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ABSTRACT
We consider the problem of approximating the entropy of a
discrete distribution under several models. If the distribu-
tion is given explicitly as an array where the i-th location is
the probability of the i-th element, then linear time is both
necessary and sufficient for approximating the entropy.

We consider a model in which the algorithm is given access
only to independent samples from the distribution. Here, we
show that a γ-multiplicative approximation to the entropy

can be obtained in O
“

n(1+η)/γ2

poly(log n)
”

time for dis-

tributions with entropy Ω(γ/η), where n is the size of the
domain of the distribution and η is an arbitrarily small posi-
tive constant. We show that one cannot get a multiplicative
approximation to the entropy in general in this model. Even
for the class of distributions to which our upper bound ap-

plies, we obtain a lower bound of Ω
“

nmax(1/(2γ2),2/(5γ2−2))
”

.

We next consider a hybrid model in which both the ex-
plicit distribution as well as independent samples are avail-
able. Here, significantly more efficient algorithms can be
achieved: a γ-multiplicative approximation to the entropy

can be obtained in O
“

γ2 log2 n
h2(γ−1)2

”

time for distributions with

entropy Ω(h); we show a lower bound of Ω
“

log n
h(γ2−1)

”

.

Finally, we consider two special families of distributions:
those for which the probability of an element decreases mono-
tonically in the label of the element, and those that are uni-
form over a subset of the domain. In each case, we give more
efficient algorithms for approximating the entropy.
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1. INTRODUCTION
The Shannon entropy is a measure of the randomness of

a distribution, and plays a central role in statistics, infor-
mation theory, and data compression. Knowing the entropy
of a random source can shed light on the compressibility of
data produced by such a source. In this paper we consider
the complexity of approximating the entropy under various
different assumptions on the way the input is presented.

Suppose the distribution is given explicitly as an array
where the i-th location contains the probability assigned to
the i-th element of the domain. It is clear that an algo-
rithm that reads the whole representation can calculate the
exact value of the entropy. However, it is also easy to see
that in this model, linear time in the size of the domain is
required even to approximate the entropy: Consider two dis-
tributions, one with a singleton support set (zero entropy)
and the other with a two-element support set (positive en-
tropy). Any algorithm which approximates the entropy to
within any multiplicative factor must distinguish these two
distributions, however, distinguishing between two such dis-
tributions requires linear (even randomized) time in general.

Next suppose the distribution is given as a black-box which
generates samples according to the distribution. This model
has been considered in both the statistics and physics com-
munities (cf., [6, 9, 7, 8]), though none of the previous works
provides a rigorous analysis of the computational efficiency,
sample complexity, and approximation quality. Further-
more, to the best of our knowledge, the only algorithms
which do not require superlinear (in the domain size) sample
complexity are those presented in [7, 8]. These algorithms
use estimates of the collision probability to give a reasonable
lower bound estimate of the entropy, however, the quality of
the estimate is not analyzed.

1.1 Our results
(1) The black-box model: When the distribution is

given as a black-box, we show that the entropy can be ap-
proximated well in sublinear time for a large class of distri-
butions. Informally, a γ-multiplicative approximation of the

entropy can be obtained in time O(n(1+η)/γ2

poly(log n)),
where n is the size of the domain of the distribution and η
is an arbitrarily small positive constant, provided that the
distribution has Ω(γ/η) entropy. We show that one cannot
get a multiplicative approximation to the entropy in general.
But, even for the class of distributions to which our upper
bound applies, we obtain an almost matching lower bound

of Ω(nmax(1/(2γ2),2/(5γ2−2))). Our algorithm is simple—we
partition the elements in the domain as big or small based



on their probability masses and approximate the entropy of
the big and small elements separately (Section 3).

It is interesting to consider what these bounds imply for
the complexity of achieving a 2-approximation for distribu-
tions with sufficiently high entropy: Our upper bound yields

an algorithm which runs in O
“

n
1+o(1)

4

”

time. Our lower

bound demonstrates that no algorithm can 2-approximate
the entropy in Ω(n1/8) time.

(2) The hybrid model: We then consider a hybrid model,
in which the distribution is given to the algorithm both ex-
plicitly and as a black-box. We assume that the two rep-
resentations are consistent. In the hybrid model, we give

γ-approximation algorithms which run in time O
“

γ2 log2 n
h2(γ−1)2

”

for distributions with entropy Ω(h) and show a lower bound

of Ω
“

log n
h(γ2−1)

”

(Section 4).

(3) Special families of distributions: Finally we con-
sider two families of distributions for which we show more
efficient upper bounds. The first family is that of monotone
distributions, in which the the probability of an element de-
creases monotonically in the label of the element. We give an

O(log2 n/ log γ)-time (resp. O((log n)6+(3/(γ1/2−1))poly(γ))-
time) algorithm for γ-approximating the entropy in the ex-
plicit model (resp. black-box model) (Section 5). The sec-
ond family is that of subset-uniform distributions, in which
the distribution is uniform over some subset of the domain.
In this case we give O(

√
k)-time algorithms for approximat-

ing the entropy, where k is the size of the subset (Section
6).

1.2 Related work
The work of Goldreich and Vadhan [5] considers the com-

plexity of approximating the entropy in a different model in
which a distribution Y is encoded as a circuit C such that
Y = C(X), where the input X to the circuit is uniformly
distributed; in this model, they show that a version of the
problem is complete for statistical zero-knowledge.

The work of [2] and [1] consider algorithms for testing
other properties of distributions in the black-box model.
The properties considered are whether two input distribu-
tions are close or far, and whether a joint distribution is in-
dependent, respectively. Both works give algorithms whose
sample complexity is sublinear in the domain size as well as
lower bounds showing the algorithms to be nearly optimal.

2. PRELIMINARIES
We consider discrete distributions over a domain of size n,

which we denote by [n]
def
= {1, . . . , n}. Let p = 〈p1, . . . , pn〉

be such a distribution where pi ≥ 0,
Pn

i=1 pi = 1. The
representation of p is called explicit if we are given an array
where the i-th entry is pi. The representation of p is called
black-box if we are given a source which generates samples
independently according to p. The representation of p is
called hybrid if we are given both the explicit and black-box
representation of p.

The entropy of the distribution p is defined as

H(p)
def
= −

nX

i=1

pi log pi

(all the logarithms are to the base 2). For a set S ⊆ [n],

we define wp(S)
def
=
P

i∈S pi and we define the entropy re-

stricted to this subset as

HS(p)
def
= −

X

i∈S

pi log pi.

Notice that HS(p) + H[n]\S(p) = H(p). For a distribution
p, the set of indices of high probabilities is defined as:

Bα(p)
def
= {i ∈ [n] | pi ≥ n−α}.

