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ABSTRACT

The field of property testing studies algorithms that distin-
guish, using a small number of queries, between inputs which
satisfy a given property, and those that are ‘far’ from satisfy-
ing the property. Testing properties that are defined in terms
of monotonicity has been extensively investigated, primarily
in the context of the monotonicity of a sequence of integers,
or the monotonicity of a function over the n-dimensional hy-
percube f1; : : : ;mgn. These works resulted in monotonicity
testers whose query complexity is at most polylogarithmic in
the size of the domain.

We show that in its most general setting, testing that Boolean
functions are close to monotone is equivalent, with respect to
the number of required queries, to several other testing prob-
lems in logic and graph theory. These problems include: test-
ing that a Boolean assignment of variables is close to an as-
signment that satisfies a specific 2-CNF formula, testing that a
set of vertices is close to one that is a vertex cover of a specific
graph, and testing that a set of vertices is close to a clique.

We then investigate the query complexity of monotonicity
testing of both Boolean and integer functions over general par-
tial orders. We give algorithms and lower bounds for the gen-
eral problem, as well as for some interesting special cases. In
proving a general lower bound, we construct graphs with com-
binatorial properties that may be of independent interest.
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1. INTRODUCTION
Property testing [24, 15] deals with a relaxation of decision

problems where one is to determine whether an input satisfies
a particular property or is far from satisfying it. This has re-
cently become quite an active research area; see [23, 12] for
surveys on the topic.

Monotonicity is a natural property of functions on posets.
Given a poset P = (V;�

P

) and a linear order L, a function
f : V ! L is monotone if f(u) � f(v) for all u; v 2 V

with v �

P

u. A function f is �-close to monotone if we
can make f monotone by changing its value on at most an "
fraction of the domain. Along with linearity and low-degree
testing, monotonicity is one of the more studied properties in
the context of property testing (see [10, 16, 8, 4, 2, 14, 11]).

Virtually all previous works deal with posets P that happen
to be hypercubes of different sizes and dimensions, and pro-
vide 1-sided error testers whose complexity is at most poly-
logarithmic in the size of the domain. For the case where P
is the linear order of size N , and L is large enough, there is
an optimal testing algorithm which uses O(logN) time and
queries [10]. The case when P is the n-dimensional hyper-
cube [M ℄

n , M = f1; :::; mg, where u = (u

1

; : : : ; u

n

) �

v = (v

1

; : : : ; v

n

) if u
i

� v

i

for every i, was first studied
and shown to have monotonicity testers with query complexity
~

O(

n

2

"

m

2

jLj) by [16]. The most efficient known tester for this
case has complexity O(

n

"

(logm)(log jLj)) [8]. For Boolean
functions, this complexity can be made independent of m [8].

Very little was known regarding lower bounds for mono-
tonicity testing. For the case where P is the linear order of
size N , the lower bound in [11] which shows that the algo-
rithm of [10] is tight gives the only previously known non-
constant lower bound for any monotonicity testing problem.
In particular, no nonconstant lower bound was known for any
poset when L = f0; 1g, namely, for Boolean functions. The
lower bound question for the case of the Boolean hypercube,
as well as for general posets, remained unresolved.

Our Results. The main objective of this work is a systematic



study of the query complexity of monotonicity testing on gen-
eral posets. Our results fall into three categories: reductions
between testing monotonicity and other testing problems, al-
gorithms for testing monotonicity and lower bounds.

We begin by showing that monotonicity testing of Boolean
functions over general posets is equivalent to the following
three testing problems. The first is that of testing if a given
assignment to Boolean variables is close to one that satisfies
a fixed 2-CNF formula. The second is that of testing if a set
of vertices (in a fixed) graph is close to a vertex cover. Here
closeness captures the number of vertices that need to be added
to make the set into a vertex cover. The third problem is that
of testing if a set of vertices is close to a clique, where close-
ness refers to the number of vertices that need to be removed to
make the set into a clique. These reductions provide additional
motivation for studying monotonicity over general posets.

We next present an algorithm with anO(

p

N=") query com-
plexity for testing monotonicity over general posets withN el-
ements, addressing an open problem posed by [8, 22]. This, in
turn, yields O(

p

N=") query tests for all the above equivalent
properties.

We then show that no non-adaptive test which makes only a
polylogarithmic number of queries exists. Our main hardness

result is a lower bound of N

(

1

log logN

)

queries for general
Boolean non-adaptive monotonicity testing. This implies an
adaptive lower bound of 
( logN

log logN

). This addresses the open
problem raised in [8, 22], for which no previous lower bound
was known. It also shows that for the above equivalent prop-
erties, monotonicity testing is the ‘essential difficult part’.

To achieve our lower bound, we show that there is a graph

with N vertices that can be partitioned into N

(

log 1=�

log logN

)

in-
duced matchings of size �N . The latter result is of indepen-
dent interest: graphs with a similar property were constructed
by Ruzsá and Szemerédi [25] to provide a lower bound for a
Turán-like theorem. Recently they have been used by Håstad
and Wigderson [18] for constructing better linearity tests1. Mo-
tivated by conjectures in graph theory, Meshulam [21] con-
structed similar graphs with different parameters. Our ap-
proach is different from all of the above.

We also present lower bounds for non-adaptive monotonic-
ity tests over the (Boolean) n-dimensional hypercube. We
prove an 
(

p

n) lower bound for 1-sided error algorithms,
and an 
(log n) lower bound for 2-sided error algorithms.
These results imply the corresponding adaptive lower bounds
of 
(log n) and 
(log log n), respectively. These are the first
nontrivial lower bounds for the Boolean hypercube, for both 1-
sided and 2-sided error algorithms, answering the open ques-
tions raised by the works of [16, 8, 22].

