
Efficient Algorithms for Learning to Play Repeated Games

Against Computationally Bounded Adversaries

Yoav Freund

AT&T Bell Laboratories

Michael Kearns

AT&T Bell Laboratories

Yishay Mansour�

Tel-Aviv University

Dana Rony

M.I.T.

Ronitt Rubinfeldz

Cornell University

Robert E. Schapire

AT&T Bell Laboratories

1 Introduction

In the game theory literature, there is an intriguing line of

research on the problem of playing a repeated matrix game

against an adversary whose computational resources are lim-

ited in some way. Perhaps the main way in which this research

differs from classical game theory lies in the fact that when

our adversary is not playing the minimax optimal strategy

for the game, we may be able to attain payoff that is signif-

icantly greater than the minimax optimum. In this situation,

the correct measure of our performance is in comparison to

the optimum achievable against the particular adversary, not

to the minimax optimum.

The typical approach is to assume that the adversary’s

strategy is a member of some natural class of computationally

bounded strategies — most often, a class of finite automata.

(For a survey on the area of “bounded rationality”, see the

paper of Kalai [4].) Many previous papers examine how var-

ious aspects of classical game theory change in this setting;

a good example is the question of whether cooperation is a

stable solution for prisoner’s dilemma when both players are

finite automata [6, 8]. Some authors have examined the fur-

ther problem of learning to play optimally against an adversary

whose precise strategy is unknown, but is constrained to lie in

some known class of strategies (for instance, see Gilboa and

Samet [3]). It is this research that forms our starting point.

The previous work on learning to play optimally usually does

not explicitly take into account the computational efficiency

of the learning algorithm, and often gives algorithms whose

running time is exponential in some natural measure of the

adversary’s complexity; a notable recent exception is the work
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of Fortnow and Whang [2].

Here we examine the problem of learning to play various

games optimally against resource-bounded adversaries, with

an explicit emphasis on the computational efficiency of the

learning algorithm. We are especially interested in providing

efficient algorithms for games other than penny-matching (in

which payoff is received for matching the adversary’s action

in the current round), and for adversaries other than the classi-

cally studied finite automata. In particular, we examine games

and adversaries for which the learning algorithm’s past ac-

tions may strongly affect the adversary’s future willingness to

“cooperate” (that is, permit high payoff), and therefore require

carefully planned actions on the part of the learning algorithm.

For example, in the game we call contract, both sides play 0 or

1 on each round, but our side receives payoff only if we play

1 in synchrony with the adversary; unlike penny-matching,

playing 0 in synchrony with the adversary pays nothing. The

name of the game is derived from the example of signing a

contract, which becomes valid only if both parties sign (play

1). In this game, it is not enough to simply predict the adver-

sary’s actions in order to play optimally; we must also discover

how to massage the adversary into his most cooperative state,

in which he is willing to play 1 frequently.

As an intuitive illustration of the difference between penny-

matching and contract, consider playing these two games

against the same finite automaton M . For playing penny-

matching, we may not need to build a detailed model of M

— as shown by Fortnow and Whang, it suffices to discover a

“penny-matching cycle” of M [2]. For contract, while an ex-

act model ofM may still be unnecessary, we must do enough

exploration to find any regions whereM plays 1 frequently. A

recurrent theme of the paper is the potential utility or danger

of penny-matching (and more generally, of existing computa-

tional learning theory methods) as a tool for playing contract

and other games.

We defer a detailed description of our results until the main

body of the paper, after we have made the necessary defini-

tions. Here we give a brief summary. The paper and the

results are divided into two main parts. In Sections 3 and 4,

we introduce two new classes of adversaries. The first adver-



sary class is defined by simple boolean formulae that examine

the recent history of play in order to determine their action in

the current round. Adversaries in the second class base their

current action on simple statistics of the entire history of play.

For both classes of adversaries, we give polynomial-time al-

gorithms for learning to play contract. In the second part of

the paper in Section 5, we contribute to the literature on learn-

ing to play games against probabilistic finite automata. We

give what is perhaps the most powerful positive result to date

for learning to play games against automata — a polynomial-

time algorithm for learning to play any game nearly optimally

against any finite automaton with probabilistic actions and low

cover time. If randomized transitions are allowed, we show

that even approximating the optimal strategy against a given

automaton is PSPACE -complete. This improves the result

of Papadimitriou and Tsitsiklis [7].

2 Models and Definitions

In this paper, games are played by two players. One will be

called the adversary and the other the strategy learning algo-

rithm. We think of the adversary as a fixed resource-bounded

computational mechanism that may be playing a strategy quite

different from the minimax optimal strategy for the game. The

strategy learning algorithm will be a polynomial-time algo-

rithm attempting to learn, from repeated plays, a profitable

strategy for playing against the adversary.

As is typical, a game in our setting can be defined by a

payoff matrix G. Here we concentrate on games in which the

actions of the two players and the outcome are binary, result-

ing in 2 � 2 matrices. In game theory such matrices usually

have entries of the form (a; b) where a and b represent the re-

spective payoffs made to the two players when the chosen row

and column are played. Since the strategy of the adversary

is now determined by a fixed computational device, and we

are interested only in the payoff made to the strategy learning

algorithm, our matrices will indicate only that payoff. In a re-

peated game, play proceeds in rounds, with each player taking

an action in each round, and the payoff to the strategy learning

algorithm for that round being determined by the correspond-

ing entry of the game matrix G. As we have indicated, in

our model the adversary is chosen from a classA of restricted

adversaries, usually defined by some resource-bounded com-

putational device, such as finite automata, circuits of bounded

size or depth, and so on. Both the strategy learning algorithm

and the adversary can be regarded as (possibly probabilistic)

mappings of game histories (that is, the actions made by the

two players in all the rounds so far) to current actions. After

N rounds, the payoff earned by a strategy g with respect to

the adversary f is
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is the entry in the ma-

trix G which defines the payoff when player g takes action

a and player f takes action b. The optimal strategy for

N rounds against f , opt

N

f

, is the strategy that maximizes

PAYOFF

N
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An algorithmL is called an �-good strategy learning algo-

rithm for playing the game G against a class of adversaries A

if for every f 2 A there exists an integer N0 such that for all

N > N0
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N
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)� �:

We call N0 the initialization time of L for the given �. If L is

�-good for every �, we say that L is simply a strategy learning

algorithm for playing G against A. We say L is efficient if

its initialization time is polynomial in 1=� and size(f), and its

computation time at any roundN is polynomial in 1=�,N , and

size(f). As is typical in learning theory, here size(f) is an

appropriate notion of the complexity of the adversary f (such

as the number of states if f is defined by a finite automaton,

or the number of gates if f is defined by a boolean circuit);

it is natural to allow L more computation to succeed against

more complex adversaries. If L is a probabilistic algorithm

then we require that it succeed only with probability1�� for a

given confidence parameter � (and, as usual, allow it to run in

time polynomial in log(1=�)). We will also have occasion to

consider strategy learning algorithms L that can only achieve

a payoff that is a multiplicative constant factor c < 1 of the

optimal payoff; we call such algorithms c-competitive.

In the first part of the paper, we concentrate on two specific

games. The first game, called penny-matching, gives payoff 1

to the strategy learning algorithm if and only its play matches

that of the adversary — that is, if and only if both players

play 0 or both players play 1. Otherwise, the payoff to the

strategy learning algorithm is 0. Thus the game matrix is

G0;0 = G1;1 = 1; G0;1 = G1;0 = 0. We will often use the

term penny-matching to refer not only to this game itself, but

also to the strategy (regardless of the game being played) of

always playing the same action as the adversary. The second

game we examine is called contract. Here the strategy learning

algorithm receives payoff 1 if and only if both players play 1

(sign the contract), otherwise it receives payoff 0. Thus the

game matrix is G1;1 = 1; G0;0 = G0;1 = G1;0 = 0.

Despite the fact that the penny-matching and contract game

matrices differ on only a single entry (when both players play

0), they capture a fundamental distinction between game types,

especially in the context of resource-bounded adversaries. In

penny-matching, regardless of the adversary’s current action

(which may depend stronglyon the history of play), there is al-

ways some action that the strategy learning algorithm may take

to achieve the maximum possible payoff in the entire matrix

(namely, match the adversary’s play). In contract, however, if

the adversary is currently playing 0, there is no action the strat-

egy learning algorithm may make in order to achieve nonzero



payoff. Thus, succeeding at penny-matching requires only that

the strategy learning algorithm learn to predict the adversary’s

actions, while contract may require the strategy learning al-

gorithm to influence the adversary’s actions, possibly through

careful planning over many rounds of play.

3 Games Against Recent History Adversaries

Much of the previous work on playing games against com-

putationally bounded adversaries has concentrated on finite

automata adversaries, and there has been little work on learn-

ing to play optimally except for the game of penny-matching.

In this section and the next, we investigate the problem of

learning to play contract against two types of adversaries that

are rather different from those defined by small automata. The

first type of adversary is defined by certain boolean formulae

over the recent history of play, and the second type of adver-

sary is defined by linear functions of simple statistics of the

entire history of play. In both cases, exponentially many states

may be required to describe the same adversaries as finite au-

tomata. We begin by introducing the general framework of

recent history adversaries, then specialize to the simple class

that we can analyze.

Let us introduce the history vectors of length ` at round

N (N � `), ~uN ; ~vN 2 f0; 1g`, where the variable uN
i

con-

tains the binary value that was played by the strategy learning

algorithm at round N � i, and the variable vN
i

contains the

binary value that was played by the adversary at roundN � i

(1 � i � `). When the current round N is still smaller than

the history length `, ~uN and ~vN are defined to be the vectors

of length N which contain the actions played by the strategy

learning algorithm and the adversary, respectively, in the first

N rounds. For simplicity, when no confusion will result we

will drop the superscriptN indicating the index of the current

round. Thus ~u and ~v simply store the last ` rounds of play,

and they are continually updated during play by shifting after

each round (with the plays made `+ 1 rounds ago being lost).

A recent history adversary is an adversary whose current play

is defined by some boolean function f(~u;~v). As a simple

example, consider the adversary for contract defined by the

boolean formula

f(~u;~v) =

`�1̂

i=1

(:u

i

_ :v

i

_ :u

i+1 _ :vi+1);

The clause (:u

i

_ :v

i

_ :u

i+1 _ :vi+1) forbids u
i

= v

i

=

u

i+1 = v

i+1 = 1, which in contract means that the strat-

egy learning algorithm enjoyed two consecutive payoffs i+ 1

rounds ago. Thus, the adversary defined by f simply plays

1 if and only if the strategy learning algorithm has not re-

ceived two consecutive payoffs in the last ` rounds, a type of

“profit-limiting” adversary.

Clearly, we would like to efficiently learn to play various

games nearly optimally under the least restrictive assumptions

on the recent history adversary f . Not surprisingly, how-

ever, a number of the computational limitations governing

more standard learning models translate to the current set-

ting. For example, we should not expect to efficiently learn

to play penny-matching against recent history adversaries that

are boolean circuits (over the input variables ~u and ~v) of size

polynomial in the history length `, since such adversaries can

compute pseudo-random functions of the history. (This claim

will be made formally in the full paper). Similar arguments

apply to learning to play contract.

On the positive side, suppose that the recent history ad-

versary f(~u;~v) is drawn from a class A of boolean func-

tions for which there is an absolute mistake-bounded algo-

rithm [5] — that is, a prediction algorithm A that makes at

most m(`; size(f)) mistakes in predicting the values of any

target function chosen from A on any sequence of 2`-bit in-

puts (history vectors), where m(`; size(f)) is a polynomial.

Then it is easy to see that A is in fact an algorithm that will

efficiently learn to play penny-matching nearly optimally, be-

cause since m(`; size(f)) does not depend on N , the fraction

of rounds in which we have failed to match decreases at a

rate of O(1=N ). This logic fails for contract, however, where

our goal is not simply that of prediction, but of maximizing

the number of rounds where we play 1 in synchrony with the

adversary. We now investigate further this apparent difference

between penny-matching and contract for a particular class of

recent history adversaries.