Given γ > 1, we say that A is a γ-approximation algo-
rithm in model R for the entropy, if for every input p given
in representation R, A outputs A(p) such that H(p)/γ ≤
A(p) ≤ γH(p) with probability at least 3/4.

Let Dh be the family of distributions with entropy at least

h. For a distribution p, we denote its L2-norm by ‖p‖ def
=

pPn
i=1 p2

i and its L∞-norm by ‖p‖∞
def
= maxn

i=1 pi. For
distributions p, q, we denote the L1-distance between them

by |p − q| def
=
Pn

i=1 |pi − qi|.

3. THE BLACK-BOX MODEL

3.1 Upper bounds
In this section we obtain a algorithm for estimating the

entropy of a large class of distributions in the black-box
model. We prove the following theorem:

Theorem 1. For any γ > 1 and 0 < εo < 1/2, there
exists an algorithm in the black-box model that can approxi-
mate the entropy of a distribution on [n] to within a multi-
plicative factor of (1 + 2εo)γ with probability at least 3/4 in

O((n
1

γ2 /ε2o) · poly(log n)) time, provided that the entropy of
the distribution is at least 3γ

2εo(1−2εo)
.

Given η > 0 and γ′ > 1, one can set γ = γ′/(1 +
2εo) in the above algorithm and choose εo small enough to
yield a γ′-approximation algorithm whose running time is

O(n(1+η)/γ′2

poly(log n)). Note that choosing η to be small
affects both the running time and the family of distributions
to which the algorithm can be applied.

The main idea behind the algorithm is the following. We
classify elements in [n] as big or small based on their proba-
bility mass. We then approximate the contribution of the en-
tropy of the big and small elements separately. Section 3.1.1
shows how to approximate the entropy of the big elements,
Section 3.1.2 shows how to approximate the entropy of the
small elements, and Section 3.1.3 combines these approxi-
mations to yield Theorem 1.

3.1.1 Approximating the entropy of the big elements
To estimate the entropy of big elements, we estimate the

probability of each of the big elements.

Lemma 2. For every 0 < α, εo ≤ 1 and sufficiently large
n, there is an algorithm that uses O((nα/ε2o) · log n) samples
from p and outputs q such that with probability at least 1 −
n−1, the following hold for all i: (1) if i ∈ Bα(p), then |pi −
qi| ≤ εopi, and (2) if pi ≤ 1−εo

1+εo
n−α, then qi ≤ (1 − εo)n

−α.

Proof. Let m = O((nα/ε2o) · log n). Fix i and let Xj be
the indicator variable that indicates j-th sample is i. Let
qi =

P
Xj/m. By Chernoff bounds, if pi ≥ n−α, then

Pr [qi > (1 + εo)pi] ≤ exp

„

− ε2opim

3

«

≤ 1

n2
.



Using a similar argument for the other direction, we can
bound the probability that any element i such that pi ≥ n−α

is not estimated within 1+εo. Using Chernoff bounds again,
we can show that for i such that pi < 1−εo

1+εo
n−α,

Pr
ˆ
qi > (1 − εo)n

−α
˜
≤ n−2.

Hence, if i ∈ Bα(p) then |pi − qi| ≤ εopi. Now, (1) and (2)
of the lemma follow from a union bound over all i.

The following lemma shows that the entropy of elements
in Bα(p) can be approximated well using q instead of p.

Lemma 3. For any set B ⊆ [n] such that for each i ∈ B,
|pi − qi| ≤ εopi,

|HB(q) − HB(p)| ≤ εoHB(p) + 2εowp(B).

Proof. For i ∈ B, let qi = (1 + εi)pi such that |εi| ≤ εo.

HB(q) − HB(p)

= −
X

(1 + εi)pi log((1 + εi)pi) +
X

pi log pi

= −
X

εipi log pi −
X

(1 + εi)pi log(1 + εi).

By the triangle inequality,

|HB(q) − HB(p)|
≤ |

X

εipi log(1/pi)| + |
X

(1 + εi)pi log(1 + εi)
−1|

≤
X

|εi|pi log(1/pi) +
X

pi|(1 + εi) log(1 + εi)|
≤ εoHB(p) + 2εowp(B).

The last step above uses the fact that for |ε| ≤ εo ≤ 1,
|(1 + ε) log(1 + ε)| ≤ 2|ε| ≤ 2εo.

3.1.2 Approximating the entropy of the small elements
Now, we obtain estimates on the entropy of the small

elements. Suppose set S is such that S ⊆ [n] \ Bα(p).
First of all, if wp(S) ≤ n−α, the contribution of entropy

from S is below any constant and can be ignored. So, we
can assume without loss of generality that wp(S) ≥ n−α. In
this case, by considering the set S as a single element and
using a similar argument to that in the proof of Lemma 2,
the following holds with high probability: (1 − εo)wp(S) ≤
wq(S) ≤ (1 + εo)wp(S). (Note that this is stronger than a
(1 + ε0)-approximation.)

The following lemma shows how to approximate the en-
tropy of small elements.

Lemma 4. αwp(S) log n ≤ HS(p) ≤ wp(S) log n + 1/e.

Proof. Observe that HS(p) is a symmetric concave func-
tion of p1, . . . , pn. To find the maximum value of HS(p)
subject to the constraint that

P

i∈S pi = wp(S), we use
Lagrange multipliers. Let u(p, λ) = HS(p) + λ((

P

i∈S pi)−
wp(S)). The maximum is attained when ∂u/∂pi = − log pi−
(ln 2)−1 + λ = 0 for i = 1, . . . , n and ∂u/∂λ =

P

i∈S pi −
wp(S) = 0, which yields pi = wp(S)/|S|, ∀i. This concludes
the proof of the upper bound, since in this case,

HS(p) = wp(S) log(|S|/wp(S)) ≤ wp(S) log n + 1/e

for these values of pi’s and −wp(S) log wp(S) ≤ 1/e.
Since HS(p) is a symmetric concave function it will take

its minimum value when as many as possible of its vari-
ables are at their extreme points, namely, 0 and 1. This

follows from the following: for f(x)
def
= −x log x, f(a) +

f(b) ≤ f(a + ξ) + f(b − ξ) when a < a + ξ < b − ξ < b
and consequently, the entropy value of small elements could
be reduced further when they are not on one of their ex-
treme points. So, HS(p) will take its minimum value when
nαwp(S) of pi’s have the value n−α, and the rest is 0. In
this case, HS(p) = αwp(S) log n.

3.1.3 Putting it together
In this subsection we describe our approximation algo-

rithm to H(p) and prove Theorem 1. Suppose we are seek-
ing a γ-approximation to the entropy.

Algorithm ApproximateEntropy(γ, εo)

1. α = 1/γ2.