Finally, the question arises as to what other posets can be
tested more efficiently than the general lower bound. We show
that functions over certain types of posets have tests with a
number of queries that is independent of the size of the poset.
For Boolean functions, this includes posets whose Hasse di-
agrams are trees, posets having constant size antichains, and
what we call ‘top-parallel’ posets. For functions with arbitrary

1Substituting the graphs we construct for the graphs of Ruzsá
and Szemerédi in [18] yields a family of linearity tests. These
tests are incomparable to these of Håstad and Wigderson, they
could be better or worse depending on the distance of the
tested function to the closest linear function.

ranges, this applies to posets with a linear number of compara-
ble element pairs. We also prove that for posets derived from
graphs with bounded separators, monotonicity testing of func-
tions with arbitrary ranges requires only a logarithmic number
of queries.

Organization. Section 2 introduces basic definitions and gen-
eral tools. Section 3 shows the equivalence to testing 2-CNF,
vertex cover and clique. Section 4 provides the test for gen-
eral posets. Section 5 prepares the tools for the lower bound
for general posets, while the specific constructions are given
in Section 6. Section 7 presents the lower bounds for mono-
tonicity testing over the hypercube. Finally, Section 8 contains
efficient algorithms for several special classes of posets.

2. PRELIMINARIES

Property testing. A property is a collection of functions with
a fixed domain V and a fixed range L. The distance between
functions f and f

0, denoted by dist(f; f

0

), is the number of
domain elements on which they differ. The distance dist(f;P)
of a function f to a property P is min

f

0

2P

dist(f; f

0

). Its rel-

ative distance to P is its distance to P divided by the size of
the domain. A function is "-far from P if its relative distance
to P is at least ".

A property is (�; q)-testable if there is a randomized algo-
rithm that for every input function f queries the values of f
on at most q points of the domain, and with probability at least
2

3

distinguishes between the case that f has the property and
the case that f is "-far from the property. The algorithm is
referred to as an ("; q)-test or simply an "-test. An algorithm
is non-adaptive if its queries do not depend on the answers to
previous queries. An algorithm has 1-sided error if it always
accepts an input that has the property.

Monotone functions and graph labelings. Let G = (V;E)

be a directed graph. Let f : V �! L be a labeling of V
with members of a linear order L. Then f is monotone on G if
f(v

i

) � f(v

j

) for all (v
i

; v

j

) 2 E. The monotonicity prop-
erty, denoted by mon

G

, is the set of monotone labelings of G.
If there is a directed path from v

i

to v
j

in G, we say that v
i

is
below v

j

(or v
j

is above v
i

) and denote it by v
i

�

G

v

j

(which
is not an order relation in general). Every such pair of vertices
of G imposes a constraint f(v

i

) � f(v

j

). A pair of vertices
(v

i

; v

j

) is violated if v
i

�

G

v

j

and f(v

i

) > f(v

j

). Ver-
tices v

i

and v
j

are equivalent in G if v
i

�

G

v

j

and v
j

�

G

v

i

,
namely, if both are in the same strongly connected component.

Note that monotonicity of labelings of acyclic graphs cor-
responds to monotonicity of functions on posets. We often
consider a special case of monotonicity restricted to Boolean
functions or labelings (namely, with L = f0; 1g), which we
call Boolean monotonicity.

Handy lemmas for monotonicity testing. A transitive clo-
sure of a graph G = (V;E), denoted by TC (G), is a graph
(V;E

0

) where (v
1

; v

2

) is in E0 if there is a directed path from
v

1

to v
2

inG. Observe that two graphs with the same transitive
closure give rise to the same monotonicity property mon

G

.

LEMMA 1. Let f be a labeling for a graph G(V;E). If

f is monotone on an induced subgraph G

0

= (V

0

; E

0

) of

TC (G), then f ’s distance to monotone is at most jV � V

0

j.



PROOF. Assuming that f is monotone on an induced sub-
graph G

0

= (V

0

; E

0

) of TC (G), we make f monotone on
TC (G) by relabeling only vertices in V � V

0.
Indeed, fix V 0 and let f j

V

0 be the partial labeling on V 0 that
is monotone on G0

(V

0

; E

0

). We extend f j
V

0 to V for one ver-
tex v 2 V � V

0 at a time, always keeping the partial labeling
monotone on the induced current graph. We now show how to
extend the domain of f by one vertex. Let v 2 V � V

0 be a
‘minimal’ element in V � V

0 (namely, v is unreachable from
any other vertex w 2 V � V

0 that is not equivalent to it). Let
T = fu 2 V

0

j u �

G

vg. We extend f to V [ fvg by letting
f(v) be max

u2T

ff(u)g if T 6= ; and the minimum value in
the range otherwise. By transitivity, since f was monotone on
V

0, the extended f is monotone on V [ fvg.

COROLLARY 2. Let f be a labeling of G = (V;E). Then

dist(f;mon

G

) is equal to the minimum vertex cover of the

graph of violated edges of TC (G).

A matching in a graph is a collection of edges that share
no common vertex. The next two lemmas relate a function’s
distance to monotone to the number of edges it violates in the
transitive closure of the graph. The first of them follows from
Corollary 2 and the fact that the size of a maximum matching
is at least 1/2 of the size of a minimum vertex cover.

LEMMA 3 ([8]). Let f be a labeling which is "-far from

monotone on a graph G with N nodes. Then TC (G) has a

matching of violated edges of size "N=2.

LEMMA 4. Let f be a Boolean labeling which is "-far from

monotone over a graph G with N nodes. Then TC (G) has a

matching of violated edges of size "N .

