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Abstract
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which the total running time of the verifier is significantly less than the size of the
input. For example, we give polylogarithmic time approximate PCPs for showing
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In the process, we develop a set of tools for use in constructing these proof systems.
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1 Introduction

Consider the following scenario: A client sends a computational request to a
“consulting” company on the internet, by specifying an input and a compu-
tational problem to be solved. The company then computes the answer and
sends it back to the client. This scenario is of interest whenever the company
can help a client reliably find the answer to a function faster than the client
could compute the function on its own, or whenever the client does not possess
the code required to solve the computational problem. An obvious issue that
arises, especially in the case that the company does not have a well established
reputation, is: why should the client believe the answer to be correct? Sur-
prising results on Probabilistically Checkable Proof (PCP) systems show that
there is a format in which the company can write a proof of correctness of the
result such that the proof can be verified by a client (verifier) that looks at
only a constant number of bits of the proof (for example, see [1,37]). However,
in these approximate PCPs, the running time of the verifier has at least linear
dependence on the size of the theorem statement, which in turn is necessarily
at least as large as the input data.

In this paper we study the setting in which the computations are performed on
large data sets. In this setting, it is desirable to find proof systems for clients
that do very little work, running in time sublinear in the size of the data set.
While this may at first seem to be an impossible task, we show that when it is
enough for the client to know that the answer is close to correct, then in many
cases it is possible to write the proof in a format where the verifier requires
sublinear, in some cases even constant or polylogarithmic, time to verify the
proof. To illustrate our notion of close, consider a graph that has a cut of size
at k, the client may be willing to accept a proof that only ascertains that the
size of the cut is at least (1 − ǫ)k.

Our results. The model we consider in this paper, described in Section 2, is
based on the model of PCP [20] with modifications borrowed from the models
of CS proofs [35], program checking [6], approximate program checking [23],
property testing [38,24], and spot-checking [15]. We concentrate on minimizing
the running time of the verifier. All of the running time bounds in our results
yield corresponding upper bounds on the query complexity that are no better
and often somewhat worse than those that would be attained by using the
known PCP results. Furthermore, because our upper bounds apply only to
promise problems, where the behavior of the verifier is guaranteed only for
inputs that are either in the language or very far from being in the language,
our results do not have any implications to the complexity of proof systems
for problems studied in the traditional PCP literature (for example, see [1]).

In the PCP model, there are protocols that work for sets of problems defined by
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complexity classes such as NP,NEXP. In this model, we do not know of any
such general purpose protocols. In fact, as we will see, there are some very
simple and efficient protocols for approximations of NP-complete problems,
whereas there are other polynomial-time problems for which we know of no
protocol with a sublinear time verifier. This is similar to the situation in the
area of property testing [38,24], where there are constant time property testers
for several NP-complete problems [24], but for several other “easy” problems
it is known that property testers require time that has some dependence on
the input size (cf. [17]).

We begin by considering problems that return approximations of optimal solu-
tions for combinatorial optimization problems. We give efficient proof systems
for proving good lower bounds on the solution quality to constraint satisfac-
tion problems, including Max Cut and Max SAT, to a polylogarithmic time
verifier. We next show how to prove the existence of a near optimal solution
of a sparse fractional packing problem to a polylogarithmic time verifier. The
techniques behind our approximate PCP for fractional packing can be used
for several other problems. For example, it is possible to prove the existence
of a large flow, a large matching, or a small bin packing in such a way that the
verifier need only spend time nearly linear in the number of vertices (which is
sublinear for graphs that are not sparse) in the first case and polylogarithmic
time in the latter cases. The size of the proof is nearly linear in the size of
the solution to the corresponding search problem and the proof can be com-
puted efficiently by the prover. In all of the above approximate PCPs it is
also possible to prove the existence of suboptimal solutions, i.e., if there exists
a solution of value v, then there is a proof that convinces the verifier of the
existence of a solution of value at least (1 − ǫ)v.

We also consider a different type of approximation problem within this model,
in particular the task of property testing. That is, given an object, we would
like to know if the object is close to having the relevant property, i.e., whether
it is close with respect to some notion of distance to some other object that has
the property. We give examples of properties for which there is a proof system
for which the verifier is provably more efficient than any property tester for
the same property.

We develop a new set of tools for use in constructing these proof systems. For
example, we give an approximate PCP for estimating lower bounds on sums
of n inputs where the verifier runs in constant time. We develop a constraint
enforcement protocol that allows the verifier to ensure that linear upper bound
constraints are satisfied without looking at all of the variables involved.

Some possible applications. Let us mention two examples of properties
of massive data sets to which our proof systems apply.
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(1) (Quality of service in networks) A company wants to convince a client
that the company’s network is capable of handling a large sample load
provided by the client. The above techniques could be used to convince
the client that at least 1− ǫ fraction of the load can be routed, such that
the running time of the client is O(d(log n)/ǫ) where d is the diameter
of the network (typically much smaller than the number of nodes in the
network).

(2) (Website hits) In order to prove the popularity of their website to ad-
vertisers, a company may present a list of machines that have accessed
their website. The list may be made longer by either adding fake entries
(machines that did not access the website or do not exist) or by dupli-
cating the existing legal entries. Assuming that the advertisers have a
way of detecting fake entries, standard sampling methods can be used to
ensure that at most an ǫ/2 fraction of the entries are fake in O(1/ǫ) time.
Methods given in Section 3.2 allow the advertisers to ensure that at most
an ǫ/2 fraction of the entries are duplicates in O(1/ǫ) time.

Using PCP over a communication channel. When a verifier reads
a proof over a communication channel (such as the internet), it may not be
appropriate for the verifier to assume that the proof does not change during
the interaction. However, for many of the PCP protocols, including most of
the protocols in this paper, it is easy to see that the ability to change the
proof during the interaction allows one to convince the verifier of an incorrect
proof. Furthermore, it may be infeasible for the verifier to download the whole
proof Π before beginning the checking phase. Instead, the verifier may want
some assurance that the bits of the proof Π do not change depending on the
past communication (as in the oracle prover model). One possibility is to use
a trusted third party: Π is transmitted to the third party, and the verifier
interacts with the third party assuming that it has no reason to change bits
of the proof. Alternatively, if one assumes a bound on the running time of the
entity that has produced the proof Π, then it is possible to force the entity to
commit to the proof in such a way that only entities that are computationally
more powerful than the allowed bound are able to change the proof in a
convincing way. One can use the commitment methods of [34] in this setting,
as was described in [31,35,32].

Related Work. Probabilistically checkable proof systems [20] can be used
to convince a polynomial-time verifier of the correctness of a decision problem
computation. The PCP model is equivalent in power to multiple prover proof
systems [5], (see also [16,2,4]) and to the oracle prover model [20]. It is known
that a proof of membership in any NP language can be written such that only
a constant number of locations of the proof need to be seen in order to verify
the correctness of the proof [1]. Thus we have a good understanding of the set
of problems for which it is feasible to find proof systems in which the verifier
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is efficient and the number of times that the verifier can query the proof is
limited. Note that the protocols in the aforementioned results all require that
the verifier look at the whole input in order to choose the locations in the
proof to query, and thus do not give sublinear time protocols.

However, if the input were presented in a good error-correcting code format,
there is a verifier for such proofs whose running time is independent of the size
of the input [4]. This can be considered the first (and to our knowledge the only
other) result on probabilistically checkable proofs with sublinear time verifiers.
Our work differs in that it focuses on inputs that are presented in relatively
standard formats. The result of [4] can be used to provide a nontrivial, though
not sublinear, bound on the running time of any verifier: since inputs can be
converted to such an error-correcting code format in linear time [40], it follows
that it is possible to construct proof systems for any proof in a reasonable
formal system with an O(n + log ℓ)-time verifier, where n is the length of the
theorem and ℓ is the length of the proof.

Program result checking [6] and self-testing/correcting techniques [7,33] were
introduced so that a client could ensure the correctness of a solution to a
computation. Program result checkers yield a special type of proof system
for function computations where the proof consists of a list of all possible
instances of the same computational problem, i.e., the value of the desired
function for each possible input. It is easy to see that all result checkers as
well as result checkers in the library setting [7] satisfy the requirements of the
model used here, although none have verifiers which run in sublinear time.