2. Get O((nα/ε2o)poly(log n)) samples from p.

3. Let q be the normalized frequencies of [n] in the sample
and B = {i | qi > (1 − εo)n

−α} (Bα(p) ⊆ B).

4. Output HB(q) +
wq([n]\B) log n

γ
.

Proof. (of Theorem 1) Using Lemma 3 and Lemma 4,

HB(q) +
wq(S) log n

γ

≤ (1 + εo)HB(p) + 2εo +
1 + εo

γ
wp(S) log n

≤ (1 + εo)(HB(p) + γHS(p)) + 2εo

≤ (1 + εo)γH(p) + 2εo

≤ (1 + 2εo)γH(p),

if H(p) ≥ 2/γ. Similarly,

HB(q) +
wq(S) log n

γ

≥ (1 − εo)HB(p) − 2εo +
1 − εo

γ
wp(S) log n

≥ (1 − εo)(HB(p) +
(HS(p) − e−1)

γ
) − 2εo

= (1 − εo)(HB(p) + HS(p)/γ) − 1 − εo

γ
e−1 − 2εo

≥ H(p)/((1 + 2εo)γ),

if H(p) ≥ 3γ
2εo(1−2εo)

≥ 2/γ.

3.2 Lower bounds
In this section we prove lower bounds on the number

of samples needed to approximate the entropy of a distri-
bution to within a multiplicative factor of γ > 1. All of
our lower bounds are shown by giving pairs of distributions
that are hard to distinguish and have entropy ratio at least
γ2. The lower bounds follow since an algorithm which γ-
approximates the entropy would allow one to distinguish
the distributions.

The first thing we show (Theorem 5) is that because distri-
butions could have zero entropy, there is no algorithm which
can γ-approximate the entropy of every distribution. Thus,
we restrict our attention to distributions with non-zero en-

tropy. We show (Theorem 9) a lower bound of Ω(n
2

5γ2
−2 )

samples to γ-approximate the entropy for any distribution
in D(5 log n)/(10γ2−4).



Theorem 5. For any γ > 1, there is no algorithm which
γ-approximates the entropy of every distribution in the black-
box model.

Proof. Assume that A is an algorithm which approx-
imates the entropy of any distribution. For some small
constant 0 < c < 1, let cnα be an upper bound on the
runtime of A on distributions over [n]. Consider the two
distributions p and q where p = 〈1, 0, . . . , 0〉 and q =
〈1 − n−α, n−α−1, . . . , n−α−1〉. Any algorithm which uses
only cnα samples cannot distinguish between p and q with
high probability. Since the entropy of p is 0, any algorithm
which gives a multiplicative approximation should output 0.
On the other hand, any algorithm which approximates the
entropy of q to within a multiplicative factor of γ should
output a value which is at least 1

γ
αn−α log n > 0. Thus,

any algorithm which γ-approximates the entropy would be
able to distinguish between p and q.

Next, we show a lower bound on the number samples needed
to γ-approximate the entropy of a distribution coming from
a restricted class of distributions.

Before we show the aforementioned lower bound result,

we show a simpler lower bound of Ω(n1/(2γ2)) samples.

Theorem 6. For any γ > 1 and sufficiently large n, any
algorithm in the black-box model that γ-approximates the en-
tropy of a distribution over [n] in D(log n)/γ2 is required to

make Ω(n1/(2γ2) samples from it.

Proof. Consider two distributions p and q on n elements
where p is uniform on the set [n] and q is uniform on a

set S that is a randomly chosen subset of [n] of size n1/γ2

.
It is easy to see that H(p)/H(q) = γ2. By the Birthday
Paradox, with probability 1/3, we do not see any repetitions

in the sample before we take δn1/(2γ2) samples from either

distribution for some constant δ < 1. Hence, Ω(n1/(2γ2))
samples are needed to distinguish these distributions.

We now prove a better lower bound when γ <
√

2. Our lower
bound proof borrows the outline of the arguments in [2, 1].
We start by giving a canonical form for entropy approxi-
mation algorithms. In particular, we describe an aggregate
representation of the samples such an algorithm takes. We
then prove that we can assume, without loss of generality,
that the algorithm is given this representation of the samples
as input instead of the samples themselves.

Let S = {x1, . . . , xs} be a set of samples from a distribu-
tion over [n].

Definition 7 (Fingerprint). The fingerprint dS of S
is the function dS : [s] → [n] ∪ {0} such that dS(i) is the
number of elements x such that x appears i times in S.

We will just use d(i) when S is clear from the context. The
next lemma shows that the fingerprint of a set of samples is
just as useful as the samples themselves to approximate the
entropy.

Lemma 8. Given algorithm A that γ-approximates the
entropy of a distribution from samples, there exists an al-
gorithm A′ which gets as input only the fingerprint of the
generated sample and has the error probability upper bounded
by that of A.

Proof. We will construct algorithm A′ using calls to al-
gorithm A. Let the input distribution be p. Upon getting
the fingerprint of a sample S, A′ chooses dS(i) elements at
random from [n] without replacement for each i. Then, A′

passes the multiset S′ such that an element chosen for i ap-
pears exactly i times in S′. Finally, A′ outputs the value
that A outputs on S′.

Let π be a permutation on [n]. Define π(p) to be distri-
bution such that π(p)i = pπ(i) (i.e., the relabeling of the
domain elements according to π). Define π(S) for a sample
set S to be the set S′ that is the relabeling of the samples
in S according to π.

Note that A′ actually simulates π(p) for A for some ran-
domly chosen permutation π. Denote the output of A on
samples S by A(S). Hence,

Pr
ˆ
A′ γ-approximates H(p)

˜

=
X

S

Pr [p generates S] ·

E [Pr [A(π(S)) γ-approximates H(p)]]

= E[
X

S

Pr [p generates S] ·

Pr [A(π(S)) γ-approximates H(π(p))]

= E[
X

S

Pr [π(p) generates π(S)] ·

Pr [A(π(S)) γ-approximates H(π(p))]]

= E [Pr [A γ-approximates H(π(p))]]

≥ min
π

Pr [A γ-approximates H(π(p))] ,

which is the correctness probability of A.

Theorem 9. For any γ > 1, sufficiently large n, and

any algorithm A using o(n2/(5γ2−2)) samples, there exist two
distributions p and q over [n] with H(p)/H(q) ≥ γ2, such
that A cannot distinguish between p and q with probability
greater than 2/3.

