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Abstrat

We onsider the problem of omputing the weight of a Eulidean minimum spanning tree for a

set of n points in R

d

. We fous on the setting where the input point set is supported by ertain

basi (and ommonly used) geometri data strutures that an provide eÆient aess to the input

in a strutured way. We present an algorithm that estimates with high probability the weight of

a Eulidean minimum spanning tree of a set of points to within 1 + " using only

e

O(

p

npoly(1="))

queries for onstant d. The algorithm assumes that the input is supported by a minimal bounding

ube enlosing it, by orthogonal range queries, and by one approximate nearest neighbors queries.

1 Introdution

As the power and onnetivity of omputers inrease and the ost of memory beomes heaper, we

have beome inundated with large amounts of data. Although traditionally linear time algorithms

were sought to solve our problems, it is no longer lear that a linear time algorithm is good enough in

every setting. The question then is whether we an solve anything of interest in sublinear time, when

the algorithm is not even given time to read all of the input data. The answer is yes; in reent years,

several sublinear time algorithms have been presented whih solve a wide range of property testing and

approximation problems.

In this paper we onsider the problem of estimating the weight of a minimum spanning tree, where

the input is a set of points in the Eulidean spae R

d

. Sine the loation of a single point may

dramatially inuene the value of the weight of the Eulidean minimum spanning tree (emst), we

annot hope to get a reasonable approximation in sublinear time with only aess to the loations of the

points. This is true even when we onsider probabilisti algorithms. However, it is often the ase that

massive databases, partiularly in a geometri ontext, ontain sophistiated data strutures on top of

the raw data, that support various forms of queries. Examples of suh queries are the nearest neighbor
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of a point, or the point with the highest value in a oordinate. Consequently, in this paper, we assume

that algorithms have aess to ertain ommonly used data strutures whih aid the algorithm in its

omputation. This may be onsidered a motivation for maintaining suh data strutures, partiularly

if they aid in other tasks as well.

1.1 Results

In this paper we desribe three algorithms for estimating the weight of a Eulidean minimum spanning

tree over n given points in a Eulidean spae R

d

, where the algorithms are given aess to basi

geometri data strutures supporting the input. Throughout the paper we assume that d is a onstant,

though our analysis an be easily arried over for arbitrary values of d. It should be noted that our

algorithms do not supply a low weight spanning tree (whih takes linear spae to represent), but only

estimate its weight.

We �rst onsider the ase when the algorithm is given, in addition to aess to the input point set, (1)

a minimal bounding ube that ontains all points in the input set and (2) aess to an orthogonal range

query data struture whih, given an axis-parallel ube, answers whether there is an input point within

the ube. In this model, we give a deterministiO(n

1=2

)-time algorithm for the 2-dimensional ase whih

outputs a value w suh that

1

�

emst(P ) � Ln

�

� w � � emst(P ) + Ln

�

, where � = �(n

1=8

log n),

L is the side-length of a minimal axis parallel bounding ube of the point set, and  is an arbitrary

onstant. We also show that any deterministi algorithm that uses o(n

1=2

) orthogonal range queries

annot signi�antly improve the quality of approximation.

We next onsider the ase where, in addition to the above data strutures, we are also given (3)

aess to a one nearest neighbor data struture, whih given a point p and a one C, returns a

nearest point to p in the one p + C. Our seond algorithm ombines the extra power of the one

nearest neighbor data strutures with ideas from the reent randomized sublinear-time algorithm for

estimating the mst in general graphs [10℄. The algorithm outputs a value whih with high probability

is within a 1 + " fator of the emst and it runs in O(�="

3

) time, where � is the spread of P (ratio

between maximum and minimum distane between points in P ); observe that � an be arbitrarily

large.

Our main ontribution is the third algorithm that does not have any dependeny on � and requires

only one approximate nearest neighbor queries whih we de�ne in the next setion. For a onstant

d, the algorithm runs in

e

O(

p

npoly(1=")) time and outputs an approximation of the emst weight to

within a multipliative fator of 1+" with high probability. The algorithm ombines the ideas from our

�rst two algorithms. It partitions the input points into omponents and estimates the emst separately

by onsidering pairs of points that lie in the same omponent and pairs of points that belong to di�erent

omponents. To estimate the emst within omponents, we use an extension of our seond algorithm.

To estimate the weight required to onnet the omponents we use a variant of our �rst algorithm. The

ombination of these two algorithms leads to a signi�ant improvement in the quality of approximation

(ompared to the �rst algorithm) and in the running time (ompared to the seond algorithm).

We notie also that our algorithms lead to sublinear-time (2 + ")-approximation algorithms for

two other lassial geometri problems: Eulidean TSP and the Eulidean Steiner tree problem. These

results follow from the well known relationship between the weight of emst and the weight of Eulidean

TSP and of Eulidean Steiner tree (see, e.g., [21℄). Indeed, it is known that in metri spaes the weight

of Eulidean TSP is between the weight of the emst and twie the emst weight. Similarly, it is known

that in metri spaes the emst weight is between the weight of the Steiner tree and twie of its weight.

On the plane, one an improve this result by using the fat that the emst weight is upper bounded by

at most 2=

p

3 times the weight of the Eulidean Steiner tree [12℄.
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1.2 Relation to previous works

The Eulidean minimum spanning tree problem is a lassial problem in omputational geometry and

has been extensively studied in the literature for more than two deades. It is easy to see that to

�nd the emst of n points, O(dn

2

) time suÆes, by reduing the problem to �nding the mst in dense

graphs. In the simplest ase where d = 2 (on the plane), Shamos and Hoey [20℄ show that the emst

problem an be solved in O(n logn) time. For d � 3, no

e

O(n)-time algorithm is known and it is a

major open question whether an O(n log n)-time algorithm exists even for d = 3 [15℄; in fat, it is

even onjetured (see, e.g., [15℄) that no o(n

4=3

)-time algorithm does exist. Yao [23℄ was the �rst who

broke the O(n

2

)-time barrier for d � 3 and designed an

e

O(n

1:8

)-time algorithm for d = 3. This bound

has been later improved and the fastest urrently known (randomized) algorithm ahieves the running

time of

e

O(n

4=3

) [2℄ for d = 3 (and the running time tends to O(n

2

) as d grows). Signi�antly better

bounds an be ahieved if one allows to approximate the output. Callahan and Kosaraju [7℄ give a

O(n log n+ n log(1=") "

�d=2

)-time algorithm that �nds an approximate Eulidean minimum spanning

tree to within a multipliative fator of 1 + ".