Proving that results are approximately correct is also related to approximate
checking [23], property testing [38,24], and spot-checking [15], where the goal
is to determine whether an answer is close to correct for various interesting
notions of closeness. All approximate checkers satisfy the requirement of the
model here, although again, none of the previously known checkers has a
sublinear time verifier. Conversely, all of our results can be restated as property
testers or spot-checkers that use the additional aid of a proof.

Several other works have looked at PCPs with resource limited verifiers, espe-
cially verifiers using logarithmic space. In [11,19,13,21], the question of classi-
fying the languages that have interactive proofs with various models of space-
bounded verifiers is studied. The work of [13,30] consider the issue of when
zero-knowledge interactive proof systems exist for systems with space bounded
verifiers. The work of [8] considers the problem of designing untamperable
benchmarks for other computers to follow. Their model considers the scenario
of a resource-limited computer, which would like to ensure that a (very fast)
computer has correctly computed benchmarks without taking any shortcuts.
The main difference from this work is that in our model the verifier treats the
prover as a black box and is only interested in what the answer is, rather than
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how (or how fast) it was computed.

2 The model

The model we describe below is based on probabilistically checkable proofs.
Some features of this model are;

• It applies to function computations and decision, optimization, promise,
approximation, and search problems.

• It allows proof systems in which the verifier is only convinced of the weaker
assertion that a solution is approximately correct.

• It parametrizes the runtime of the verifier.
• It analyzes the runtime of the verifier implemented as a RAM machine in

order to better understand the asymptotic complexity of the verifier.

We assume that the verifier is a RAM machine that has read access to an input
tape, read access to the proof, read access to a source of random numbers,
and read/write access to computation tapes. We assume that the verifier can
read or write any word or number in any tape in constant time and perform
arithmetic operations in constant time. This assumption is for simplicity of
exposition since it affects the running time only by polylogarithmic factors.
Let the random variable 〈Π,V〉(x, y) represent the output of the verifier V
given a proof Π on input (x, y) when the random bits used by the verifier are
chosen uniformly and independently. 1

In the following, ∆(x, y) will be a distance function, where x is assumed to
be the input, y is a candidate for f(x) and ∆(x, y) gives an indication for
how close y is to being correct. In some cases, ∆(x, y) may depend on the
difference between f(x) and y (as is typical when measuring the success of an
approximation algorithm), in others ∆(x, y) may indicate the distance between
x and the closest x′ such that f(x′) = y (as is typically considered in measuring
the success of a property testing algorithm). When ∆ is used in the latter sense,
we refer to the verifier as a proof-assisted property tester, which we describe
in more detail below.

We now give definitions of approximate PCP models. Let ∆(·, ·) be a distance
function.

Definition 1 (Approximate PCP) A function f is said to have a t(ǫ, n)-
time, s(ǫ, n)-space, ǫ-approximate probabilistically checkable proof system with

1 Note that the random bits can be used to determine which bits are read from the
proof and thus can determine the output of the verifier.
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distance function ∆ if there is a randomized verifier V that, for all inputs
0 ≤ ǫ ≤ 1 and (x, y) of combined size n, runs in time O(t(ǫ, n)) and

(1) if ∆(x, y) = 0, then there is a proof Π of size O(s(ǫ, n)) bits such that
Pr[〈Π,V〉(x, y) = PASS] ≥ 3/4 and

(2) if ∆(x, y) > ǫ, then for all proofs Π′, Pr[〈Π′,V〉(x, y) = FAIL] ≥ 3/4.

Remarks. (i) By running verifier O(log 1/δ) times and taking the majority,
one can obtain a confidence at least 1 − δ, for any δ > 0. For simplicity, we
construct verifiers for a constant δ.

(ii) The output of the verifier is not specified when 0 < ∆(x, y) ≤ ǫ.

(iii) The choice of the distance function ∆ is problem-specific, and determines
the ability to construct a proof system, as well as determining how interesting
the proof system is. The usual definitions of probabilistically checkable proof
systems for decision problems require that when y = f(x), a correct proof can
convince the verifier of that fact, and when y 6= f(x), no proof can convince
the verifier of the same. In our model, this is achieved by choosing ∆(·, ·) such
that ∆(x, y) > ǫ whenever y 6= f(x) and ∆(x, y) = 0 when y = f(x).

(iv) ∆ need not be computable by the verifier. Thus, one can define proba-
bilistically checkable proofs for promise problems, in which there are inputs
for which the verifier is allowed to either pass or fail, by setting ∆ to ǫ/2 on
those inputs. Independently of this work, Szegedy [41] has given a related for-
mulation of probabilistically checkable proof systems in terms of three-valued
logic that also applies to promise problems.

(v) We often omit the proof size s(ǫ, n) in our theorems.

For the special case when ∆(x, y) measures the distance between x and the
“closest” x′ such that f(x′) = y, we call the proof system a (ǫ, t(ǫ, n), s(ǫ, n))-
proof-assisted property tester. Here, the definition of “closest” is usually in
terms of the relative Hamming distance between x and x′, i.e., the ratio of
the Hamming distance between x and x′ and the size of x. Thus, the verifier
passes all x such that f(x) = y, and on the other hand, if the verifier passes
(x, y), one can assume that there is an x′ such that (1) x and x′ are ǫ-close
(according to the specified distance metric) and (2) f(x′) = y. In the case of
property testing, we will typically omit y from the parameter list to ∆. As
before, s(ǫ, n) denotes the size of the proof (in bits) and t(ǫ, n) bounds the
running time of the verifier.

We now give specific definitions for approximate lower and upper bound PCPs.
All of these definitions are special cases of Definition 1.
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Definition 2 (Approximate lower (upper) bound PCP) A function f
is said to have a t(ǫ, n)-time, s(ǫ, n)-space, ǫ-approximate lower bound (resp.
upper bound) PCP if there is a randomized verifier V that, for all inputs
0 ≤ ǫ ≤ 1 and (x, y) of combined size n, runs in time O(t(ǫ, n)) and

(1) if y ≤ f(x) (resp. y ≥ f(x)), then there is a proof Π of size O(s(ǫ, n))
bits such that Pr[〈Π,V〉(x, y) = PASS] ≥ 3/4 and

(2) if (1 − ǫ)y > f(x) (resp. (1 + ǫ)y < f(x)), then for all proofs Π′,
Pr[〈Π′,V〉(x, y) = FAIL] ≥ 3/4.

The multiplicative approximate lower and upper bound definitions correspond
to setting ∆(x, y) = max{0, 1 − f(x)/y} and ∆(x, y) = max{0, f(x)/y − 1},
respectively, in Definition 1.

Definition 3 (Approximate additive lower (upper) bound PCP) A func-
tion f is said to have a t(ǫ, n)-time, s(ǫ, n)-space, ǫ-approximate additive lower
bound (resp. upper bound) PCP if there is a randomized verifier V that, for
all inputs 0 ≤ ǫ ≤ 1 and (x, y) of combined size n, runs in time O(t(ǫ, n)) and

(1) if y ≤ f(x) (resp. y ≥ f(x)), then there is a proof Π of size O(s(ǫ, n))
bits such that Pr[〈Π,V〉(x, y) = PASS] ≥ 3/4 and

(2) if y > f(x)+ǫ (resp. y < f(x)−ǫ), then for all proofs Π′, Pr[〈Π′,V〉(x, y) =
FAIL] ≥ 3/4

The additive approximate lower and upper bound definitions correspond to
setting ∆(x, y) = max{0, y − f(x)} and ∆(x, y) = max{0, f(x) − y}, respec-
tively, in Definition 1.

Notation. We use x ∈R S to denote that x is chosen uniformly at random
from a set S. We use [n] for the set {1, . . . , n}. We use b to denote the number
of bits in a memory word and we assume all integer variables fit in a word.