Proof. Let α = 2/(5γ2 − 2) and β = 3α/2. Fix an
algorithm A that uses o(nα) samples. Next, we define the
distributions p and q from the theorem statement. Using
Lemma 8, we will assume that A uses the fingerprints of the
samples instead of the samples themselves.

pi
def
=

8

<

:

n−α 1 ≤ i ≤ nα/2
n−1 n/2 < i ≤ n
0 otherwise

qi
def
=

8

<

:

n−α 1 ≤ i ≤ nα/2
n−β n/2 < i ≤ (n + nβ)/2
0 otherwise

Call i big if 1 ≤ i ≤ nα/2 and small if otherwise and pi > 0.
Note that H(p) = (α+1)/2 · log n and H(q) = (α+β)/2 ·

log n. Therefore,

H(p)

H(q)
=

α + 1

α + β
=

„
5γ2

5γ2 − 2

«„
5γ2 − 2

5

«

= γ2.

When restricted to the big elements, both distributions are
identical. The only difference between p and q comes from
the small elements, and the crux of the proof will be to show
that this difference will not change the relevant statistics
significantly. Then, we conclude the proof by showing that



distributions on the fingerprints when the samples are taken
from p or q are indistinguishable.

The following lemma shows that it is only the big ele-
ments, which have identical distributions in both p and q,
that contribute to most of the entries in the fingerprint.

Lemma 10. The expected number of small elements that
occur at least three times in the sample is o(1) for both p

and q.

Proof. For a fixed small element, the probability that at
least three samples from q will be this element is o(n3(α−β)).
Since there are n−β/2 small elements, by the linearity of
expectation, the expected number of such small elements in
the sample is o(1).

It would be useful if we could assume that the frequency of
each element is independent of the frequencies of the other
elements. To allow this, we assume that algorithm A first
chooses an integer s1 from the Poisson distribution with the
parameter λ = s = o(nα). The Poisson distribution with
the positive parameter λ has the probability mass function
p(k) = exp(−λ)λk/k!. Then, after taking s1 samples from
the input distribution, A decides whether to accept or reject
the distribution. We will show that when A chooses s1 this
way, the frequencies of the elements will be independent.

Next, we show that A cannot distinguish p from q with
success probability at least 2/3. Since s1 will have a value
larger than s/2 with probability at least 1−o(1) and we will
show an upper bound on the statistical distance of the dis-
tributions of two random variables (i.e., the distributions on
the fingerprints), it will follow that no symmetric algorithm
with sample complexity s/2 can distinguish p from q.

Let Fi be the random variable corresponding to the num-
ber of times the element i appears in the sample. It is well
known that Fi is distributed identically to the Poisson dis-
tribution with parameter λ = sr, where r is the probability
of element i (cf. [3], pp. 216). Furthermore, it can also
be shown that all Fi’s are mutually independent. Thus, the
total number of samples from the big elements and the total
number of samples from the small elements are independent.

Let Dp and Dq be the distributions on all possible finger-
prints when samples are taken from p and q, respectively.
The rest of the proof proceeds as follows. We first construct
two processes D′

p and D′
q that generate distributions on fin-

gerprints such that D′
q is statistically close to Dp and D′

q is
statistically close to Dq. Then, we prove that the distribu-
tions D′

p and D′
q are statistically close. Hence, the theorem

follows by the indistinguishability of Dp and Dq.
Each process has two phases. The first phase is the same

in both processes. They choose integers s′ and s′′ indepen-
dently from the Poisson distribution with parameter λ =
s/2. The integers s′ and s′′ fix the the number of samples
from the big and the small elements, respectively. By the
properties of Poisson distribution mentioned above, s′+s′′ is
distributed identically to s1. Then, they randomly generate
the frequency counts for each big element i using the ran-
dom variables Fi defined above. The processes know which
elements are big and which elements are small, although any
distinguishing algorithm does not. At the end of the phase,
the processes check whether the number of samples from
the big elements is equal to s′. If not, they start generating
the frequency counts from scratch. This concludes the first
phase of the processes.

In the second phase, processes D′
p and D′

q determine the
frequency counts of each small element according to p and
q, respectively (using Fi’s). If any small element is given a
total frequency count of at least three or the total number of
samples generated in this phase is not exactly s′′, the second
phase of the process is restarted from scratch.

Since the frequency counts for all elements are determined
at this point, both processes output the fingerprint of the
sample they have generated.

Now, we treat the outputs of D′
p and D′

q to be distribu-
tions on [n]. The following lemmas conclude the proof.

Lemma 11.
˛
˛D′

p − Dp

˛
˛ = o(1) and

˛
˛D′

q − Dq

˛
˛ = o(1).

Proof. The distribution that D′
p generates is the distri-

bution Dp conditioned on the event that all small elements
appear at most twice in the combined sample. Since this
conditioning holds true with probability at least 1− o(1) by
Lemma 10, |D′

p − Dp| ≤ o(1). A similar argument applies
to D′

q and Dq.

Lemma 12.
˛
˛D′

p − D′
q

˛
˛ ≤ 1/6.

Proof. By the generation process, the L1 distance be-
tween D′

p and D′
q can only arise from the second phase. We

show that the second phases of the processes do not generate
an L1 distance larger than 1/6.

Let G (respectively, H) be the random variable that cor-
responds to the values d(2) when the input distribution is

p (respectively, q). Let d′ def
= 〈d(3), d(4), . . . , d(s)〉. We will

use the fact that for any d′, Pr
ˆ
D′

p generates d′, s′, s′′
˜

=

Pr
ˆ
D′

q generates d′, s′, s′′
˜

in the following calculation.

|D′
p − D′

q|
=

X

d

|Pr
ˆ
D′

p generates d
˜
− Pr

ˆ
D′

q generates d
˜
|

=
X

d′,s′,s′′

Pr
ˆ
D′

p generates d′, s′, s′′
˜
·

X

k,l≥0

|Pr
ˆ
D′

p generates (d(1), d(2)) = (k, l) | d′, s′, s′′
˜

− Pr
ˆ
D′

q generates (d(1), d(2)) = (k, l) | d′, s′, s′′
˜
|

=
X

d′,s′,s′′

Pr
ˆ
D′

p generates d′, s′, s′′
˜
·

X

k≥0

|Pr
ˆ
D′

p generates d(2) = k | d′, s′, s′′
˜

− Pr
ˆ
D′

q generates d(2) = k | d′, s′, s′′
˜
|

=
X

k≥0

|Pr
ˆ
D′

p generates d(2) = k
˜

− Pr
ˆ
D′

q generates d(2) = k
˜
|

= |G − H|
where the third equality follows since s′, s′′, d′, d(2) deter-
mine d(1).

Consider the composition of G and H in terms of big and
small elements. In the case of p, let Gh be the number of
big elements that contribute to d(2) and Gl be the number
of such small elements. Hence, G = Gh +Gl. Define Hh, Hl

analogously. Then, Gh and Hh are distributed identically.



In the rest of the proof, we show that the fluctuations in
Gh, Hh dominate the magnitude of Gl, Hl.

