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Abstract

In this paper, we study the general question of how characteristics of functional equations

in
uence whether or not they are robust. We isolate examples of properties which are

necessary for the functional equations to be robust. On the other hand, we show other

properties which are su�cient for robustness. We then study a general class of functional

equations, which are of the form 8x; y F [f(x� y); f(x+ y); f(x); f(y)] = 0, where F is an

algebraic function. We give conditions on such functional equations that imply robustness.

Our results have applications to the area of self-testing/correcting programs. We show

that self-testers and self-correctors can be found for many functions satisfying robust func-

tional equations, including algebraic functions of trigonometric functions such as tan x;

1

1+cotx

;

Ax

1�Ax

; cosh x.

1 Introduction

The mathematical �eld of functional equations is concerned with the following prototyp-

ical problem: Given a set of properties (functional equations) over a particular domain,

completely characterize the set of functions that satisfy them. For example, The linearity

property over the integers is 8x; y 2 Z f(x + y) � f(x) � f(y) = 0. The functions map-

ping from Z to Z that satisfy the linearity property, referred to as the solution set of the

functional equation, is F = ff jf(x) = c � x; c 2 Zg. The linearity property is one of the

famous, well-studied functional equations referred to as Cauchy's equations, and has been

studied over many other domains and ranges with various properties (see the text by Acz�el

[3]). Functional equations are used widely in the study of the various functions that arise

in areas such as mathematics, physics and economics. Several general classes of functional

equations have been identi�ed. For example, algebraic addition theorems, of the form

8x; y F [f(x+ y); f(x); f(y)] = 0

where F is any algebraic function, were used as a starting point in the development of the

theory of elliptic curves byWeierstrass. Other types of functional equations include di�erence

�
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equations, iteration equations, multivariate functional equations and systems of functional

equations.

In Section 2, we present the de�nition of functional equations given in [3]. For the

purposes of this introduction, we de�ne functional equations as follows: Let D;R be an

arbitrary domain and range. Let T be a range containing 0, and F : R

k

� D

k

! T be a

function that is computable via applying a �nite number of known functions (in this paper we

use�;+;�; n, hyperbolic functions, trigonometric functions and c

th

roots for constant c). Let

a neighborhood over the domain D be an ordered k-tuple in D

k

and let N � D

k

. The general

form of a functional equation is then 8(x

1

; : : : ; x

k

) 2 N ; F [f(x

1

); : : : ; f(x

k

); x

1

; : : : ; x

k

] = 0.

We denote the functional equation by (F;N ) when D;R;T are understood from the context.

A particular solution of a functional equation is a function f : D ! R for which F evaluates

to 0 on all choices of neighborhoods in N . The general solution, F , is the family of functions

that are solutions to the functional equation. Figures 1 and 2 give several examples of

functional equations and their solution sets over the reals [3, 25]. In Section 2, we describe

the formal de�nition of characterizations as given by Rubinfeld and Sudan in [38], which can

be viewed as a generalization of functional equations.

All functional equations involve a \for all" quanti�er. Here we are interested in comparing

the solution to the functional equation when the \for all" quanti�er is replaced by a \for

most" quanti�er. To illustrate, we give a simpli�ed de�nition of robustness. For a given �,

de�ne G

def

= ff jPr

(x

1

;:::;x

k

)2N

[F [f(x

1

); : : : ; f(x

k

); x

1

; : : : ; x

k

] = 0] � 1��g. Clearly G contains

F . However, is it the case that each function in GnF is essentially the same (equal on most

inputs in D) as some function in F? Slightly more precisely, we say that two functions

are �-close over D if

jfx2Djf(x) 6=g(x)gj

jDj

� �. For some small constant �, if each function in G

is �-close to some function in F , then in some sense, the \for most" quanti�er is su�cient

to characterize the same class of functions as the \for all" quanti�er, and we say that the

functional equation is (�; �)-robust. A formal and more general de�nition due to [38] is given

in Section 2. Often it is the case that N and F are de�ned and are known to be (�; �)-robust

over an in�nite set S of domains and corresponding neighborhood sets. For example, the

linearity property can be de�ned for all domains that are groups where for each group G,

the corresponding neighborhood set is fx; y; x+

G

yjx 2 Gg, (+

G

is the group operation for

G) and the linearity properity is 8x; y; x+

G

y f(x+

G

y)�

G

f(x)�

G

f(y) = 0. The linearity

property is known to be (2�; �)-robust when the domain and range are any �nite group for

any � < 2=9 [26]. We are interested in the case when for all � < 1, there is a constant � such

that (F;N ) is (�; �)-robust over each of the domains in S. In this case, we say that (F;N )

is robust over S (note that robustness is only interesting if 1=� is much smaller than jN j).

Previous results on robust characterizations Robustness and related notions are used

implicitly in a number of works [19] [9] [29] [10] [7] [6]. In the following sections, we describe

the applications of robustness to program testing and to the study of probabilistically check-

able proof systems.

There are many characterizations that are known to be robust: The �rst nontrivial

characterization shown to be robust for constant �; � was the linearity property over �nite

groups in the work of Blum, Luby and Rubinfeld [19]. Coppersmith [26] gives a particularly

elegant proof of the robustness of the linearity property as well as improves the allowable
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Equation Solution

f(x+ y) =

f(x)+f(y)

1�f(x)f(y)

f(x) = tanAx

f(x+ y) =

f(x)f(y)�1

f(x)+f(y)

f(x) = cotAx

f(x+ y) =

f(x)+f(y)

1+[f(x)f(y)=a

2

]

f(x) = a tanhBx

f(x+ y) =

f(x)f(y)

f(x)+f(y)

f(x) = C=x

f(x+ y) =

f(x)+f(y)�2f(x)f(y)

1�2f(x)f(y)

f(x) =

1

1+cotAx

f(x+ y) =

f(x)+f(y)�1

2f(x)+2f(y)�2f(x)f(y)�1

f(x) =

1

1+tanAx

f(x+ y) =

f(x)+f(y)+2f(x)f(y)

1�f(x)f(y)

f(x) =

Ax

1�Ax

f(x+ y) =

f(x)+f(y)�2f(x)f(y)

1�f(x)f(y)

f(x) =

�Ax

1�Ax

f(x+ y) =

f(x)+f(y)�2f(x)f(y)cosa

1�f(x)f(y)

f(x) =

sinAx

sin (Ax+a)

f(x+ y) =

f(x)+f(y)�2f(x)f(y)cosha

1�f(x)f(y)

f(x) =

sinhAx

sinh (Ax+a)

f(x+ y) =

f(x)+f(y)+2f(x)f(y)cosha

1�f(x)f(y)

f(x) =

� sinhAx

sinh (Ax+a)

f(x+ y) = f(x)f(y)�

p

1� f(x)

2

p

1� f(y)

2

f(x) = cos (Ax)

f(x+ y) = f(x)f(y) +

p

f(x)

2

� 1

p

f(y)

2

� 1 f(x) = cosh (Ax)

Figure 1: Examples of functions satisfying addition theorems over

the reals

3



Equation Solution

f(x+ y) + f(x� y) = 2f(x) f(x) = Ax+ a

f(x+ y) + f(x� y) = 2f(x)f(y) f(x) = 0; cosAx; coshAx

f(x+ y) + f(x� y) = 2[f(x) + f(y)] f(x) = Ax

2

f(x+ y)� f(x� y) = 2f(y) f(x) = Ax

f(x+ y)f(x� y) = f(x)

2

f(x) = a

f(x+ y)� f(x� y) = 4

p

f(x)f(y) f(x) = Ax

2

f(x+ y)f(x� y) = f(x)

2

� f(y)

2

f(x) = Ax; k sinAx ; k sinhAx

Figure 2: Examples of functions satisfying F [f(x � y); f(x +

y); f(x); f(y)] = 0 over the reals

parameters of �; � to the following: If f(x + y)� f(x)� f(y) = 0 is satis�ed for a constant

greater than 7=9 fraction of the choices of x; y in the group G, then there is some function

g(z) = c � z such that f(x) = g(x) for at least 5=9 of the x in G. Coppersmith also gives an

example which shows that � = 7=9 is a type of a threshold, i.e., there is a function which

satis�es f(x + y) � f(x) � f(y) = 0 for 7=9 fraction of the choices of x; y in the group

G, but which does not agree with any linear function on more than 1=3 of the domain.

Bellare, Coppersmith, Hastad, Kiwi and Sudan [11] show that one can get a tighter result

on the range of � that is useful over domains of the type GF (2)

n

where Coppersmith's

example does not apply. Robust characterizations of total degree d polynomials are given in

[38]

1

. Robust characterizations of maximum degree d polynomials are given in several works

[9][29][10][38]

2

. These results apply to polynomials over �nite �elds Z

p

(p prime), and �nite

subsets of rational domains. The �rst formal de�nition of robustness was given in [38]. Very

recently, robust characterizations of functions satisfying linear recurrence relations have been

given by Kumar and Sivakumar [33].

Our Results Our goal is to characterize the fundamental characteristics of functional

equations that make them robust, in order to gain an understanding of how broadly robust-

ness applies. It happens that the structure of the neighborhoods in N is very important to

whether a characterization is robust. We present a graph theoretic characterization of neigh-

1

The total degree of a polynomial is the maximum over all terms of the total degree of a term. The total

degree of a term is the sum of the individual degrees of each variable in the term.

2

The maximum degree of a polynomial is the maximum over all variables of the maximum degree of the

variable in any term.
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borhood setsN , which is used to quantify the connectivity ofN . In Theorem 9, we show that

high connectivity of N is necessary for N to be robust. Since the functional equations which

relate inputs that are linear functions of a single variable (e.g., 8x; f(x)� f(x+1)� 1 = 0)

are known not to have this connectivity property, we can conclude that they are not robust.

On the other hand, in Theorem 11, we show that when N = D

k

, and the set of solutions

to (F ;N ) is rich enough, (F ;N ) is robust.