Our algorithms rely on a reent randomized algorithm of [10℄ that, given a onneted graph in

adjaeny list representation with average degree d, edge weights in the range [1 : : : W ℄, and a parameter

0 < " <

1

2

, approximates, with high probability, the weight of a minimum spanning tree in time

e

O(dW "

�3

) within a fator of 1 + ". The time bound does not diretly depend on the number of

verties or edges in the graph. We emphasize, however, that our representation is quite di�erent, and

in general would give a graph with average degree n. Therefore, a diret appliation of this result to

the emst problem does not lead to a sublinear-time algorithm.

We notie also that a similar model of omputation to that used in our paper has been used reently

in [11℄.

1.3 Dynami algorithms

Our model of omputation is also interesting in the ontext of dynami algorithms. There exist fully

dynami algorithms that maintain the emst subjet to point insertions and deletions; [14℄ gives an

algorithm with amortized time

e

O(

p

n) and O(n

1�"

) per update operation for d � 4 and d > 4 re-

spetively. A disadvantage of this algorithm (and of all typial dynami algorithms) is that it requires

as muh as

e

O(

p

n) time per input update, making the algorithm very ostly in situations where the

emst queries are very rare. The data strutures we require in our setting are dynamially maintained

by standard geometri databases anyway. Thus, if the database supports all required data strutures

in polylogarithmi time, the amortized time required by our algorithm is

e

O(

p

n=U), where U is the

typial number of updates per one emst alulation. We note again that our algorithm does not supply

the minimum spanning tree, but returns only its approximate weight.

Organization of the paper. We start by presenting an algorithm that only needs aess to a

minimal bounding ube of the point set P and to an orthogonal range query orale in Setion 3.

In Setion 5, we present a simple algorithm that uses additionally the one nearest neighbor orale.

Finally, in Setion 6, we disuss the main ontribution of this paper, a sublinear time algorithm that

uses a minimal bounding ube orale, the orthogonal range query orale and the one approximate

nearest neighbor orale.
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2 Preliminaries

For a given set P of points in a Eulidean spae R

d

, a (Eulidean) graph on P an be modeled as a

weighted undireted graph G = (P;E), where P is a vertex set, E is a subset of the (unordered) pairs

of points in P , and the length/weight of edge fp; qg is equal to the Eulidean distane between points

p and q, denoted jpqj. The weight of the graph is the sum of the weights of its edges.

Throughout the paper we denote by K

P

the omplete (undireted) graph on P where the edge

weights are the Eulidean distanes between the endpoints. A graph G on a set of points P is alled a

Eulidean minimum spanning tree (emst) of P if it is a minimum-weight spanning subgraph of K

P

. We

denote by emst(P ) both the emst of P and the weight of the emst of P . Similarly, for a given graph

G we will denote by mst(G) the minimum spanning tree of G as well as the weight of the minimum

spanning tree of G.

For a given point set P , we denote by � the spread of P , that is, the ratio between the maximum

and the minimum distanes between points in P . We let BC be a minimal bounding ube of P (whih

is made available via the minimal bounding ube orale) and let L denote its side length.

2.1 Models of omputation

In this paper we use some basi geometri data strutures supporting aess to the input point set.

Given a point set P in R

d

, we use data strutures supporting the following types of queries:

� minimal bounding ube of P: returns the loation of a minimum size axis-parallel d-dimensional

ube ontaining P , that is, returns the loation of a ube C = [a

1

; a

1

+R℄� [a

2

; a

2

+R℄� : : :�

[a

d

; a

d

+R℄ that ontains P suh that no axis-parallel ube of edge length smaller than R ontains

P .

� (orthogonal) range query orale: for a given axis-parallel ube C, tests if C ontains a point

from P .

� one (1 + Æ)-approximate nearest neighbor orale: Æ is any non-negative real number and

it is assumed that a set of ones C with apexes at the origin is given in advane. The one

(1 + Æ)-approximate nearest neighbor orale, for a given point p 2 P and a given one C 2 C,

returns a (1+ Æ)-approximate nearest neighbor

1

of p in (P n fpg)\ (p+C). (We denote by p+C

the translated one fa + p : a 2 Cg.) If (P n fpg) \ (p + C) is empty, then a speial value is

returned.

In the speial ase where Æ = 0, the orale gives the true nearest neighbor, and is simply alled

the one nearest neighbor orale.

2.1.1 Implementing supporting data strutures

To make our model of omputations viable, we disuss here how our supporting data strutures (orales)

an be implemented eÆiently using standard geometri data strutures.

Minimal bounding ube. The query about the minimal bounding ube of a set of points P 2 R

d

an be supported by many standard geometri data strutures. Indeed, the only information required

to �nd the minimal bounding ube is to know the minimum and maximum d-dimensional oordinates

of all input points. Therefore, many standard geometri data strutures an support this query in time

O(d) or O(d log n).

1

For a point p 2 P and a set of points Q � R

d

, a (1 + Æ)-approximate nearest neighbor of p in Q is any point q 2 Q

suh that for every x 2 Q it holds that jpqj � (1 + Æ) � jpxj.
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Orthogonal range query orale. There are many eÆient data strutures supporting the orthog-

onal range query orale and atually, orthogonal range queries are perhaps the most widely supported

geometri queries (for survey expositions, see, e.g., [1, 3, 6℄). One of the �rst data strutures for or-

thogonal range searhing is the quadtree. Despite its bad worst-ase behavior, the quadtree is still used

in many appliations beause it provides an easy-to-implement linear-spae data struture that often

has a very good performane. The best known data strutures for orthogonal range searhing based on

ompressed range trees and some other tehniques suh as �ltering searh an be found in [8, 9℄. The

query time is O(log

d�1

n). If one uses standard range trees with the frational asading tehnique

then the same bound on the query time an be ahieved [18, 22℄.

Cone nearest neighbor orale. In the seminal paper on Eulidean minimum spanning trees, Yao

[23℄ examined algorithms for one nearest neighbor in the ones with the angular diameter �=4. Cone

nearest neighbor queries have been also studied extensively in follow-up papers dealing with the emst

problem (see, e.g., [2℄).

Cone approximate nearest neighbor orale. Cone approximate nearest neighbor queries have

been widely investigated. They play an important role in the ontext of onstrution of Eulidean

spanners (see, e.g., [4, 5, 13, 19℄). And thus, among others, Ruppert and Seidel [19℄ show how to

answer a query in amortized time O(n log

d�1

n) per one in C; a similar onstrution is presented in

[5℄. Arya et. al. [4℄ present a fully dynami algorithm whih in polylogarithmi time supports one

approximate nearest neighbor queries. Notie also that a single one approximate nearest neighbor

query an be answered using a logarithmi number of simplex (triangular) range queries, whih is

another lassial geometri data struture (see, e.g., [1, 3, 6℄).