Let ξi be the indicator random variable that takes value
1 when element i has been sampled twice. Then, Gh =
P

big i ξi. By the assumption about the way samples are

generated, the ξi’s are independent. Therefore, Gh is dis-
tributed identically to the binomial distribution on the sum
of nα Bernoulli trials with success probability Pr [ξi = 1] =
exp(−s/nα)(s2/2n2α). An analogous argument shows that
Gl is distributed identically to the binomial distribution
with parameters n/2 and exp(−s/n)(s2/2n2). Similarly, Hl

is distributed identically to the binomial distribution with
parameters nβ/2 and exp(−s/nβ)(s2/2n2β ).

value
As n and m grow large enough, both Gh and Gl can be

approximated well by normal distributions. Therefore, by
the independence of Gh and Gl, G is also approximated
well by a normal distribution. That is,

Pr [G = t] → 1√
2πσG

exp

„

− (t − E [G])2

2Var [G]

«

as n → ∞. Similarly, H is approximated well by a normal
distribution.

Thus, Pr [G = t] = Ω(1/σG) over an interval I1 of length
Ω(σG) centered at E [G]. Similarly, Pr [H = t] = Ω(1/σH )
over an interval I2 of length Ω(σH) centered at E [H]. Since

E [H] − E [G] = E [Hl] − E [Gl]

≤ E [Hl] ≤ exp
“−s

nβ

”„ s2

4nβ

«

= o(σH),

I1 ∩ I2 is an interval of length Ω(σHh ). Therefore,
X

t∈I1∩I2

|Pr [G = t] − Pr [H = t] | ≤ o(1)

because for t ∈ I1 ∩ I2, |Pr [G = t] −Pr [H = t] | = o(1/σG).
We can conclude that

P

t |Pr [G = t] − Pr [H = t] | is less
than 1/6 after accounting for the probability mass of G and
H outside I1 ∩ I2.

Theorem 9 follows from Lemma 11 and Lemma 12.

Thus, we obtain:

Theorem 13. For any γ > 1 and sufficiently large n,
any algorithm in the black-box model that γ-approximates the
entropy of a distribution over [n] in D(log n)/γ2 is required to

make Ω(nmax{1/2γ2 ,2/(5γ2−2)}) samples from it.

4. THE HYBRID MODEL
In this section we consider the hybrid model where an

algorithm is given access to both explicit and black-box ver-
sions of the same distribution. Our algorithm for this case
hinges on an alternate interpretation of the entropy: the en-
tropy of the distribution p is the expected value of log(1/pi)
where i is distributed according to p. The algorithm, given
that the entropy value is not too small, needs only a poly-
logarithmic number of samples and probes.

Theorem 14. For any γ > 1, there exists an algorithm
in the hybrid model that can approximate the entropy of a
distribution on [n] to within a multiplicative factor of γ with

probability at least 3/4 in O
“

γ2 log2 n
h2(γ−1)2

”

time, provided that

the entropy of the distribution is at least h.

Proof. Let m ≥ O
“

γ2 log2 n
h2(γ−1)2

”

. The algorithm takes m

samples, say i1, . . . , im from p. The output of the algorithm
is X = (1/m)

P

j∈m log(1/pij ).

Define the random variable Xj
def
= log(1/pij ) for j =

1, . . . , m. Clearly, E [Xj ] = H(p). All that remains to show
is that the variance of the summation is not too large, so
that we get a γ-approximation to the entropy value. Since
the Xj ’s are independent, it will suffice to bound the vari-
ance of an individual Xj . We bound this variance in the
following lemma.

Lemma 15. Var [Xj ] ≤ 3 + log2 n.

Proof. By the definition of variance,

Var [Xj ] = E
ˆ
X2

j

˜
−E [Xj ]

2 =

 
X

i

pi log2(1/pi)

!

−H(p)2.

Let A
def
= {i | pi ≤ 1/e}, and Y be a random variable

that takes (1/pi) with probability pi for i ∈ A, and 0 with

probability 1 − wp(A). Finally, let f(x)
def
= log2 x. Note

that f(x) is concave for x ≥ e and therefore by Jensen’s
inequality, E [f(Y )] ≤ f(E [Y ]) for the random variable Y .
Now, we can write
X

i

pi log2(1/pi) =
X

i∈A

pi log2(1/pi) +
X

i 6∈A

pi log2(1/pi)

≤ E [f(Y )] + wp([n] \ A) log2 e

≤ f(E [Y ]) + wp([n] \ A) log2 e

= log2 |A| + wp([n] \ A) log2 e

≤ log2 n + 3

By the independence of the Xj ’s, Var [X] = Var [Xj ] /m ≤
(3 + log2 n)/m.

At this point, we use Chebyshev’s inequality, which states
that for ρ > 0, Pr [|X − E [X] | ≥ ρ] ≤ Var [X] /ρ2, to bound
the error probability of the algorithm.

Pr [A does not γ−approximate H(p)]

= Pr [X ≤ H(p)/γ or X ≥ γH(p)]

≤ Pr [|X − H(p)| ≥ (γ − 1)H(p)/γ]

≤ γ2(3 + log2 n)

m(H(p))2(γ − 1)2
≤ 1/3,

where the last inequality follows from the choice of m.

Corollary 16. There exists an algorithm A in the hy-
brid model which γ-approximates H(p) in O(( γ

γ−1
)2) time

when H(p) = Ω(log n),

The next theorem gives a lower bound for the hybrid model
when the entropy of the distribution is not lower bounded.
The distribution used to show this lower bound has very
small entropy and thus does not fall into the family of dis-
tributions for which the above upper bound applies.

Theorem 17. For γ > 1 and sufficiently large n, any al-
gorithm in the hybrid model that γ-approximates the entropy
of a distribution over [n] (with non-zero entropy) is required

to take Ω(n
1−o(1)

γ2 ) samples from it.



Proof. Let α = 1−o(1)

γ2 . Consider the following distribu-
tions:

p
def
= 〈1 − n−α, n−α, 0, . . . , 0〉

and

q
def
= 〈1 − n−α, n−1, . . . , n−1

| {z }

n1−α

, 0, . . . , 0〉.

Note that H(p) = (1+o(1))αn−α log n and H(q) > n−α log n.
By the choice of α, H(q)/H(p) ≥ γ2.

Let P be the family of distributions obtained from p by
permuting the labels of the elements. Define Q similarly for
q. It is simple to verify that any algorithm taking o(nα)
samples and making o(nα) probes will fail to distinguish
between a randomly chosen member of P and a randomly
chosen member of Q with high probability.

The next theorem gives a lower bound on the complexity
of approximating the entropy in the hybrid model when the
distribution has a lower bound on the entropy value. The
proof generalizes the counterexample in Theorem 17.