We next investigate conditions on the class of functional equations of the general form

8x; y F [f(x � y); f(x + y); f(x); f(y)] = 0 that imply robustness. We focus on domains

that are �nite groups and certain types of subsets of in�nite groups, such as those of the

form D

n;s

= f

i

s

j jij � ng (see beginning of Subsection 2.1) and others that are of use in

studying periodic functions. In the case of domains that are �nite groups and domains

used for studying periodic functions, testing that a function satis�es a functional equation

over a domain will involve neighborhood sets that are chosen from the same domain. In

the case of domains that are subsets of in�nite groups of the form D

n;s

= f

i

s

j jij � ng,

testing that a function satis�es a functional equation will involve neighborhood sets that are

chosen from a larger subset of the same in�nite group. Our results apply to ranges that

have a group structure. In Theorems 13 and 29, we show that if the equation can be

written as 8x; y f(x + y) = G[f(x); f(y)] (a special case of algebraic addition theorems

referred to as an addition theorem), then it is robust as long as G satis�es G[a;G[b; c]] =

G[G[a; b]; c] 8a; b; c (which is satis�ed by all of our examples of addition theorems). The

proofs for all types of domains rely on the same techniques. Since the proofs of the results

over �nite group domains are simpler to state, we give them �rst in order to highlight the

main ideas. This work leads to self-testers for several families of trigonometric functions

including tanAx;

1

1+cotx

;

Ax

1�Ax

; coshAx, and several examples from [3][4][22] given in Figure

1. A general format for constructing self-testers is given in Sections 5,6, and a self-tester for

the particular example of the cosh function is given in Section 6.3. We then give techniques

that apply to functions which satisfy other functional equations (the �rst three examples in

Figure 2), including d'Alembert's equation 8x; y f(x+y)+f(x�y) = 2f(x)f(y) in Section

4.2. In this case, the range must be a �eld containing 2.

Robustness and self-testing/correcting. In order to allow a programmer to use pro-

grams that are not known to be correct on all inputs, result checkers were introduced by Blum

and Kannan [18], and soon after, the related paradigms of self-testers and self-correctors were

introduced by Blum, Luby and Rubinfeld [19]. (A notion similar to self-correctors was in-

dependently proposed by Lipton [34].) The paradigm of self-testers and self-correctors is

intended to �t into the framework of result checkers, and in fact it is observed that a self-

tester and a self-corrector for a function can be combined to give a checker [19]. If a function

has a checker, then one can determine whether program P is giving the correct answer on a

particular input or whether there is a bug in the program. If a function has a self-corrector,

then given a program P for computing the function that is correct on most inputs, one can

transform P into a new randomized program that is correct on each input with high prob-

ability and is almost as e�cient as running P . Self-testers allow one to ascertain that P is

correct on a large enough fraction of the inputs so that it is capable of being self-corrected.

More formal de�nitions of self-testers and self-correctors are given in Section 5. If a function
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has both a self-tester and a corresponding self-corrector, then an unreliable program can be

used to reliably compute the function.

Problems that can be viewed as linear or low degree polynomial functions, such as matrix

multiplication, integer division, sine/cosine, integer multiplication, the mod function, mod-

ular multiplication, polynomial multiplication, modular exponentiation, Fast Fourier Trans-

form and determinant, have been shown to have self-testers and self-correctors [19][8][34][23]

[31][37][38][2] [28] [21]. Although many functions can be viewed as linear functions or low

degree polynomials over an appropriate group structure, one concern was that these might

be the only examples of functions that have self-testers and self-correctors. Using the new

robustness results, we show that self-testers and self-correctors can be found for numerical

functions that previously did not have self-testers and self-correctors. The techniques used

to derive our results seem amenable to further generalization, and may apply to an even

wider variety of numerical functions.

We concentrate on self-testers which operate by �nding properties (such as functional

equations) that should be satis�ed by any correct program and then testing that the program

satis�es the properties for randomly chosen inputs. In this work, we study the characteristics

of the properties that make them usable for testing. Properties that can be tested more

e�ciently than computing the function f are particularly interesting for constructing good

tests for programs.

The idea of testing programs by verifying that programs satisfy properties known to be

satis�ed by the functions being computed is not new to the self-testing/correcting approach.

For example, matrix multiplication routines have been tested by verifying that the outputs

satisfy the distributive property [39]. The work of Cody and Stolz [25] proposes the use of

Taylor series in order to test programs for exponential integrals. These techniques apply to

Bessel functions and Dawson's integral. The work of Vainstein [42, 43, 44, 45], suggests the

use of polynomial checks for testing and correcting programs. In the language previously

de�ned, polynomial checks are those functional equations for which the function F is a

polynomial and the neighborhoods are ordered sets of the form (x; x+ a

1

; x+ a

2

; : : : ; x+ a

k

)

for �xed constants a

1

; : : : ; a

k

. These functional equations can be used to test functions

that are algebraic functions of trigonometric functions. The work of Cody [24] suggests the

following test for programs computing the real gamma function over the reals:

Pick random x and verify that P (2x) = (2�)

�1=2

2

2x�1=2

P (x)P (x+ 1=2).

In all of the above cases, it is clear that any correct program for the function must pass

these recommended tests. However, none of the works mentioned in this paragraph give any

formal evidence that programs that pass these tests should be usable. On the contrary, it is

easy to come up with examples of programs that pass the above tests but do not compute

the correct function on a large fraction of inputs.

Still, it has been shown that in many cases, using properties to test programs is mathe-

matically justi�ed (cf. [19] [37] [31] [38]). Essentially one can show that some of these tests

can be used in conjunction with other simple tests in order to determine that a program

is correct on most inputs. In order to show that such tests work, the main technique used

has been to partition the problem into three tasks: First, �nd properties that characterize

a family of functions, F , containing the function f . For example, one can �nd functional
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equations satis�ed by speci�c classes of �nite degree rational functions of x; e

x

; sinx using

the results of [43] [16]. Second, show that these properties are robust, so that it is possible

to e�ciently test whether the program is computing a function that is close to some function

in F . We call this task property testing. Third, �nd other e�cient tests which allow the user

to determine whether or not the program is computing the correct function within F . We

call this latter task equality testing. Equality testing can often be done much more e�ciently

once it is known that the program is essentially computing some member of F . For example,

the function f(x) = x mod R is uniquely speci�ed by the properties that (1) f is linear, i.e.,

8x; y f(x)+ f(y) � f(x+ y) mod R, (2) f has slope 1, i.e., 8x f(x) + 1 � f(x+1) mod R.

Using the robustness of linearity, if (1) is satis�ed for most x; y (greater than a 7=9 fraction),

then there is some function g(x) = cx mod R such that f(x) = g(x) for most x. If in addition

(2) is satis�ed for most x then f(x) = x mod R for most x. (Note that if R is considered

to be part of the input, then it is not enough to only test that property (2) is satis�ed for

any constant fraction of the x 2 [0::R � 1].) Thus, it is only necessary to check that the

program satis�es the given properties at a relatively small number (in this case, a constant

independent of jxj; jRj) of randomly selected inputs in order to guarantee that the program

usually computes the correct values. This paper concentrates on the task of property testing.

It is shown in [19] that self-correctors exist for any function that is random self-reducible,

3

since if the program is known to be correct on most inputs, then the correct value of the

function at any particular input x can be inferred, even though the program may be incorrect

on input x. In particular, any function satisfying the linearity property is random self-

reducible [19]. On a related note, the use of polynomial checks (or the functional equations

that are de�ned by the polynomial checks) for the correction of programs with few errors is

suggested in [43], and Blum, Codenotti, Gemmell and Shahoumian [16] build on the work

of [43] to give self-correctors for the same functions. Here we observe that e�cient self-

correctors exist for functions satisfying any one of a class of functional equations, namely

those of the general form 8x; y F [f(x�y); f(x+y); f(x); f(y)] = 0, where F is an algebraic

function that has the property that given three of f(x � y); f(x + y); f(x); f(y), F can be

used to e�ciently solve for the remaining one. A similar result was obtained independently

by Blum, Codenotti, Gemmell and Shahoumian [16] where self-correcting using functional

equations is studied in much greater depth.

Organization of paper In Section 2 we present the formal de�nitions of exact and ro-

bust characterizations from [38]. In Section 3 we investigate certain general properties of

functional equations that in
uence whether they are robust. In Section 4 we present tech-

nical theorems showing conditions under which the general functional equation F [f(x �

y); f(x + y); f(x); f(y)] = 0 is robust on domains that are �nite groups. In Section 5 we

present the self-testers and self-correctors based on the general form of the functional equa-

tion 8x; y F [f(x � y); f(x + y); f(x); f(y)] = 0. In Section 6 we show how to convert

3

f is random self-reducible if f can be computed at any particular input x via f(x) =

G[f(y

1

); : : : ; f(y

k

); y

1

; : : : ; y

k

] where G can be computed asymptotically faster than f and the y

i

's are

uniformly distributed, though not necessarily independent [19]. This notion of random self-reduciblity is

somewhat di�erent than other de�nitions given by [20] [1] [30], where the requirement on G is that it be

computable in polynomial time.
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the self-testers and self-correctors shown for �nite groups into self-testers and self-correctors

that apply to functions over rational domains. The completely speci�ed self-tester and self-

corrector for the particular example of the cosh function is described in Section 6.3. In

Section 7 we discuss our conclusions and directions for further research.

2 Functional Equations and Characterizations

In this section, we give the de�nitions of functional equations and exact and robust charac-

terizations. We also show a relationship between functional equations and probabilistically

checkable proof systems.

2.1 Domains and ranges

Throughout this paper, we focus on the following three kinds of domains: The �rst are

�nite subsets of the rationals, of the form D

n;s

= f

i

s

j jij � ng where n; s are integers.

These domains are not necessarily closed under addition and multiplication. This class

includes domains that can be internally represented in a computer, corresponding to �xed

point arithmetic, which have been used in previous work on self-testing and self-correcting

[31][37]. The second type of domain that we are interested in are �nite groups. Even for

functions that are not de�ned over �nite group domains, it is much simpler to �rst reason

about the functional equations that they satisfy over �nite group domains since they are

closed under addition, and then to use the techniques of [31][37] (described in Section 6)

for converting results on �nite group domains into results on rational domains. The third

class of domains are of use when studying periodic functions: D

b

s

= fi � sj i 2 Zg where b=s

is an integer, and addition and multiplication is performed mod b. For example, D

2�

2�=10

=

f0; 2�=10; 4�=10; 6�=10; : : : ; 18�=10g. Note that any function f : D

b

s

! R corresponds to a

function

^

f : Z

b=s

!R by

^

f(i) = f(i � s mod b). Thus results on the �nite group domains can

be immediately applied to this third class of domains. The range of the functions considered

can in general be arbitrary. If not speci�ed, the range is assumed to be the reals.

In Figures 1 and 2, solutions to functional equations over the reals are given. It may

happen that the functional equation over the reals characterizes a family of functions that is

a proper subset of the functions characterized by the same functional equation over D

p;s

. In

Section 5.2 we show that this does not limit the ability to construct self-testers for programs

for these functions, due to the equality testing performed by self-testers.

2.2 Functional Equations

In the text by Acz�el [3] (p.1), functional equations are de�ned by �rst de�ning a term:

De�nition 1 (term) ([3] p.1)

1. The independent variables x

1

; : : : ; x

k

are terms.