Consider the class of recent history adversaries defined by

the boolean formulae f
S

(~u;~v), where S � f1; : : : ; `g is an

index set, and

f

S

(~u

N

; ~v

N

) =

_

i2S; i�N

(:u

i

^ v

i

):

The restriction i � N in the subscript is clearly redundant for

N � `, and is added only to ensure that f
S

be well defined on

history vectors of length less than `. We adopt the convention

that for every S, f
S

(�; �) = 1, where � denotes the empty

history vector. We do this because if we allow f

S

(�; �) = 0,

then f
S

will play 0 on all future rounds, and no strategy can

achieve payoff higher than 0. Taken together, the restriction

i � N in the subscript above and the condition f
S

(�; �) = 1

are equivalent to assuming that the history vectors are initial-

ized to contain a single sacrifice in the most recent round, and

all 0 entries for both players in the ` � 1 previous rounds.

Note that f
S

is a 2-DNF formula over the variables

u1; : : : ; u`; v1; : : : ; v`. Since such formulae have an efficient

absolute mistake-bounded algorithm [5], our comments above

imply that we can learn to play penny-matching nearly opti-

mally against such adversaries in polynomial time. Let us now

examine the more subtle problem of playing contract against

this class. The term (:u

i

^ v

i

) stipulates that i rounds ago,

the adversary f
S

played 1, but the strategy learning algorithm

played 0. We call such a round a sacrifice, because since f
S

played 1, the strategy learning algorithm could have obtained



a payoff by playing 1 but instead played a 0. If a sacrifice oc-

curred i rounds ago for any i in the index set S, the adversary

plays 1 in the current round; otherwise the adversary plays 0.

We call the set ff
S

g the past sacrifice adversaries for contract.

The past sacrifice adversaries are interesting for the direct ten-

sion they create between obtaining payoff in the current round,

and ensuring future payoff, which requires the occasional in-

sertion of sacrifices into the history. Even a player who knows

f

S

and wishes to play contract optimally cannot pursue the

greedy strategy of always playing 1 in synchrony with f
S

—

the reader can easily verify that this would quickly drain the

history vectors of any sacrifices they might have contained,

and no further contract payoff would be possible.

Thus, while the f
S

are rather trivial adversaries for playing

penny-matching, a different approach is required for playing

contract against this same class. We now give an efficient strat-

egy learning algorithm for playing contract against the past

sacrifice adversaries that is 1=2-competitive (that is, achieves

payoff at least 1=2 times the optimal payoff). The analy-

sis shows that the optimal payoff has an interesting number-

theoretic characterization.

Theorem 3.1 There is an efficient 1=2-competitive strategy

learning algorithm for playing contract against the class of

past sacrifice strategies.

Proof (Sketch): The proposed strategy learning algorithm L

operates in two simple phases. In the first phase (called the

sacrifice phase), L always plays 0 (regardless of the actions

of f
S

) in order to “flood” the history vectors with as many

sacrifices as possible. In the second phase (the payoff phase),

L attempts to alternate periods of sacrifice with periods of

payoff in a pattern that can be maintained indefinitely. We

begin by giving a characterization of the rate at which sacrifices

are obtained during the sacrifice phase of L. This rate also

provides us with an upper bound on the optimal payoff.

Lemma 3.2 Let f
S

be any past sacrifice adversary for con-

tract, and consider the strategy that always plays 0 againstf
S

.

Then after at most `3 rounds of play, sacrifices will occur every

g rounds, where g = gcd(S) is the greatest common divisor of

the indices appearing in S. Furthermore, the optimal payoff

that can be obtained against f
S

by any player is at most 1=g.

Proof (Sketch): For the upper bound on the optimal payoff,

first consider any strategy R for playing against f
S

, and let

us credit R with payoff 1 at the current round if f
S

plays 1,

regardless of whether R has played 0 or 1. Then we will only

overcount the actual payoff of R, and now we can assume

without loss of generality that R plays to maximize the fre-

quency with which f
S

plays 1. Since R’s playing 1 in the

current round can never cause f
S

to play 1 in a future round,

the best strategy for R under this analysis is to always play

0. If S = fi1; : : : ; irg, this will cause f
S

to play 1 at rounds

i1; : : : ; ir, which are the rounds that the lone sacrifice in the

initial configuration “passes through” the relevant indices in

the history vectors. In general, if f
S

plays 1 at round N , this

inserts another sacrifice into the history (sinceR is playing 0),

leading to sacrifices at the later rounds N + i1; : : : ; N + i

r

.

Thus all the sacrifice rounds have the formN = a1i1+� � �arir

for some natural number coefficients a1; : : : ; ar. This means

that N is a multiple of g = gcd(i1; : : : ; ir), and we have

proven that any strategy for playing contract against f
S

can

only obtain payoff at rounds that are multiples of g (call such

rounds g-rounds), as desired for the upper bound on the opti-

mal payoff.

We now show that after at most `3 rounds the strategy of

always playing 0 against f
S

will in fact result in a sacrifice

on every g-round. To see this, recall that we can write g =

c1i1 + � � �c

r

i

r

for some integer coefficients c1; : : : ; cr; how-

ever, some of the c
i

may be negative. Let N = a1i1 + � � �arir

be a sacrifice round, where the natural numbers a1; : : : ; ar are

sufficiently large (as determined by the analysis below). We

now wish to show that N + g;N + 2g; : : : ; N + kg are also

sacrifice rounds, where kg = i1; this suffices to show that all

future g-rounds will be sacrifice rounds, since once the his-

tory vectors contain a sacrifice on every g-round between the

current round and index i1, the sacrifices passing through i1
alone will cause new sacrifices at this same rate from then on.