For a function or property f(x, . . .), let Πf (x, . . .) denote the proof and let
Vf(ǫ, Π) denote the verifier for this function/property checking a proof Π. The
proof Πf will consist of various components and data structures, each of which
will be referred to using the record notation ‘Π.·’. For example, if the proof Π
has an array called T , then we use Π.T to specify the verifier’s access to this
array in the proof.
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3 Some basic building blocks

3.1 Multiset equality (Permutation enforcement)

Given an input list X = 〈x1, . . . , xn〉, many of our approximate PCPs require
that the proof contain the list written in a different order Y = 〈y1, . . . , yn〉 (for
example, the sorted order). To be able to describe when X and Y above are
(close to being) permutations of each other, we need to extend set intersection
to multisets: an element i occurs exactly k times in X ∩ Y if and only if it
occurs exactly k times in one of X, Y , and at least k times in the other. For this
problem we would like the verifier to be able to ensure that |X∩Y | ≥ (1−ǫ)n.
In particular, the verifier should be able to access elements from Y while
ensuring that each accessed element corresponds to a unique element in X.
The difficulty comes from the possibility that the elements in each list are not
necessarily distinct. One would like to prevent the possibility that an xi from
X appears more than once in Y , or that two equivalent elements xi = xj in X
are replaced by only one element in Y . Without any aid, the verifier requires
Ω(

√
n) time to ensure that |X ∩ Y | ≥ (1 − ǫ)n [15]. Here we show that it

can be done in O(1/ǫ) time by requiring the proof to be written in a special
format. The special format consists of the permutation enforcer—two arrays
T1, T2 of length n, where the contents of location i in T1 contains a pointer to
the location of xi in Y and the contents of location i in T2 contains a pointer
to the location of yi in X.

Given two multisets X, Y , let ∆({X, Y }) = 1− |X ∩ Y |/n. Below we give the
proof-assisted property tester for the problem.

The proof ΠPE(X, Y, n)
For permutation σ such that xi = yσ(i) for all i:
T1[i] = σ(i) for all i;
T2[i] = σ−1(i) for all i;

The verifier VPE(X, Y, n, ǫ, Π):
Repeat O(1/ǫ) times:

Choose i ∈R [n]
If xi 6= yΠ.T1[i] or Π.T2[Π.T1[i]] 6= i output FAIL

Output PASS

Theorem 4 Given two multisets of size n, there is an (ǫ, 1/ǫ, n log n)-proof-
assisted property tester for multiset equality.

Proof: Call index i good if xi = yΠ.T1[i] and Π.T2[Π.T1[i]] = i; i is bad otherwise.
The set of bad indices is exactly the set of indices which cause the verifier to

9



fail.

If ∆({X, Y }) = 0, i.e., if X = Y , then there is a permutation σ for which
xi = yσ(i) for all i. Thus, using σ to define T1, T2 results in all indices being
good, and the verifier will always output PASS.

To show that if ∆({X, Y }) ≥ ǫ the verifier outputs FAIL with high probability,
we note that the number of good indices presented by any proof is upper
bounded by |X ∩ Y |. Conversely, since ∆({X, Y }) ≥ ǫ, there must be fewer
than (1 − ǫ)n good indices; it is easy to see that O(1/ǫ) trials suffice for
the verifier to come upon an index that is not good and output FAIL with
probability at least 3/4.

�

3.1.1 Set intersection

Similar ideas can be used to obtain additive approximate upper and lower
bound PCPs for set intersection. One application of these PCPs is to proving
bounds on the sizes of unions and intersections of databases queries.

The set intersection problem is: given sets A0 and A1 of n elements coming
from a domain D, and parameter ρ, is |A0∩A1| approximately ρn? We assume
that the sets are represented by an array of size n, where the i-th location
contains the i-th element of the set. Let f(A0, A1) = |A0 ∩A1|/n. The verifier
will use the proof in order to distinguish the case where ρ−ǫ/2 ≤ f(A0, A1) ≤
ρ + ǫ/2 from the case where f(A0, A1) < ρ − ǫ or f(A0, A1) > ρ + ǫ.

Without the aid of a proof, the verifier requires Ω(
√

n) time [15]. The lower
bound protocol of [28] can be adapted to this setting to get multiplicative
approximations of a lower bound on |A0 ∩ A1|, but we know of no such way
to get a multiplicative approximation for the upper bound using the methods
of [18], since they require a fast method of generating a random element of
A0 ∩ A1. Our techniques can be viewed as special cases of the techniques in
[28,18], where the identity function is used in place of a hash function. The
approximate PCP is as follows:
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The proof ΠSET(A0, A1, ρ):
T0 s.t. ∀x ∈ D, T0[x] = i if A0[i] = x and T0[x] = 0 otherwise

T1 s.t. ∀x ∈ D, T1[x] = i if A1[i] = x and T1[x] = 0 otherwise

The verifier VSET(A0, A1, ρ, ǫ, Π):
Repeat m = O(1/ǫ2) times:

Choose c ∈R {0, 1}
Choose x ∈R Ac

Let ic = Π.Tc[x], i1−c = Π.T1−c[x]
If Ac[ic] 6= x or (i1−c 6= 0 and A1−c[i1−c] 6= x) then output FAIL.

If i1−c 6= 0 then let k = k + 1
If ρ − 3ǫ/4 ≤ k/m ≤ ρ + 3ǫ/4 then output PASS

Output FAIL

Theorem 5 There is a (1/ǫ2)-time ǫn-additive approximate upper and lower
bound PCP for two set intersection.

Proof: We will show something stronger than the claimed theorem, namely
we show that the above protocol actually checks that the estimate ρ is correct
to within an additive error of ǫ/4. This will prove that the protocol is both an
upper bound and a lower bound PCP.

Let x ∈ D be good if Π.T0[x] 6= 0, Π.T1[x] 6= 0, A0[Π.T0[x]] = x and A1[Π.T1[x]] =
x. It is easy to see that x is good if and only if x ∈ A0 ∩A1. The verifier uses
the quantity (k/m)n as an estimate of the number of good elements, i.e., it
estimates |A0 ∩ A1|. Using Chernoff bounds [10], it is easy to see that, with
constant probability, |A0 ∩ A1|/n and k/m are off by an additive factor of at
most ǫ/4. For the remainder of the proof, we will assume that this event has
happened, i.e., ||A0 ∩ A1|/n − (k/m)| ≤ ǫ/4.

Suppose |A0 ∩A1|/n ≤ ρ + ǫ/2. Then, k/m ≤ |A0 ∩A1|/n + ǫ/4 ≤ (ρ + ǫ/2) +
ǫ/4 = ρ + 3ǫ/4 and so the verifier will output PASS. A similar argument can
be made for the case when |A0 ∩ A1|/n > ρ − ǫ/2.

Conversely, suppose |A0 ∩ A1|/n > ρ + ǫ. Then, k/m ≥ |A0 ∩ A1|/n − ǫ/4 >
(ρ+ǫ)−ǫ/4 = ρ+3ǫ/4 and so the verifier will output FAIL. A similar argument
can be made for the case when |A0 ∩ A1|/n < ρ − ǫ. �

Note that, in the above, even though the arrays Ti are large, they are referenced
only indirectly as a result of sampling A0 or A1, and the running time of the
protocol is not adversely affected.

In general, if A0 and A1 are sets of different, but known sizes, using a variant
of the above approximate PCP, we can obtain upper and lower bounds on
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|A0∩A1|/(|A0|+|A1|). Also, note that using inclusion-exclusion, these methods
can be used to estimate the size of two set union as well.

This also gives approximate PCPs for checking, given A0, . . . , Ak if | ∩k
i=1 Ai|

is large: the verifier picks i ∈R [k] and then x ∈R Ai and queries the location
corresponding to i, x in the proof. At the location corresponding to i, x, the
proof contains k pointers to the locations of x in each of Ai’s. The verifier
ensures that these pointers are valid. The analysis is similar to that of Theorem
5.

3.2 Element distinctness

Given an input list X = 〈x1, . . . , xn〉, it is often useful for the verifier to ensure
that the xi’s are distinct. Here we give a proof ΠED and a O(1/ǫ) time verifier
VED, which uses ΠED to ensure that the number of distinct elements in X is at
least (1− ǫ)n. Without the aid of a proof, the verifier requires Ω(

√
n) time to

determine the same [15]. Our method can be viewed as a simplification of the
protocols given by [25,18], in our setting. The protocol of [18] in the interactive
proof setting allows a prover to convince a verifier of an upper bound on the
size of a set (this protocol can be adapted for use in the probabilistically
checkable proof setting). Interestingly, we use a similar idea here in the proof-
assisted property tester setting to give a lower bound on the size of a set. Our
proof ΠED consists of an array A such that A[x] has a pointer to the location
of x in X.