PROOF. LetP 0 be a poset of vertices in V with partial order
defined by v � u if (v; u) is a violated pair in G. Let A � V

be a maximal antichain in P

0. Certainly, f is monotone on
the subgraph of TC (G) induced by A, as A contains no vio-
lated pairs. Then by Lemma 1, dist(f;mon

G

) � jV j � jAj.
By Dilworth’s theorem [7], jAj is equal to the minimum num-
ber of disjoint chains that cover P 0. However, a chain in P 0

consists of at most two vertices as (v; u) and (u; w) cannot
be both violated by a Boolean function. Hence, to cover jV j
elements, at least jV j � jAj out of jAj chains have to be of
length exactly two (otherwise, less than jV j elements are cov-
ered). This collection of at least jV j � jAj � dist(f;mon

G

)

disjoint chains of size two is a matching of violated pairs.

Reduction from monotonicity on general graphs to mono-

tonicity on bipartite graphs. We now prove that testing mono-
tonicity on arbitrary graphs is equivalent to testing monotonic-
ity on bipartite DAG’s (which naturally correspond to posets).

Definition 1. For each directed graphG = (fv

1

; : : : ; v

N

g; E),
letB

G

be the bipartite graph (fv

1

; : : : ; v

N

g; fv

0

1

; : : : ; v

0

N

g;E

B

)

where E
B

= f(v

i

; v

0

j

)j v

j

is rea
hable from v

i

in Eg. For
each labeling f of G, define the corresponding labeling f

B

of
B

G

by f
B

(v

i

) = f

B

(v

0

i

) = f(v

i

).
Note that B

G

is a transitively closed DAG with 2N vertices
and the same number of edges as TC (G).

CLAIM 5. Let f be a labeling on a graph G. Then

dist(f;mon

G

) � dist(f

B

;mon

B

G

):

PROOF. The proof is straightforward, and we omit it.

In fact dist(f;mon
G

) = dist(f

B

;mon

B

G

): We postpone
the proof of this stronger claim to the full version of the paper.

THEOREM 6. If mon
B

G

is ( "
2

; q)-testable for a graph G

then mon
G

is ("; q)-testable. The reduction preserves 1-sided

error: a 1-sided test formon
B

G

gives a 1-sided test formon
G

.

PROOF. Let f be a labeling of G and let B
G

be the asso-
ciated graph with labeling f

B

as defined above. By Claim 5,
dist(f;mon

G

) = dist(f

B

;mon

B

G

). If f is "-far from mono-
tone on G then f

B

is "=2-far from monotone on B
G

because
B

G

has twice as many nodes. A test for G on input f can
simulate a test for B

G

on input f
B

, asking at most the same
number of queries.

3. EQUIVALENCE OF BOOLEAN MONO­

TONICITY AND OTHER PROBLEMS

Testing 2-CNF assignments is equivalent to testing Boolean

monotonicity. Recall that a Boolean formula is in conjunc-
tive normal form (CNF) if it consists of clauses joined by ^s,
where every clause is an _ of literals. (A literal is a Boolean
variable or a negated Boolean variable.) If all clauses have
two literals, the formula is a 2-CNF. Let � be a 2-CNF for-
mula with variables X

1

; : : : ; X

N

, and f : fX

1

; : : : ; X

N

g !

f0; 1g be an assignment to its variables. The property SAT (�)
is the set of satisfying assignments of �. We show that the
testability question of SAT (�) for a 2-CNF formula � is equiv-
alent to the testability of Boolean monotonicity on digraphs.

THEOREM 7. For every graph G with N vertices, there

is a corresponding 2-CNF �

G

on N variables such that if

SAT (�

G

) is ("; q)-testable then mon
G

is also ("; q)-testable

for Boolean labelings. The reduction preserves 1-sided error.

PROOF. Let G = (V;E) be a digraph. With each v 2 V

associate a Boolean variable x
v

. Define the 2-CNF formula
�

G

on the set of variables X = fx

v

j v 2 V g as follows: for
each edge (u; v) 2 E, form the clause (x

u

_ x

v

). A Boolean

labeling f on V (G) defines an assignment ~

f onX by ~

f(x

v

) =

f(v). Clearly, dist(f;mon
G

) = dist(

~

f; SAT (�

G

)). Thus,
a test for SAT (�

G

) can be used as a test for mon
G

.

THEOREM 8. For every 2-CNF � on N variables, there

is a corresponding graph G

�

with 2N vertices such that if

mon

G

�

is ("=2; q)-testable for Boolean labelings then SAT (�)

is ("; q)-testable. The reduction preserves 1-sided error.

PROOF. Let � be a satisfiable 2-CNF formula on a set X
of N variables. (If � is unsatisfiable, it has a trivial test that
rejects all assignments). With each Boolean variable x 2 X ,



associate two vertices v
x

and v
x

that represent literals corre-
sponding to x. We use the convention v

x

= v

x

and v
x

= v

x

.
Define the implication graph, G

�

, on the set of the correspond-
ing 2N vertices, as follows: for each clause x_y, where x and
y are literals, add edges (v

y

; v

x

) and (v

x

; v

y

). For any edge
(u; v) call edge (v; u) its dual edge. Note that dual edges ap-
pear in the implication graph in pairs, with the exception of
edges of the form (u; u), which are dual to themselves.

Let f : X ! f0; 1g be an assignment to �. Define the
associated Boolean labeling f

G

of G
�

by f
G

(v

x

) = f(x) for
all literals x. If f satisfies �, the corresponding labeling f

G

is
monotone onG

�

. It remains to prove that dist(f; SAT (�)) �
dist(f

G

;mon

G

�

). To show this we transform f into a satisfy-
ing assignment for � by changing at most dist(f

G

;mon

G

�

)

variable assignments. To this end, a Boolean labeling of an
implication graph is called negation-compliant if v

x

and v

x

have different labels for all literals x. Note that every negation-
compliant labeling ofG

�

has a corresponding assignment to�.

