �nite.

Next, we show indu
tively that ea
h x

i

is in the same
onne
ted blo
k-
omponent as y. Suppose

that x

i

is in the same
onne
ted blo
k-
omponent as y. Sin
e the sequen
e jx

i

yj is de
reasing and sin
e

jxyj � � �W = (� +

p

d) ��, we obtain

jx

i

yj

1 + "

�

jxyj

1 + "

<

(� +

p

d) ��

1 + "

�

(� +

p

d) ��

1 + "

:

Therefore, using inequality (iii) with x = x

i

and z = x

i+1

, we obtain

minfjx

i

x

i+1

j; jx

i+1

yj)g �

jx

i

yj

1 + "

� (��

p

d) �� :

Hen
e, by Observation 1, either x

i

and x

i+1

are in the same
onne
ted blo
k-
omponent or x

i+1

and y are in the same
onne
ted blo
k-
omponent. In either
ase, the transitivity ensures that x

i+1

and y are in the same
onne
ted blo
k-
omponent. We �nally observe that inequality (i) implies that

jx

i

x

i+1

j � (1 + Æ) jx

i

yj, and sin
e jx

i

yj � jxyj, we obtain jx

i

x

i+1

j � (1 + Æ) jxyj. Hen
e, the sequen
e

x = x

0

; x

1

; x

2

; : : : ; y
orresponds to a path
ontained in a
onne
ted blo
k-
omponent having all edges

of length at most (1 + Æ) � . This implies that y is rea
hable from x in G

Æ

((1+Æ) �)

. �

Let W

0

= dW (1 + Æ)e. Motivated by inequality (1), let us introdu
e an estimator A for the value

of msf(G

blo
k

).

A = n+

W

0

�1

X

i=1

�

i

�W

0

�

�

W

0

:

We analyze now the quality of this estimator.

13

Lemma 3 msf(G

blo
k

) � A � (1 + Æ) � msf(G

blo
k

) + n.

Proof. Let us �rst remind that
̂

r

=

r=(1+Æ)

. Next, let us observe that if r � W then

r

=

W

. As a

orollary,

�

W

0

=

W

=

W

0

. With this, we have the following sequen
e of inequalities:

msf(G

blo
k

) � n+

W�1

X

i=1

i

�W �

W

� n+

W

0

�1

X

i=1

i

�W

0

�

W

0

= n+

W

0

�1

X

i=1

i

�W

0

�

�

W

0

� n+

W

0

�1

X

i=1

�

i

�W

0

�

�

W

0

= A � n+

W

0

�1

X

i=1

i=(1+Æ)

�W

0

�

W

= n+

W

0

�1

X

i=1

̂

i

�W

0

�
̂

W

0

� msf((1 + Æ) �G

blo
k

) + n

= (1 + Æ) �msf(G

blo
k

) + n :

The �rst inequality is due to inequality (1). The se
ond one follows from the observation above. Next,

we use Corollary 5 and the both observations above. The last inequality is implied by inequality (1).

�

We now modify the algorithm of Chazelle et al. [10℄ to obtain a good approximation of A. Let us

�rst noti
e that similarly as in Se
tion 5, we
an easily traverse the graph G

Æ

(r)

: ea
h time we want to

a

ess all edges in
ident to a point p 2 P , we �rst ask the
one approximate nearest neighbor queries

to all
ones C

p

and then for ea
h nearest neighbor q of p in C

p

, we verify if jpqj � r and if the blo
ks to

whi
h p and q belong are in the same
onne
ted blo
k-
omponent. The �rst test is a simple O(1) time

al
ulation, while the se
ond requires the
omputation of the
onne
ted blo
k-
omponents. Establishing

that, we
an apply the approa
h from Se
tions 4.2 and 5 to estimate the value

�

=

P

W

0

�1

r=1

�

r

, and

hen
e to estimate the value of A. For this, we run pro
edure approx-number-
onne
ted-
omponents to get

an estimator X

r

to

�

r

for all r = 1; 2; : : : ;W

0

, and we now show that X =

P

W

0

�1

r=1

X

r

is a good

approximation to

�

=

P

W

0

�1

r=1

�

r

.