To see that N + xg is a sacrifice round for every 1 � x � k,

we must show that it can be written as a linear combination

of the indices in S with natural number coefficients. We

have N + xg = (a1i1 + � � �a

r

i

r

) + x(c1i1 + � � � c

r

i

r

) =

(a1 + xc1)i1 + � � � (ar + xc

r

)i

r

. Provided we choose the nat-

ural numbers a
j

� jxc

j

j, the coefficients of N + xg will also

be natural numbers, and N + xg will be a sacrifice round. It

can be shown that the c
j

can be chosen so that their absolute

values are all bounded by i
r

� `. It directly follows that the

minimal value of N for whichN + xg is a sacrifice round for

every x � 0 is at most `3, as required. 2(Lemma 3.2)

Thus, the sacrifice phase of our strategy learning algorithm

L continues until the history vectors are g-flooded with sacri-

fices — that is, until they contain a sacrifice every g indices.

By Lemma 3.2, this occurs after at most `3 rounds. (Note that

L can quickly infer the value of g from the pattern of sacrifices

that emerges.) At this point, L attempts to enter its payoff

phase. Since L’s behavior on rounds that are not g-rounds is

irrelevant, we concentrate on L’s behavior on g-rounds. Of

course, L cannot simply begin playing 1 indefinitely, since this

would quickly drain the history vectors of all sacrifices, and no

further payoff would be possible — a balance between payoff

and preservation of sacrifices is required. To begin with, we

dismiss the degenerate case in which the index set S contains

only a single index i1: it can be verified that in this case only a

single payoff can ever be obtained, so the average payoff over

time approaches 0. Thus without loss of generality jSj � 2.

Suppose first that we knew the first two indices i1; i2, and

let i2 � i1 = dg for a natural number d � 1. Consider the

strategy of restoring sacrifices for the next d g-rounds, then

obtaining payoff for the following d g-rounds. We claim that



this pattern can be maintained indefinitely, because at every g-

round either i1 or i2 contains a past sacrifice, and thus f
S

will

play 1. The reason is that a single payoff block of d g-rounds

is too short to cover both i1 and i2, but these payoff blocks

are too long for i1 and i2 to be covered by different blocks of

payoff.

It remains to find i1 and i2. This can be done on the first

rounds of play (prior to the sacrifice phase) in the following

simple manner. The strategy learning algorithm plays 1 until

the adversary first plays 1 (in round i1) and then switches to

playing 0 until the adversary next plays 1 (at round i2). Note

that if r is known, then all the indices in S can be found in

a similar manner, and the strategy defined above when only

the first two indices are known can be easily generalized to

get higher average payoff. However, if r is not known, it

is not clear how the algorithm can aquire this information

without risking the loss of all sacrifices in its recent history.

2(Theorem 3.1)

4 Games Against Statistical Adversaries

In this section we study the problem of playing contract against

an adversary whose current move depends on the entire (un-

bounded) history of play so far (in contrast to the recent history

adversaries of the last section), but only through the statistics

of the history. Here we consider only the simplest statistics of

the history, the values pN00; p
N

11; p
N

01; p
N

10, where for a; b 2 f0; 1g

the value pN
ab

is the fraction of the first N rounds in which the

strategy learning algorithm played a and the adversary played

b. Where no confusion will result, we drop the superscript N

indicating the current round. As a simple example, we might

consider a contract adversary that plays 1 in the current round

if and only if p11 < � for some threshold � 2 [0; 1]. This

adversary is willing to let its opponent receive a payoff only

if the opponent is not too wealthy already. In general, one

might consider adversaries whose current play is a compli-

cated function of not only the p
ab

but also of other statistics

of the history. Here we make a modest start by giving an effi-

cient strategy learning algorithm for playing contract against

adversaries that play 1 if and only if the statistics fp
ab

g obey a

linear inequality; we refer to such adversaries as linear statis-

tical adversaries. We thus revisit the classical linear separator,

but this time in the context of learning to play games. For sim-

plicity we concentrate on the two-dimensional case in which

the adversary is determined by a linear constraint over only

the statistics p00 and p11; the general three-dimensional case1

is similar and will be considered in the full paper. We state our

theorems below for contract, but we point out that since ab-

solute mistake bounded algorithms do not exist for linear sep-

arators in <2 (a point elaborated upon below), even learning

to play penny-matching against linear statistical adversaries

nearly optimally is a nontrivial problem. Our algorithms for

1Note that there are really only three dimensions here since
P

a;b2f0;1g
p

ab

= 1 always holds.

p11

p00

1

0

optimal point

Figure 1: Example of a statistical adversary f

�;�

(p00; p11), showing

the regions in which the adversary plays 0 and 1, the diagonal line

representing the constraint p00 + p11 � 1, and the optimal point

of play lying on this line. Also shown is a typical trajectory taken

by the strategy of penny-matching when playing contract against

f

�;�

. Matching ones results in an increase to p11 and a decrease

to p00, while matching zeros has the reverse effect, resulting in the

alternating pattern shown. The distance traveled with each successive

match decreases with time.

playing contract contain penny-matching subroutines,and thus

solve the penny-matching problem as well. The reason that

penny-matching is a useful subroutine here is that for certain

f

�;�

, penny-matching moves us on a trajectory through the

p11� p00 plane that rapidly approaches the optimal point, and

remains there stably. Thus in these cases penny-matching can

be thought of as an effective means of motion in the p11� p00

plane.

Theorem 4.1 For any �; � 2 <, let f
�;�

(p00; p11) = 1 if

and only if �p11 + � < p00. Then there is an efficient strat-

egy learning algorithm for playing contract against the linear

statistical adversary class ff
�;�

: �; � 2 <g.

Proof (Sketch): We restrict our attention to the case � > 0,

which is the most interesting, and for which a representative

picture is shown in Figure 1. The general � case will be

considered in the full paper; the ideas are quite similar but

some care is required in the handling of initial conditions.