Let ∆(X) = 1 − |X|/n where |X| denotes the number of distinct elements in
X. We now show:

The proof ΠED(X, n):
A s.t. ∀x ∈ D, A[x] = i if x = xi for xi ∈ X

and A[x] = 0 otherwise

The verifier VED(X, n, ǫ, Π):
Repeat O(1/ǫ) times:

Choose i ∈R [n]
If i 6= Π.A[xi] output FAIL

Output PASS

Theorem 6 Let ∆ be defined as above. Given two multisets of size n, the
element distinctness problem has:

(a) an (ǫ, 1/ǫ, n + U log n)-proof-assisted property tester where U is an upper
bound on the value of xi’s, and
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(b) an (ǫ, (1/ǫ) log n, n log n)-proof-assisted property tester.

Proof: (a) If ∆(X) = 0, i.e., if the multiset X consists of distinct elements,
then the proof ΠED will make the verifier VED accept. If ∆(X) > ǫ, i.e., if the
number of distinct elements in X is less than (1 − ǫ)n, then the probability
that the verifier chooses an i corresponding to a non-distinct element is at
least ǫ, and if xi is not distinct, the probability that j = i is at most 1/2.
Thus, there is a constant c such that after c/ǫ trials, the verifier will output
FAIL with probability at least 3/4.

(b) To make the size of the proof independent of U , we construct a new proof
ΠED

′ in a different format. The idea is to compress the proof in (a) by only
storing the nonzero elements of A in an ordered list. The proof ΠED

′ contains
the answers to the queries as a list of n ordered pairs containing each input
element and its location in the input list (xi, j) in order sorted by the value
of xi. The verifier then performs a binary search to find (xi, j) based on the
keyword xi and checks if j = i. The rest of the analysis is as in (a) except that
the verifier runs in time O((1/ǫ) logn). �

The above element distinctness protocol can be applied to give an efficient
proof assisted property tester for the following problem: Given an n×n oper-
ation table for ◦, is ◦ an associative operation? We would like to output PASS

if ◦ is associative and return FAIL if at least ǫ fraction of the table entries
need to be changed in order to turn ◦ into an associative operation. The best
known property tester for associativity runs in O(n1.5poly(log n)) time [15].
One main bottleneck in that test is that we need to look at the operation
table and ensure that all columns and all rows are mostly distinct. For each
column/row, this requires Ω(

√
n) time without the aid of the proof. Using

the above result, testing that a row or column is mostly distinct can be done
in constant time and thus one can give an proof-assisted property tester for
associativity whose runtime is O(npoly(log n)).

3.3 Lower bounds on the size of a set

Given a list L, it is nontrivial to deduce the number of distinct elements in L.
Let SL denote the set of distinct elements in L and let f(L) = |SL|. Suppose the
verifier can easily determine whether a b-bit element x is in SL. (For example,
the verifier may be given a list of all possible b-bit values along with pointers,
if any, to their location in L, which it could utilize to check in constant time
whether x ∈ SL for any b-bit x.) Then the verifier could estimate f(L)/2b to
within a multiplicative error of ǫ by sampling: choose a random b-bit element
x and check if x belongs to the list L. This requires Ω(2b/(ǫf(L))) samples
[12,9].
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The method we present below is significantly more efficient; it is simple, fast,
and has one-sided error. We note that there are protocols for lower bounding
set size due to [28] and [22] that can also be performed in the approximate
PCP setting (the former protocol has 2-sided error and the latter is slightly
less efficient than the one given here). In our applications of these protocols
in Sections 3.4 and 4.1, any one of the three can be used interchangeably.

Let s be the claimed number of distinct elements in L. In our construction,
the proof ΠSZ contains an array A consisting of the s distinct elements in L.
We use the verifier VED on the proof ΠED(A) to check the distinctness of the
elements in A, such that this verifier has probability of error at most 1/8.
To check in addition that the elements of A indeed come from L, we assume
that we have a membership oracle pair, consisting of ΠMEM and VMEM. The
proof ΠMEM creates data structures for the list L so that the verifier VMEM can
efficiently check if a given x belongs to L. We assume that the membership
oracle proof ΠMEM has access to the proof ΠSZ. The reason for introducing the
oracle pair is that we will be using the same approximate PCP for set size,
but with different assumptions on the input, that lead to different membership
oracle pairs in later constructions.

The proof ΠSZ(L, s, ΠMEM):
A[1, . . . , s] containing distinct elements of L;
P1 = ΠED(A);
P2 = ΠMEM(L).

The verifier VSZ(L, s, ǫ, Π,VMEM):
Run VED(ǫ/2, Π.P1)
Repeat O(1/ǫ) times:

Choose i ∈R [s]
Run VMEM(A[i], Π.P2)

Output PASS

We now show how to construct the membership oracle pairs for the simplest
case of set size. We give two schemes: a simple scheme that works when the
domain is bounded and a more sophisticated scheme that uses pointers.

(1) In the first scheme, the proof ΠMEM(L) consists of an array T of pointers for
all elements in the domain where T [x] contains the location in L that contains
x. The verifier VMEM(x, Π) can just check if L[Π.T [x]] = x.

(2) In the second scheme, we use pointers to make the size of the data struc-
tures independent of the domain size (but still dependent on |L|). For this
scheme, the proof is assumed to know the array A from the proof ΠSZ and the
verifier is assumed to invoke the oracle VMEM with i instead of A[i].
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The proof ΠMEM contains an array P , consisting of elements of A as well as
a pointer from each such element to its location in L. For instance, if L =
{4, 4, 2, 3, 3, 1, 6, 6, 6, 6}, then A = {4, 2, 3, 1, 6} and the proof ΠMEM consists
of P = {〈4, 1〉, 〈2, 3〉, 〈3, 4〉, 〈1, 6〉, 〈6, 7〉}. The verifier VMEM, checks given a
position i, whether A[i] indeed is present in L by following a back pointer
from P [i] in constant time.

The proof ΠMEM(L):
P s.t. for 1 ≤ i ≤ m, P [i] = 〈A[i], j〉 where L[j] = A[i].

The verifier VMEM(L, i, Π):
Let 〈a, j〉 = Π.P [i]
If L[j] 6= a or A[i] 6= a output FAIL

Theorem 7 There is a (1/ǫ)-time, O(n logn)-space, ǫ-approximate lower bound
PCP for the size of a set represented by a list.

Proof: Let s be the claimed number of distinct elements in L. If L is such
that f(L) ≥ s, then there is a proof that makes the verifier always output
PASS. Conversely, if either the fraction of distinct elements in A is smaller
than (1− ǫ/2) or at least ǫ/2 fraction of the elements in A are not in L, then
the verifier is likely to fail. Thus, treating A and L as sets, the verifier is only
likely to pass if |A ∩ L| ≥ (1 − ǫ)s. �

3.4 Lower bounds on sums

Given a list of positive integers x = 〈x1, . . . , xn〉, we show how the verifier can
be convinced of a good approximation to a lower bound s on f(x) =

∑n
i xi.

Without any aid, the verifier requires Ω(n) time to estimate the lower bound,
since it is possible that all but one of the xi’s are 0. We give two methods by
which the verifier, with the aid of a proof, can be convinced that the sum is
at least (1− ǫ)s. The first method requires only that the verifier use constant
time but requires a very large proof size (proportional to the magnitude of the
sum). The latter requires that the verifier spend O(log B) time, where B is an
upper bound on the xi’s (since we assume xi fits in a memory word, B < 2b)
but requires a proof of smaller size.