2. Given that A

1

; : : : ; A

m

are terms and that H is a function of m variables, then H(A

1

; : : : ; A

m

)

is also a term.
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3. There are no other terms.

De�nition 2 (functional equation) ([3] p.2) A functional equation is an equation A

1

=

A

2

between two terms A

1

; A

2

which contains k independent variables x

1

; : : : ; x

k

and n � 1

unknown functions H

1

; : : : ;H

n

of j

1

; : : : ; j

n

variables respectively, as well as a �nite number

of known functions.

The known functions used in [3] include addition, subtraction, division, multiplication,

exponentiation, trigonometric and hyperbolic functions. In this paper, we will also include

all functions computable by a Turing machine. Later in [3] (p.3) it is also noted that the

functional equation must be identically satis�ed for certain values of the variables (x

1

; : : : ; x

k

)

�guring in them, called the domain (we use the term neighborhood set in this paper). A

particular solution of a functional equation is a function that satis�es the equation in the

given domain (neighborhood set). The general solution is the set of all solutions belong-

ing to the class of admissible functions, which can for example be de�ned by the analytic

properties (measurability, di�erentiability, continuity, boundedness), other properties such as

computability by a polynomial time Turing machine, ...), by initial and boundary conditions

and/or by conditions given in the form of another functional equation.

2.3 Exact and Robust Characterizations

We now present the de�nitions of characterizations and robust characterizations given by

[38]. D is used to represent a �nite domain. We consider families of functions F where f 2 F

maps elements from domain D to range R (we use R to denote the range of a function and <

to denote the set of real numbers). T is a range containing 0. We illustrate these de�nitions

using the example of linear functions. Here D = R = T = Z

p

and the family of linear

functions is ff

a

ja 2 Z

p

where f

a

(x) = a � xg.

De�nition 3 (Neighborhoods) [38] N

D

is a k-local neighborhood if it is an ordered tuple

of (not necessarily distinct) k points (x

1

; : : : ; x

k

) from D

k

. A k-local collection of neighbor-

hoods N

D

is a (multi)set of k-local neighborhoods. When D is understood from the context,

we drop it from the subscript.

De�nition 4 (Properties) [38] P

D;R;T

is a k-local property if it is a function from R

k

�D

k

to T . We say that a function f : D ! R satis�es a property P

D;R;T

over a neighborhood

N

D

= (x

1

; : : : ; x

k

) if P

D;R;T

(f(x

1

); : : : ; f(x

k

); x

1

; : : : ; x

k

) = 0.

4

When D;R;T are understood

from the context, we drop them as subscripts.

De�nition 5 (Exact Characterizations) [38] We say that (P

D;R;T

; N

D

) is an exact char-

acterization of a family F of functions if a function f : D ! R satis�es P

D;R;T

over all

neighborhoods N

D

2 N

D

exactly when f 2 F . The characterization is k-local if the property

P

D;R;T

and the collection N

D

is k-local. When D;R;T are understood from the context, we

drop them as subscripts.

4

This is a slight modi�cation of the de�nition in [38], where the function f satis�es P

D;R;T

if

P

D;R;T

(f(x

1

); : : : ; f(x

k

); x

1

; : : : ; x

k

) = 1 and the range of the function P

D;R;T

is f0; 1g instead of T .

9



In our example, R = T = D = D

0

= Z

p

. The collection of neighborhoods is N =

f(x; y; x+y)jx; y 2 Z

p

g. The property P which for fx

1

; x

2

; x

3

g computesP(f(x

1

); f(x

2

); f(x

3

);

x

1

; x

2

; x

3

) = f(x

1

) + f(x

2

) � f(x

3

) is 3-local. (P;N ) is a 3-local characterization of the

family of the linear functions ff jf(x) = c � x; c 2 Z

p

g.

De�nition 6 (Robust Characterizations) [38] Let D

0

� D. Let P

D;R;T

be a property

over a collection of neighborhoods N

D

; let F be such that (P

D;R;T

;N

D

) is an exact charac-

terization of F . We say that the characterization A � (D

0

;P

D;R;T

;N

D

) is an (�; �)-robust

characterization of F in G if whenever a function f 2 G satis�es P

D;R;T

on all but � fraction

of the neighborhoods in N

D

, it is �-close on domain D

0

to some function g 2 F .

5

When

D;D

0

;R;T are understood from the context, we drop those parameters.

We remark that in order for a robust characterization to be useful, membership in G

should be e�cient to test, choosing a random neighborhood in N

D

should be e�cient, and

D

0

should be a fairly large subset of D. All of our results have these properties. In most

examples, G will be the set of all functions, however we will see examples in which it is useful

to have G be a smaller, e�ciently recognizable, set of functions.

To continue with the example of linear functions, a theorem of [19] can be used to say

that for any �nite group G and any � <

2

9

, (P

G

;N

G

) is a (2�; �)-robust characterization of

the linear functions mapping G to G.

In order to test if f is close to some member of F , one would need to sample at least

1

�

of the neighborhoods in N and test if P holds on these neighborhoods. Thus,

1

�

is referred

to as the e�ciency of the characterization.

We now de�ne what it means for a characterization to be robust over a class.

De�nition 7 Let S = f(A

1

;F

1

;G

1

); (A

2

;F

2

;G

2

); : : :g be such that for all i, A

i

= (D

0

i

;P

D

i

;R

i

;T

i

;N

D

i

)

and (P

D

i

;R

i

;T

i

;N

D

i

) is an exact characterization of F

i

. We say that (P;N ) is robust over

the family S, if:

1. there is a function N which takes as input i and returns a Turing machine M such

that M on input a random string chooses a random member N 2 N

D

i

2. there is a function P which takes as input i and returns a Turing machine that on

input N 2 N

D

i

, computes P

D

i

;R

i

;T

i

(N)

3. for all � < 1 there is a � < 1 such that for all i, A

i

is an (�; �)-robust characterization.

6

In order for a robust characterization over a class to be useful, the functions (P;N )

should have a uniform and concise description. In particular, functional equations have a

natural interpretation as a concise description of robust characterizations over a class. In

this paper, we consider variations of the following two basic types of classes:

5

It is convenient for our results in this paper to de�ne N

D

as a multiset and to de�ne robust characteri-

zations in terms of picking neighborhood sets from the uniform distribution on N

D

. Alternatively, one can

de�ne robust characterizations in terms of a distribution on ordered sets, where N

D

would correspond to

the support of the distribution.

6

The only interesting case is when the size of S is in�nite, since otherwise there are always constants �; �

such that all characterizations in the collection are (�; �)-robust.

10



In the �rst type of class, we capture the property that a functional equation is (�; �)-robust

over all domains that have a certain structure, such as �nite groups. The functional equation

P;N is described with a generic group or �eld operation. Let D

i

= D

0

i

= R

i

= T

i

= G

i

,

where G

i

is the i

th

group (for an arbitrary ordering of the groups) with group operator

+

G

i

. P

D

i

;R

i

;T

i

and N

D

i

are then the functions obtained by using the group operator +

G

i

.

In our linearity example, P(i) = P

D

i

;R

i

;T

i

is the function P(f(x

1

); f(x

2

); f(x

3

); x

1

; x

2

; x

3

) =

f(x

1

) +

G

i

f(x

2

)�

G

i

f(x

3

). The collection of neighborhoods N = f(x; y; x+

G

i

y)jx; y 2 G

i

g.

In the second type of class, we concentrate on �nite subsets of various sizes of an in�-

nite group. The functional equation is de�ned over a large, possibly in�nite domain such

as the rationals. However, the robust characterization is de�ned over a �nite subset of

the domain. Let D

i

= D

n

i

;s

, D

0

i

= D

i;s

for n

i

� i (the exact value of n

i

is determined

by the robust characterization) and R = T = <. P;N always return the same func-

tion which maps the rationals to the reals. In our linearity example, P is the function

P(f(x

1

); f(x

2

); f(x

3

); x

1

; x

2

; x

3

) = f(x

1

) + f(x

2

)� f(x

3

) and N is a carefully chosen subset

of f(x; y; x+ y)jx 2 D

n

i

;s

; y 2 D

n

i

;s

g (see Section 6). Operations +;� are the usual group

operations over the reals.

Our results specify the class of domains and ranges over which the functional equation is

robust. When S is understood from the context, we say that (P;N ) is robust.

2.4 Robustness and Probabilistically Checkable Proofs

A language L in NP has a probabilistically checkable proof system if there is a probabilistic

polynomial time Turing machine V (the veri�er) that has read access to a source of random

strings R and to a proof P for the membership of x in L, such that (1) if x 2 L, there

exists a proof P of membership in the language such that V accepts P with probability

1 (where the probability is over the random strings R) and (2) if x is not in L, for all

proofs P

0

, V accepts proof P

0

with probability at most 1=4 [29]. The linearity test and tests

for low total degree polynomial functions that are given in [19] [37] [6] have been used to

construct probabilistically checkable proof systems in the recent results of [6] [14] [12] (tests

that functions are low degree in each variable are given and used in [9] [29] [7]). Much

recent research has been devoted to expanding the range of the robustness parameter � for

which these tests work, as it directly in
uences the strength of results showing that it is

computationally di�cult to approximate certain NP-complete problems [36][11] [12].

Conversely, Sudan [41] has noted that the property of being a probabilistically checkable

proof can actually be viewed as an example of a robust functional equation (where the

de�nition of F is generalized to include all polynomial time circuits): In the work of Arora,

Lund, Motwani, Sudan and Szegedy [6], each probabilistically checkable proof P can be

viewed as a truth table of a function. If P is n bits long then P can be thought of the function

P : [1 : : : n] ! f0; 1g, i.e., P (i) is the i

th

bit of the proof. The protocol followed by V is to

choose an r-bit random string y, perform a computation in order to determine a constant

number of locations �

1

(y); : : : ; �

k

(y), query the proof at those locations, and then perform

another computation on input (y; P (�

1

(y)); : : : ; P (�

k

(y))) in order to determine whether

to accept or reject the proof. More formally, let N = f(�

1

(y); : : : ; �

k

(y))jy 2 f0; 1g

r

g.

The veri�er's choice of a random string in f0; 1g

r

g determines a choice of a neighborhood

11



(y

1

; : : : ; y

k

) from N by the computation y

i

= �

i

(y). The veri�er then tests whether a

relationship 8(y

1

; : : : ; y

k

) 2 N ; F [P (y

1

); P (y

2

); : : : ; P (y

k

); y] = 0 is satis�ed, where F is

computable by a polynomial time Turing machine and describes the computation of the

veri�er that determines whether to accept or reject the proof. In [6] it is shown that one

can construct an (F;N ) that characterizes the set of valid proofs, i.e., valid proofs are

exactly those bit strings P for which F [P (y); P (�

1

(y)); : : : ; P (�

k

(y)); y] = 0 is satis�ed for

all random strings y. Furthermore only proofs that are close (equal on most bits) to some

valid probabilistically checkable proof are passed with probability � 3=4.