The main points of the proof are: (1) For � > 0 (implying

that the linear separator has positive slope in the p11 � p00

plane) the strategy of penny-matching (that is, always playing

identically to the adversary f
�;�

) is in fact an optimal contract



strategy 2; (2) Despite the fact that the well-known halving

algorithm can be forced to make many prediction mistakes

on an arbitrary sequence of trials, on the sequence actually

generated by the halving algorithm playing contract against

f

�;�

, only a logarithmic number of mistakes will be made;

and (3) The logarithmic number of prediction mistakes have a

small effect on the contract payoff.

We assume in the following analysis that the initial condi-

tions are p00 = p11 = 0. Other initial conditions can be treated

similarly. We begin by considering the payoff obtained when

the halving algorithm plays contract against a simple one-

dimensional adversary f
�

(p11), where f
�

(p11) = 1 if and only

if p11 < �. The reader can easily verify that against such an

adversary, the optimal contract payoff at round N is within

1=N of �, and that this optimum can be achieved by always

playing 1, but also by (perfectly) penny-matching against f
�

.

Here we are interested in analyzing the contract payoff of

the one-dimensional halving algorithm L1, since this analy-

sis will include many of the elements required to solve the

two-dimensional case.

At every round N , L1 keeps track of the version space

[�

L

; �

R

) for �. Here �
L

is the largest past value of p11 for

which the adversary played 1, and �

R

is the smallest past

value of p11 for which the adversary played 0. At all times �

lies in the version space. At the current round, L1 plays 1 if

and only if p11 < (�

L

+ �

R

)=2. If L1’s play fails to match

that of f
�

, then the width of the version space has been at least

halved.

In the usual models of on-line prediction [5], the sequence

of inputs x
i

to f
�

to be classified (that is, penny-matched) is

arbitrary, and the halving algorithm may be forced to make N

prediction mistakes in N trials due to the arbitrary precision

of the x
i

(an unfavorable sequence would always arrange the

next x
i

to fall in the current version space). To see that the

present situation is considerably more favorable, we make

the following definition: p 2 [0; 1] has rational complexity

at most N if p is a rational number whose numerator and

denominator are both at most N . Then at every round N ,

�

L

and �

R

have rational complexity at most N , since they

represent frequencies of certain events over at most N rounds

of play. It is easy to verify that this implies �
R

� �

L

> 1=N 2.

Thus if m is the number of prediction mistakes made by L1

on the first N rounds, we must have 1=2m > 1=N 2, or m <

2 logN . We now argue that these few prediction mistakes

made by L1 have a rather small effect on the contract payoff

that L1 receives in comparison to perfect penny-matching,

which is an optimal contract strategy.

Lemma 4.2 For any � > 0, the contract payoff of algo-

rithm L1 when playing against f
�

is at least � � � within

O((1=�) log(1=�)) rounds.

2This statement does not hold for � < 0, but this case can be handled by

separate methods.

Proof: First, for any small � > 0, we upper bound N , the

number of rounds required for p11 to exceed � � �=2 for the

first time when L1 plays contract against f
�

. Since L1 makes

at most 2 logN prediction mistakes in the first N rounds, and

since f
�

is playing 1 as long as p11 < �, we must have p11 �

1 � (2 logN )=N at round N . The desired inequality p11 �

1�(2 logN )=N � ���=2 holds forN = O((1=�) log(1=�)).

We next argue that if p11 falls below � � �=2 immedi-

ately following some round N , then on or before round 2N ,

p11 exceeds � � �=2 again, and for all rounds in between N

and 2N , p11 is at least � � �. We know that between rounds

N and 2N , L1 will make at most 2 log(2N ) prediction mis-

takes, and that each such mistake decreases p11 by at most

1=N . Thus the total decrease to p11 between rounds N and

2N is at most 2 log(2N )=N . On the other hand, as long

as p11 < � � �=2, each correct prediction by L1 increases

p11 by at least (1 � (� � �=2))=2N � �=4N . This is be-

cause an increase to p11 following round N is always given

by p11  (N=(N + 1))p11 + 1=(N + 1), or equivalently

p11  p11 +(1� p11)=(N + 1). Thus the total increase to p11

between roundsN and 2N is at least (N�2 log(2N ))(�=4N ).

IfN satisfies (N�2 log(2N ))(�=4N ) > (2 log(2N ))=N then

we know that p11 has increased from rounds N to 2N , and

hence p11 again exceeds � � �=2 by round 2N . The stated

inequality holds for N = O((1=�) log(1=�)). Finally, for all

rounds in between N and 2N we know that p11 must exceed

���=2� (2 log(2N ))=N . Thus if (2 log(2N ))=N � �=2, p11

is within � of � for all rounds in between N and 2N . Again,

N = O((1=�) log(1=�)) suffices. 2(Lemma 4.2)

Armed with the analysis of algorithm L1, we can now

return to the two-dimensional adversary f
�;�

(p00; p11). In this

case, the optimal contract payoff is the largest value p 2 [0; 1]

such that f
�;�

(1 � p; p) = 1. In other words, an optimal

contract strategy tries to maintain p00 = 1� p and p11 = p for

p as large as possible; see Figure 1. The reader may verify that

penny-matching against f
�;�

will again achieve this optimum

(see Figure 1 for a typical trajectory taken by penny-matching),

and also that the naive strategy of always playing 1 (which did

achieves the optimum against the one-dimensional f
�

) will not

succeed.

Thus, our goal will again be that of approximately penny-

matching, this time using the two-dimensional halving algo-

rithm L2 for the f
�;�

. The version space is now more com-

plicated than in the one-dimensional case, as is the analy-

sis bounding the number of prediction mistakes made by L2.

However, the basic proof outline is similar. It can be shown

that the version space, which is the region in the � � � plane

consistent with the history so far, is always a convex polygon.