Theorem 18. For γ > 1 and sufficiently large n, any
algorithm in the hybrid model that γ-approximates the en-
tropy of a distribution over [n] in Dh is required to take
Ω(log n/(h(γ2 − 1)) samples from it.

Proof. Let α < 1 and k
def
= d2h/(1−n−α)e. Consider the

following distributions:

p
def
= 〈

k
z }| {

(1 − n−α)/k, . . . , (1 − n−α)/k, n−α, 0, . . . , 0〉
and

q
def
= 〈(1 − n−α)/k, . . . , (1 − n−α)/k

| {z }

k

, n−1, . . . , n−1

| {z }

n1−α

, 0, . . . , 0〉.

Note that H(p) < h + (1 + o(1))αn−α log n and H(q) >
h + n−α log n.

Let P be the family of distributions obtained from p by
permuting the labels of the elements. Define Q similarly for
q. It is simple to verify that any algorithm taking o(nα)
samples and making o(nα) probes will fail to distinguish
between a randomly chosen member of P and a randomly
chosen member of Q with high probability.

Next, we will maximize the value of α while obtaining
H(q)/H(p) > γ2 to conclude the proof. So, it suffices to
choose α such that

H(q)

H(p)
>

h + n−α log n

h + (1 + o(1))αn−α log n
≥ γ2.

If α is such that nα/(1 − α) ≤ (log n)/(h(γ2 − 1)), then the
entropy ratio of γ2 is attained.

5. MONOTONE DISTRIBUTIONS
A monotone distribution p = 〈p1, . . . , pn〉 is one for which

pi ≥ pi+1 for all i. The structure of a monotone distribution
makes it much easier to approximate the entropy.

5.1 The explicit model
We show that given an explicit monotone distribution, we

can approximate the entropy in polylogarithmic time.

Theorem 19. For γ > 2, there exists an algorithm in the
explicit model that can approximate the entropy of a mono-
tone distribution on [n] to within a multiplicative factor of γ
with probability at least 3/4 in O((log2 n)/ log γ) time, pro-
vided that the entropy of the monotone distribution is at least
(γ2/2) log(γ/2) + (4 log n)/n.

Proof. The algorithm A partitions the domain elements
into sets such that all the elements in a set have similar prob-
ability values, and then uses the sizes of each of the sets to
estimate the entropy. The algorithm constructs this parti-
tion by using binary search on the explicit representation of
the distribution for predetermined values.

Let δ = γ2/4. Consider the following partition of [n]. Let

k
def
= O(log n/ log γ). Let B0 = {i | pi ≤ n−2}, and Bj =

{i | δj−1n−2 < pi ≤ δjn−2} for j = 1, . . . , k. Algorithm A
determines the boundaries of the Bj ’s and hence the number
of elements in each Bj by binary search. At this point, with

no further queries, A has a
√

δ-approximation to every pi

for i 6∈ B0 (for each Bj , A uses the geometric mean of the
upper and lower threshold to approximate the pi values).

Using these approximate pi values, the algorithm com-
putes entropy values that are a γ-approximation to HBj (p)’s
for j > 0 as follows.

Let B = ∪j>1Bj . For each i ∈ B, let qi
def
= cipi be the

representative probability value that the algorithm uses for
Bj to which i belongs. So, 1√

δ
≤ ci ≤

√
δ for all i ∈ B. For

all the other i’s, let qi = 0.

H(q) =
X

i∈B

cipi log(1/pi) +
X

i∈B

cipi log(1/ci)

≤
√

δHB(p) + (wp(B) log e)/e

≤ 2
√

δH(p) = γH(p)

when H(p) ≥ (2 log e)/(eγ). Similarly,

H(q) =
X

i∈B

cipi log(1/pi) +
X

i∈B

cipi log(1/ci)

≥ 1√
δ
HB(p) − wp(B)

√
δ log

√
δ

≥ 1√
δ

„

H(p) − 2 log n

n

«

− wp(B)
√

δ log
√

δ

≥ H(p)/γ

when H(p) ≥ (γ2/2) log(γ/2) + (4 log n)/n.
Finally, the algorithm outputs

P

i∈B qi log(1/qi), which is
a γ-approximation to H(p).

The number of probes that the algorithm makes is O(log n)
per search; therefore, the complexity of the algorithm is
O(log2 n/ log γ)

We can prove Theorem 19 with γ > 1, in which case we
choose δ = (γ2 + 1)/2 to ensure that δ > 1. We defer the
details to the full version of the paper.

5.2 The black-box model
We show that the entropy of a monotone distribution can

be approximated in polylogarithmic time even in the black-
box model. Our algorithm rests on the following observation
that is formally stated in Lemma 20: if a monotone distri-
bution p over [n] is such that wp([n/2]) and wp([n]\[n/2])



are very close, then the distribution must be close to uni-
form. In such a case, we can approximate the entropy of the
distribution by the entropy of the uniform distribution. The
main idea behind our algorithm is to recursively partition
the domain into half, stopping the recursion if the total sum
of the probabilities of each half are close or if they are both
too small to contribute much to the total entropy. Our algo-
rithm can be viewed as forming a tree based on the samples,
where the root is labeled by the range [1, n], and if the node
labeled by the range [k, `] is partitioned, its children are la-
beled by [k, (k+`)/2] and [(k+`)/2+1, `], respectively. Once
the partition tree is determined, the algorithm estimates the
entropy by assuming that the distribution restricted to the
ranges labeling each leaf is uniform, and combines the esti-
mates in proportion to their total weight. For an interval
I, let SI denote the set of samples that are in I and |I| the
length of the interval.

More specifically, the procedure BuildTree(S,β) takes as
input a parameter β > 1 and a multiset S of m samples from
p and outputs a rooted binary tree TS as follows: Let v be
a node in the tree that is currently a leaf corresponding to
the interval [i, j] for some i and j. We determine that v
will remain a leaf if either of the following two conditions is
satisfied:

• |S[i,j]| < mβ/ log3 n (call v light), or

• |S[i,(i+j)/2]| ≤ β|S[(i+j)/2+1,j]| (call v balanced).

Otherwise, we split v’s interval by attaching two children to
v, corresponding to the intervals [i, (i+j)/2] (left child) and
[(i + j)/2 + 1, j] (right child). Let I(TS) denote the set of
intervals corresponding to the balanced leaves of TS.

For each interval I ∈ I(TS), we estimate the contribution
of the interval to the total entropy of the distribution. We
define a function α(I) which is supposed to approximate the
entropy in the interval I. If the interval is big, we use the
samples to approximate the entropy and if the interval is
small, we use the algorithm for heavy elements in the black-
box model (Section 3) to approximate the entropy. Formally,
if

|I| > 2

„
log3 n

2β

«1/(β−1)

,

(call such intervals long) then let

α(I)
def
=

|SI |
m

log
|I|
2

.