An analysis similar to [10℄ gives

�

� n=2 � EX �

�

;

and

varX � 2n

�

=s ;

where s is the number of random
hoi
es of initial verti
es in approx-number-
onne
ted-
omponents. Next,

using the bounds above, the fa
t that emst(P) � n=", and Chebyshev's inequality, we have

Pr[jX �

�

j � "=2 � emst(P)℄ � Pr[jX � EXj � "=4 � emst(P)℄

�

16 varX

"

2

� (emst(P))

2

�

32 � n �

�

"

2

� s � (emst(P))

2

:

We argue that 32n

�

=("

2

s (emst(P))

2

) = O

�

1

" s

�

, or alternatively, that (emst(P))

2

=
(n

�

="). In-

deed, if

�

� 2n=", then (emst(P))

2

� (n=")

2

� 2n

�

=", by our assumption in Se
tion 6.2. Otherwise,

we have to use a stronger lower bound for emst(P). By Lemma 2, we have

emst(P) =
 (msf(G

blo
k

) +mst(G

out

)) =

�

msf(G

blo
k

) +W

0

� (

0

W

� 1)

�

:

Next, by Lemma 3, we have

(1 + Æ) � msf(G

blo
k

) � A� n =

�

�W

0

�

�

W

0

:

14

Hen
e,

emst(P) =
(

�

�W

0

�

�

W

0

+W

0

� (

0

W

� 1)) =
(

�

) ;

from whi
h it follows that for

�

> 2n=" we have, (emst(P))

2

= (
(

�

))

2

=
(n

�

="), as required.

Summarizing the dis
ussion above, we have always (emst(P))

2

=
(n

�

=") and hen
e

Pr[jX �

�

j � "=2 � emst(P)℄ � O(

1

"�s

) :

Therefore, if we
hoose s = O(1="), then we obtain

Pr[jX �

�

j � "=2 � emst(P)℄ � 1=4 :

Next, observe that

�

W

0

is nothing but the number of
onne
ted blo
k-
omponents, whi
h is known

to the algorithm that
omputes the
onne
ted blo
k-
omponents. This leads to an eÆ
ient algo-

rithm that
al
ulates A

0

= n + X � W

0

�

�

W

0

for whi
h Pr[jA

0

� Aj >

1

2

" � emst(P)℄ � 1=4. The

omplexity of this algorithm, following the analysis from Se
tion 5 (see also [10℄) is

e

O(W � 2

O(d)

=")

one approximate nearest neighbor queries. The algorithm approximates

�

to within an additive

error of n with probability at least

3

4

(see [10℄), and hen
e emst(P) to within an additive error of

1

2

" � emst(P) + Æ � emst(P) + n = (Æ +

1

2

") � emst(P) + n.

We note that by s
aling down all weights by a fa
tor � > 1, applying the algorithm above, and

then res
aling to the original weight, we de
rease the running time by a fa
tor of �, and in
rease the

additive error by the same fa
tor. In this way we obtain an algorithm that performs

e

O(W �2

O(d)

=(� "))

one approximate nearest neighbor queries and a
hieve an additive error of (Æ +

1

2

") � emst(P) + � � n.

Let us examine the term W=� in the running time and the additive error term (Æ+

1

2

") �emst(P)+

� � n. Re
all that there are two possible termination states: b � b

�

or � < 2 ".

Consider �rst the
ase b � b

�

. Sin
e P has b a
tive blo
ks of size � we have that emst(P) �

1

2

�(db=2

d

e � 1). This bound is a
hieved by
onsidering a subdivision of the a
tive blo
k to 2

d

b

sub
ubes of size �=2. Now
olor these subblo
ks with 2

d

di�erent
olors, using the same arrangement

of
olors for ea
h of the original a
tive blo
ks. This indu
es a partition of the a
tive blo
ks into 2

d

mono
hromati
 sets. There has to be a set of db=2

d

e points in P from di�erent a
tive blo
ks that are

olored the same. Clearly, the minimal distan
e between these points must be at least �=2, and hen
e

the bound. On
e we established that emst(P) �

1

2

�(db=2

d

e�1), we use the inequalities b � b

�

� 2

d+1

to get emst(P) �

1

4

�� � b=2

d

. Setting � =

� b "

8�2

d

n

we upper bound the relative error by

Æ + "=2 +

� � n

1

4

�� � b=2

d

= 1 + Æ + " :

The running time, using the fa
t that b � b

�

� "

d=2�3

p

n, is bounded by

e

O(W

0

=(� ")) =

e

O(

p

d � 2

d

� n=(b"

3

)) �

e

O(

p

n � 2

d

�

p

d="

d=2

) =

e

O(

p

n="

d=2

) :

On the other hand, when � < 2 ", we use the trivial lower bound emst(P) � n=", and by setting

� = 1=2 obtain a multipli
ative error of 1 + Æ + ". In this
ase noti
e that W

0

= d(1 + Æ) �� �

p

d � (1 +

14=")e = O(1). And so, we bound the running time by

W=(� "

3

) =

e

O("

�3

) �

e

O(

p

n="

2+d=2

)

for d � 2. Thus we have

Lemma 4 Given the graph G

blo
k

, there is an algorithm that estimates with probability at least

3

4

the weight of msf(G

blo
k

) to within a multipli
ative relative error of Æ + ". The algorithm requires

e

O(

p

n="