Furthermore, if ~

f is monotone and negation-compliant for G
�

then the corresponding assignment f for �, given by f(x) =
~

f(v

x

) for every literal x, is a satisfying assignment for �.
Note that for every literal x, v

x

and v
x

are never in the same
strongly connected component because � is satisfiable. Also,
if v

x

is equivalent to v
y

in G
�

then v
x

is equivalent to v
y

.
The following algorithm transforms f

G

into a nearby mono-
tone, negation-compliant labeling.

1. Convert f
G

to a nearest monotone assignment ~

f

G

on
G

�

. ( ~f
G

is not necessarily negation-compliant.)

2. While G
�

has nodes v
x

with ~

f

G

(v

x

) =

~

f

G

(v

x

) = 0 :

Find a maximal v
x

(with respect to G
�

) among those

with ~

f

G

(v

x

) =

~

f

G

(v

x

) = 0. Change ~

f

G

(v

z

) to 1 for
all v

z

that are equivalent to v
x

(including v
x

itself).

3. While G
�

has nodes v
x

with ~

f

G

(v

x

) =

~

f

G

(v

x

) = 1 :

Find a minimal v
x

among those with ~

f

G

(v

x

) =

~

f

G

(v

x

) = 1. Change ~

f

G

(v

z

) to 0 for all v
z

that are
equivalent to v

x

(including v
x

itself).

First, we show that the resulting labeling ~

f

G

is monotone
on G

�

. Indeed, ~

f

G

is monotone after step 1. Since it is mono-
tone, nodes in the same strongly connected component (i.e.,
equivalent nodes with respect to G

�

) have the same labels.
Hence, after each change in step 2, equivalent nodes still have
the same labels. Suppose ~

f

G

is monotone onG before some it-
eration of step 2 and is not monotone after it. Then some edge
(v

x

; v

y

) is violated by changing ~

f(v

x

) to 1. Then ~

f

G

(v

y

) = 0

both before and after this iteration, and v
y

is not equivalent to

v

x

. Since v
y

�

G

v

x

, it must be that ~

f

G

(v

y

) = 1 (otherwise,
v

y

would have changed before v
x

). But then the dual edge
(v

y

; v

x

) is violated before the iteration, giving a contradiction.

Similarly, if ~

f

G

is monotone on G before some iteration of
step 3 then it is monotone after it.

Secondly, the resulting labeling ~

f

G

is negation-compliant
because step 2 relabels all nodes v

x

with ~

f(v

x

) =

~

f(v

x

) = 0,

and step 3 relabels all nodes with ~

f(v

x

) =

~

f(v

x

) = 1.

Finally, let ~

f be the assignment to X with ~

f(x) =

~

f

G

(v

x

)

for every literal x 2 X . By the remarks above, ~f is a satisfying
assignment for �. It is not hard to show that dist(f; ~f) �
dist(f

G

;mon

G

�

).

Other testing problems equivalent to 2-CNF testing. Re-
call that a monotone CNF is a CNF with only positive literals.
We prove that testing 2CNF is equivalent to testing monotone
2CNF. Since we have shown that 2-CNF testing is equivalent
to testing Boolean monotonicity over general graphs, which is
equivalent to testing Boolean monotonicity on special kind of
bipartite graphs, it is enough to prove the following theorem.

THEOREM 9. Let G = (X;Y ;E) be a bipartite digraph

with all edges directed from X to Y and jXj = jY j = N . For

each G there is a corresponding monotone 2-CNF �

G

on N

variables s.t. if SAT (�
G

) is ("; q)-testable then monotonicity

of Boolean functions over G is also ("; q)-testable.

PROOF. Associate a variable z
v

with every node v in X [

Y . Each node y in Y is represented by z
y

, while each node x
in X is represented by z

x

. Define a Boolean formula �
G

on
the set of variables Z = fz

v

j v 2 X [ Y g as follows: form a
clause (z

x

_z

y

) for each edge (x; y 2 E). A Boolean labeling

f of G defines an assignment ~

f for Z by ~

f(z

x

) = 1 � f(x)

if x 2 X and ~

f(z

x

) = f(y) if y 2 Y . Then an edge (x; y) is
violated if and only if the corresponding clause (z

x

_z

y

) is un-

satisfied. Therefore, dist(f;mon
G

) = dist(

~

f; SAT (�

G

)),
and each test for �

G

can be used as a test for mon
G

.

Let U = (V;E) be an undirected graph. For a S � V ,
let f

S

: V ! f0; 1g be a characteristic function of S, i.e.
f(v) = 1 if and only if v 2 S. A vertex cover of U is a
subset of the vertices where every edge of U touches one of
those vertices. A clique in U is a subset of the vertices that
induces a complete graph in U . The property V C(U) is the
set of all characteristic functions f

S

such that S is a vertex
cover of U . Similarly, the property CLIQUE(U) is the set
of all characteristic functions f

S

such that S is clique of U .

THEOREM 10. The following statements are equivalent:

� SAT (�) is ("; q)-testable for every monotone 2-CNF �

on N variables.

� V C(U) is ("; q)-testable for every graph U onN nodes.

� CLIQUE(U) is ("; q)-testable for every graph U on

N nodes.

Moreover, the reductions preserve 1-sided error.

The theorem follows from the following three lemmas.

LEMMA 11. For every undirected graph U on N nodes

there is a corresponding monotone 2-CNF �

U

on N variables

s. t. if SAT (�
U

) is ("; q)-testable then so is V C(U).