Otherwise, for short intervals, the procedure α(I) takes
O(|I| log6 n) samples and computes the normalized frequency
vector q of these samples. Then, α(I) returns HI(q). We
now give the top level description of our algorithm:

Algorithm MonotoneApproximateEntropy(γ)

1. β =
q

γ(1 − log log n
log n

).

2. Get a multiset S of O((β5 log4 n)/(β − 1)2) samples
from p.

3. TS = BuildTree(S, β).

4. Output
P

I∈I(TS) α(I).

First we show that the maximum and the minimum entropy
values for an interval corresponding to a balanced leaf are
fairly close.

Lemma 20. Let I be an interval of length 2k in [n], I1

and I2 be a bisection of I, and p be a monotone distribution
over [n]. Then,

HI(p) ≤ wp(I) log k − wp(I1) log wp(I1) − wp(I2) log wp(I2)

and

HI(p) ≥ 2wp(I2) log k − wp(I2)(log wp(I1) + log wp(I2)).

In particular, the ratio of the upper bound to the lower bound
on HI(p) is at most wp(I)/2wp(I2).

Proof. The proof of the upper bound follows from the
concavity of H(p). The maximum value is attained when
the available weight is distributed uniformly over the ele-
ments.

Let w1
def
= wp(I1) and w2

def
= wp(I2). We will prove the

lower bound by relaxing the monotonicity condition to a
weaker condition: namely, the condition that for i ≤ k,
pi ≥ w2/k, and for i > k, pi ≤ w1/k. It is easy to verify that
any monotone distribution will satisfy this new constraint.
Again, by the concavity of the entropy function, we can plug
w2/k for the elements in I1 and w1/k for as many elements
as possible in I2 to give a lower bound on HI(p). Hence, we
get

HI(p) ≥ w2 log(k/w2) + w2 log(k/w1).

For a balanced leaf corresponding to an interval I with
the bisection I1, I2, we expect the ratio wp(I)/2wp(I2) to be
small. So, by choosing the parameter β which determines
when to split intervals, we can ensure that we have close
upper and lower bounds for the entropy of I.

Lemma 21. Let I be an interval in [1, n] such that wp(I) ≥
log−3 n. Then, with probability at least 1 − n−1, |SI | will be
a β-approximation to mwp(I).

Proof. The lemma follows from a straight-forward ap-
plication of the Chernoff bounds. The random variable X
that corresponds to |SI | is a summation of m independent
Bernoulli trials, each with success probability wp(I). There-
fore by the choice of m in the algorithm, the probability that
this summation is less than E [X] /β or more than βE [X] is
at most 1/n. Since E [X] = mwp(I), the lemma follows.

Lemma 22. Let I be an interval in [1, n] such that wp(I) ≥
log−3 n and I1, I2 be a bisection of I. For β > 1, (1)
if wp(I1)/wp(I2) ≥ 2β − 1, then with probability at least
1−2n−1, |SI1 | ≥ β · |SI2 |; (2) if wp(I1)/wp(I2) ≤ (1+β)/2,
then with probability at least 1 − 2n−1, |SI1 | ≤ β · |SI2 |.

Proof. By Lemma 21, we know that with probability at
least 1 − n−1, |SI | ≥ mwp(I)/β. Fix any t > mwp(I)/β.
We will consider the ratio of the number of samples from
I1 and I2 conditioned on the event that there are exactly
t samples from I. Let Yi, for i = 1, . . . , t, be an indicator
random variable that takes the value 1 if the i-th of these



t samples is in I2, and Y =
P

i Yi. Therefore, we want to
show that the probability that (t − Y )/Y < β is at most
1/n.

The rest of the proof is an application of the Chernoff
bounds. Note that (t − Y )/Y < β implies Y > t/(β + 1).
Since E [Y ] ≤ t/(2β), we get

Pr

»

Y >
t

β + 1

–

≤ Pr

»

Y > E [Y ] +
t(β − 1)

2β(β + 1)

–

≤ exp

„
−t(β − 1)2

β2(β + 1)2

«

.

Conditioned on the event that t ≥ mwp(I)/β, this probabil-
ity is less than 1/n. Combining this with Lemma 21, we can
conclude that with probability at least 1 − 2n−1, we have
|SI1 | ≥ β · |SI2 |.

Similarly, the second part of the lemma can be proved.

By Lemma 22, we can assume that for a “balanced interval”
I, the ratio of the weights for the halves is at most 2β−1. By
Lemma 22, two intervals associated with two sibling nodes
have weight ratio at least (1 + β)/2.

Let assumption (∗) be the event that no bad event hap-
pens, i.e., that (1) for each interval we decide to split, we
have that wp(I1)/wp(I2) ≥ (1+β)/2 and (2) for each interval
we decide not to split, we have that wp(I1)/wp(I2) ≤ 2β − 1
and (3) each light leaf has weight at most β2/ log3 n.

Corollary 23. Assume that (*) holds. Let I be an in-
terval that is associated with a balanced leaf in TS. If wp(I) ≥
log−3 n, then α(I) is a β2-approximation to HI(p).

Proof. Let I1, I2 be the bisection of I. By the fact that
(*) holds, |SI |/mβ ≤ wp(I) ≤ |SI |β/m and wp(I1)/wp(I2) ≤
2β − 1. Combining these with Lemma 20, we can conclude
that the maximum and minimum possible entropy value for
HI(p) have ratio β. Therefore, α(I) ≤ βwp(I) log(|I|/2) ≤
β2HI(p).

Now, if I is a long interval, we can see that α(I) ≥
(wp(I)/β) log(|I|/2) ≥ HI(p)/β2 as follows:

|I| > 2

„
log3 n

2β

«1/(β−1)

implies − log wp(I2)/ log(|I|/2) ≤ β − 1. Hence, we get
βwp(I) log(|I|/2) ≥ wp(I) log(|I|/2) − wp(I1) log wp(I1) −
wp(I2) log wp(I2).

For a short interval I, we use the following lower bound on
the entropy in the interval, i.e., HI(p) ≥ (wp(I)/2) log(|I|/2).
The total entropy contribution of the elements in this inter-
val with probability at most log−5 n/|I| is o(log−4 n/(β−1)).
By Lemma 3, the entropy of the elements with probabil-
ity at least log−5 n/|I| are estimated well: if we choose
ε0 ≤ (β − 1)/(2β(β + 2)), the output of Lemma 3 will be
a β2-approximation to HI(p). This follows from (1 − ε0 −
2ε0β + O(log−1 n))−1 ≤ β2.

Thus, Corollary 23 shows that the function α(I) is defined
appropriately.

Lemma 24. Given β > 1, assume that (∗) holds. Then
the number of nodes in TS is at most

(6 log n log log n)/(log(β + 1) − 1).