Furthermore, the vertices of this polygon, while no longer

equal to past values of p11, are nevertheless determined by

past values of p00 and p11, and have rational complexity poly-

nomial in N . This implies a 1=poly(N ) lower bound on the

version space area at round N , leading again to an O(logN )

bound on the number of prediction mistakes by L2 (details in
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Figure 2: Example of a statistical adversary definedby an intersection

of 4 lines of increasing slope, showing the regions in which the

adversary plays 0 and 1, the line representing the constraint p00 +

p11 � 1, and the optimal point of play lying on this line. Also shown

is the vertical strip defined by the subinterval [a; b). The examples

falling in this subinterval are used to compute a local version space

by the algorithm of Theorem 4.3. Since this particular subinterval

includes a corner point of the adversary, at some point the local

version space may become empty, resulting in the splitting of the

subinterval.

the full paper). To see that L2 is efficient, note that computing

the area of a convex polygon in the plane can be done in time

polynomial in the number of vertices.

The preceding analysis implies that when L2 plays against

f

�;�

, we must have p00 + p11 � 1�O((logN )=N ) for round

N and all later rounds. At this point, we have almost re-

duced the analysis to the one-dimensional case, since now L2

is approximately penny-matching within a narrow ribbon of

the line p00 + p11 = 1, which includes the optimal configura-

tion. An analysis similar to that given in Lemma 4.2 shows

that L2 will converge rapidly to this optimal configuration.

2(Theorem 4.1)

We conclude this section by considering the more compli-

cated case in which the adversary’s 1-region is an intersection

of d half-spaces, rather than just a single half-space. We seek

a strategy learning algorithm that is polynomial in d. We again

assume that all of the half-spaces are defined by lines with pos-

itive slope in the p11� p00 plane; a representative adversary is

shown in Figure 2.

Theorem 4.3 There is an efficient strategy learning algorithm

for playing contract against any intersection of d half-spaces

defined by lines of positive slope in the p11 � p00 plane.

Proof (Sketch): Let f be the adversary function. Again it

is easily verified that in the case of positive slopes, the opti-

mal configuration is the dividing point between the 0 and 1

regions on the line p00 + p11 = 1, and that penny-matching

will rapidly converge to this optimum. However, now the

version space has 2d parameters and the volume computation

required for directly implementing the halving algorithm has

no known polynomial time solution (in particular, since histo-

ries for which the adversary plays 0 result in a disjunction of

linear constraints on the 2d parameters, the version space is

no longer necessarily a convex body). Our algorithm will still

attempt to penny-match, but using a different strategy.

The algorithm partitions the p11 axis into disjoint subinter-

vals. Initially, there is only the single subinterval [0; 1]. At any

time, within each subinterval [a; b), the algorithm maintains

a local version space for a single line by using only the past

examples h(p00; p11); f(p00; p11)i for which p11 2 [a; b) (see

Figure 2). Notice that if the vertical strip of the p11�p00 plane

defined by the constraint p11 2 [a; b) does not contain a “cor-

ner” of the adversary f (meaning that the boundary of between

the 0 and 1 regions of f is a straight line when restricted to

this vertical strip), then the local version space for [a; b) will

always be non-empty. Otherwise, at some point the examples

falling into the subinterval [a; b) may become inconsistent

with any linear classifier — that is, the local version space

for [a; b) may becomes empty. When this happens, we split

the subinterval [a; b) into the two subintervals [a; (a + b)=2)

and [(a + b)=2; b) and compute the local version spaces for

these two new subintervals using the past examples that fall

into each subinterval. For at least one of the new subinter-

vals, the local version space must be non-empty, since only

the subinterval containing the last example can have an empty

local version space (recall that prior to the last example, the

entire subinterval [a; b) had a non-empty local version space,

so any subinterval has a non-empty local version space if the

last example is omitted). As long as a new subinterval has

an empty local version space, we divide it again. However,

since newly created subintervals that do not contain the last

example and are adjacent can be merged together again to

get a larger subinterval with a non-empty local version space,

in the worst case we divide [a; b) into three new subintervals

[a; c); [c; d); [d; b), each with non-empty local version spaces.

The main point is that each time a local version space

becomes empty, we create at most three new subintervals,

while reducing our uncertainty about the location of a corner

of f by at least 1=2 (since there must have been a corner in [a; b)

if its local version space became empty, and now this corner

lies in a subinterval of length at most (b�a)=2). Furthermore,

since the values of p00 and p11 have low rational complexity,

the subintervals always have length at least 1=N 2 at roundN .



This allows us to guarantee that there are at most O(d logN )

prediction mistakes caused by empty local version spaces. In

each subinterval we make at most 2 logN prediction mistakes,

so the total number of mistakes is bounded by O(d log2
N ).

This can be shown to imply that the algorithm will rapidly

reach the optimal point in the p11 � p00 plane for playing

contract against f . 2(Theorem 4.3)

5 Games Against Probabilistic Automata

We now turn to the problem of playing games against adver-

saries defined by probabilistic finite automata. This continues

a line of research investigated by Gilboa and Samet [3], and

more recently by Fortnow and Whang [2] and Vovk [12]. Our

main result is a polynomial-time algorithm for learning to play

any game nearly optimally against any finite automaton with

probabilistic states (defined below) and small cover time. We

also prove that if the adversary automaton has probabilistic

transitions (defined below) then even the problem of approxi-

mating the optimal payoff when the automaton is given to the

algorithm is PSPACE -complete (improving on a result of

Papadimitriou and Tsitsiklis [7]), which precludes a positive

result for learning to play optimally against such machines.

5.1 Probabilistic State Automata

A probabilistic state automaton (PSA) can be thought of as a

generalization of a DFA in which each state contains a different

biased coin (with the usual definition of a DFA being obtained

by restricting all the biases to be either 0 or 1). In state q,

the PSA generates a single output bit (action) by flipping the

biased coin at q. As in a DFA, the next state is still determined

solely by the next input bit (action).

More formally, a Probabilistic State Automaton M is a

tuple (Q; q0; 
; � ), whereQ is a finite set of n states, q0 2 Q is

the designated starting state, 
 : Q ! [0; 1], is the state bias

function, and � : Q � f0; 1g ! Q is the transition function.