PROOF. Let U = (V;E) be an undirected graph. Asso-
ciate a Boolean variable x

v

with each v 2 V . Define the 2-
CNF formula �

U

on the set of variables X = fx

v

j v 2 V g as
follows: form the clause (x

u

_ x

v

) for each edge (u; v) 2 E.

A subset S of vertices in V defines an assignment ~

f to vari-
ables in X by ~

f(x

v

) = f

S

(v). Clearly dist(f
S

; V C(U)) =

dist(

~

f; SAT (�

U

)), and every "-test for SAT (�) can be used
as a test for V C(U

�

).



LEMMA 12. For every undirected graph U on N nodes

there is a corresponding graph U 0 on N nodes s. t. if V C(U

0

)

is ("; q)-testable then so is CLIQUE(U).

PROOF. Let U = (V; E) be an undirected graph. Define
U

0

= (V;E

0

) where E0 is the set of vertex pairs that are not
edges in E. For a subset S of V , let S0 = V nS. Clearly,
dist(f

S

; CLIQUE(U)) = dist(f

S

0

; V C(U

0

)), and every "-
test for V C(U

0

) can be used as an "-test for CLIQUE(U).

LEMMA 13. For every monotone 2-CNF� onN variables,

there is a corresponding undirected graph U
�

on N nodes s.t.

if CLIQUE(U

�

) is ("; q)-testable then so is SAT (�).

PROOF. Let � be a monotone 2-CNF. Associate a node v
x

with each variable x of �. Define the undirected graph U

�

on the set of vertices V = fv

x

j x 2 �g as follows: start
with a complete graph on V and then for each clause (x _ y)

in � delete an edge (u

x

; u

y

) from U . An assignment f to
the variables of � defines a subset S of the vertices of V
by S = fv

x

j f(x) = 0g. Clearly, dist(f; SAT (�
U

)) =

dist(f

S

; CLIQUE(U

�

)), and every "-test forCLIQUE(U)

can be used as a test for SAT (�
U

).

4. GENERAL UPPER BOUND
We present a simple 1-sided error �-test for monotonicity

(not necessarily Boolean) on bipartite graphs G = (X;Y ;E)

with jXj = jY j = N and all edges are directed from X to Y .

TEST T
1

FOR G = (X;Y ;E)

1. Query q =

l

2

p

N="

m

vertices uniformly and in-

dependently from each of X and Y .

2. Reject if a violated pair of vertices is found; oth-
erwise, accept.

THEOREM 14. If G = (X;Y ;E) as above, then algo-

rithm T

1

is a 1-sided error
�

"; O(

p

N=")

�

-test for mon
G

.

PROOF. The test accepts all monotone functions. Suppose
a function is "-far from monotone. Then by Lemma 3, there
are "N=2 vertex-disjoint violated pairs. Call them witness-

pairs and their vertices, witnesses. A randomly chosen X-
vertex is a witness with probability ".

Let F be the event that no violated pair is detected, F
X

be
the event that� "q=2X-witnesses are queried, and F

Y

be the
event that � "q=2 Y -witnesses are queried.

Pr[F ℄ � Pr[F

X

℄ + Pr[F

Y

℄ + Pr[F jF

X

^ F

Y

℄

� e

�8

+ e

�8

+

�

1�

"q=2

"N=2

�

"q=2

� 2e

�8

+ e

�

"q

2

2N

<

1

3

:

Thus, the test fails with probability less than 1/3.

By Theorems 6–10, monotonicity over general graphs and prop-

erties in Section 3 have 1-sided error
�

";O(

p

N=")

�

-tests.

5. GENERAL LOWER BOUNDS
This section addresses lower bounds for testing monotonic-

ity on general graphs. We restrict our attention to the Boolean
case which implies matching lower bounds for all properties
in Theorem 10. We first define what we call Ruzsá-Szemerédi
type graphs. We then show that monotonicity over such graphs
(with suitable parameters) is hard to test non-adaptively.

Let U = (V;E) be an undirected graph and let M � E

be a matching in U , i.e. no two edges in M have a ver-
tex in common. Let V (M) be the set of the endpoints of
edges in M . A matching M in U is called induced if the in-
duced graphU [V (M)℄ contains only the edges ofM . Namely,
(u; v) 2 E(U) if and only if (u; v) 2M for all u; v 2 V (M).
A (bipartite) graph U = (X;Y ;E) is called (s; t)- Ruzsá-

Szemerédi if its edge set can be partitioned into at least s in-
duced matchings M

1

; : : : ;M

s

, each of size at least t.

THEOREM 15. LetU = (X;Y ;E) be an (m; "N)-Ruzsá-

Szemerédi graph with jXj = jY j = N . Direct all edges of U

from X to Y to obtain a graph G. Then any non-adaptive
"

6

-test for mon
G

requires 
(
p

m) queries.

PROOF. We use Yao’s principle, which says that to show
a lower bound on the complexity of a randomized test, it is
enough to present an input distribution on which any deter-
ministic test with that complexity is likely to fail. Namely,
we define distributions D

P

; D

N

on positive (monotone) and
negative ("-far from monotone) inputs, respectively. Our in-
put distribution first chooses D

P

or D
N

with equal probabil-
ity and then draws an input according to the chosen distribu-
tion. We show that every deterministic non-adaptive test with
q = o(

p

m) queries has error probability larger than 1=3 (with
respect to the induced probability on inputs).

We now define the distributions D
P

and D
N

, as well as the
auxiliary distribution ~

D

N

. For D
P

and ~

D

N

, choose a random
i 2 f1; : : : ;mg uniformly. For all nodes x 2 X and y 2 Y

outside of matching M
i

, set f(x) = 1 and f(y) = 0. For D
P

,
uniformly choose f(x) = f(y) = 0 or f(x) = f(y) = 1

independently for all edges (x; y) 2 M

i

. For ~

D

N

, uniformly
choose f(x) = 1 � f(y) = 0 or f(x) = 1 � f(y) = 1

independently for all (x; y) 2M

i

.