3 Estimating the emst with bounding ube and range queries

In this setion we desribe a natural approah to the approximation of emst(P ) using minimum

bounding ube orale and orthogonal range queries. This approah, by itself, does not give a good

enough multipliative approximation, but is used as a building blok in the sublinear algorithm we

present later. For simpliity, we only desribe in detail the two-dimensional ase (d = 2); the algorithm

an be generalized to arbitrary d in an obvious way. The algorithm we supply is deterministi and

outputs a value w suh that

1

�

emst(P ) � � � w � �emst(P ) + �, where � = O(n

1=8

log n), and

� = Ln

�

, where L is the side-length of a minimal bounding ube of P and  is a onstant. The

algorithm has a running time of O(n

1=2

). We also show that any algorithm that uses the same running

time (in fat, the same amount of queries and arbitrary large running time) annot signi�antly improve

the quality of the approximation.

3.1 The quad-tree algorithm

We apply a standard quad-tree subdivision to the bounding ube BC (see, e.g., [6, Chapter 14℄). That

is, we �rst partition BC into four disjoint bloks (squares) of equal size. We an hek whih bloks

ontain points from P via orthogonal range queries. We then further subdivide the nonempty bloks,

and iterate this proess as long as fewer than

p

n queries are made. This indues a tree struture on the

bloks, where a blok at level i has side length L=2

i

. Let k be the depth of this tree. We may assume

that all nonempty bloks at level k�1 were subdivided into subbloks (of level k) and eah subblok of

level k was queried. Let B be the set of nonempty bloks at level k and let b = jBj. Clearly b = O(

p

n).

We now run any minimum spanning tree algorithm (as we will see later, a (1 + ")-approximation is

5



good enough) on the enters of the bloks in B. This would result in a value L. We set U = L+s

p

b n,

where s = L � 2

�k

and output the value w =

p

LU as an approximation for T

�

= emst(P ).

Claim 1 For an arbitrary onstant ,

1

�

T

�

� � � w � �T

�

+ �, where � = O(n

1=8

logn) and

� = Ln

�

.

Proof. First note that the minimum spanning tree of any n points in a d-dimensional ube with

side-length h is O(hn

d�1

d

) and this bound is tight (i.e., it is ahievable for some inputs), see, e.g., [17℄.

Now, we set L

�

be the weight of a minimum weight tree that touhes every blok in B. It is easy to

see that L

�

� T

�

� U (the last inequality is by the above upper bound and using onvexity).

Assume now that b �

p

n=(4( + 1) logn); then it an be seen that L upper bounds L

�

and

approximates it within an additive term of O(s b), and hene within a onstant fator, say Æ. Namely,

a � b � s � L

�

� L � Æ � L

�

for some onstants a and Æ.

Hene, as U is an upper bound on T

�

, the approximation fator is � = maxfU=w;w=L

�

g. By our

hoie of w and the fat that L approximates L

�

up to a onstant we get � = O

�

U

w

�

= O

�

q

U

L

�

�

=

O

�

�

s

p

b n

L

�

1=2

�

= O

�

(n=b)

1=4

�

(where the last inequality follows by plugging in the expression for U

and L and the previous follows from the fat that L approximates L

�

within a onstant fator). Now,

by the above bound on L and on b we obtain that � �

~

O(n

1=8

). Note that, if we used an approximation

L

0

guaranteed to be within a onstant fator of L, we would still get the same result.

Assume now that b <

p

n=(4( + 1) logn). Then it an be seen that the depth of the quad-tree

is at least ( + 1) logn and hene s � L � n

�(+1)

. Therefore, the additive term is upper bounded by

U � L � O(s �

p

b n) = O(n

�(+1)

� L � n) = O(L � n

�

). �

A note on the running time is due here. We use O(

p

n) queries in the ourse of onstruting the

quad-tree. Next, we have to �nd the minimum spanning tree (or any (1 + Æ) approximation to it for

any �xed Æ). In the two-dimensional ase this an be done in

e

O(

p

n) time [20℄, and this term dominates

the total omplexity.

Higher dimensions: In the ase of dimension d > 2 the quad-tree has to be replaed with a 2

d

-ary

tree. The algorithm will be run similarly to the above until O(2

d

p

n) queries have been made, and all

retangles at the bottom level have been queried. Then, L is set similarly to the two-dimensional ase,

and U = L+ s � n

d�1

d

� b

1=d

. The approximation w for T

�

is taken to be the same. To have an eÆient

running time, a onstant approximation for L an be used, rather then the exat value. This an be

done in time O(n log n) by Callahan and Kosaraju result [7℄.

It is easy to see that the following replaes Claim 1 with an analogous proof.

Claim 2 For an arbitrary onstant ,

1

�

T

�

� � � w � �T

�

+ �, where � = O(2

d=2

� n

(d�1)=4d

log n)

and � = Ln

�

.

As it turns out, the above quality of approximation is nearly optimal for the given time bound as

shown by the following laim (shown only for the two-dimensional ase, a similar result is true for the

d-dimensional ase as well).

Claim 3 Any deterministi algorithm for approximating emst(P ) in the two-dimensional ase that

uses O(

p

n) orthogonal range queries has an approximation fator of 
(n

1=8

).
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Proof. Consider any deterministi algorithm that uses at most

p

n range queries. Consider the

following adversary for supplying the answer to the queries: The adversary will subdivide the unit

square into a mesh of squares, eah of side length s =

n

1=4

10

, namely into 100n

1=2

squares, denoted

bloks. The adversary ommits itself to loate n

1=2

=100 input points in eah blok. In what follows,

the adversary will mark some bloks in whih he will ommit to the internal loation of points. The

invariant that is kept is that in unmarked bloks, any on�guration of input points is still onsistent

with the answers so far.

At the beginning no blok is marked. Now, for eah queried retangle, if the query intersets an

unmarked blok then the adversary will answer \not-empty." In addition it will hoose one unmarked

blok that intersets the given query, mark it and ommit to have all points in that blok, in an

arbitrary single point in the intersetion. If the query intersets only previously marked bloks, then if

it ontains any of the previous loations in whih the adversary has already ommitted to have input

points then a \non-empty" answer will be given (this is fored). If the query does not inlude any of

the previous loations in whih the adversary has ommitted to have input points then the adversary

will answer \empty."

Keeping up this way, it is easy to see that the adversary an supply onsistent answers to all

p

n

queries.

At the end, sine there are 10

p

n bloks while the adversary has marked at most

p

n bloks, in

9

p

n bloks there is omplete freedom as to where the input points are loated within suh blok. Now

notie that if the adversary hooses to loate all points within a blok in one (arbitrary) point then the

minimum spanning tree is of ost O(n

1=4

), while, if it hooses to loate the points in eah unmarked

blok spread uniformly within the blok, then the ost of the tree is 
(n

1=2

). Hene the lower bound

follows. �

Finally, we note that our hoie of using O(

p

n) orthogonal range queries was arbitrary; one an

use a di�erent number of queries and obtain a whole range of tradeo�s between the running time and

the quality of approximation.