Using approximate lower bound PCPs. Consider the set S = {(i, j) | 1 ≤
i ≤ n, 1 ≤ j ≤ xi} (if xi = 0 then there will be no j such that (i, j) ∈ S) whose
cardinality is

∑n
i=1 xi. Note that one can construct membership oracle pairs for

membership in S: the proof ΠMEM(S) is empty and verifier VMEM((i, j), Π) just
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checks (in constant time) if 1 ≤ i ≤ n and 1 ≤ j ≤ xi. Using this membership
oracle pair with the proof ΠSZ and the verifier VSZ from the previous section,
we can get a lower bound PCP for the size of S where the running time of the
verifier is O(1/ǫ).

Theorem 8 There is a (1/ǫ)-time (nB log(nB))-space ǫ-approximate lower
bound PCP for the sum of n positive integers, each within the range [B].

Grouping elements by size. In this method, the verifier uses random
sampling to estimate the sum. Since the number of samples required to get
good estimates depends on the variance of the sample, the proof ΠSUM presents
the xi’s in groups for which the variance is small: the xi’s in ΠSUM are grouped
such that the i-th group contains all xi whose weights are between B/2i and
B/2i+1, and each group is represented by a separate array along with the size.
Since we assume integer weights, there are at most 1 + log B such groups. A
cheating proof could make the sum look larger than it is by including addi-
tional large elements in the arrays that are not present in the original list of
the xi’s, or by listing large xi’s multiple times. In order to protect against
this, we use the permutation enforcer as the membership oracle pair ΠPE and
VPE. The proof ΠSUM contains the permutation enforcer proof ΠSUM.ΠPE. The
verifier VSUM uses the permutation enforcer verifier ΠSUM.VPE to ensure that
each element sampled comes uniquely from the original set of xi’s. Suppose
the verifier chooses element yj in one of the groups. Say that yj is good if its
weight is consistent with its group and the permutation enforcer ΠPE is consis-
tent, i.e., ΠPE.T1[ΠPE.T2[j]] = j and xi = yΠPE.T1[i]. Let G = {j | yj is good}.
Then

∑
j∈G yj ≤ ∑

i xi. The verifier uses sampling to lower bound
∑

j∈G yj.
To do this, suppose the i-th group has ni elements. Then the verifier picks
O((1/ǫ) log log B) elements from the i-th group, checks that they are good,
and sets Si to be their average multiplied by ni. Finally, the verifier com-
putes an estimate s̃ =

∑
i Si for the sum, and outputs PASS if and only if

s(1 − ǫ/2) ≤ s̃.

Theorem 9 There is a ((1/ǫ) log log B)-time, (n log n log B)-space, ǫ-approximate
lower bound PCP for the sum of n integers, each of which is in the range [B].

Proof: Let s be a lowee bound on f(x). Let s̃ =
∑1+log B

j=1 Sj be the estimate of
f(x) computed by the verifier. By [12] we know that a sampling scheme can
obtain an ǫ/2-approximation for the sum of the good elements in the j-th group
with probability at least 3/(4 log B). Thus, f(x)(1− ǫ/2) ≤ s̃ ≤ f(x)(1 + ǫ/2)
with probability at least 3/4.

First consider the case where s ≤ f(x). It is easy to see that, for ǫ ≤ 1, with
probability at least 3/4, there is a proof such that the verifier will output
PASS. Now assume that s(1 − ǫ) > f(x). We have from the goodness of our
approximation that s̃ ≤ (1+ǫ/2)f(x) with probability at least 3/4. Combining
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the two inequalities above, we have that s(1 − ǫ/2) > s̃, in which case the
verifier returns FAIL. The total running time is O((1/ǫ) log log B). �

4 PCPs for optimization and graph problems

4.1 Constraint satisfaction problems

A warmup: Lower bounds on the cut size. We give a simple approxi-
mate PCP where the verifier can be quickly convinced by a proof that a given
graph has a large cut. The main idea is for the proof to present the cut, and
then prove that the cut is indeed large by using the approximate PCP for
proving a lower bound on the size of a set.

We first describe the approximate lower bound PCP for cut size in an un-
weighted graph G = (V, E). Given a cut [S, V \S], for each vertex v, let D
be an array such that D[v] = 1 if v ∈ S and D[v] = 0 otherwise. Assume
that G is represented as an adjacency matrix so that membership in E can be
determined in constant time for any vertex pair (u, v). Let C = E ∩ {(u, v) |
D[u] 6= D[v]} denote the set of edges across the cut. Note that the member-
ship oracle pair for C is easy to construct: the proof ΠMEM is empty and the
verifier VMEM((i, j), Π) checks first whether (i, j) ∈ E, and then verifies that
Π.D[i] 6= Π.D[j] in constant time. Together with the approximate lower bound
PCP for set size from Section 3.3, we obtain a (1/ǫ)-time ǫ-approximate lower
bound PCP for maximum cut.

The proof ΠCUT(G, c):
For a cut S of size c:

D s.t. ∀i ∈ V, D[i] = 0 if i ∈ S; D[i] = 1 if i 6∈ S;
P1 = ΠSZ(C = E ∩ {(u, v) | D[u] 6= D[v]}, c, ΠMEM).

The verifier VCUT(G, c, ǫ, Π):
Run VSZ(C = E ∩ {(u, v) | D[u] 6= D[v]}, c, ǫ, Π.P1,VMEM)

The weighted case may be treated by using an approximate lower bound PCP
for the sum

∑
(u,v)∈C w(u, v), where w(u, v) is the weight of edge (u, v), and

has the same complexity as the unweighted one.

When the input graph is given in terms of its adjacency matrix, obtaining a
sublinear proof to convince the verifier of a multiplicatively approximate upper
bound on the size of a given cut is not possible, since the verifier requires Ω(n2)
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time to distinguish between a cut size of 0 and 1.

Estimating the size of the maximum cut is related to the problem of testing
whether a graph is bipartite. In particular, the number of edges minus the size
of the maximum cut is exactly the number of edges that need to be removed
from the graph in order to make it bipartite. In the adjacency matrix model,
a property tester for bipartiteness should pass graphs G that are bipartite and
fail graphs G for which more than ǫn2 edges need to be removed in order to
make G bipartite. A poly(1/ǫ) time algorithm for testing bipartiteness was
given in [24]. The above model does not yield interesting results for sparse
graphs, as every sparse graph is such that at most ǫn2 edges need to be removed
in order to make it bipartite. Thus, [26,27] consider a property testing model
for sparse graphs which has the following behavior: if the graph has bounded
degree d and is represented in the adjacency list representation, the property
tester must now pass bipartite graphs and fail graphs for which ǫdn edges need
to be removed in order to make the graph bipartite. An O(

√
npoly(log n)) time

algorithm was given in [27] that satisfies the new requirements. It is also known
that Ω(

√
n) time is required to solve this problem [26]. The above approximate

PCP for lower bounding the cut size can be used to give an (ǫ, poly(1/ǫ))-
proof-assisted property tester for the bipartiteness of sparse graphs. If the
input graph is given in a format for which the verifier can easily choose a
random edge, then the problem is even easier: by requiring Π to write down
the side of the cut that each vertex is on (say, the color of each vertex), a
poly(1/ǫ) verifier can ensure that most edges cross the cut (or have endpoints
with different colors).

Maximum Constraint Satisfaction Problems. Constraint satisfac-
tion problems (CSP) [39,29] refer to a class of problems that can be represented
as follows: Define a set of constraint functions f1, . . . fℓ : {0, 1}k → {0, 1} such
that fi is satisfied by x ∈ {0, 1}k if fi(x) = 1. A constraint application of fi to
Boolean variables x1, ..., xn is an ordered pair 〈fi, (a1, . . . , ak)〉, which is satis-
fied if fi(xa1

, . . . , xak
) = 1. We assume constraints can be evaluated in O(k)

time. On input a collection of constraint applications on Boolean variables
x1, . . . , xn, the Max CSP problem is to find a Boolean setting of the xi’s such
that the number of satisfied constraints is maximized. In the case that the
input also includes weights on the constraint applications, the Weighted Max
CSP problem involves finding a setting of the xi’s that maximizes the sum of
the weights of the satisfied constraints. The Max SAT problem and the Max
Cut problem can both be cast as maximum constraint satisfaction problems.
We show below how to construct an approximate lower bound PCP for the
general Weighted Max CSP Problem.