D

P

is supported only on monotone labelings, but ~

D

N

is
not supported only on negative inputs. However, for N large
enough, with probability more than 8/9 at least 1/3 of the edges
of M

i

are violated when the input is chosen according to ~

D

N

,
making the input "=6-far from monotone. Denote the latter

event by A and define D
N

=

~

D

N

j

A

, namely, D
N

is ~

D

N

con-

ditioned on the event A. Note that for ~

D

N

an edge is violated
only if it belongs to M

i

, since the matchings are induced.
Given a deterministic non-adaptive test that makes a set V 0

of q queries, the probability that one or more of M
i

’s edges
have both endpoints in V 0 is at most q2=(4m) for bothD

P

;

~

D

N

.
This is because the matchings are disjoint, and the vertex set
V

0 induces at most q2=4 edges of G. For q = o(

p

m), with
probability more than 1 � o(1) no edge of M

i

has both end-
points in V

0. Conditioned on any choice of i for which M

i

has no such edge, the distribution of f j
V

0 is identical for both
~

D

N

and D
P

: every vertex outside of M
i

is fixed to 1 if it is
in X and to 0 if it is in Y , and the value of every other vertex
is uniform and independent over f0; 1g. Let C(�) denote the



set of inputs consistent with query answers � : V

0

! f0; 1g.
Pr

D

P

[C(�)jno edge in M
i

℄ = Pr

~

D

N

[C(�)jno edge in M
i

℄.
For every tuple of answers �, the error probability under the
above conditioning (with negative inputs chosen under ~

D

N

rather than D

N

) is 1/2. As the probability of the condition
is � 1 � o(1), the overall error probability without the con-
ditioning is � 1=2 � o(1). Since negative inputs are chosen

under D
N

, not ~

D

N

, the success probability is (1=2 + o(1)) �

(Pr[A℄)

�1

� (1=2 + o(1)) � 9=8 � 9=16 + o(1): Thus, the
error probability is � 7=16 � o(1).

6. CONSTRUCTION OF HARD TO TEST

GRAPHS
This section constructs Ruzsá-Szemerédi graphs that yield

N




�

1

log logN

�

non-adaptive lower bounds for monotonicity test-
ing. We then discuss the parameters of Ruzsá-Szemerédi graphs
that are currently attainable.

THEOREM 16. There exist an (N



�

1

log logN

�

; N=3�o(N))-

Ruzsá-Szemerédi graphs U = (X;Y ;E) with jXj = jY j =

N .

COROLLARY 17. For some 2N -vertex graphsG, every non-

adaptive (

1

18

� o(1))-test for mon
G

requires N



�

1

log logN

�

queries.

PROOF OF THEOREM 16. Let m;n be two integers where
n is divisible by 3 and n = o(m). The vertex set of U is X =

Y = [m℄

n, thus N = m

n. We define a family of (partial)
matchings on the vertices of U and take the edge-set of the
graph to be the union of the edge-sets of these matchings. The
matchings are indexed by a family of n

3

-subsets of [n℄. Let
T � [n℄, jT j = n

3

. Let p =

n

3

.

Definition of a matching M

T

. Color the points in the two
copies of [m℄

n by blue, red and white. The color of a point x
is determined by

P

i2T

x

i

. First, partition the vertex set into

levels, where the level L
s

is the set
�

x :

P

i2T

x

i

= s

	

. Then
combine levels into strips, where for an integer k = 1:::m, the
strip S

k

= L

kp

[ ::: [ L

(k+1)p�1

. Color the strips S
k

with
k � 0(mod 3) blue, the strips with k � 1(mod 3) red, and
the remaining strips white. The matching M

T

is defined by
matching blue points in X to red points in Y as follows: If
a blue point b in X has all its T -coordinates greater than 2,
match it to a point r = b � 2 � 1

T

in Y . The vector 1
T

is the
characteristic vector of T ; it is 1 on T and 0 outside T . Note
that r is necessarily red. M

T

is clearly a matching. Our next
step is to show that it is large.

LEMMA 18. jM
T

j � N=3� o(N):

PROOF. Consider the “projected” matching M on the ver-
tices of the bipartite graph UT

=

�

[m℄

T

; [m℄

T

�

, which is de-

fined by T . Namely, partition the points of [m℄

T as described
above, coloring them by blue, red and white, and match a blue
point in one copy of [m℄

T to a red one in another, by subtract-
ing 2 � 1

T

. Since M
T

is determined by the coordinates in T , it
is enough to show that jM j � P=3 � o(P ), where P = m

p.

Let B;R;W � [m℄

T be the sets of the blue, red and white
points, respectively. Then P = jBj + jRj + jW j:

First, we claim that jW j � jRj +

�

�

fx : 9i; x

i

= 1g

�

�. In-
deed, consider a new matching between W and R defined by
matching w 2 W to w � 1

T

. Assume that m � 0(mod 3).
Then the only unmatched points in W are contained in the
set fx : 9i; x

i

= 1g, proving this claim. Similarly jW j �

jBj+

�

�

fx : 9i; x

i

= mg

�

�.
Next, observe that the only blue and red points (in the cor-

responding copies of [m℄

T ) unmatched by M are these which
have a coordinate whose value is in f1; 2; m � 1;mg. It fol-
lows that
jM j > (jRj+ jBj)=2�

�

�

fx : 9i; x

i

2 f1; 2;m� 1;mgg

�

�

>

P=3�

�

�

�

fx : 9i; x

i

2 f1; 2;m� 1;mgg

�

�

+

�

�

fx : 9i; x

i

= 1;mg

�

�

�

� P=3�

6p

m

�P: Since p = o(m), the claim of the lemma fol-
lows.