3 Characterizing Robust Functional Equations

We turn to the general question of how to distinguish functional equations that are robust

from those that are not, in order to arrive at a better understanding of what makes a

functional equation robust. It turns out that the structure of the neighborhood set is a

very important determining factor to whether or not the functional equation is robust. To

illustrate, the following are three characterizations of the lines F = ff jf : Z

p

! Z

p

; f(x) =

ax+ b for a; b 2 Z

p

g (this family of lines is di�erent from the one discussed previously) and

over the class S in which R

i

= T

i

= D

i

= D

0

i

= Z

p

i

where p

i

is the i

th

prime:

1. 8x

1

; x

2

; x

3

2 Z

p

i

;

f(x

1

)�f(x

2

)

x

1

�x

2

=

f(x

2

)�f(x

3

)

x

2

�x

3

.

2. 8x

1

; x

2

2 Z

p

i

; f(x

1

)� 2f(x

2

) + f(2x

2

� x

1

) = 0, or equivalently, N

D

= f(x

1

; x

2

; 2x

2

�

x

1

)jx

1

; x

2

2 Z

p

i

g and 8(x

1

; x

2

; x

3

) 2 N

D

; f(x

1

)� 2f(x

2

) + f(x

3

) = 0.

3. 8x

1

2 Z

p

i

; f(x

1

)� 2f(x

1

+1)+ f(x

1

+2) = 0, or equivalently,N

D

= f(x

1

; x

1

+1; x

1

+

2)jx

1

2 Z

p

i

g and 8(x

1

; x

2

; x

3

) 2 N

D

; f(x

1

)� 2f(x

2

) + f(x

3

) = 0.

In all three characterizations, the property is the same (although simpli�ed in the latter

two characterizations because of the specially chosen neighborhoods), and ensures that the

points (x

1

; f(x

1

)); (x

2

; f(x

2

)); (x

3

; f(x

3

)) all lie on a single line. The only di�erence in the

three characterizations is the collection of neighborhoods over which it is de�ned. However,

the choice of neighborhoods heavily in
uences the robustness of the characterizations. A

simple counting argument (similar to the one described later in Section 3.2) shows that

the �rst property is (�; �)-robust for all � < 1. The second property is (2�; �)-robust for

� < 1=1082 [38]. It is easy to see that for all �, the third property is not (�; �)-robust over

S for any constant �. Thus the richness of the neighborhood set in
uences the robustness

as well as the complexity of computing P

D;R;T

. Another interesting quantity related to the

neighborhood set is the number of random bits required to choose a random element of

the neighborhood set (or the logarithm of the size of the neighborhood set). Reducing this

quantity, even by a constant factor, while not signi�cantly a�ecting the range of �; � achievable

for maintaining a robust characterization (and thus not signi�cantly reducing the e�ciency

of the characterization), has been useful for constructing more e�cient probabilistically

checkable proofs [14] [12].

We begin by investigating two extreme types of functional equations:
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1. A k-minimal neighborhood set is one in which N

D

is described by k � 1 functions

�

1

(x); : : : ; �

k�1

(x) where the �

i

's are arbitrary functions mapping D to D. N

D

is of the

form f(x; �

1

(x); : : : ; �

k�1

(x))jx 2 Dg. Since once the �rst element of the neighborhood

is chosen, the other elements are uniquely determined, the cardinality of the neighbor-

hood set is at most jDj. N

D

in the third example uses a 3-minimal neighborhood set.

A minimal functional equation is one in which the neighborhood set is k-minimal for

some constant k.

2. A k-total neighborhood set is one in whichN

D

= D

k

, relating the function at each input

x to function values at all subsets of k�1 other inputs. N

D

in the �rst example uses a

3-total neighborhood set. A total functional equation is one in which the neighborhood

set is k-total for some constant k.

We isolate a key combinatorial property of the neighborhood sets of functional equations

and show that having this property is a necessary condition for robustness. We apply this

combinatorial property to show a general condition under which functional equations with

minimal neighborhood sets are not robust. As we will see later on, this result implies that

certain methods of testing programs used in practice are related to this class and are therefore

provably faulty. For example, our techniques apply to the functional equation that is used

to test the real gamma function [24] (page 6). On the other hand, we mention an example,

given by Sudan [41], of a minimal equation that is robust. We then show conditions under

which k-total equations are always robust.

In the following, we assume that D = D

0

.

3.1 Minimal functional equations.

One might conjecture that minimal equations cannot be robust, since for most inputs x, the

function value at x is related to the function values at very few other inputs. We show a

class of minimal equations that are provably not robust. We then describe an example of a

minimal robust functional equation.

A Combinatorial Property of Robustness. We �rst de�ne a graph which captures

much of the information in the neighborhood set N

D

= f(x; �

1

(x; �y); : : : ; �

k

(x; �y))jx 2 D; �y 2

D

k

g: Given the functional equation 8x 2 D; �y 2 D

k

; F [f(x); f(�

1

(x; �y)); : : : ; f(�

k

(x; �y))] =

0, for �

i

: D�D

k

! D, we de�ne the undirected multigraph G

N

D

= (V;E) where the vertices

correspond to elements of D and the edges are E = f(x; �

j

(x; �y))jx 2 D; �y 2 D

k

; 1 � j � kg

(there may be more than one edge between u and v if there is more than one i; �y such that

�

i

(u; �y) = v).

For example, the graph of 8x 2 Z; f(x) + 1 � f(x+ 1) = 0 corresponds to a path, and

the graph of 8x; y; f(x) + f(y) � f(x + y) = 0 corresponds to a complete graph with two

edges between every pair of nodes.

The following result applies to functional equations de�ning classes of functions that can

be thought of as codewords with very large (>> 1=2) distance.

De�nition 8 An �-separated function family F over domain D is one for which jFj � 2

and 8f

i

; f

j

2 F ; P r

x2D

[f

i

(x) = f

j

(x)] � �.
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For example, for all of the functional equations mentioned in Figures 1,2, for all �,

there are integers n; s such that the functional equations over the domain D

n;s

characterize

�-separated function families.

The following theorem shows a relationship between the connectivity of G

N

D

and the

robustness of the functional equation (F;N

D

): If (F;N

D

) is (�; �)-robust, then more than

�=k fraction of the edges in the graph G

N

must be removed in order to separate G

N

into

two \large" components, each of size � (�+ �)jV j.

Theorem 9 Let N = f(x; �

1

(x; �y); : : : ; �

k

(x; �y))jx 2 D; �y 2 D

k

g. Suppose that F , charac-

terized by (F;N ), is an �-separated function family. If G

N

has a set of edges E

0

such that

(1) jE

0

j �

�

k

jEj and (2) removing E

0

separates the vertices of G

N

into two components, each

of size � (�+ �)jV j, then (F;N ) is not an (�; �)-robust characterization.

Proof: Suppose E

0

separates G

F

into sets A;B. Consider the function h which labels

vertices in A according to f

1

and vertices in B according to f

2

, for some f

1

; f

2

2 F . Since

F is �-separated, we have that 8f

i

2 F ; P r

x2D

[f

i

(x) 6= h(x)] � �. However, only tests using

edges that cross the cut will fail. Since x; �y are chosen uniformly, the edges are also chosen

uniformly. Thus tests will fail with probability � �. 2

Application to minimal functional equations It is easy to see that for any minimal

equation F of the form F [f(x); f(�(x))] = 0, G

F

can be separated into two large components

by removing very few edges (by Theorem 9), and thus for all classes S in which the domain

size is not bounded, the functional equation (F;N ) for N = f(x; �(x))jx 2 Dg over S is not

robust.

It was shown by Klawe [32] that for any given �, any graph on n nodes whose edges

are de�ned by a constant number of linear functions has a cut containing o(n) edges which

separates the graph into two large portions, each containing an � fraction of the nodes. The

following corollary applies to functional equations relating points x to points that are linear

functions of x:

Corollary 10 Given n; s; let D

n;s

= D = D

0

. R = T = <. Let �

1

; : : : ; �

k

be any family of

linear functions over the rationals of the form �

i

(x) = ax+b, where a; b are rational, and let F

be an �-separated function family satisfying the equation F [f(x); f(�

1

(x)); f(�

2

(x)); : : : ; f(�

k

(x))] =

0. Then there exists a constant 0 < � < 1 such that (F;N ) is not (�; �)-robust for any con-

stant �.

Thus, if S is a class such that D

i;s

= D

i

= D

0

i

, R

i

= T

i

= <, and �

1

; : : : ; �

k

are any family

of linear functions over the rationals of the form �

i

(x) = ax+ b, where a; b are rational, the

functional equation (F;N ) for N = f(x; �

1

(x); : : : ; �

k

(x))jx 2 Dg over S is not robust. A

similar result applies for linear functions over �nite groups.

This corollary shows that many tests that are used in practice to test programs should

be used with more care. For example, in the functional equation

8x; f(2x)� (2�)

�1=2

2

2x�1=2

f(x)f(x+ 1=2) = 0

used for testing the real gamma function by [24], all of the �

i

's are linear functions (�

1

(x) =

2x; �

2

(x) = x + 1=2). Thus the corollary implies that there exist programs which are very
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di�erent from any solution to this functional equation, yet pass the test most of the time.

The direct use of polynomial checks suggested in [43] also yields functional equations which

are not robust due to Corollary 10, however, the work of [16] shows how to transform the

polynomial checks into more general functional equations for which the negative results in

this section do not apply.

A robust minimal functional equation Previous examples of robust functional equa-

tions have always been usable for self-correction as well. This might lead one to think that

usability for self-correction might be another necessary condition for robustness. However,

this may note be the case: It is not known how to use minimal functional equations for

self-correction. Even so, there are minimal functional equations that are robust and can

therefore be used to self-test. We describe an example of a minimal functional equation that

is robust. This example was given by Sudan [41]:

We say that a graph G(V;E) is an �-expander if for all S � V; jSj � jV j=2, the set of

nodes that are neighbors of S (not including nodes in S), is of size � �jSj. Fix constants d

and �. LetG

i

(V;E) be any degree d �-expander on i nodes, such that the vertices are labelled

by elements of the domain D. Let the functional equation be 8(u; v) 2 E; f(u)� f(v) = 0.