4 Two related previous results

We now desribe two previous results that we utilize in our emst algorithms: the onept of Yao graphs

[23℄ and an algorithm for approximating the mst in bounded degree graphs due to Chazelle et al. [10℄.

4.1 Yao graphs

Yao graphs are Eulidean graphs that relate the emst to the one nearest neighbor orale presented

in Setion 2.1. Fix an integer d � 2. Let C be a olletion of d-dimensional ones with apex at

the origin suh that (a) eah one has angular diameter

2

at most �, where � is some �xed angle,

and (b)

S

C2C

C = R

d

. There is always suh a olletion C of O(d

3=2

� sin

�d

(�=2) � log(d sin

�1

(�=2)))

ones (not neessarily disjoint); note that for onstant d and � this bound is O(1). Yao [23℄ gives

one possible onstrution for suh a olletion. For a point p 2 R

d

and a one C 2 C, let C

p

be

p + C = fa + p : a 2 Cg, that is, a translation of C so that its apex is at p. Let N

P

hp;Ci be the

nearest neighbor of p in the set (P n fpg) \ C

p

. Given a point set P and a olletion of ones C, the

Yao graph of P (with respet to C) is the Eulidean graph G with vertex set P and (undireted) edge

set E = f(p; q) j 9C 2 C suh that q = N

P

hp;Cig. That is, eah p 2 P is onneted to its nearest

2

The angular diameter of a one C in R

d

having its apex at point p 2 R

d

is de�ned as the maximum angle between

any two vetors

�!

px and

�!

py, x; y 2 C.

7



neighbor in eah one whih has p at its apex. The following result due to Yao [23℄ motivates our use

of these graphs.

Claim 4 [23℄ Let P be a point set in R

d

. Let G be the undireted Yao graph for P with � < �=3. Then,

the Eulidean minimum spanning tree of P is a subgraph of the Yao graph G. �

4.2 Chazelle et al.: approximate MST in low-degree graphs

Our algorithms make use of a reent algorithm for estimating the weight of mst in graphs due to

Chazelle et al. [10℄. This algorithm assumes that the input graph (i) is represented by an adjaeny

list, (ii) has degree at most � (the full version of [10℄ allows � to be the average degree), and (iii)

has known minimum and maximum edge weights, where the ratio of the maximum edge weight to the

minimum is �. Then, for 0 < " <

1

2

, the algorithm estimates the weight of the minimum spanning tree

with a relative error of at most ", with probability at least

3

4

, and runs in time O(� �� � log(� �=")="

3

).

(The authors also give a nearly mathing lower bound of 
(� � �="

2

) on the time omplexity of any

"-approximation algorithm for the mst.)

Let H = (V;E), be an input graph having n verties with maximum degree � and edge weights in

the interval [1;�℄. For any w 2 R, let H

(w)

denote the maximal subgraph of H ontaining edges of

weight at most w, and 

w

denote the number of onneted omponents in H

(w)

. The main ingredient

of the algorithm from [10℄ is a proedure approx-number-onneted-omponents run on H

(w)

for estimating



w

for w = (

1

2

+ i) � " with i = 1; 2; : : : ;�=". For integer weights, the weight of the mst of H is equal to

n��+

P

��1

j=1



j

. The algorithm uses the above estimations to produe a value whih, with probability

at least

3

4

, is a (1� ")-approximation of the mst of H.

Proedure approx-number-onneted-omponents works by sampling O(1="

2

) verties in H. For eah

sampled vertex u, a random estimator X

u

is omputed by traversing H

(w)

from u (for example, using

breadth-�rst searh) with a stohasti stopping rule. X

u

is a random variable whose distribution is a

funtion of only the size of the onneted omponent ontaining u (i.e., the number of verties reahed

from u in the traversal) in H

(w)

. The simple relation between these sizes and 

w

together with the fat

that the distribution of X

u

is onentrated around the expeted value yields the onnetion between X

u

and 

w

. Proedure approx-number-onneted-omponents runs in expeted timeO(� "

�2

log(�=")). Therefore,

the expeted running time of the algorithm in [10℄ is O(� � "

�3

log(�=")).

5 A simple estimation for EMST using Yao graphs

The algorithm we present in this setion is oneptually an important omponent of the sublinear

algorithm we design later in Setion 6. It ombines the two results desribed in Setion 4. Our

algorithm uses the one nearest neighbor orale and ahieves a query omplexity of 2

O(d)

�

e

O(�="

2

).

Sine by Claim 4 the undireted Yao graph G for P ontains all edges of the emst of P , it is natural

to try to apply the algorithm of Chazelle et al. to G to estimate the weight of the emst of P . To do

that eÆiently, instead of generating G at the beginning of the algorithm, we generate the edges of

G (using the one nearest neighbor queries) only when the edges are needed in the algorithm. That

is, whenever the algorithm needs edges adjaent in G to a vertex p, we use the one nearest neighbor

query to obtain the nearest neighbor of p in eah one in fp+ Cg

C2C

. Motivated by Claim 4, we set

the angular diameter of the ones to �=4. This reates parts of an impliit direted Yao graph G on P

with edges (p; q) suh that there is a C 2 C where q = N

P

hp;Ci.

The above approah has a number of problems. First, the algorithm of Chazelle et al. requires

the input graph to be undireted and represented by an adjaeny list, whereas in our model, we have

fast aess only to the out-going edges at a vertex in G. Furthermore, the running time is linear in �,

8



whih an be arbitrarily large. The following lemma helps in overoming the �rst diÆulty, while the

seond one is takled in the main algorithm in Setion 6. The proof of Lemma 1, being a speial ase

of Claim 5, is omitted.

Lemma 1 Let n

`

u

be the number of verties in K

P

that are reahable from u using only edges of weight

at most `. Let m

`

u

be the number of verties in direted Yao graph G reahable from u using only edges

of weight at most `. Then m

`

u

= n

`

u

. �

Equipped with this lemma, we an modify the algorithm due to Chazelle et al. to obtain its eÆient

implementation in our model. The only di�erene is in proedure approx-number-onneted-omponents. We

still sample O(1="

2

) verties and randomly traverse H

(w)

from the sampled verties. To implement the

traversing algorithm we explore the graph in a breadth-�rst searh fashion by going to the outgoing

neighbors of the verties that are loser than the urrent threshold weight w. Suh a proedure an

be easily implemented in our model by using the one nearest neighbor queries; the running time

is proportional to the number of the edges traversed. To estimate the value of 

w

we use the same

estimators as in [10℄. Sine for eah vertex u in the sample, the distribution of X

u

depends only on m

w

u

,

the number of the verties reahable from u in H

(w)

, by Lemma 1, we an onlude that X

u

has the

same distribution as in the algorithm of Chazelle et al. [10℄. Therefore, the quality of this algorithm of

the estimation of emst of P is the same as in the algorithm of Chazelle et al. [10℄. Sine the maximum

out-degree of the direted Yao graph is 2

O(d)

, the modi�ed proedure approx-number-onneted-omponents

has idential omplexity to that of running the original algorithm of Chazelle et al. in a (undireted)

graph with maximum degree 2

O(d)

. Thus, we obtain the following theorem.