Theorem 10 Let n be the number of variables and let k be the maximum size
of constraints for a Weighted Max CSP problem Γ. Then there is a (k/ǫ)-time,
ǫ-approximate lower bound PCP for Γ.
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Proof: Let v be the purported value to the Weighted Max CSP problem and
let F be the subset of constraints that are satisfied. The proof ΠCSP to lower
bound this value by at least (1 − ǫ)v consists of two parts.

(1) The 0/1 settings of the xi’s.
(2) A proof ΠSUM(v, F ) for showing an approximate lower bound on the sum

of the weights of the constraints in F .

This combined proof can be used to convince the verifier that the sum of
the weights of the satisfied constraints is at least (1 − ǫ)v. The verifier, while
running the permutation enforcer for checking the set size proof, also checks
that the settings of the xi’s in the proof satisfy the constraints in F . It is clear
that if all the constraints in F are satisfied, and the weights add up to v, the
verifier always returns PASS. If the total weight is less than (1 − ǫ)v, then
using the protocols for lower bounding set sizes and sums (see Theorems 7, 8,
and 9), one can see that the verifier returns FAIL with probability at least 3/4.
Checking each constraint takes O(k) time, and the techniques for bounding
sums require that the verifier look at O(1/ǫ) constraints. �

Min Ones CSPs. Min Ones CSP involves finding a setting of the xi’s to
satisfy all of the given constraints while minimizing the number of xi’s set to
1. The value of the optimization problem is f(x) = |{i | xi = 1}|, the number
of xi’s set to 1. To illustrate, we present an example of Min Ones CSP, the
vertex cover problem on a graph of maximum degree d. This problem is NP-
complete for any d ≥ 3. Given graph G = (V, E) of degree at most d with
|V | = n, |E| = m, and a bound B, one would like to know whether there is a
vertex cover C ⊆ V such that |C| ≤ B.

We present an ǫ-approximate upper bound PCP for vertex cover, assuming
the graph is presented in such a way that a uniformly distributed edge can
be chosen in constant time. The proof represents the vertex cover by writing
array C of size at most B, which contains all the vertices in the cover. Then,
array P contains, for each edge, a pointer to a vertex in C that covers that
edge. The verifier chooses O(1/ǫ) edges and using P , verifies that each edge
is covered by the vertex cover defined by C. The verifier outputs FAIL if some
edge is not covered. We give a more precise description below.
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The proof ΠVC(E, B):
C = 〈c1, . . . , cB〉;
P s.t. ∀e = (u, v) ∈ E, P [(u, v)] = 〈i, j〉,

where ci covers u and cj covers v.

The verifier VVC(E, B, ǫ, Π):
Repeat O(d/ǫ) times:

Choose e = (u, v) ∈R E
Let 〈i, j〉 = Π.P [e]
If ((u, Π.ci) /∈ E) or ((v, Π.cj) /∈ E) output FAIL

Output PASS

We now show the following theorem.

Theorem 11 Let G be a graph of degree at most d represented in such a way
that a uniformly distributed edge can be chosen in constant time. Then, there
is a (d/ǫ)-time, O(B log n + m log n)-space, ǫ-approximate upper bound PCP

for vertex cover on G, where B is the claimed size of the vertex cover.

Proof: Let f(G) be the size of the smallest vertex cover for graph G. If there
is a vertex cover of size at most B, then there is a proof such that VVC will
always pass. If there is no vertex cover of size smaller than B(1 + ǫ), then
consider any set V ′ ⊆ V of vertices such that |V ′| = B. Let u be the number
of edges not covered by V ′. Then, u ≥ f(G) − B > f(G) − f(G)/(1 + ǫ) =
f(G)ǫ/(1+ ǫ) ≥ f(G)ǫ/2, for 0 < ǫ ≤ 1. Note that, since the maximum degree
in the graph is d, m/d ≤ f(G). Then, u > mǫ/(2d). As a result, the probability
that an uncovered edge is chosen at any iteration in the above algorithm is
u/m ≥ ǫ/(2d). Thus the verifier is likely to find at least one edge that is not
covered and output FAIL. �

A similar approach can be used for dominating set and set cover problems
with bounded subset size of at least 3, which are also NP-complete.

Consider a slightly different problem, which we refer to as Max B-Ones CSP,
where the value of the optimization problem is the number of constraints that
can be simultaneously satisfied by a setting that only has B variables set to
one. We design an ǫ-approximate lower bound PCP for this problem as follows.
The proof contains an array X of size n, and another array C of size B; C
contains a list of those variables that are set to 1. The i-th entry of X contains
〈j, p〉, where j is the 0/1 setting for the variable xi. If this setting is 1, then
p points to the location of x in C, i.e., p = j where C[j] = i. For a given
constraint, the verifier can check that it indeed evaluates to 1 with the setting
defined by X. In doing this, if it encounters a variable xi that is set to 1 in X,
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it uses the the pointer p to check if C[p] = i. This guarantees that at most B
variables are set to 1. Then, the approximate PCP for lower bounding the size
of a set can be used to allow the verifier to ensure that at least 1 − ǫ fraction
of the constraints are satisfied with the given setting. Thus the following can
be achieved.

Theorem 12 Let n be the number of variables and let k be the maximum size
of a constraint for a Max B-Ones CSP problem. Then there is a O(k/ǫ)-time,
ǫ-approximate lower bound PCP for Max B-Ones CSP .

4.2 Constraint enforcement approximate PCPs

We have seen that designing approximate lower bound PCPs seems much
easier than designing upper bound counterparts. In this section we show that
a proof can convince a verifier that a good solution to an optimization problem
satisfies certain types of upper bound constraints. We first apply our technique
to approximations for t-sparse fractional packing problems and then show how
the technique can be used for other approximation problems.

Fractional packing problems. Fractional packing problems are a class
of linear programming problems defined by [36]. We consider a sparse version
of the problem where we are given a1, . . . , an ≥ 0 and b11, . . . , bnm ≥ 0, such
that for each i, at most t of the bij ’s are nonzero (we refer to t as the sparsity of
the problem). Let opt be the solution to the following maximization problem:
max{∑n

i=1 aixi} subject to xi ≥ 0 and the m constraints ∀j ∈ [m],
∑

i bijxi ≤
cj . Since the bij ’s are sparse, we assume that for each variable xi, there is a list
Si of j such that bij > 0. (We assume this for convenience in presenting our
approximate PCP. As long as there is an easy way to find all nonzero bij ’s for
any given i, other ways to represent the sparse data can be used.) We assume
that all ai’s, bij ’s, cj’s, and xi’s can be represented in a word in memory.

Given a solution of value opt, we construct a proof that can convince a
verifier that the value is at least (1 − ǫ)opt and that the solution satisfies
all of the constraints. To this end, we give a approximate PCP for constraint
enforcement. All of our results apply to the case when there is a solution of
value v (which is not necessarily optimal) and the proof can convince the
verifier that the value is at least (1 − ǫ)v.

4.2.1 Constraint enforcement: unweighted version

In order to describe the approximate PCP for constraint enforcement, we begin
with the simpler case of unweighted fractional packing problems, in which all
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the ai’s and bij ’s are 1 or 0, and each xi is further constrained to be either
1 or 0. Note that bijxi ∈ {0, 1}. The verifier must ensure that there are a
large number of xi’s that are set to 1 such that they do not violate any of the
constraints.

The proof ΠCES is the following constraint enforcement structure that consists
of three parts:

(1) An array X of length n such that the i-th entry is the value of xi.
(2) For the j-th constraint, a list Cj of the xi’s that are allocated “space” in

the constraint (i.e., those xi for which bijxi = 1). More specifically, this
part of the proof consists of constraint arrays C1, . . . , Cm, where Cj is of
length cj . For every xi such that bij > 0 and such that xi is set to 1 in
the optimal solution, there is a location ℓ such that Cj[ℓ] = i. If space is
allocated in Cj for each xi such that bijxi = 1, since the size of Cj is cj ,
the capacity constraints are not violated.