Since G

i

is connected, the only functions which are solutions to this functional equation are

the constant functions. Assume that the functional equation is satis�ed for most (u; v) 2 E.

Suppose one deletes all edges for which the functional equation does not hold. Since G

i

is an

expander, there must exist a large connected component in G

i

(containing at least a constant

fraction of the nodes), even after deleting the edges. The large connected component will

correspond to elements of the domain that agree with a single constant function. Let S be

the class corresponding to the above functional equation on G

0

; G

1

; : : :. Then for all �, there

is a � such that the above functional equation is (�; �)-robust on S.

3.2 Total functional equations.

On the other end of the spectrum, we consider a class of functional equations where there

are no restrictions on the way inputs are related, and show that if some technical conditions

are satis�ed, then they are always robust.

Given D and R, let F [f(x); f(y

1

); : : : ; f(y

k�1

); x; y

1

; : : : ; y

k�1

] = 0; 8x; y

1

; : : : ; y

k

be a

k-total functional equation characterizing functions f : D ! R. Assume further that F

can be solved for f(x), namely f(x) = G[f(y

1

); : : : ; f(y

k�1

); x; y

1

; : : : ; y

k�1

] 8y

1

; : : : ; y

k�1

(because of the totality of the equation, F and G depend on x; y

1

; : : : ; y

k�1

as well as the

function values at those points). We say that the solution F to equation F is (k � 1)-

complete if 8((y

1

; w

1

); : : : ; (y

k�1

; w

k�1

)) 2 (D;R)

k�1

; 9f 2 F such that f(y

i

) = w

i

for all

1 � i � k � 1. An example of a (k � 1)-complete function family is the family of degree

(k � 1) polynomials. The following theorem, which says that k-total functional equations

that characterize k� 1-complete function families are necessarily robust, can be viewed as a

generalization of a known theorem for degree (k � 1) univariate polynomials (cf. [40]).

Theorem 11 Let N = D

k

. Suppose the k-total functional equation F [f(x); f(y

1

); : : : ;

f(y

k�1

); x; y

1

; : : : ; y

k�1

] � f(x)�G[f(y

1

); : : : ; f(y

k�1

); x; y

1

; : : : ; y

k�1

] = 0 8x; y

1

; : : : ; y

k�1

has a k � 1-complete solution F . Then (F;N ) is (�; �)-robust 80 < � < 1.
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Proof: Suppose f satis�es Pr

x;�y

[f(x) = G[f(y

1

); : : : ; f(y

k�1

); x; y

1

; : : : ; y

k�1

]] � 1 � �.

Then there exists z

1

; : : : ; z

k�1

, a particular setting of the y

i

's, such that the test works

for � 1 � � of the x's. Let g(x) be the function in F determined by the values of the

program at z

1

; : : : ; z

k�1

. Then Pr

x

[g(x) = f(x)] � 1 � �. Thus 8x; y

1

; : : : ; y

k�1

g(x) �

G[g(y

1

); : : : ; g(y

k�1

); x; y

1

; : : : ; y

k�1

] = 0. 2

Any function f , that satis�es such a total functional equation F can be computed, given

the value of the function at any �xed k locations, as e�ciently as evaluating the func-

tional equation G. Thus, if F and G have the same complexity, the functional equation is

not useful for self-testing, since it does not have the \little-oh property" described in [18].

However, it is possible that more e�cient self-testers can be constructed by looking at a

smaller, carefully chosen, set of neighborhoods N and showing that the functional equation

is still robust over N . Given ~� = (�

1

; : : : ; �

k�1

), such that �

i

: D � D

k�1

! D, sup-

pose functional equations F [f(x); f(y

1

); : : : ; f(y

k�1

); x; y

1

; : : : ; y

k�1

] = 0 8x; y

1

; : : : ; y

k�1

,

and F [f(x);f(�

1

(x; �z)); : : : ;f(�

k�1

(x; �z));x; �

1

(x; �z); : : : ; �

k�1

(x; �z)] = 0 8x; �z both have the

same complete solution F . Due to the structure of the �'s, it might be the case that F is

easier to compute on those tuples de�ned by the �'s (for example, e�cient polynomial de-

gree tests have been constructed by only performing tests on points that are evenly spaced:

�

i

(x; z) = x+ iz [38]). If F is also robust over random choices of x; �z, then a more e�cient

tester can be constructed.

We use a bound on the runtime of the program being tested to devise a tester. The

works of Blum, Evans, Gemmell, Kannan and Naor [17] and Micali [35] also construct

checkers based on bounds on the runtime of the program being checked, but use very di�erent

methods. Let the distribution V

~�

be the distribution de�ned by picking x 2 D; �z 2 D

k�1

randomly, and outputting (x; �

1

(x; �z); : : : ; �

k�1

(x; �z)). Let U be the distribution de�ned by

picking x; y

1

; : : : ; y

k�1

2 D and outputting (x; y

1

; : : : ; y

k�1

). If the �'s look \random enough",

we have the following theorem showing a sense in which F is robust over random choices of

x; �z. This theorem implies that it is enough to test points related by the �'s.

Theorem 12 Let T ime(c) � ff jf is computable on inputs of length n in time n

c

g. Let c

be an arbitrary constant, and �x 0 � � � 1 and 0 � � � 1. Let E

1

denote the functional

equation F [f(x); f(y

1

); : : : ; f(y

k�1

); x; y

1

; : : : ; y

k�1

] = 0 8x 2 D; �y 2 D

k�1

, and E

2

denote

the functional equation F [f(x); f(�

1

(x; �z)); : : : ; f(�

k�1

(x; �z)); x; �

1

(x; �z); : : : ; �

k�1

(x; �z)] =

0 8x 2 D; �z 2 D

k�1

. Assume that:

1. E

1

and E

2

have the same complete solution F ,

2. F can be computed by a circuit of size (log jDj)

c

,

3. no circuit of size � (k + 1)(log jDj)

c

can distinguish inputs from V

~�

and U with more

than � advantage,

4. E

1

is is (�; 2�)-robust.

Then E

2

can be used to test all programs running in time (log jDj)

c

: if Pr

x;R

[F [P (x); P (�

1

(x; �z));

: : : ; P (�

k�1

(x; �z)); x; �

1

(x; �z); : : : ; �

k�1

(x; �z)] = 0] � 1� �, and P runs in � (log jDj)

c

steps,

then there is a f 2 F such that Pr

x

[P (x) = f(x)] � 1� �. Thus, (F ;D

k

) is an (�; �)-robust

characterization of F in T ime(c).
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Proof: Suppose that there exists some program P running in time (log jDj)

c

which is wrong

at � � inputs in D but passes the tester with probability > 1 � �. We use it to construct a

programA of size� (k+1)(log jDj)

c

that can distinguish between outputs from distributions

V and U with more than � advantage (which contradicts (3)). A receives w; z

1

; : : : ; z

k�1

, and

tests whether F [P (x);P (z

1

));: : : ; P (z

k�1

);x;z

1

; : : : ; z

k�1

] = 0. A outputs 1 if P passes the

test and 0 if P fails. By Theorem 11, Pr

x;y

1

;:::;y

k�1

2U

[F [P (x); P (y

1

); : : : ; P (y

k�1

); x; y

1

; : : : ;

y

k�1

] 6= 0] � 2�, and by the assumption, Pr

x;y

1

;:::;y

k�1

2V

[F [P (x); P (y

1

); : : : ; P (y

k�1

); x; y

1

;

: : : ; y

k�1

] 6= 0] < �. 2

4 Robustness of 8x; y; F [f (x� y); f (x+ y); f (x); f (y)] = 0

We study conditions under which any member of the general class of functional equation

8x; y F [f(x � y); f(x + y); f(x); f(y)] = 0 is robust. We show that addition theorems

8x; y f(x+ y) = G[f(x); f(y)] for which G satis�es G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c (which

all of our examples satisfy) are robust over the class S, such that the domains in S are �nite

groups, and then give a technique which applies to a number of functional equations that

are not addition theorems. Our techniques apply to all functional equations in Figure 1 as

well as the �rst three functional equations in Figure 2. We conjecture that all functional

equations in this class are robust.

All results can be extended to rational domains of the form D

p;s

= f

i

s

jjij � pg using

standard techniques from [31][37]. We give an example of such an extension in Section 6.

Our only assumption on R in Subsection 4.1 is that it is an (possibly in�nite) group. In

Subsection 4.2 we assume that R is a �eld.

4.1 Addition theorems

We show that any addition property 8x; y f(x + y) = G[f(x); f(y)] is (2�; �)-robust for

� < 1=8 and G that satis�es G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c (we do not attempt to optimize

the relationship between � and � in our proofs of (�; �)-robustness { see [13], [26] and [11] for

techniques for improving this relationship). Therefore, knowing that f(x+y) = G[f(x); f(y)]

holds at more than a

7

8

fraction of the (x; y) pairs is enough to conclude that f agrees with

some solution of the addition theorem G on at least

3

4

fraction of the inputs. One can verify

that G satis�es G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c in all of the examples given in Figure 1.

At the end of this subsection, we consider the requirement thatG[a;G[b; c]] = G[G[a; b]; c] 8a; b; c.

We show that that if the domain is a subset of a �eld, such that rational functions are de�ned

(a function f(x; y) = p(x; y)=q(x; y) where p; q are polynomials), then we can make a general

claim for any constant degree rational function G that is based on the number of zeros that

a rational function can have. Similar results that apply to algebraic functions can be proven

for domains over which algebraic functions are de�ned (see [46]).

We now show that any addition theorem satisfying 8a; b; c G[a;G[b; c]] = G[G[a; b]; c]

is robust. This proof follows an outline similar to Coppersmith's version of the proof of

robustness of the linearity test which is described in [19]. However, the inner manipulations

are di�erent. Hence, whereas Coppersmith's proof works for any � � 2=9, here we require

� � 1=8.
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Theorem 13 Let D = D

0

be a �nite group and R = T a group. Let N

add

= f(x; y; x +

y)jx; y 2 Dg. Let G be such that G satis�es 8a; b; c 2 R G[a;G[b; c]] = G[G[a; b]; c]. Let

F (x

1

; x

2

; x

3

) = f(x

3

) � G[f(x

1

); f(x

2

)] on neighborhoods (x

1

; x

2

; x

3

) 2 N

add

. Then for all

� < 1=8, (F;N

add

) is (2�; �)-robust. Letting S be a class such that D

i

= D

0

i

are �nite groups

and R

i

= T

i

are groups, then since for all � < 1=4, (F;N

add

) is (�; �=2)-robust, (F;N

add

) is

robust over S.