Now, let T; T
1

be two n

3

-sets in [n℄, such that jT \ T

1

j �

n=7. We claim that no edge of M
T

is induced by M

T

1

. In-
deed, let b be matched to r byM

T

, in particular b�r = 2 �1

T

.
If the edge (b; r) is induced by M

T

1

, then b is colored blue and
r is colored red in the coloring defined by T

1

. By the defini-
tion of the coloring, since

P

n

i=1

b

i

>

P

n

i=1

r

i

, b is located
in a blue level separated by a white level from the red level
of r. This implies that

�

�

P

i2T

1

b

i

�

P

i2T

1

r

i

�

�

�

n

3

: On the

other hand,
�

�

P

i2T

1

b

i

�

P

i2T

1

r

i

�

�

=

�

�

P

i2T

1

(b

i

� r

i

)

�

�

=

�

�

P

i2T

1

(2 � 1

T

)

i

�

�

= 2 � jT \ T

1

j �

2n

7

<

n

3

; reaching a
contradiction.

We would like to have a large family F of n

3

-subsets of [n℄,
such that the intersection between any two of them is of size
at most n

7

, or, equivalently, such that the Hamming distance

between any two of them is at least 2n

3

�

2n

7

=

8n

21

. So we
need a lower bound on the size of a constant weight binary
error-correcting code F with the following parameters: block
length n, weight w =

n

3

, distance d =

8n

21

. Applying the
Gilbert-Varshamov bound for constant weight codes [19], we
get 1

n

log jFj � H(1=3)� 1=3 �H(4=7) � 2=3 �H(2=7)�

o(1) = 0:014�o(1): Choose m = n

2 and define the edge-set
E(U) of U by E(U) =

S

T2F

M

T

: By the preceding discus-

sion, U is a graph on N = n

2n vertices, whose edge-set is a

disjoint union of 2
(n) = N




�

1

log logN

�

induced matchings
of size N=3� o(N).

(s; t)-Ruzsá-Szemerédi Graphs. For which values of s and
t is there an (s; t)-Ruzsá-Szemerédi graph? We are interested
in the asymptotic version of this question as N ! 1. Call
a sequence of pairs (s(N); t(N))-realizable if there is an in-
finite sequence of N , and graphs U

N

with N vertices, that
are (s(N); t(N))-Ruzsá-Szemerédi. Define P to be the set
f(s(N); t(N))g of realizable sequences. Note thatP is mono-
tone in the natural order on pairs, namely if it contains (s; t),
and s

0

� s, t0 � t, then it contains (s

0

; t

0

). Therefore it is
defined by its set of maximal points.

Two trivial maximal points in P are
��

N

2

�

; 1

�

, coming from
a complete graph on N vertices, and (1; N=2), coming from
a perfect matching on N vertices. A much more interesting
point in P is given by a construction of Ruzsá and Szemerédi



[25], following Behrend [5]. Their result, with some abuse of

notation, can be stated as follows:
�

N=3; N=2

O

(

p

logN

)

�

2

P: We have already seen that for � = 
(1) there is an ab-

solute constant 
, such that (N
=log logN

; �N) 2 P . This
trivially implies that there is a constant 
 such that for any

positive �,
�

1=� �N


=log logN

; �N

�

2 P . A more techni-

cally involved generalization of the construction in this sec-
tion, postponed to the full version of the paper, gives: there
is a constant 
 such that for any constant positive � � 1=4,
�

N

(
�log 1=�)=log logN

; �N

�

2 P .

Letting � go to 0 as N grows, it can be shown for 1=� =




�

p

logN=log logN

�

, that there is an absolute constant


 < 1, s.t.
�

N




; N=O

�

p

logN= log logN

��

2 P:

7. HYPERCUBE LOWER BOUNDS

1-sided non-adaptive lower bound. Consider the set inclu-
sion order on the vertices of the Boolean hypercube f0; 1gn .
For x 2 f0; 1gn, let kxk be its Hamming weight.

THEOREM 19. 9" > 0 such that every non-adaptive 1-

sided error "-test for monotonicity of Boolean functions on the

n-dimensional Boolean hypercube requires 
(
p

n) queries.

PROOF. Note that a 1-sided error test must accept if no vio-
lation is uncovered; otherwise, the test fails on monotone func-
tions consistent with the query results. For i = 1; :::; n define
a function f

i

: f0; 1g

n

! f0; 1g by

f

i

(x

1

; : : : ; x

n

) =

8

<

:

1 if kxk > n=2 +

p

n

0 if kxk < n=2�

p

n

1� x

i

otherwise

It is easy to see that for all 1 � i � n, f
i

is �-far from mono-
tone, for some constant � > 0 independent of n. The following
immediately implies our theorem.

LEMMA 20. For every non-adaptive q-query monotonicity

test, there exists an index i 2 [n℄, such that the test succeeds

(finds a violation) on f
i

with probability at most O(q=

p

n).

PROOF. It suffices to prove the claim for tests that only
query vertices with Hamming weight in the range n=2�

p

n,
as queries out of this range do not participate in any violation.

We show that every set of q queries reveals a violation for at
most O(q

p

n) of the functions f
i

. It follows that for every test
that makes q queries,

P

n

i=1

Pr[a violation for f
i

is found℄ =
O(q

p

n); and so there exists an f

i

for which the test finds a
violation with probability at most O(q=

p

n), as claimed.
Let Q be the set of queried vertices of f0; 1gn of size q.