(3) For each i, pointers to the locations in the constraint arrays in which
xi is allocated space (i.e., bij = xi = 1), so that for each xi set to 1,
the verifier can ensure that it is allocated space in each constraint that
contains a term bijxi with bij > 0. More specifically, a modification of
permutation enforcement is used: the proof contains an array T with n
entries of total size at most t, such that T [i] = (〈j1, ℓ1〉, . . . , 〈jt, ℓt〉) where
〈ja, ℓa〉 ∈ T [i] whenever xi is present in constraint ja (i.e., bija

> 0) and
ℓa is that location in Cja

such that Cja
[ℓa] = i.

Figure 1 shows the constraint enforcement structure used for the following
problem: Maximize x1 + x2 + x3 + x4 subject to constraint 0 : x1, x2, x3, x4 ∈
{0, 1}, constraint 1 : x1+x2 ≤ 1, constraint 2 : x2+x3+x4 ≤ 2, and constraint
3 : x1 + x3 ≤ 1. The solution setting x1 = x4 = 1 and x2 = x3 = 0 has value
2.
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Fig. 1. ΠCES for the unweighted case.

Note that both T and C are arrays where the entries are of variable size. Using
common data structures, we can assume that the verifier is able to access an
arbitrary Ci in constant time.
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Definition 13 We say that index i is good if: (i) ai = xi = 1 (i.e., X(i) = 1)
and (ii) for all j ∈ Si (Si is given as input), there is a pair 〈j, ℓ〉 ∈ T [i] such
that Cj [ℓ] = i.

Let G be the set of good indices. We have the following simple observation
about G.

Observation 14 There is a membership oracle verifier VMEM, which for every
input i, tests if i ∈ G in O(t) time.

We argue below that the good indices make up a feasible solution. Let x̂i = 1
for all i ∈ G and x̂i = 0 for all other i.

Lemma 15 (x̂1, . . . , x̂n) is a feasible solution of value at least |G|.

Proof: The constraint enforcement structure ensures ∀j ∈ [m],
∑

i∈G bijxi ≤ cj .
Thus, (x̂1, . . . , x̂n) represents a feasible solution. Note that when i is good,
x̂i = xi = 1. �

Using these,

Theorem 16 There is a (t/ǫ)-time, ǫ-approximate lower bound PCP for un-
weighted fractional packing problems.

Proof: We use the proof and verifier pair ΠSZ,VSZ (from Section 3.3) to check
that the size of G is at least (1 − ǫ)opt.

From our earlier observation, membership in G can be determined in time
O(t). Thus, the total runtime of the verifier is O(t/ǫ). �

4.2.2 Constraint enforcement: weighted version

To handle the weighted case, we modify the previous approximate PCP in two
ways. First, we modify the notion of “good”, so that it is still the case that
a solution x̂1, ..., x̂n to the fractional packing problem that sets x̂i to xi when
i is good and 0 otherwise satisfies all constraints and has value

∑
xi∈G aixi.

Second, we use the approximate lower bound PCP for sums from Section 3.4
so that the verifier can guarantee that

∑
i aix̂i ≥ (1 − ǫ)opt.

Since the values of the xi’s and the multipliers bik are no longer constrained to
be 0/1, we need to keep track of the “space” taken up by each nonzero bijxi

in each constraint. A first idea would be for the proof to contain the name
of the i-th variable in bijxi consecutive locations in the constraint array Cj .
However, testing that a variable was allocated enough space in a constraint
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array would then take O(bijxi) time. Since the “resources” allocated to each
variable within a constraint can be very different, we essentially keep track of
the range of space taken by each variable in each constraint.

More specifically, the proof ΠWCES is the following weighted constraint enforce-
ment structure that consists of two parts:

(1) An array X of length n such that the i-th entry is the value of xi.
(2) For the j-th constraint of the form

∑
i bijxi ≤ cj , an array of length n,

where the i-th entry records the running total of space taken up by the
first i variables (we imagine the constraint to be a physical space of size
cj): the array Cj is [r1, r2, . . . , rn] where ri =

∑i
k=1 bkj · xk represents the

space taken up by the first i objects, ri − ri−1 represents the space taken
up by object i (and should be bijxi), r0 is assumed to be 0, and rn should
be at most cj . Note that since the bij ’s and xi’s are nonnegative, if the
rj’s are given correctly, then they will form a nondecreasing sequence.

Note that no analogue of the third part of the proof, namely the array T , from
the unweighted case is required, since here the space usage of each variable
will be described in each constraint, whether or not the variable appears in
the constraint. Thus, the space usage of variable i in constraint j is contained
in the i-th location of array Cj .

Figure 2 shows the approximate PCP for weighted constraint enforcement used
for the following problem: Maximize x1 + 2x2 + 3x3 + x4 subject to constraint
0 : x1, x2, x3, x4 ≥ 0, constraint 1 : x1 +x2 ≤ 2, constraint 2 : x2 +x3 +x4 ≤ 4,
and constraint 3 : x1 +2x3 ≤ 2. The solution setting x1 = 0, x2 = x3 = 1, x4 =
2 has value 7.
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Fig. 2. The weighted case.

In order to ensure that each constraint is satisfied, we need a definition of a
“good” element that is strong enough so that the sum of all good elements does
not violate any constraints and the verifier can efficiently determine whether
an element is good (in particular, the verifier should not have to look at many
variables in the constraint).

The proof could try to cheat by presenting a list of ri’s that is not monotone.
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However, if ri1−1 ≤ ri1 ≤ ri2−1 ≤ ri2 · · · form a monotone nondecreasing
subsequence, then it is easy to see that the overall space taken by objects
i1, i2, ... together will not violate the capacity constraint, as long as all the ri’s
are less than the capacity constraint. Our new definition of good borrows from
the sorting spot-checker in [15].

For the purposes of the following definition, define ≻ to be such that ri≻rj

if and only if (ri > rj) OR (ri = rj AND i > j), and ≺ analogously. We
use these modifications of the >, < operators in order to break ties when the
elements of a list are not distinct.

Definition 17 (Heavy element) An index i in a list r1, . . . , rn is said to
be heavy if a binary search (according to the ordering relation ≻,≺) for ri is
successful, i.e., finds the value ri in location i, and finds no inconsistencies to
≻,≺ along the search path.

Note that in a monotone non-decreasing list, all elements are heavy. The use-
fulness of the definition comes from the following fact from [15]:

Lemma 18 ([15]) For a pair of heavy elements ri and rj such that i < j, it
must be the case that ri ≤ rj.

The above can be seen by noting that if k is the index of the least common
ancestor of indices i and j, then since the binary searches for ri and rj diverge
at that point, it must be that ri≺rk≺rj, and so ri ≤ rj . Thus, the heavy
elements in a list form a non-decreasing subsequence. Note from the definition
of a heavy element that one can test the heaviness of an arbitrary element ri

in O(log n) time.

We now define the notion of a good element as one that is represented truth-
fully in the constraints without violating them. Let r0 = 0, ri = Cj [i], and
ri−1 = Cj[i − 1].

Definition 19 We say an object i is good if for all j ∈ Si: (i) ri−ri−1 = bijxi,
(ii) 0 < ri−1 < ri ≤ cj, and (iii) ri and the preceding element ri−1 are both
heavy with respect to the list r1, . . . , rn.

Note that, for a particular j, (i) and (ii) can be checked in O(1) time, and (iii)
can be checked in O(log n) time. Thus, we make the following observation.

Observation 20 There is a membership oracle verifier VMEM, which for every
input i, tests if i is good in O(t log n) time.

If both the corresponding ri and ri−1 are heavy for each good element in a
constraint, r0 ≥ 0 and ri is less than the capacity of the constraint, then
the data structure for that particular constraint does indeed allocate space
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uniquely for that particular element. As a result, the sum of the good elements
does not violate the constraint. Define x̂i as above, by setting x̂i to xi if i is
good and to 0 otherwise.

Lemma 21 (x̂1, . . . , x̂n) is a feasible solution of value
∑

xi∈G aixi.

Proof: Let G = {ℓ1, ℓ2, . . . , ℓk} be the good indices (assume ℓ1 < ℓ2 <
· · · < ℓk). Consider the j-th constraint. Then, since the heavy elements form
a monotone non-decreasing subsequence and are all at most cj ,

∑
i bij x̂i =

∑
i∈G bij x̂i =

∑
i∈G(ri − ri−1) ≤ rℓk

≤ cj �

Theorem 22 There is a ((t/ǫ) log n)-time, ǫ-approximate lower bound PCP

for fractional packing problems.