2+d=2

) range queries and
one (1 + Æ)-approximate nearest neighbor queries (for Æ � "=6). �

15

6.6 Se
ond level | estimating the weight of mst(G

out

)

Let Q be the
omplete undire
ted graph with the vertex set B, the set of a
tive blo
ks, and with the

edge weights equal to the Eu
lidean distan
es between the
orresponding blo
k-
enters if the blo
ks

are in di�erent
onne
ted blo
k-
omponents, and zero otherwise. Arguments similar in the spirit of

Observation 1
an be used to show that 1� "=2 � mst(G

out

)=emst(Q) � 1+ "=2. Therefore, to obtain

a good estimation of the weight of mst(G

out

) it is suÆ
ient to estimate the weight of a minimum

spanning tree of Q.

We
ould �nd a minimum spanning tree of Q by
alling any algorithm that �nds a minimum

spanning tree in graphs. However, any su
h algorithm requires time
(b

2

), be
ause Q
ontains �(b

2

)

edges. To improve the running time to

e

O(b "

1�d

) =

e

O(

p

n="

2+d=2

) we use SPN , whi
h is the (1+"=4)-

spanner of B (having O(b (1=")

d�1

) edges) de�ned in Se
tion 6.2. Let F be any spanning forest of the

subgraph of Q indu
ed by the edges of weight 0. It is easy to see that the weight of any minimum

spanning tree of Q is identi
al to the weight of a minimum spanning tree of Q that uses the edges from

F .

We
reate a new graph SG with the vertex set B and the edge set whi
h is the union of the edges

in F and the spanner edges. Then, we apply, for instan
e, the
lassi
al Kruskal's algorithm to �nd in

time O(b "

1�d

log(b="

d

)) =

e

O(

p

n="

2+d=2

) a minimum weight spanning tree of SG. It is easy to see

now that the obtained spanning tree of B is a spanning tree of B that uses edges from F and whose

weight is at most

1

4

" times greater than the minimum. We summarize the dis
ussion in this se
tion in

the following lemma.

Lemma 5 There is an algorithm whi
h, given as input the graph G

blo
k

, estimates the weight of M to

within a relative error of

3

4

" with running time

e

O(

p

n="

2+d=2

).

Our analysis in this se
tion
an be improved in the
ase where d = 2. In this
ase, one
an simplify

the arguments to a
hieve the running time of O(b log b) = O(

p

n log(

p

n=")=").

6.7 Estimating the weight of msf(G

blo
k

) [mst(G

out

)

we
an now summarize our algorithm for estimating the emst of any set of points in R

d

. We use the

fa
t that L = �(n=") and apply Lemmas 2, 4, and 5 to estimate the weight of the emst. Summing up

the error terms in our estimation we get that the multipli
ative relative error is at most Æ + 2

1

4

" with

probability at least

3

4

. Using "

0

= "=3 as the input parameter for our algorithm we
an
on
lude with

the following main theorem of the paper.

Theorem 2 Let P be a set of n points in R

d

for a
onstant d. Let " be any real number, 0 < " <

1

15

, and

let Æ � "=4. There is an algorithm that with probability at least

3

4

estimates the weight of a Eu
lidean

minimum spanning tree of P with a relative error of at most ". This algorithm runs in

e

O(

p

n="

2+d=2

)

time and requires

e

O(

p

n="

2+d=2

) orthogonal range queries,

e

O(

p

n="

2+d=2

)
one (1 + Æ)-approximate

nearest neighbor queries, and a single minimal bounding
ube of P . �

Let us also mention that the remark at the end of Se
tion 6.6
an be in
orporated here to improve

the
omplexity bounds in the most basi

ase when d = 2, that is, for the emst problem on the

Eu
lidean plane. Then, we obtain the following theorem.

Theorem 3 Let P be a set of n points in R

2

. Let " be any real number, 0 < " <

1

15

, and let Æ � "=4.

There is an algorithm that, with probability at least

3

4

, estimates the weight of a Eu
lidean minimum

spanning tree of P with a relative error of at most ". This algorithm runs in

e

O(

p

n=") time and requires

e

O(

p

n=") orthogonal range queries,

e

O(

p

n=")
one (1+ Æ)-approximate nearest neighbor queries, and a

single minimal bounding
ube of P . �

16

A
knowledgements

We thank Bernard Chazelle and Sariel Har-Peled for helpful dis
ussions on geometri
 data stru
tures.

Referen
es

[1℄ P. K. Agarwal. Range sear
hing. In Handbook of Dis
rete and Computational Geometry, pp.