The adversary PSAM is initially in its starting state q0. If the

state in round N is q, then M plays action 1 with probability


(q), and action 0 with probability 1� 
(q). If the action of

the strategy learning algorithm in theN th round is b 2 f0; 1g,

then M ’s state in round N + 1 is � (q; b). Thus, the strategy

learning algorithm observes the outcome of the adversary’s

biased coin flip for the current round only after choosing its

own action for the current round. Note that the outcome of the

biased coin flip is the only information the strategy learning

algorithm receives about the current state; this is in contrast

to much of the research on Markov decision processes, where

the learning algorithm is told the identity of the current state.

Notice that although PSA’s flip coins at each state, the fact

that their transitions remain deterministic preserves the usual

notion of cycles — namely, a state q and a sequence of actions

(of the strategy learning algorithm) from q that returns to q.

As in the case of DFA’s, for every PSA there exists an optimal

strategy that is a repeated simple cycle [3]. Moreover, if the

automaton is given, the optimal cycle can be found efficiently

using dynamic programming. Gilboa and Samet [3] note that

their algorithm for learning an optimal cycle strategy against

DFA’s can be easily adapted to PSA’s. However, as in their

original strategy for DFA’s, it may take an exponential number

of rounds (exponential in the number of states of the adversary

PSA) to achieve payoff which is close to optimal. Fortnow and

Whang [2] showed that in the case of DFA’s, if the underlying

game played has a certain property (held by contract but not

by penny-matching), then there is also an exponential lower

bound for the number of rounds needed before approaching

optimality.

It is interesting to note that if the underlying game is

penny-matching then the exponential lower bound does not

hold. Fortnow and Whang give an efficient strategy learning

algorithm for playing penny-matching against DFA’s. Unfor-

tunately, it does not seem that penny-matching is any easier

than contract when playing against PSA’s. The “combination

lock” lower bound argument given by Fortnow and Whang for

contract can easily be modified to give an exponential lower

bound for learning to play penny-matching against PSA’s. The

important property of combination lock automata is the exis-

tence of a state which can be reached only when the strategy

learning algorithm plays a specific sequence of n� 1 actions.

For this remote state, there exists an action which achieves high

expected payoff, and which allows the algorithm to remain in

the same state. For every other state, the expected payoff is

low no matter what action is chosen by the learning algorithm.

A natural question is whether we can obtain efficient algo-

rithms when we restrict our attention to automata that do not

have states that are hard to reach — that is, automata whose

underlying graphs have small (polynomial) cover time3 We

answer this question in the affirmative in the theorem below.

Our result improves on the work of Ron and Rubinfeld[10],

who examine the special case of state bias functions that take

only two possible values � and 1� � for 0 � � � 1.

Theorem 5.1 For any game G, there is an efficient strategy

learning algorithm for playing G against the class of proba-

bilistic state automata with polynomial cover time.

Proof (Sketch): Let M denote the adversary PSA with small

cover time. In what follows we describe an efficient strategy

learning algorithm that attempts to construct a good approxi-

mation cM toM after playing a polynomial number of rounds

againstM . The automatoncM will be a good approximation to

M in the sense that for any sequence of actions, if the sequence

is played against both M and cM , then the bias of the coin in

the state reached in cM will be close to the bias of the coin in

the state reached inM . We refer to this as PSA learning, since

3The cover time of a directed graph is defined to be the smallest integer

` such that for every vertex v, the probability that a random walk of length `

from v will pass through all the vertices of the graph is greater than one half.



it is similar to standard models of automaton learning in its

constructionof a complete model ofM , and does not explicitly

account for the fact that the goal is to play a game against M .

However, if we play against M according to an optimal cycle

computed for cM , then our payoff will be close to optimal.

It should be noted that the quality of approximation needed

may depend on the game G being played — for instance, if

some entry of the game matrix is much larger than the other

entries, then high expected payoff may be achieved by hitting

this entry only very rarely, in which case we will need better

approximations of the state coin biases. For simplicity in the

description below, we will assume the game matrix has only

entries from f0; 1g.

In order to simplify the presentation we start by making

two assumptions; the first can be made without loss of gener-

ality, and the second can be removed using a technique due to

Ron and Rubinfeld[11]. Assumption (1): M is irreducible in

the sense that there is no smaller automaton equivalent to it.

Assumption (2): There exists some value ∆ = poly(�=n) such

that for every state q in the adversary automaton M , the state

coin bias 
(q) satisfies 
(q) = k∆ for some integer k. Thus,

any pair of states may contain coins with either the same bias

or significantly different biases.

The standard problem that arises when trying to learn au-

tomata of various types from a single continuous sequence of

actions is the need for a procedure that orients the learner by

providing evidence that it has returned to a state it has previ-

ously visited. In fact, it is possible to show [10] that in the

case of small cover time, the PSA learning problem reduces to

the problem of orientation (details omitted), and thus we con-

centrate on this latter problem. A well-studied procedure for

orientation when learning DFA’s uses homing sequences [9].

A homing sequence for a DFA is an action sequence h such

that regardless of the starting state, the sequence of state labels

observed during the execution of h uniquely determines the

state reached.

The problem that arises when trying to adapt the notion

of a homing sequence to a PSA M is that now the state la-

bels (adversary actions) observed are no longer deterministic,

but are generated by biased coin flips. Hence, given any

action sequence h and state q of M , there is not a unique

sequence of actions played by M when h is executed start-

ing from q, but rather there is a distribution on such se-

quences. In order to overcome this obstacle we first mod-

ify the definition of a homing sequence as if we were ac-

tually able to see the bias of the coin in each state as we

passed through it. We say that a sequence h = h1 : : :hk,

h

i

2 f0; 1g is a homing sequence for the PSA M if for

every pair of states q1 and q2 in M , if q1hhi = q2hhi, then

� (q1; h) = � (q2; h), where q

i

hhi denotes the sequence of

probabilities 
(q
i

); 
(� (q

i

; h1)); : : : 
(� (qi; h1 : : :hk�1)). It

is not hard to verify (under Assumptions (1) and (2) above)

that every PSA has a homing sequence of length at most n2.