Proof. Each node v in the tree corresponds to an in-
terval Iv = [i, j] of probabilities pi, . . . , pj−1; let w(v) =
pi + · · · + pj−1. For each level h in the tree, let Nh (resp.
Lh) denote the number of internal nodes (resp. leaves). The
total number of nodes in the tree (whose depth is at most

log n) is at most
Plog n

h=1 Nh +Lh. But,
P

h Lh = 1+
P

h Nh.
Now, we show an upper bound on Nh.

Fix a level h and let v1, . . . , vNh be the internal nodes
in level h ordered by the intervals they define. Note that
the intervals are strictly non-overlapping since the nodes
are from the same level. If vi and vi+1 are siblings, then
by assumption (∗), w(vi) ≥ (1 + β)w(vi+1)/2. Otherwise,
by monotonicity, w(vi) ≥ w(vi+1). Since TS is a full bi-
nary tree, every node in level h has a sibling in level h, so
for at least half the i’s in [Ih], w(vi) ≥ (1 + β)w(vi+1)/2.
Furthermore, since 1/ log3 n ≤ w(v) ≤ 1,

Nh ≤ 3 log(1+β)/2 log n =
3 log log n

(log(1 + β)) − 1
.

Now, we are ready to complete our proof.

Theorem 25. For γ > 1, there is an algorithm that ap-
proximates the entropy of a monotone distribution on [n] to
within a multiplicative factor of γ with probability at least

3/4 in O(γ5/2 log(6γ1/2−3)/(γ1/2−1) n/((γ1/2 −1)2(log(γ1/2 +
1)− 1)) time provided that the entropy of the distribution is

Ω(γ2/(log(γ1/2 + 1) − 1)).

Proof. Assume that (*) holds. By Corollary 23, we can

assume that we have a γ
“

1 − log log n
log n

”

-approximation to the

entropy of intervals that are associated with balanced leaves
and each light leaf has weight at most β2/ log3 n. Since the
total weight of the intervals associated with light leaves is
at most

3β2 log log n/((log(β + 1) − 1) log2 n),

their combined entropy contribution is

O(γ2 log log n/((log(γ1/2 + 1) − 1) log n)).

Let B = ∪I∈I(TS)I. Since the algorithm’s output is a γ-
approximation to HB(p), it is clearly at most γH(p). We
can show the other direction as follows.

HB(p)

γ(1 − log log n
log n

)
≥

H(p) − O( γ2 log log n

(log(γ1/2+1)−1) log n
)

γ(1 − log log n
log n

)

≥
H(p)(1 − log log n

log n
)

γ(1 − log log n
log n

)
≥ H(p)

γ
.

Since (*) fails to hold true with probability o(1), the error
probability of the algorithm is o(1). The running time of the
algorithm is sample size times the size of TS plus the total
sample complexity of α(I).

Note that the lower bound shown in Theorem 5 applies to
monotone distributions. Therefore, a restriction on the en-
tropy such as the one in the statement of Theorem 25 is
necessary.



6. SUBSET-UNIFORM DISTRIBUTIONS
Consider subset-uniform distributions Ek which are uni-

form over some subset K ⊂ [n] with |K| = k. The entropy
of this class of distributions is log k. If we approximate k
to within a multiplicative factor of γ, then we get a very
strong additive approximation to log k. Now, given a black-
box distribution which is promised to be from Ek for some
k, the question is to approximate k.

We first approximate k to within a constant factor. Then,
we use this approximate value of k together with an algo-
rithm for approximating the L2-norm of a distribution to
improve this approximation to any arbitrary factor. First,
we show how to approximate k to within a factor of 5.

Lemma 26. There exists an algorithm in the black-box
model that, for a distribution in Ek, outputs ` such that
k/5 ≤ ` ≤ 5k with probability at least 4/5 in O(

√
k) time.

Proof. The algorithm is as follows: Sample until you see
some element for the second time, say at the t-th sample.
Output t2.

In order to prove the lemma, we need to show that the
probability of getting a collision before

p
k/5 samples or not

seeing a collision until after
√

5k samples is less than 1/5.

Pr [No collisions after t samples] =

tY

i=1

„

1 − i − 1

k

«

.

For t <
p

k/5,

tY

i=1

„

1 − i − 1

k

«

≥ 1 − 1

k

t−1X

i=0

i ≥ 1 − t2

2k
≥ 1 − 1

10
= 9/10.

For t ≥
√

5k,

tY

i=1

„

1 − i − 1

k

«

≤
„

1 − t

2k

«t

≤ e−t2/2k ≤ e−5/2 < 1/10.

Next, we recall the result from [4] (see also [1]).

Theorem 27 (based on [4]). Given a black-box distri-
bution P over a domain R, there is an algorithm that uses
O(
p

|R|/ε2) samples and estimates ‖X‖ to within a factor
of (1 ± ε) with probability at least 4/5.

We put these together to obtain an algorithm that obtains
a γ-approximation to k for any γ > 1.

Theorem 28. For any γ > 1, there exists an algorithm in
the black-box model that, for a distribution p ∈ Ek, outputs
` such that k/γ ≤ ` ≤ γk with probability at least 3/5 in

O(
√

k/γ2) time.

Proof. The algorithm has two phases. In the first phase,
we use the algorithm in Lemma 26 on p to obtain k′, which
is a 5-approximation to k. Now, observe that ‖p‖ = 1/k. In
the second phase, we use the algorithm from Theorem 27 to
approximate the two norm of p, viewing p as a distribution
over a domain K ′ of size k′ and with ε = γ−1; the important
fact about this algorithm is since it is based purely on the
collision probability, it is oblivious to the identity of the
domain K′ itself. It can be seen that the output of the

second phase is actually a γ-approximation to 1/k, which
in turn can be used to obtain a γ-approximation to k. The
running time of the second phase is O(

√
k′/γ2) which is

O(
√

k/ε2).

7. ENTROPY VIA COLLISIONS
Several earlier work in statistical physics community [7,

8], suggest the use of the collision probability (‖ · ‖2
2) to

estimate the entropy. In fact, given a bound on the maxi-
mum probability, we show the following lemma relating the
collision probability and the entropy.

Lemma 29. If ‖p‖∞ ≤ n−α, then

αH(p) ≤ − log ‖p‖2 ≤ H(p).

Proof. Using the relationship between norms, we get

log ‖p‖2 ≤ log(|p| ‖p‖∞) ≤ log n−α = −α log n ≤ −αH(p).

Also, by Jensen’s inequality,

log ‖p‖2 = log
X

i

p2
i ≥

X

i

pi log pi = −H(p).

However, it is unclear how to use this to obtain an arbitrary
multiplicative approximation with a better sample complex-
ity than our results.
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