575{598. CRC Press, Bo
a Raton, FL, 1997.

[2℄ P. K. Agarwal, H. Edelsbrunner, O. S
hwarzkopf, and E. Welzl. Eu
lidean minimum spanning

trees and bi
hromati

losest pairs. Dis
rete & Computational Geometry, 6:407{422, 1991.

[3℄ P. K. Agarwal and J. Eri
kson. Geometri
 range sear
hing and its relatives. In Advan
es in

Dis
rete and Computational Geometry, pp. 1{56. AMS Press, 1999.

[4℄ S. Arya, D. M. Mount, and M. Smid. Dynami
 algorithms for geometri
 spanners of small diameter:

Randomized solutions. Dis
rete & Computational Geometry, 13(2):91{107, 1999.

[5℄ S. Arya and M. Smid. EÆ
ient
onstru
tion of a bounded-degree spanner with low weight. Algo-

rithmi
a, 17(1):33{54, January 1997.

[6℄ M. de Berg, M. van Kreveld, M. Overmars, and O. S
hwarzkopf. Computational Geometry {

Algorithms and Appli
ations. Springer-Verlag, Berlin, 1997.

[7℄ P. B. Callahan and S. R. Kosaraju. Faster algorithms for some geometri
 graph problems in higher

dimensions. In Pro
eedings of the 4th Annual ACM-SIAM Symposium on Dis
rete Algorithms

(SODA), pp. 291{300, 1993.

[8℄ B. Chazelle. Lower bounds for orthogonal range sear
hing: I. The reporting
ase. Journal of the

ACM, 37(2):200{212, April 1990.

[9℄ B. Chazelle. Lower bounds for orthogonal range sear
hing: II. The arithmeti
 model. Journal of

the ACM, 37(3):439{463, June 1990.

[10℄ B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning tree weight

in sublinear time. In Pro
eedings of the 28th Annual International Colloquium on Automata,

Languages and Programming (ICALP), pp. 190{200, 2001.

[11℄ A. Czumaj and C. Sohler. Property testing with geometri
 queries. In Pro
eedings of the 9th

Annual European Symposium on Algorithms (ESA), pp. 266{277, 2001.

[12℄ D. Z. Du and F. K. Hwang. Gilbert-Polla
k
onje
ture on Steiner ratio is true. Algorithmi
a,

7:121{135, 1992.

[13℄ D. Eppstein. Spanning trees and spanners. In Handbook of Computational Geometry, pp. 425{461.

Elsevier S
ien
e B.V., 1997.

[14℄ D. Eppstein. Dynami
 Eu
lidean minimum spanning trees and extrema of binary fun
tions. Dis-

rete & Computational Geometry, 13(1):111{122, Jan 1995

[15℄ J. Eri
kson. On the relative
omplexity of some geometri
 problems. In Pro
eedings of the 7th

Canadian Conferen
e on Computational Geometry (CCCG), pp. 85{90, 1995.

17

[16℄ J. Gudmundsson, C. Lev
opoulos, and G. Narasimhan. Fast greedy algorithms for
onstru
ting

sparse geometri
 spanners. SIAM Journal on Computing, 31(5): 1479{1500, 2002.

[17℄ R. M. Karp and J. M. Steele. Probabilisti
 analysis of heuristi
s. In E. L. Lawler, J. K. Lenstra,

A. H. G. Rinnooy Kan, and D. B. Shmoys, editors, The Traveling Salemsan Problem,
hapter 6,

pages 181{205. John Wiley & Sons, 1985.

[18℄ G. S. Lueker. A data stru
ture for orthogonal range queries. In Pro
eedings of the 19th IEEE

Symposium on Foundations of Computer S
ien
e (FOCS), pp. 28{34, 1978.

[19℄ J. Ruppert and R. Seidel. Approximating the d-dimensional
omplete Eu
lidean graph. In Pro-

eedings of the 3rd Canadian Conferen
e on Computational Geometry (CCCG), pp. 207{210, 1991.

[20℄ M. I. Shamos and D. Hoey. Closest-point problems. In Pro
eedings of the 16th IEEE Symposium

on Foundations of Computer S
ien
e (FOCS), pp. 151{162, 1975.

[21℄ V. V. Vazirani. Approximation Algorithms. Springer-Verlag, Berlin, 2001.

[22℄ D. E. Willard. Predi
ate-Oriented Database Sear
h Algorithms. PhD thesis, Harvard University,

Aiken Computation Lab, Cambridge, MA, 1978. Report TR-20-78.

[23℄ A. C.-C. Yao. On
onstru
ting minimum spanning trees in k-dimensional spa
es and related

problems. SIAM Journal on Computing, 11(4):721{736, November 1982.

18