Theorem 1 Let P be a set of points in R

d

. Assume the value � of the spread of P is known and aess

to a one nearest neighbor orale for P is given. Then, there is an algorithm that outputs a value �

whih, with probability at least

3

4

, approximates the values of emst(P ) to within a fator of 1� " with

query omplexity

e

O

�

2

O(d)

� �="

3

�

. �

For onstant d and ", this omplexity is

e

O(�), whih is sublinear for � = o(n). However, for

example, on the plane, � is known to be 
(

p

n), and in general, � may be arbitrarily large. In the next

setion, we disuss our main ontribution, whih is a truly sublinear-time approximation algorithm

whose omplexity is independent of �.

6 Sublinear-time approximation algorithm

In this setion we show how the two algorithms from Setions 3 and 4 an omplement eah other.

In addition to improving the running time, our algorithm requires a weaker omputational model, in

whih the one nearest neighbor query is replaed by the one (1 + Æ)-approximate nearest neighbor

query.

6.1 Overview of the algorithm

In Setion 6.2, we begin by partitioning a minimal bounding ube BC of P into bloks of equal size;

we then onsider only bloks ontaining points from P . Next, we group bloks that are \lose" to eah

other together, alling the resulting lusters onneted blok-omponents. The algorithm then proeeds

in two phases. First, in Setion 6.5, we show how to approximate the weight of a minimum spanning

forest (msf) of the onneted blok-omponents by using the ideas of Setion 5. We then, in Setion 6.6,

approximate the optimal way to onnet di�erent onneted blok-omponents. We prove in Lemma 2

9



Figure 1: Blok-partitioning, onneted blok-omponents and a shematis to the sublinear algorithm.

that the msf of the onneted blok-omponents ombined with the optimal set of edges joining them

approximates the emst of P .

In our analysis, throughout the entire setion we assume that 0 < " <

1

15

.

6.2 Partitioning the bounding ube

After the translation and saling of the points in P we an assume that BC, the bounding ube of P , is

[0; n="℄

d

. In partiular, the side length is L = n=" and we have a trivial lower bound emst(P ) � n=".

We follow the approah from Setion 3 with small modi�ations, by extending it to higher dimen-

sions and applying a di�erent stopping proedure. We �rst partition BC into 2

d

disjoint bloks of equal

size, then partition iteratively the nonempty ones into 2

d

disjoint sububes, and so on. Call a blok at

level i an ative blok if it ontains a point from P . Let b

k

be the number of ative bloks at level k

(number of bloks that ontain points from P ), and �

k

= L=2

k

be the side length of bloks in the kth

level of the subdivision. Let b

�

= maxf"

d=2�3

p

n; 2

d+1

g. We stop our subdivision at the �rst level k

0

suh that either b

k

0

� b

�

or �

k

0

< 2 ". Let b = b

k

0

and � = �

k

0

. Notie that b � 2

d

b

�

and � � ". By

our arguments from Setion 3, the ative bloks at level k

0

an be found by querying the range query

orale O(b 2

d

log(n=("�)) times.

6.3 Spanners and onneted blok-omponents

For any t � 1, a t-spanner (see, e.g., [7, 13, 16℄) for a set S of points in a Eulidean spae is any

Eulidean graph G with the vertex set S suh that for every pair of points x; y 2 S there is a path in

G between x and y of total length at most t � jxyj.

In our analysis, we will frequently use enters of bloks as the representatives of the bloks. Let

B be the set of enters of ative bloks and let SPN be a (1 + "=4)-spanner of B with O(b (4=")

d�1

)

edges. Suh a spanner an be found in time O(b log b+ b log(1=") "

�d

) =

e

O(

p

n "

3�d=2

) [7℄.

Call two bloks lose if the distane between their enters in the graph SPN is at most � � �,

where � = 14

p

d=". We use equivalene lasses of the relation lose to de�ne the onneted blok-

omponents. That is, two bloks are in the same onneted blok-omponent if there is a sequene of

ative bloks between them, where every onseutive pair of bloks in the sequene is lose. We shall

abuse notation and refer also to the partition of P indued by the onneted omponents as onneted

blok-omponents. Notie that all onneted blok-omponents an be found in time proportional to

the number of edges in SPN , whih is O(b (4=")

d�1

).
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6.4 The EMST of P and onneted blok-omponents

We refer to the spanning forest of a graph G as a union of spanning trees of the onneted omponents

of G. A minimum spanning forest of G, denoted by msf(G), is a spanning forest of G of minimum

weight.

Let E

in

be the set of edges of K

P

whose endpoints lie within the same onneted blok-omponent.

Let W = (� +

p

d)�. We now relate blok-omponents to the distanes between points.

Observation 1 Let p and q be an arbitrary pair of points in P .

1. If jpqj � (�� 4

p

d)� then p and q are in the same onneted blok-omponent.

2. If p and q are in the same onneted blok-omponent then there is a path between p and q

onsisting of edges in E

in

that are all of length at most (� +

p

d)� =W .

3. If jpqj > (�+

p

d)� =W and p and q are in the same onneted blok-omponent, then emst(P )

does not ontain the edge pq.

Proof. For any point p 2 P , we let 

p

denote the enter of the blok at level k

0

that ontains p.

To see the �rst assertion, notie that if jp qj � (��4

p

d)� then j

p



q

j � jp qj�

p

d� � (��3

p

d)�.

Therefore, the distane in SPN between 

p

and 

q

is at most (1 + "=4) (� � 3

p

d)� � ��, whih

implies the �rst laim. Next, this also implies the existene of a path 

p

= 

(0)

; 

(1)

; : : : ; 

(s)

= 

q

in

SPN suh that j

(i)



(i+1)

j � � �� for all i. Clearly, the orresponding path p = p

(0)

; p

(1)

; : : : ; p

(s)

= q

with 

(i)

= 

p

(i)

shows the seond assertion, sine jp

(i)

p

(i+1)

j � j

(i)



(i+1)

j+

p

d� � �� +

p

d�. The

third assertion follows from the seond one and the fat that the (stritly) largest edge in a yle in a

graph annot be part of its mst. �

In our algorithm we use the following graphs:

� G

blok

is the graph ontaining all edges in E

in

of weight at most W . By Observation 1, the

onneted omponents of msf(G

blok

) are idential to the onneted blok-omponents and the

minimum spanning forest of these omponents is the same as msf(G

blok

).