Unfortunately, the algorithm can not directly observe the coin

biases in the states. However, we now describe a procedure

that, given an arbitrary sequence of actions �, executes � a

polynomial number of times, and computes (with high proba-

bility) a good approximation to the sequence of coin biases in

the states passed on the last execution of �. This provides us

with a sufficient orientation procedure for PSA’s, since if we

know a homing sequence h, we can run the procedure with

� = h. If we do not know a homing sequence, we initially as-

sume that some single-action sequence h is already a homing

sequence. By testing the payoff obtained from the algorithm

by using h, we either succeed in obtaining near-optimal pay-

off (in which case we may not discover a good approximation

of M in the sense described above, but it does not matter in

terms of the game payoff), or we are able to improve our candi-

date homing sequence (details omitted). This latter event can

happen only n � 1 times before h is a true homing sequence.

To estimate the coin biases encountered on the last execu-

tion of �, we use an idea of Dean et al. [1] in the related setting

of learning DFA’s with noisy outputs 4. Assume we execute

�, m consecutive times, and we are interested in computing

the sequence of state coin biases passed on the mth execution

of �. Let the state reached after the ith execution of � be

denoted by qi. If m > n, then it is not hard to verify that the

states qm�n; : : : ; qm lie a cycle (separated by executions of�).

More precisely, there exists some minimal period 1 � � � n

such that every � executions of � there is an execution of �

that starts from q

m�1 (let us call this state q
s

) and ends at qm

(let us call this state q
f

). If we knew the correct period �,

we could estimate q
s

h�i (the sequence of coin biases from

q

s

to q
f

reached by executing � from q

s

) by simply keeping

statistics only every � executions of �, with the intervening

� � 1 executions returning us to q
s

.

In order to find a good approximation to q
s

h�i without

knowing the correct period, for every pair 1 � `; `

0

� n

we compute the statistics obtained by assuming that ` � `0

is a period of �. More precisely, we first perform ` � `

0

� 1

executions of� simply to reach some state q
s

. We then execute

� again, but for each action we record whether M played 0

or 1. We then repeat this process, again making ` � `0 � 1

executions of � and assuming we have returned to q
s

, then

executing � to record further statistics for the state coin biases

following q
s

. Let us denote the sequence of j�j averages

obtained in this way by  `;`
0

. If ` is a minimal period, then for

every 1 � `

0

� n, ` � `0 is also a period (though not minimal)

and  `;`
0

should be approximately the same as  `;1. If ` is

not a period, then one possibility is that we shall discover

it is incorrect since for some `

0,  `;`
0

differs substantially

from  

`;1. We next claim that if we do not discover such

an inconsistency, then  `;1 is a good approximation for q
s

hai

4The algorithm of Dean et al. requires a distinguishing sequence for the

automaton, which is a sequence of actions whose execution determines the

starting state of the execution, rather than the destination state. It is known

that some automata do not have a distinguishing sequence, even if we restrict

to automata with small cover time.



even though ` is not a period: If for every `0,  `;`
0

�  

`;1,

then, in particular this is true for the minimal period `0 = �.

But we know that for the minimal period �,  `;� �  

�;1 ,

where  �;1 is a good approximation of q
s

h�i. The above

discussion gives us a simple procedure for computing a good

approximation of q
s

h i, from which we can derive with high

probability the exact sequence of corresponding probabilities

under Assumption (2). 2(Theorem 5.1)

5.2 Probabilistic Transition Automata

In this section we give a hardness results for the problem

of playing games against Probabilistic Transition Automata

(PTA’s). In these automata, the state transition function is

probabilistic, and thus the path taken through the automaton

in response to a sequence of strategy learning algorithm actions

is randomly distributed.

More formally, a PTA M , M = (Q; q0; 
; � ) is the same

as a PSA except that now the transition function � is defined

as follows: � : Q � f0; 1g � Q ! [0; 1], where for every

q 2 Q, and for every b 2 f0; 1g,
P

q

0

2Q

� (q; b; q

0

) = 1. As

is the case when M is a PSA, M is initially in its starting

state q0. If its state in round N is q, then the action it plays

is 1 with probability 
(q), and 0 with probability 1 � 
(q).

If the action of the strategy learning algorithm at round N is

b 2 f0; 1g then the next state is chosen randomly according

to the probability distribution defined by � (q; b; �). As before

we let n = jQj. It is worth noting that every automaton which

has both probabilistic transitions and probabilistic actions can

be transformed into an automaton of approximately the same

size which has only probabilistic transitions.

Fortnow and Whang [2] show that there exist PTA’s for

which there is no optimal strategy, even for penny-matching

(where a strategy g is optimal with respect to an adversary f

if lim inf
N!1

PAYOFF

N

f

(g) is maximized). Papadimitriou

and Tsitsiklis [7] show that computing the exact payoff of the

optimal strategy (given that it exists) is PSPACE-complete.

Unfortunately, this result is not sufficient to dismiss the pos-

sibility of an efficient strategy learning algorithm, because

such an algorithm must only discover an approximately op-

timal strategy. In the following theorem we claim that even

approximating the optimal payoff for N = poly(n) rounds

within Ω(1=
p

n) is PSPACE-complete. As in the work of

Papadimitriou and Tsitsiklis[7], we assume the automaton is

given as input to the algorithm. Clearly, if the automaton is

not given (as in the learning setting), the problem of learning

an approximately optimal strategy is at least as hard.

Theorem 5.2 For any given non-trivial game5, the problem of

approximating, within Ω(1=
p

n), the optimal expected payoff

for playing the game G against a given PTA M for N =

poly(n) rounds is PSPACE-complete.

5We say a game is trivial G if all the entries in its game matrix have the

same value.

The proof of the theorem, which is ommited for lack of

space, is based on a reduction from Arthur-Merlin games. The

size of the automaton in the reduction is proportional to the

number of bits sent between Arthur and Merlin. This raises

the question of whether we can do better for small PTA’s

— namely, whether a good strategy can be found in time

exponential in the size of the automaton but polynomial in

1=�. We show in the full version of the paper that, given an

automata, if the game is played for N rounds then such a

strategy can be found efficiently (where the dependence of the

running time on N is linear).
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