Proof: [of Theorem 13] To prove the theorem, we will show that if Pr

x;y2

R

D

[f(x + y) =

G[f(x); f(y)]] � 1� �, for � <

1

8

, then there exists a function g such that (1) Pr

x2

R

D

[f(x) =

g(x)] � 1� 2� and (2) 8x; y g(x+ y) = G[g(x); g(y)].

De�ne g(x) to be maj

z2D

fG(f(x�z); f(z))g, where maj of a set is the function that picks

the element occuring most often (choosing arbitrarily in the case of ties). We �rst show that

g is 2�-close to f :

Lemma 14 g and f agree on more than 1 � 2� fraction of the inputs from D.

Proof: Consider the set of elements x such that Pr

z

[f(x) = G[f(x�z); f(z)]] < 1=2. If the

fraction of such elements is more than 2� then it contradicts the condition that Pr

x;y

[f(x+

y) = G[f(x); f(y)]] � 1 � �. For all remaining elements, f(x) = g(x). 2

Next we show a sense in which g is well-de�ned:

Lemma 15 For all x, Pr

z

[g(x) = G[f(x� z); f(z)]] � 1 � 2�.

Proof:

7

Pr

y;z

[G[f(x� y); f(y)]

= G[G[f(x� y � z); f(z)]; f(y)]

= G[f(x� y � z); G[f(z); f(y)]]

= G[f(x� (y + z)); f(y + z)]] � 1� 2�

The �rst and third equality hold with probability 1�� by our assumption on f and since

x � y; y; z; x� y � z; z + y are all uniformly distributed in D. The second equality always

holds since G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c.

The lemma now follows from the well known fact that the probability that the same

object is drawn twice from a set in two independent trials lower bounds the probability of

drawing the most likely object in one trial: Suppose the objects are ordered so that p

i

is

the probability of drawing object i. Without loss of generality p

1

� p

2

� : : :. Then the

probability of drawing the same object twice is

P

i

p

2

i

�

P

i

p

1

p

i

= p

1

. 2

Finally, we prove that g satis�es the addition theorem everywhere:

Lemma 16 For all x; y, g(x+ y) = G[g(x); g(y)].

Proof:

7

For conciseness, we use a somewhat nonstandard notation: For random variables a; b; c, we reason about

the probability that a = c by using an intermediate variable b, using Pr[a = c] � Pr[a = b = c] � 1�Pr[a 6=

b]� Pr[b 6= c].
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Pr

u;v

[G[g(x); g(y)]

= G[G[f(u); f(x � u)]; G[f(v); f(y � v)]]

= G[f(u); G[f(x � u); G[f(v); f(y � v)]]]

= G[f(u); G[G[f(x � u); f(v)]; f(y � v)]]

= G[f(u); G[f(x � u+ v); f(y � v)]]

= G[f(u); f(x + y � u)]

= g(x+ y)]

> 1 � 8� > 0

By Lemma 15, the �rst equality holds with probability 1�4� and the last equality holds

with probability 1�2�. By the assumption on f , the fourth and �fth equalities each hold with

probability 1� �. The other equalities always hold, since G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c.

Since the statement is independent of u; v and holds with positive probability, it must hold

with probability 1. 2

2 (Theorem 13)

4.1.1 Addition theorems that satisfy G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c

If the domain is a large enough subset of a �eld, such that rational functions are de�ned

(a function f(x; y) = p(x; y)=q(x; y) where p; q are polynomials), and if G is a rational

function such that the numerator has bounded degree then one can show that G satis�es

G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c:

Theorem 17 Let G be a constant degree rational function, such that the degree in each

variable of the numerator of the rational function H(a; b; c) � G[a;G[b; c]]� G[G[a; b]; c] is

bounded by N . Assume that G is such that one of the solutions f to the functional equation

8x; y f(x+y) = G[f(x); f(y)] takes on at least (N+1)

3

values (in particular, jRj > (N+1)

3

).

Then G satis�es G[a;G[b; c]] = G[G[a; b]; c] 8a; b; c 2 R.

Proof: Since H is a rational function, it will su�ce to show that H evaluates to 0 on many

inputs and therefore must be identically 0. The inputs for which we show that H evaluates

to 0 will correspond to outputs of functions f that satisfy the addition theorem at all x; y.

Given any function f satisfying 8x; y f(x+ y) = G[f(x); f(y)], since D is associative we

have that f(x+y+z) = G[f(x); f(y+z)] = G[f(x+y); f(z)], and so G[f(x); G[f(y); f(z)]] =

G[G[f(x); f(y)]; f(z)].

Suppose that there exists a solution f of f(x+ y) = G[f(x); f(y)] that takes on at least

N

3

distinct values V = fv

1

; : : : ; v

N

3
g. Since 8a; b; c 2 V; H(a; b; c) = 0, we know that

H(a; b; c) � 0 [47]. 2

4.2 d'Alembert's equation and others

In this section, we show that the robustness of functional equations of the form 8x; y F [f(x�

y); f(x+ y); f(x); f(y)] = 0, is not limited to addition theorems by showing that when the

domainD is a �nite group, and the rangeR = T is a �eld containing 2, d'Alembert's equation

8x; y f(x + y) + f(x � y) = 2f(x)f(y) is a robust property on G = ff jPr

x2D

[f(x) = 0] �

19



1=20g. Since membership in G is easy to test, these robustness results lead to self-testers as

described later. The techniques in this section can also be used to show that the equations

8x; y f(x+ y)+ f(x� y) = 2[f(x)+ f(y)] and 8x; y f(x+ y)+ f(x� y) = 2f(x) are robust

over G.

This result does not allow us to test functions that are in F but not in G, such as the 0-

function. For carefully chosen domains, other functions that are solutions to these functional

equations (see Figure 2) can also take the value 0 on more than 1=20 fraction of the domain:

For example, cos x takes the value 0 on half of the domainD = fi��=2j0 � i � 3g. The result

can still be used to construct self-testers for functions satisfying D'Alembert's equation. We

discuss this further in Section 5.

For the following three robustness results, let N

d

0

Alembert

= f(x; y; x+y; x�y)jx; y 2 Dg.

Theorem 18 Let F (x

1

; x

2

; x

3

; x

4

) = 2f(x

1

) � f(x

2

) � f(x

3

) � f(x

4

). Let F be the function

family characterized by (F;N

d

0

Alembert

). Then for � �

1

80

, (F;N

d

0

Alembert

) is a (4�; �)-robust

characterization of F in G. In particular, if Pr

x;y

[f(x + y) + f(x � y) = 2f(x)f(y)] �

1 � � �

79

80

and f 2 G, then the function g(x) � maj

y2D; f(y) 6=0

f

f(x+y)+f(x�y)

2f(y)

g satis�es (1)

Pr

x

[f(x) = g(x)] � 1 � 4� and (2) 8x; y g(x+ y) + g(x� y) = 2g(x)g(y).

Theorem 19 Let F (x

1

; x

2

; x

3

; x

4

) = 2f(x

1

)+2f(x

2

)�f(x

3

)�f(x

4

). Let F be the function

family characterized by (F;N

d

0

Alembert

). Then for � �

1

80

, (F;N

d

0

Alembert

) is a (4�; �)-robust

characterization of F in G. In particular, if Pr

x;y

[f(x+ y) + f(x � y) = 2(f(x) + f(y))] �

1� � �

79

80

and f 2 G, then the function g(x) � maj

y2D; f(y) 6=0

f

f(x+y)+f(x�y)

2

� f(y)g satis�es

(1) Pr

x

[f(x) = g(x)] � 1 � 4� and (2) 8x; y g(x+ y) + g(x� y) = 2(g(x) + g(y)).

Theorem 20 Let F (x

1

; x

2

; x

3

; x

4

) = 2f(x

1

) � f(x

3

) � f(x

4

). Let F be the function family

characterized by (F;N

d

0

Alembert

). Then for � �

1

80

, (F;N

d

0

Alembert

) is a (4�; �)-robust char-

acterization of F in G. In particular, if Pr

x;y

[f(x + y) + f(x � y) = 2f(x)] � 1 � � �

79

80

and f 2 G, then the function g(x) � maj

y2D; f(y) 6=0

f

f(x+y)+f(x�y)

2

g satis�es (1) Pr

x

[f(x) =

g(x)] � 1� 4� and (2) 8x; y g(x+ y) + g(x� y) = 2g(x).

The proofs in this section are similar in 
avor to the proofs of the robustness of the

addition theorems, but since the functional equation is de�ned on inputs that are related

in di�erent ways, we have to take advantage of di�erent aspects of the structure of their

relationship in order to get the desired results. The proofs of all three theorems follow the

same outline. In the following, we give the proof of Theorem 18.

Proof: [of Theorem 18] Using techniques identical to those in Lemma 14, we have:

Lemma 21 g and f agree on more than 1 � 4� fraction of the inputs from D.

Lemma 22 For all x, Pr

y

[g(x) =

f(x+y)+f(x�y)

2f(y)

] � 1� �

0

where �

0

= 4� + 2 �

1

20

.

Proof:
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Pr

y;z

[f(y) 6= 0 and f(z) 6= 0 and

2f(z)(f(x+ y) + f(x� y))

= (f(x+ y + z) + f(x+ y � z))

+(f(x� y � z) + f(x� y + z))

= (f(x+ y + z) + f(x� y + z))

+(f(x� y � z) + f(x+ y � z))

= 2f(y)(f(x+ z) + f(x� z))]

� 1 � 4� � 2 �

1

20

f(y) = 0 or f(z) = 0 with probability at most 2 �

1

20

. The �rst and third equality each

hold with probability 1 � 2� by our assumption on f and since all the references to f are

uniformly distributed in D. The second equality always holds. If f(y); f(z) are both nonzero

and all equalities hold, then

f(x+y)+f(x�y)

2f(y)

=

f(x+z)+f(x�z)

2f(z)

. The lemma now follows from the

fact that the probability that the same object is drawn twice from a set in two independent

trials lower bounds the probability of drawing the most likely object in one trial. 2

Finally, we can prove that g satis�es d'Alembert's equation everywhere:

Lemma 23 For all x; y, 2g(x)g(y) = g(x+ y) + g(x� y).