Proof: We use the proof and verifier for lower bounding sums from Section
3.4 to check that the weight of the good elements (i.e.,

∑
i∈G bijxi) is at least

(1 − ǫ)opt. Using Observation 20, the theorem follows. The total runtime of
the verifier is O((t/ǫ) log n). �

4.2.3 Other applications of constraint enforcement

The constraint enforcement structure can be applied to several optimization
problems. We give a few examples to demonstrate the scope of the technique.

Maximum flow. A graph G with capacity constraints on the edges and
special nodes s, t is given. If there is a flow of size f , then it can be proved to
the verifier VFLOW that a flow of size ≥ (1−ǫ)f exists by the following method.
Note that to verify that a flow is legal, the verifier must verify that the solution
observes conservation of flow at each node and capacity constraints at each
edge. The proof ΠFLOW consists of a list T of path-flows that combine to make
up the flow of size f . The verifier VFLOW picks random path-flows and ensures
that they are “good” by checking that the flow is correctly packed into each
edge that it follows—in doing so, it ensures the path-flow satisfies conservation
of flow at each node along the path from s to t. Since each path-flow is of length
at most n (the number of vertices), we have an n-sparse packing problem.
The constraint enforcement structure ensures that no more than cuv capacity
is needed to accommodate all of the path flows simultaneously on each edge
(u, v). For relatively small flows, we use the fact that any flow of integer
magnitude f can be decomposed into f unit size path-flows. The approximate
PCP for the unweighted version of constraint enforcement can be used inside
the proof ΠFLOW to give a proof by which the verifier can determine that there
are enough good unit path flows in time O(n/ǫ). From the above, it is easy to
see:
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Theorem 23 There is an ((n/ǫ))-time, |f |-space, ǫ-approximate lower bound
PCP for the maximum flow problem.

For larger flows, it may be desirable to find a proof whose size is polynomial
in n, even at the cost of requiring a slightly less efficient verifier. We use the
result of [14] that shows that any flow can be decomposed into at most m
(where m is the number of edges in the graph) path-flows. The approximate
PCP for weighted constraint enforcement can be used to give a verifier with
runtime O((n/ǫ) log n). From the above, it is easy to see:

Theorem 24 There is an ((n/ǫ) log n)-time, ǫ-approximate lower bound PCP

for the maximum flow problem in which the proof size is poly(n).

The constraint enforcement structure can also be used to show a lower bound
on the size of a multi-commodity flow, in which the runtime of the verifier is
O((qn/ǫ) log n), where q is the number of commodities.

Bin packing. A set of n weighted objects, a bin size B, and an ǫ < 1 are
given. If it is possible to pack the objects into p bins, then there is a proof
that convinces the verifier that p + ǫn bins are sufficient: the proof will use
the constraint enforcement structure to assure the verifier that at least (1− ǫ)
fraction of the objects can be packed into p bins. The bound follows by noting
that the other objects, if they do not already fit into the p bins, can each be
placed into their own bin. The running time of the verifier is O((1/ǫ) logn).
From the above, it is easy to see:

Theorem 25 There is an (ǫn)-additive approximate upper bound PCP for
the bin packing problem.

Exact cover by k-sets, Matching. Given set X with |X| = kq and a
collection C of k-element subsets of X, does C contain an exact cover for X,
i.e., a sub-collection E ⊆ C such that every element of X occurs in exactly
one member of E? We consider a maximization version of this problem—to
maximize the number of elements in X that are covered uniquely. We argue
that there is a proof to convince the verifier that there exists a partial covering
F that covers at least 1− ǫ fraction of the elements of X such that no element
in X is covered by more than one set. The proof utilizes the unweighted
constraint enforcement structure: For each set si ∈ C there is a variable xi

that is set to 1 if si ∈ F and 0 otherwise. For each element in X there is a
constraint which ensures that it is contained in at most one of the sets in F :
bij is 1 if set si contains element j. For each c ∈ F such that c = {a1, . . . , ak},
c should appear in Ca1

, . . . , Cak
. If the verifier samples the c ∈ F and decides

that most are good, then it can conclude that there is a collection F ′ ⊆ F
such that |F ′| ≥ (1− ǫ)|F | and such that no a ∈ X is covered more than once
by F ′. This gives us the following theorem.
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Theorem 26 There is a (k/ǫ)-time, ǫ-approximate lower bound PCP for the
exact cover by k-sets problem.

Note that, since a matching is a cover by two-sets, the method can be used to
show an approximate lower bound PCP on the size of a matching in a graph.

Shop Scheduling. In the open shop scheduling problem, a set of p prod-
ucts, m work teams, and a deadline D are given. Each product consists of m
tasks, each designated to be processed by a different work team j at some point
during production. Task j of product xi takes tij time units to complete. A
product can be with at most one team, and a team can be working on at most
one product at any given time. If it is possible to complete all p products be-
fore deadline D, then there is a proof that can convince a O((m/ǫ) log p)-time
verifier that at least (1 − ǫ)p products can be completed before the deadline.
The proof uses the weighted constraint enforcement structure to ensure that
products are with at most one team and that teams are working on at most
one product at any given time. Variants of the above problem, such as flow
shop and job shop scheduling can be handled in a similar manner.

Subset sum. Given x1, . . . , xn and a bound B, using the protocol for lower
bound on sums (Section 3.4) as well as the weighted constraint enforcement
structure, there is a proof to convince an O((1/ǫ) logn)-time verifier that there
exists a set S such that B(1 − ǫ) ≤ ∑

i∈S xi ≤ B. A similar result holds for
partition.

4.3 Matching problems

In this section we consider problems based on matching. We first given an alter-
nate approximate PCP for matching that does not use constraint enforcement
structure and then consider the problem of minimum maximal matching.

Matching. The following approximate PCP can be used to show a lower
bound on the size of a matching of a graph G = (V, E). In particular, the
proof can convince the verifier that G has a matching of size at least k(1− ǫ)
by presenting a purported matching L of size k. The proof ΠMAT consists of
three parts.

(1) A list L of edges in the matching.
(2) A proof that |L ∩ E| ≥ (1 − ǫ/2)k. This can be accomplished using the

proof ΠSZ for lower bounding set size (Section 3.3).
(3) A proof that at most ǫ/2 fraction of edges involve vertices that are

matched more than once. This can be accomplished via an array T such
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that for each vertex v ∈ V , T [v] points to its matched edge (if v is
matched at all) in L, i.e., T [v] = i if L[i] = (v, ∗) or L[i] = (∗, v) and
T [v] = 0 otherwise.

The verifier VMAT can check (2) using the verifier VSZ and can check (3) by
choosing a random edge L[i] = (u, v) from L, then choosing a random vertex
w ∈R {u, v} and checking if Π.T [w] = i. From the above, it is easy to see:

Theorem 27 There is a (1/ǫ)-time, ǫ-approximate lower bound PCP for
matching.

Minimum maximal matching. Given a graph G = (V, E), |V | = n, of
degree at most d, does G contain a maximal matching of size at most U? This
problem is NP-complete if d ≥ 3. If there is such a matching, then there is
a proof that can convince a verifier (in O(1/ǫ) time) that there is a maximal
matching of size at most U + nǫ/2. The proof ΠMMAT consists of two parts.

(1) An array L of size U that contains the edges of the matching.
(2) An array T such that for each vertex v ∈ V , T [v] points to its matched

edge (if v is matched at all) in L, i.e., T [v] = i if L[i] = (v, ∗) or L[i] =
(∗, v) and T [v] = 0 otherwise.

To check this proof, the verifier VMMAT picks a random node u and if u is
unmatched (i.e., Π.T [u] = 0), then makes sure (using Π.T ) the neighbors of
u are also unmatched. If the number of unmatched nodes with unmatched
neighbors is more than ǫn, the verifier is likely to output FAIL. The bound
follows since there exists a pairing of unmatched nodes such that one needs
to add at most one edge for every pair. From the above, it is easy to see:

Theorem 28 There is an (ǫn/2)-additive approximate upper bound PCP for
minimum maximal matching.
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