� G

Æ

is the direted (1+ Æ)-Yao graph that is obtained from K

P

using the one (1+ Æ)-approximate

nearest neighbor orale. We use the same de�nitions as in the de�nition of direted Yao graphs and

we formally de�ne N

(1+Æ)

P

hp;Ci to be the point that is returned by the one (1 + Æ)-approximate

nearest neighbor orale for p and C. If (P nfpg)\C

p

= ;, then N

(1+Æ)

P

hp;Ci is unde�ned. Then,

G

Æ

is a direted Eulidean graph on P with the edge set ontaining an edge (p; q) if there is C 2 C

suh that q = N

(1+Æ)

P

hp;Ci.

� M is the minimum weight subgraph of K

P

that, when added to G

blok

; forms a onneted graph.

� G

out

is the same as K

P

exept that the weights of edges in E

in

are onsidered to be zero. Observe

that the weight of mst(G

out

) is idential to the weight of M.

The following lemma displays the two-level nature of the algorithm that we will present.

Lemma 2 The sum of the weights of msf(G

blok

) and mst(G

out

) is a (1 + "=2)-approximation of

emst(P ).

Proof. We show that the union of msf(G

blok

) and M is a spanning tree of K

P

whose weight

approximates the weight of emst(P ) to within a fator of 1 + "=2. From that the lemma follows

immediately.
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Figure 2: Illustration to the proof of Claim 5. The �gure shows the reahability in G

Æ

. The dashed

line is the path showing the onnetivity of x and y in G

Æ

((1+Æ) �)

.

Clearly, the union of msf(G

blok

) andM forms a spanning tree of K

P

. To prove the seond part of

the laim, let us onsider an undireted graph G

�

obtained from K

P

by dereasing to (�� 4

p

d)� the

weight of every edge in E

in

having weight larger than (� � 4

p

d)� and smaller than or equal to W .

(Note that we hange only the weights of the edges in G

blok

.) Sine the weight of every edge dereases

by a fator of at most

W

(��4

p

d) �

=

(�+

p

d)�

(��4

p

d)�

� 1+"=2, we have mst(G

�

) � emst(P )=(1+"=2). Notie

further that by Observation 1, eah edge in G

�

that is not in G

blok

has weight larger than (��4

p

d)�.

This means that mst(G

�

) must ontain a minimal spanning forest of G

blok

, and hene the weight of

the union of msf(G

blok

) and M is a (1 + "=2) approximation of emst(P ). �

6.5 First level { estimating the weight of msf(G

blok

)

In this setion we show how to estimate the weight of the mst within a single blok omponent. This,

ombined for all blok omponents, yields an estimate on the weight of msf(G

blok

). Sine our model

does not allow onstant-time aess to the edges of G

blok

, we will use the direted Yao graph G

Æ

to

estimate the weight of msf(G

blok

). Our analysis will explore the relationship between G

Æ

and G

blok

.

For a weighted graph H denote by � � H the graph H with edge weights multiplied by �. Reall

that H

(r)

denotes the subgraph of H onsisting of the edges of weight at most r, and 

r

is the number

of onneted omponents in G

(r)

blok

. Let n

r

u

andm

r

u

be the number of verties in G

(r)

blok

and in G

Æ

(r)

that

are reahable from u respetively. Notie that 

r

=

P

u2P

1=n

r

u

. Analogously, de�ne 

�

r

=

P

u2P

1=m

r

u

.

Also, let ̂

r

be the number of onneted omponents in (1 + Æ) �G

(r)

blok

.

It follows from [10℄ (see also Setion 4) that

msf(G

(r)

blok

) � n� r

r

+

r�1

X

i=1



i

� msf(G

(r)

blok

) + n : (1)

Sine we only have aess to G

Æ

, we an only deal with the 

�

r

's rather than the 

r

's. To bound the

error due to this replaement, now we relate reahability in G

Æ

to reahability in G

blok

.

Claim 5 Let " �

1

5

and Æ �

1

10

. Then for every r and every u 2 P , n

r=(1+Æ)

u

� m

r

u

� n

r

u

. In partiular,



r=(1+Æ)

� 

�

r

� 

r

.

Proof. Let us �rst notie that m

r

u

� n

r

u

follows diretly from the de�nition. To show that n

r=(1+Æ)

u

�

m

r

u

, it suÆes to show that for every � , if a vertex y is reahable in G

(�)

blok

from a vertex x, then y is

12



reahable from x in G

Æ

((1+Æ) �)

. Assume that y is reahable from x in G

(�)

blok

; this implies that x and y

are in the same onneted blok-omponent. Assume further, without loss of generality, that � � W

(indeed, if � > W then G

(�)

blok

= G

(W )

blok

).

Let z be the (1 + Æ)-approximate nearest neighbor of x (returned by the one approximate nearest

neighbor orale) in the one C

x

ontaining y. Clearly, if z = y, then the laim holds. So let us assume

that z 6= y. Let a = jxzj, b = jxyj,  = jyzj, and � = ℄(xyz), � = ℄(xzy), and  = ℄(yxz), see Figure

2. Notie that sine y and z are ontained in the one C

x

with the angular diameter �=4, we have

 � �=4.

We �rst show the following three inequalities: (i) a � (1 + Æ) b, (ii)  < b, and (iii) minfa; g �

b=(1 + "). Inequality (i) follows diretly from the de�nition of the one approximate nearest neighbor

orale. To prove inequality (ii), let us suppose that  � b. Then, � � , and sine  � �=4, we

obtain that � � �=2. This in turn implies that a �

p

b

2

+ 

2

�

p

2 b, whih ontradits the �rst

inequality that a � (1 + Æ) b � 1:1 � b. For inequality (iii), we �rst use the law of osines to get



2

= a

2

+ b

2

� 2 a b os  � a

2

+ b

2

�

p

2 a b, sine  � �=4. To show minfa; g � b=(1 + ") we assume

a > b=(1 + ") and show  � b=(1 + "). Sine a > b=(1 + ") �

p

2

2

b, the expression a

2

+ b

2

�

p

2ab

inreases with a. Therefore, by inequality (i) we obtain



2

� a

2

+ b

2

�

p

2ab � ((1 + Æ)b)

2

+ b

2

�

p

2(1 + Æ)b

2

= b

2

((2 �

p

2)(1 + Æ) + Æ

2

) � (b=(1 + "))

2

;

where the last inequality holds for " �

1

5

and Æ �

1

10

.