Proof:

Pr

z

[f(z) 6= 0 and

f(z) � (g(x+ y) + g(x� y))

=

f(x+y+z)+f(x+y�z)+f(x�y+z)+f(x�y�z)

2

=

2g(x)f(y+z)+2g(x)f(y�z)

2

= 2g(x) � g(y) � f(z)]

> 1� 5�

0

�

1

20

> 0

f(z) = 0 with probability at most

1

20

. By Lemma 22, the �rst, second and third equalities

hold with probability 1 � 2�

0

, 1 � 2�

0

and 1 � �

0

respectively. If f(z) 6= 0 and all equalities

hold then 2g(x)g(y) = g(x+y)+g(x�y). Since the statement is independent of z and holds

with positive probability, it must hold with probability 1. 2 2

5 Self-testing/correcting from functional equations

We give informal de�nitions of self-testers and self-correctors. Formal de�nitions are given

in [19]. An (�

1

; �

2

)-self-tester (0 � �

1

< �

2

) for f on D must fail any program that is not

(1 � �

2

)-close to f on D, and must pass any program that is (1 � �

1

)-close to f on D (the

behavior of the tester is not speci�ed for programs that are (1��

2

)-close but not (1��

1

)-close

to f). The tester should satisfy these conditions with error probability at most �, where � is

a con�dence parameter input by the user. For simplicity, we assume that �

1

= 0, and we drop

that parameter from our claims. An �-self-corrector for f on D is an algorithm C that uses

program P as a black box, such that for every x 2 D and �, Pr[C

P

(x) = f(x)] � 1 � �, for

every P which is (1��)-close to f on D. Furthermore, all require only a small multiplicative

21



overhead over the running time of P and are di�erent, simpler and faster than any correct

program for f in a precise sense de�ned in [18]. Checkers can be constructed by �nding both

a self-tester and a self-corrector for the function [19].

In this section, we give self-correctors and self-testers that are based on the class of

functional equations of the form F [f(x � y); f(x + y); f(x); f(y)] = 0. We will use the

robustness theorems proved earlier for the self-testers, but not for the self-correctors. We

refer to the function computed by the program as P , and the correct function as f : D ! R.

For purposes of exposition, we assume that D is a �nite group. All results can be extended

to rational domains of the form D

p;s

= f

i

s

jjij � pg using known techniques from [31][37] (see

Section 6). We assume that R is a (possibly in�nite) abelian group.

5.1 Self-correctors

The following self-corrector works for any function satisfying 8x; y f(x) = G[f(x�y); f(x+

y); f(y)]. This includes functions satisfying an addition theorem of the form f(x + y) =

G[f(x); f(y)], since letting z = x+ y, f(z) = G[f(z � y); f(y)]. Self-correctors for functions

that are not solvable for f(x), but are solvable for another of f(x� y); f(x+ y); f(y) can be

similarly constructed.

Program Self-Correct(x; �)

N  O(ln(1=�))

Do for m = 1; : : : ; N

Pick y 2

R

D

answer

m

 G[P (x� y); P (x+ y); P (y)]

Output the most common answer in fanswer

m

: m = 1; : : : ; Ng

Theorem 24 Given D a �nite group, and P and f functions over domain D. If P is

1=12-close to f over D, then 8x; Pr[Self-Correct(x; �) = f(x)] � 1� �.

The proof of this theorem follows the format in [19] and is based on the fact that since

calls to P are made on uniformly distributed inputs in D, at each iteration, all calls are

answered correctly by P with probability at least 3=4.

The existence of an �-self-corrector for a class of functions F trivially implies that for

any two functions f

1

; f

2

2 F , the quantity Pr

x

[f

1

(x) 6= f

2

(x)], or the distance between f

1

and f

2

, must be large. Thus, the existence of self-correctors for F implies that the functions

in F can be thought of as a collection of codewords with large distance.

5.2 Self-testers

In this section we show self-testers based on robust functional equations of the form F [f(x�

y); f(x+ y); f(x); f(y)] = 0. In all of our examples only a constant number of additions and

multiplications are required to perform a test. Furthermore, only a constant number of tests

need to be performed. It often happens that more than one functional equation can be used

to specify a function family; the user can determine which of the robust functional equations

is best to use for testing based on criteria such as e�ciency and ease of programming.
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When a family of functions satis�es the property, equality testing must be done to deter-

mine that the program is computing the correct function within the family. Though equality

testing is often easier than the original testing task, it may still be ine�cient, as in the case

of multivariate polynomials [38]. For the functions considered in this paper, the problem of

equality testing can be solved e�ciently. We assume that the function values are given at

a constant number of inputs, such that these values in conjuction with the property F are

enough to completely specify the function. For example, for functions satisfying addition

theorems, the function values at 0 and all generators of the group su�ce to completely spec-

ify the function. In particular, if the group is cyclic and generated by 1, only f(0) and f(1)

are required since f(x + 1) = G[f(x); f(1)]. Similarly, over D

p;s

it is enough to specify the

function at 0;

1

s

;

�1

s

. It is often the case that there are certain inputs at which the function

is much easier to compute, and that these inputs can be used for the equality testing.

It may happen that the functional equation over the reals characterizes a di�erent family

of functions than same functional equation over D

p;s

. For example, suppose we are given

F , a set of functions that is a solution to the functional equation over the reals. The set of

functions that we are interested in testing is F

0

= fg j g : D

p;s

! R;9f 2 F such that 8x 2

D

p;s

; f(x) = g(x)g, the set of functions that are restrictions of functions in F to the domain

D

p;s

. Consider also F

00

, the solutions to the functional equation over D

p;s

. Then, since

functions in F

00

must satisfy a subset of the constraints satis�ed by F

0

, F

0

� F

00

. It can

happen that F

0

is a proper subset of F

00

. Nevertheless, to test that a program purporting

to compute function f 2 F

0

is correct, the property test determines whether the program

agrees on most inputs with some function g in F

00

, and the equality test will then determine

that g = f as long as it is given the correct values of f at the inputs required for the equality

test.

We concentrate on functions that can be tested by testers of the form given below. In the

following, �

0

is the maximum � for which the functional equation is robust (see Theorems

13, 18, 19, 20), and the function values specifying f are given as a list (x

i

; y

i

); 0 � i � c

where y

i

= f(x

i

).

Program Self-Test((x

0

; y

0

); (x

1

; y

1

); : : : ; (x

c

; y

c

); �

0

; �)

N  O(maxf

1

�

0

; 24g ln(2=�))

Do for m = 1; : : : ; N fProperty Test g

Pick u; v 2

R

D

if F [P (u� v); P (u+ v); P (u); P (v)] 6= 0 output FAIL and halt

Do for i = 1; : : : ; c fEquality Test g

If self-correct(x

i

; �=c) 6= y

i

output FAIL and halt

Output PASS

Theorem 25 Given domain D a �nite group, range R an abelian group, and functions P

and f mapping D to R. If F is (2�; �)-robust over domain D, and if P is not (1=12)-close

to f on D, then Pr[Self-Test(x; �) = FAIL] � 1��. If P � f , then Self-Test outputs PASS.

Thus, Self-Test is a

1

12

-self-testing program for f on D.

The proof of the theorem is based on the robustness of F , which tells us that if there is no

function g such that (1) g is usually equal to P and (2) g satis�es the property everywhere,
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then P is reasonably likely to fail the test. Furthermore, if there is such a function g, the

equality tests are likely to fail unless g(x

0

) = f(x

0

); : : : ; g(x

c

) = f(x

c

) which ensures that

g � f . Thus P fails unless it is usually equal to f . It is easy to see that by altering the

choice of N , one can construct �-self-testers for any � < 1=12.

The above self-tester is not su�cient for testing functions using d'Alembert's equation,

since we have proved its robustness only under the condition that the function P is 0 on

� 1=20 of the inputs. To �x this, one may use an algorithm that depends on the fraction

of inputs on which f takes the value 0. The solution to d'Alembert's equation over < is

all functions of the form 0; cosAx; coshAx. The 0 function is trivial to test. The coshAx

functions are never 0 so a program purporting to compute coshAx can be �rst tested to

ensure that it does not output 0 on more than 1=20 of the domain, and then the above

tester may be used. The cosAx functions are 0 only at odd multiples of �=(2A). If the odd

multiples of �=(2A) constitute at most 1=20 of the domain, then a similar procedure to the

one for coshAxmay be used. Otherwise one can use a di�erent functional equation for which

cosAx is a solution. Alternatively, suppose the program can be modi�ed to compute over a

larger domain

^

D which contains D such that f(x) = 0 on at most 1=20 of

^

D. (For example,

if f(x) = cos x;D = fi � �=2j0 � i � p � 1g, then choose

^

D = fi � �=20j0 � i � 10p � 1g.)

Then one can test the program over

^

D. If the program passes the test, it is possible to test

the program on D by using the self-corrector based on D'Alembert's equation to correctly

compute f at any input in D �

^

D.

6 Extensions to Rational Domains

In this section, we show the self-testers and self-correctors that result from extending the

results in Section 5 to rational domains. We consider rational domains of the form D

n;s

=

f

i

s

j jij � ng.

The theorems follow the same outline as in the �nite �elds case, but certain additional

technical details must be addressed. These technical details are similar to those used in

[31][38].

6.1 Self-correctors.

The following self-corrector works for any function satisfying 8x; y f(x) = G[f(x�y); f(x+

y); f(y)]. Self-correctors for functions that are not solvable for f(x), but are solvable for

another of f(x � y); f(x+ y); f(y) can be similarly constructed.

As in [31], we assume that the program has been tested over a larger domain D

m;s

,

in order to self-correct over the domain D

n;s

(this requires the more general de�nitions of

self-correcting given in [31]). It su�ces that m > 12n.

Program Self-Correct(x; �)

N  O(ln(1=�))

Do for i = 1; : : : ; N

Pick y 2

R

D

m;s

answer

i

 G[P (x� y); P (x+ y); P (y)]
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Output the most common answer in fanswer

i

: i = 1; : : : ; Ng

Theorem 26 Let m;n be such that m > 12n. If P is (1=24)-close to f over D

m;s

, then

8x 2 D

n;s

; P r[Self-Correct(x; �) = f(x)] � 1 � �.

The proof of this theorem follows the format in [31].

Proof: [of Theorem 26] By the assumption on P , P (y) is correct with probability at least

1 �

1

24

. Two bad events can happen when picking x + y: either x + y is not in D

m;s

, in

which case we know nothing about the probability that P (x + y) is correct, or x + y is in

D

m;s

, but happens to be one of the inputs for which P is incorrect. By our choice of m, the

�rst bad situation happens with probability � 1=24. The second bad situation happens with

probability �

1

24

. If neither of these happens, then P (x+y) = f(x+y). The same argument

can be made for P (x� y). Thus, at each iteration, answer

i

= f(x) with probability at least

1� 2

1

24

� 3

1

24

> 3=4. 2

6.2 Self-testers.

The following is a self-tester for addition theorems over the rational domain D

m;s

. We test

the program over a larger domain D

p;s

in order to certify that it is usually correct over D

m;s

.

It su�ces that p > 11m. As in Section 5.2, we assume the function values specifying f are

given as a list of pairs (x

i

; y

i

); 0 � i � c where y

i

= f(x

i

). In addition we assume that

x

i

2 D

n;s

for all i.

The self-tester is based on �nding a neighborhoodN

add

0

D

p;s

such that (D

m;s

; F

D

p;s

;<;<

;N

add

0

D

p;s

)

is an (�; �=2)-robust characterization.

Program Self-Test((x

0

; y

0

); (x

1

; y

1

); : : : ; (x

c

; y

c

); n;m; �

0

; �)

N  O(maxf

4

�

0

; 48g ln(2=�))

f Property Test g

Do for m = 1; : : : ; N

Choose i 2 f1; 2; 3; 4g

If i = 1 then fx

1

 x; x

2

 x� y; x

3

 yg

Pick x 2

R

D

m;s

and y 2

R

D

p;s

if P (x) 6= G[P (x� y); P (y)] output FAIL and halt

Else if i = 2 then fx

1

 x; x

2

 x� y; x

3

 yg

Pick x; y 2

R

D

p;s

if P (x) 6= G[P (x� y); P (y)] output FAIL and halt

Else if i = 3 then fx

1

 x+ y; x

2

 x; x

3

 yg

Pick x; y 2

R

D

p;s

if P (x+ y) 6= G[P (x); P (y)] output FAIL and halt

Else fi = 4g fx

1

 x; x

2

 y; x

3

 x� yg

Pick x; y 2

R

D

p;s

if P (x) 6= G[P (y); P (x� y)] output FAIL and halt

f Equality Test g

Do for i = 1; : : : ; c

If self-correct(x

i

; �=c) 6= y

i

output FAIL and halt

Output PASS
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We have the following theorem:

Theorem 27 Let p;m; n be such that p > 11m and m > 12n. Let the function values

(x

i

; y

i

) specifying f be such that x

i

2 D

n;s

. If P is not 1=24-close to f on D

m;s

, then

Pr[Self-Test(x; �) = FAIL] � 1� �. If P � f , then Self-Test outputs PASS. Thus, Self-Test

is an 1=24-self-testing program for f on D

m;s

.

In order to show the above theorem, we need the following to show that the addition

theorems are robust properties over rational domains.

Lemma 28 If (1) Pr

x2D

m;s

;y2D

p;s

[P (x+ y) = G[P (x); P (y)]] � 1� �, (2) Pr

x;y2D

p;s

[P (x) =

G[P (x�y); P (y)]] � 1��, (3) Pr

x;y2D

p;s

[P (x+y) = G[P (x); P (y)]] � 1��, (4) Pr

x;y2D

p;s

[P (x) =

G[P (y); P (x� y)]] � 1 � �, for � <

1

48

, then there exists a function g such that

1. Pr

x2D

m;s

[P (x) = g(x)] � 1� 2� = 1�

1

24

2. 8x; y 2 D

m;s

g(x+ y) = G[g(x); g(y)].

Let N

add

0

be the multiset such that picking random (x

1

; x

2

; x

3

) 2 N

add

0

is the same

as picking inputs from the above distribution. If the functional equation is satis�ed with

probability at least 1��=4 when neighborhoods are chosen fromN

add

0

, then each of the four

conditions of the theorem are met. Thus we have the the following theorem:

Theorem 29 LetR = T be a group. Let G be such that G satis�es 8a; b; c 2 R G[a;G[b; c]] =

G[G[a; b]; c]. Let F (x; y) = P (x+y)�G[P (x); P (y)]. Then for all � < 1=48, (D

m;s

; F

D

p;s

;R;T

;N

add

0

D

p;s

)

is (2�; �=4)-robust.

Proof: [of Lemma 28] De�ne g(x) to be maj

z2D

p;s

fG(P (x � z); P (z))g.

The following lemma follows from the �rst condition on P and a counting argument.

Lemma 30 g and P agree on more than 1 � 2� fraction of the inputs from D

m;s

.

For the following lemmas, set 
 =

m

2p

.

Lemma 31 For all x 2 D

2m;s

, Pr

z2D

p;s

[g(x) = G[P (x�z); P (z)]] � 1��

0

where �

0

= 2�+2
.

Proof: For x 2 D

2m;s

, Pr

y2D

p;s

[x+ y 2 D

p;s

] � 1� 
. Thus,

Pr

y;w2D

p;s

[G[P (x� y); P (y)]

= G[G[P (x� w); P (w � y)]; P (y)]

= G[P (x� w); G[P (w � y); P (y)]]

= G[P (x� w); P (w)]]

� 1 � 2� � 2


By the fourth condition on P , the �rst equality holds with probability 1� ��2
. By the

second condition on P , the third equality holds with probability 1� �. The second equality

always holds.

The lemma now follows from the observation that the probability that the same object

is drawn twice from a set in two independent trials lower bounds the probability of drawing

the most likely object in one trial. 2

Finally, we prove that g satis�es the addition theorems everywhere:
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Lemma 32 For all x; y 2 D

m;s

, g(x+ y) = G[g(x); g(y)].

Proof:

Pr

u;v2D

p;s

[G[g(x); g(y)]

= G[G[P (u); P (x� u)]; G[P (v); P (y � v)]]

= G[P (u); G[P (x� u); G[P (v); P (y � v)]]]

= G[P (u); G[G[P (x� u); P (v)]; P (y � v)]]

= G[P (u); G[P (x� u+ v); P (y � v)]]

= G[P (u); P (x+ y � u)]

= g(x+ y)]

� 1� 3�

0

� 2� � 3
 = 1 � 8� � 9
 > 0

By Lemma 31, the �rst equality holds with probability 1�2�

0

and the last equality holds

with probability 1 � �

0

(since x + y 2 D

2m;s

). By the third assumption on P , the fourth

equality holds with probability 1� �� 
. By the second assumption on P , the �fth equality

holds with probability 1� � � 2
. The other equalities always hold, due to the structure of

G.

Since the statement is independent of u; v and holds with positive probability, it must

hold with probability 1. 2

2[Lemma 28]

6.3 An example: Testing the cosh function

In this subsection we will illustrate how to apply the above techniques to construct a self-

tester and self-corrector for a particular function, namely the cosh function, over a given

domain. Suppose that one would like to reliably use a program that purports to compute

the cosh function over the domain D

2

k

;2

k = f

i

2

k

j jij � 2

k

g (the numbers between -1 and

1 with k bits of precision). Assume that the correct values of cosh 0; cosh

�1

2

k

; cosh

1

2

k

are

given and that the program purports to compute cosh over the larger domain D

2

k+8

;2

k =

f

i

2

k

j jij � 2

k+8

g. Recall that cosh is one of the solutions to the functional equation

8x; y f(x+ y) = f(x)f(y) +

q

f(x)

2

� 1

q

f(y)

2

� 1. Furthermore, cosh(x) is the only solu-

tion to the functional equation that agrees with the given values of cosh 0; cosh

�1

2

k

; cosh

1

2

k

,

since f(0); f(1=2

k

); f(�1=2

k

) determine the values of f over the whole domain D

2

k+8

;2

k

via f((i + 1)=2

k

) = f(1=2

k

)f(i=2

k

) +

q

f(1=2

k

)

2

� 1

q

f(i=2

k

)

2

� 1 and f((i � 1)=2

k

) =

f(�1=2

k

)f(i=2

k

) +

q

f(�1=2

k

)

2

� 1

q

f(i=2

k

)

2

� 1.

8

One should �rst test the program over the domain D

2

k+4

;2

k = f

i

2

k

j jij � 2

k+4

g, using

the tester given in Subsection 6.2 (with �

0

= 1=48; s = 2

k

;m = 2

k+4

; p = 2

k+8

; n = 2

k

so that p > 11m and m > 12n). By Theorem 27 (which in turn uses Theorem 29), if

the program is always correct on domain D

2

k+8

;2

k = f

i

2

k

j jij � 2

k+8

g the tester will output

PASS, and if the program is incorrect on greater than 1=24 fraction of the domain D

2

k+4

;2

k =

f

i

2

k

j jij � 2

k+4

g, then the tester will output FAIL. If the program is incorrect on less than

8

Self-testers and self-correctors for cosh x can be constructed via other functional equations that coshx

satis�es as long as they are shown to be robust and equality testing is possible.
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1=24 fraction of the domain D

2

k+4

;2

k , one can use the self-corrector in Subsection 6.1 (with

s = 2

k

;m = 2

k+4

; n = 2

k

so that m > 12n) in order to compute the correct value of coshx

for all x 2 D

2

k

;2

k = f

i

2

k

j jij � 2

k

g. The correctness of the self-corrector is guaranteed by

Theorem 26.

7 Conclusions and directions for further research

We have studied the question of when functions characterized by functional equations of

the form 8x; y F [f(x � y); f(x + y); f(x); f(y)] = 0 are robust. However, we still do

not have a complete answer to this question. Even for addition theorems 8x; y f(x +

y) = G[f(x); f(y)], we do not know what happens when G does not satisfy G[a;G[b; c]] =

G[G[a; b]; c] 8a; b; c. More generally, many other general types of functional equations have

been identi�ed, including those on multivariate functions and systems of functional equations,

but we do not know which ones are robust. Given a functional equation, is there an (e�cient)

algorithm to determine whether or not it is robust? Is it the case that any property that

leads to a self-corrector is robust?

Systems of functional equations can be used to de�ne more than one unknown function by

their joint properties. For example, Pexider's equations are f(x+y) = g(x)+h(y); f(x+y) =

g(x)h(y); f(xy) = g(x)+h(y), and f(xy) = g(x)h(y). which are generalizations of Cauchy's

original functional equations. These equations have applications to the library setting [19],

where programs for several functions can be used to self-test and self-correct each other, as

long as none of the answers are a priori assumed to be correct. The library setting has been

used to �nd checkers that are signi�cantly more e�cient for functions such as determinant

and rank. Are there any other examples of functions where their mutual properties lead to

more e�cient testers?

It is important to �nd methods to extend all robustness results to the case of real valued

computation as in [31], [5] [27]. One point of di�culty is that in real valued computation,

none of the functional equations will be satis�ed exactly, even when the program is giving

very good approximations to the correct answers. Thus, the area of functional inequalities,

which is the investigation of which families of functions satisfy inequalities such as jf(x +

y)� f(x)� f(y)j � �, directly applies to this setting. Much of the work in [31] [5] [27] has

been in relating the class of functions that are solutions to functional inequalities to the class

of functions that are solutions of the corresponding functional equations. Several functional

inequalities have been shown to be robust in [31], [5], [27]. Other related results used

for testing matrix multiplication, linear system solution, matrix inversion and determinant

computation are in [5].
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