Now, we prove the laim using inequalities (i{iii). Assume, without loss of generality, that jxyj � � ;

otherwise apply the following arguments to all edges on the path between x and y in G

(�)

blok

(all the

edges on this path are of length at most �). We de�ne indutively the sequene x = x

0

; x

1

; x

2

; : : : y

suh that for every i, if x

i

6= y, then x

i+1

is the (1 + Æ)-approximate nearest neighbor of x

i

in the one

C

x

i

ontaining y. By inequality (ii), the sequene jx

i

yj is stritly dereasing. This immediately implies

that x

i

= y for some i, and so the sequene is �nite.

Next, we show indutively that eah x

i

is in the same onneted blok-omponent as y. Suppose

that x

i

is in the same onneted blok-omponent as y. Sine the sequene jx

i

yj is dereasing and sine

jxyj � � �W = (� +

p

d) ��, we obtain

jx

i

yj

1 + "

�

jxyj

1 + "

<

(� +

p

d) ��

1 + "

�

(� +

p

d) ��

1 + "

:

Therefore, using inequality (iii) with x = x

i

and z = x

i+1

, we obtain

minfjx

i

x

i+1

j; jx

i+1

yj)g �

jx

i

yj

1 + "

� (��

p

d) �� :

Hene, by Observation 1, either x

i

and x

i+1

are in the same onneted blok-omponent or x

i+1

and y are in the same onneted blok-omponent. In either ase, the transitivity ensures that x

i+1

and y are in the same onneted blok-omponent. We �nally observe that inequality (i) implies that

jx

i

x

i+1

j � (1 + Æ) jx

i

yj, and sine jx

i

yj � jxyj, we obtain jx

i

x

i+1

j � (1 + Æ) jxyj. Hene, the sequene

x = x

0

; x

1

; x

2

; : : : ; y orresponds to a path ontained in a onneted blok-omponent having all edges

of length at most (1 + Æ) � . This implies that y is reahable from x in G

Æ

((1+Æ) �)

. �

Let W

0

= dW (1 + Æ)e. Motivated by inequality (1), let us introdue an estimator A for the value

of msf(G

blok

).

A = n+

W

0

�1

X

i=1



�

i

�W

0

� 

�

W

0

:

We analyze now the quality of this estimator.
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Lemma 3 msf(G

blok

) � A � (1 + Æ) � msf(G

blok

) + n.

Proof. Let us �rst remind that ̂

r

= 

r=(1+Æ)

. Next, let us observe that if r � W then 

r

= 

W

. As a

orollary, 

�

W

0

= 

W

= 

W

0

. With this, we have the following sequene of inequalities:

msf(G

blok

) � n+

W�1

X

i=1



i

�W � 

W

� n+

W

0

�1

X

i=1



i

�W

0

� 

W

0

= n+

W

0

�1

X

i=1



i

�W

0

� 

�

W

0

� n+

W

0

�1

X

i=1



�

i

�W

0

� 

�

W

0

= A � n+

W

0

�1

X

i=1



i=(1+Æ)

�W

0

� 

W

= n+

W

0

�1

X

i=1

̂

i

�W

0

� ̂

W

0

� msf((1 + Æ) �G

blok

) + n

= (1 + Æ) �msf(G

blok

) + n :

The �rst inequality is due to inequality (1). The seond one follows from the observation above. Next,

we use Corollary 5 and the both observations above. The last inequality is implied by inequality (1).

�

We now modify the algorithm of Chazelle et al. [10℄ to obtain a good approximation of A. Let us

�rst notie that similarly as in Setion 5, we an easily traverse the graph G

Æ

(r)

: eah time we want to

aess all edges inident to a point p 2 P , we �rst ask the one approximate nearest neighbor queries

to all ones C

p

and then for eah nearest neighbor q of p in C

p

, we verify if jpqj � r and if the bloks to

whih p and q belong are in the same onneted blok-omponent. The �rst test is a simple O(1) time

alulation, while the seond requires the omputation of the onneted blok-omponents. Establishing

that, we an apply the approah from Setions 4.2 and 5 to estimate the value 

�

=

P

W

0

�1

r=1



�

r

, and

hene to estimate the value of A. For this, we run proedure approx-number-onneted-omponents to get

an estimator X

r

to 

�

r

for all r = 1; 2; : : : ;W

0

, and we now show that X =

P

W

0

�1

r=1

X

r

is a good

approximation to 

�

=

P

W

0

�1

r=1



�

r

.

An analysis similar to [10℄ gives



�

� n=2 � EX � 

�

;

and

varX � 2n 

�

=s ;

where s is the number of random hoies of initial verties in approx-number-onneted-omponents. Next,

using the bounds above, the fat that emst(P ) � n=", and Chebyshev's inequality, we have

Pr[jX � 

�

j � "=2 � emst(P )℄ � Pr[jX � EXj � "=4 � emst(P )℄

�

16 varX

"

2

� (emst(P ))

2

�

32 � n � 

�

"

2

� s � (emst(P ))

2

:

We argue that 32n 

�

=("

2

s (emst(P ))

2

) = O

�

1

" s

�

, or alternatively, that (emst(P ))

2

= 
(n 

�

="). In-

deed, if 

�

� 2n=", then (emst(P ))

2

� (n=")

2

� 2n 

�

=", by our assumption in Setion 6.2. Otherwise,

we have to use a stronger lower bound for emst(P ). By Lemma 2, we have

emst(P ) = 
 (msf(G

blok

) +mst(G

out

)) = 


�

msf(G

blok

) +W

0

� (

0

W

� 1)

�

:

Next, by Lemma 3, we have

(1 + Æ) � msf(G

blok

) � A� n = 

�

�W

0

� 

�

W

0

:
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Hene,

emst(P ) = 
(

�

�W

0

� 

�

W

0

+W

0

� (

0

W

� 1)) = 
(

�

) ;

from whih it follows that for 

�

> 2n=" we have, (emst(P ))

2

= (
(

�

))

2

= 
(n 

�

="), as required.

Summarizing the disussion above, we have always (emst(P ))

2

= 
(n 

�

=") and hene

Pr[jX � 

�

j � "=2 � emst(P )℄ � O(

1

"�s

) :

Therefore, if we hoose s = O(1="), then we obtain

Pr[jX � 

�

j � "=2 � emst(P )℄ � 1=4 :

Next, observe that 

�

W

0

is nothing but the number of onneted blok-omponents, whih is known

to the algorithm that omputes the onneted blok-omponents. This leads to an eÆient algo-

rithm that alulates A

0

= n + X � W

0

� 

�

W

0

for whih Pr[jA

0

� Aj >

1

2

" � emst(P )℄ � 1=4. The

omplexity of this algorithm, following the analysis from Setion 5 (see also [10℄) is

e

O(W � 2

O(d)

=")

one approximate nearest neighbor queries. The algorithm approximates 

�

to within an additive

error of n with probability at least

3

4

(see [10℄), and hene emst(P ) to within an additive error of

1

2

" � emst(P ) + Æ � emst(P ) + n = (Æ +

1

2

") � emst(P ) + n.

We note that by saling down all weights by a fator � > 1, applying the algorithm above, and

then resaling to the original weight, we derease the running time by a fator of �, and inrease the

additive error by the same fator. In this way we obtain an algorithm that performs

e

O(W �2

O(d)

=(� "))

one approximate nearest neighbor queries and ahieve an additive error of (Æ +

1

2

") � emst(P ) + � � n.

Let us examine the term W=� in the running time and the additive error term (Æ+

1

2

") �emst(P )+

� � n. Reall that there are two possible termination states: b � b

�

or � < 2 ".

Consider �rst the ase b � b

�

. Sine P has b ative bloks of size � we have that emst(P ) �

1

2

�(db=2

d

e � 1). This bound is ahieved by onsidering a subdivision of the ative blok to 2

d

b

sububes of size �=2. Now olor these subbloks with 2

d

di�erent olors, using the same arrangement

of olors for eah of the original ative bloks. This indues a partition of the ative bloks into 2

d

monohromati sets. There has to be a set of db=2

d

e points in P from di�erent ative bloks that are

olored the same. Clearly, the minimal distane between these points must be at least �=2, and hene

the bound. One we established that emst(P ) �

1

2

�(db=2

d

e�1), we use the inequalities b � b

�

� 2

d+1

to get emst(P ) �

1

4

�� � b=2

d

. Setting � =

� b "

8�2

d

n

we upper bound the relative error by

Æ + "=2 +

� � n

1

4

�� � b=2

d

= 1 + Æ + " :

The running time, using the fat that b � b

�

� "

d=2�3

p

n, is bounded by

e

O(W

0

=(� ")) =

e

O(

p

d � 2

d

� n=(b"

3

)) �

e

O(

p

n � 2

d

�

p

d="

d=2

) =

e

O(

p

n="

d=2

) :

On the other hand, when � < 2 ", we use the trivial lower bound emst(P ) � n=", and by setting

� = 1=2 obtain a multipliative error of 1 + Æ + ". In this ase notie that W

0

= d(1 + Æ) �� �

p

d � (1 +

14=")e = O(1). And so, we bound the running time by

W=(� "

3

) =

e

O("

�3

) �

e

O(

p

n="

2+d=2

)

for d � 2. Thus we have

Lemma 4 Given the graph G

blok

, there is an algorithm that estimates with probability at least

3

4

the weight of msf(G

blok

) to within a multipliative relative error of Æ + ". The algorithm requires

e

O(

p

n="

2+d=2

) range queries and one (1 + Æ)-approximate nearest neighbor queries (for Æ � "=6). �
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6.6 Seond level | estimating the weight of mst(G

out

)

Let Q be the omplete undireted graph with the vertex set B, the set of ative bloks, and with the

edge weights equal to the Eulidean distanes between the orresponding blok-enters if the bloks

are in di�erent onneted blok-omponents, and zero otherwise. Arguments similar in the spirit of

Observation 1 an be used to show that 1� "=2 � mst(G

out

)=emst(Q) � 1+ "=2. Therefore, to obtain

a good estimation of the weight of mst(G

out

) it is suÆient to estimate the weight of a minimum

spanning tree of Q.

We ould �nd a minimum spanning tree of Q by alling any algorithm that �nds a minimum

spanning tree in graphs. However, any suh algorithm requires time 
(b

2

), beause Q ontains �(b

2

)

edges. To improve the running time to

e

O(b "

1�d

) =

e

O(

p

n="

2+d=2

) we use SPN , whih is the (1+"=4)-

spanner of B (having O(b (1=")

d�1

) edges) de�ned in Setion 6.2. Let F be any spanning forest of the

subgraph of Q indued by the edges of weight 0. It is easy to see that the weight of any minimum

spanning tree of Q is idential to the weight of a minimum spanning tree of Q that uses the edges from

F .

We reate a new graph SG with the vertex set B and the edge set whih is the union of the edges

in F and the spanner edges. Then, we apply, for instane, the lassial Kruskal's algorithm to �nd in

time O(b "

1�d

log(b="

d

)) =

e

O(

p

n="

2+d=2

) a minimum weight spanning tree of SG. It is easy to see

now that the obtained spanning tree of B is a spanning tree of B that uses edges from F and whose

weight is at most

1

4

" times greater than the minimum. We summarize the disussion in this setion in

the following lemma.

Lemma 5 There is an algorithm whih, given as input the graph G

blok

, estimates the weight of M to

within a relative error of

3

4

" with running time

e

O(

p

n="

2+d=2

).

Our analysis in this setion an be improved in the ase where d = 2. In this ase, one an simplify

the arguments to ahieve the running time of O(b log b) = O(

p

n log(

p

n=")=").

6.7 Estimating the weight of msf(G

blok

) [ mst(G

out

)

we an now summarize our algorithm for estimating the emst of any set of points in R

d

. We use the

fat that L = �(n=") and apply Lemmas 2, 4, and 5 to estimate the weight of the emst. Summing up

the error terms in our estimation we get that the multipliative relative error is at most Æ + 2

1

4

" with

probability at least

3

4

. Using "

0

= "=3 as the input parameter for our algorithm we an onlude with

the following main theorem of the paper.

Theorem 2 Let P be a set of n points in R

d

for a onstant d. Let " be any real number, 0 < " <

1

15

, and

let Æ � "=4. There is an algorithm that with probability at least

3

4

estimates the weight of a Eulidean

minimum spanning tree of P with a relative error of at most ". This algorithm runs in

e

O(

p

n="

2+d=2

)

time and requires

e

O(

p

n="

2+d=2

) orthogonal range queries,

e

O(

p

n="

2+d=2

) one (1 + Æ)-approximate

nearest neighbor queries, and a single minimal bounding ube of P . �

Let us also mention that the remark at the end of Setion 6.6 an be inorporated here to improve

the omplexity bounds in the most basi ase when d = 2, that is, for the emst problem on the

Eulidean plane. Then, we obtain the following theorem.

Theorem 3 Let P be a set of n points in R

2

. Let " be any real number, 0 < " <

1

15

, and let Æ � "=4.

There is an algorithm that, with probability at least

3

4

, estimates the weight of a Eulidean minimum

spanning tree of P with a relative error of at most ". This algorithm runs in

e

O(

p

n=") time and requires

e

O(

p

n=") orthogonal range queries,

e

O(

p

n=") one (1+ Æ)-approximate nearest neighbor queries, and a

single minimal bounding ube of P . �
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