The queries detect a pair of vertices violated by f
i

only if Q
contains comparable vertices u and v that differ in coordinate
i. Construct an undirected graph with vertex setQ, by drawing
an edge between x and y if they are comparable. Consider a
spanning forest of this graph. If such vertices u and v exist,
they must lie in the same tree. Furthermore, there must exist
adjacent vertices on the path between u and v that differ in
coordinate i. Therefore, the number of functions f

i

for which

the queries reveal a violation is at most the maximum number
of edges in the forest (which is at most q�1) multiplied by the
maximum possible distance between adjacent vertices (2

p

n).
The total is at most O(q

p

n).

2-sided lower bound. We give a logarithmic lower bound for
non-adaptive 2-sided monotonicity tests of Boolean functions
over f0; 1gn. This implies a non-constant (though doubly log-
arithmic) lower bound for adaptive testing of this property.

THEOREM 21. 9" > 0 such that every non-adaptive "-test

for monotonicity of Boolean functions on the n-dimensional

Boolean hypercube requires 
(log n) queries.

PROOF. The lower bound uses Yao’s method. Namely, we
define two distributions over input functions, D

P

and D

N

,
such that for any set of q � 1

20

log n vertices of the hyper-
cube, the distributions induced on f0; 1gq by restricting the
functions to the q vertices are< 1

3

close, while an input chosen
according to D

P

is monotone, and an input chosen according
to D

N

is �-far from monotone for a constant �.

Two distributions. For x 2 f0; 1g

n, we view x both as a
binary vector of length n and a subset fi : x

i

= 1g of [n℄.

Definition 2. Let� =

1

100

. GivenB � [n℄, letmaj(x\B)

be 1 when jx \ Bj > 1

2

jBj and 0 otherwise.
The trimmed oligarchy function according to B is

f

B

(x) =

8

<

:

1 if kxk > n=2 + �

p

n

0 if kxk < n=2� �

p

n

maj(x \B) otherwise

The trimmed anti-oligarchy function according to B is

f

A

B

(x) =

8

<

:

1 if kxk > n=2 + �

p

n

0 if kxk < n=2� �

p

n

1�maj(x \B) otherwise

The theorem follows from the next two lemmas.

LEMMA 22. There exists " > 0, such that for any nonempty

set B, f
B

is monotone and fA
B

is "-far from monotone.

PROOF. It is easy to see that trimmed oligarchy functions
are monotone. For trimmed anti-oligarchy functions, we will
find �2n vertex-disjoint violated pairs.

Let m = jBj. For every integer w such that 1

2

n � �

p

n �

w <

1

2

n, and every integer v such that 0 � v <

1

2

m, let U
w;v

denote the set fx 2 f0; 1g

n

: kxk = w and jx \ Bj = vg,
and V

w;v

denote the set fx 2 f0; 1gn : kxk = n�w and jx\
Bj = m � vg. By definition, f(x) = 1 for every x 2 U

w;v

and f(x) = 0 for every x 2 V

w;v

. U
w;v

and V

w;v

have the
same size, since x is in U

w;v

iff the complement of x is in
V

w;v

. We want to find a bijection � : U

w;v

! V

w;v

such that
x � �(x) for every x 2 U

w;v

.
Consider the bipartite graph over U

w;v

[V

w;v

with the poset
relations as edges. It is easy to see that this graph has a con-
stant degree, so a matching exists (by Hall’s Theorem) if this
degree is nonzero. This happens if w; v satisfy 1

2

m � v �

1

2

n � w in addition to the conditions above. The union over
all such w; v of the sets U

w;v

[V

w;v

covers a fixed fraction of
the hypercube, so we are done.



To define D
P

and D
N

pick a random set B � [n℄ by inde-
pendently choosing each coordinate to lie in B with probabil-
ity 1

10

n

�1=2. For D
P

, take the corresponding f
B

and for D
N

,

take the corresponding fA
B

.

LEMMA 23. D
N

and D

P

restricted to any set of q =

1

20

log n queries are �-close, for any � > 0.

PROOF SKETCH. Let q =

1

20

log n. Let x
1

; : : : ; x

q

be
a fixed subset of f0; 1gn. We can assume, without loss of
generality, that the points satisfy n=2 � �

p

n � kx

i

k �

n=2 + �

p

n. This is because the functions in D

P

and D

N

are constant and identical outside this range.
Inside the range, for anyB, the corresponding oligarchy and

anti-oligarchy functions complement each other. Therefore,
the induced distributions d

P

and d
N

on f0; 1gq are mirror im-
ages of each other: d

P

(a) = d

N

(�a) for any a 2 f0; 1g

q ,
where �a is the complement of a. For a distribution d on f0; 1gq ,
let �d be its mirror image. Call d symmetric if d =

�

d. Our claim
amounts to showing d

P

to be almost symmetric.
In fact, we construct a symmetric distribution s, such that

kd

P

� sk

1

= o(1). This implies our claim since

kd

P

� d

N

k

1

= kd

P

�

�

d

P

k

1

� kd

P

� sk

1

+ k

�

d

P

� �sk

1

= 2kd

P

� sk

1

:

We get to s by a sequence of four distributions, each one
close to its predecessor. The first element in the sequence is
d

1

= d

P

and the last is s. The triangle inequality then implies
that the distance between d

P

and s is at most the sum of the
distances between the consecutive elements of the sequence.

For 1 � i � q, let y
i

2 f0; 1g

n be such that ky
i

k = n=2

and kx
i

� y

i

k � �

p

n. Let d
2

be the distribution on f0; 1gq

induced by restricting the functions in D
P

to y
1

; :::; y

q

. Then
d

2

is close to d
1

because w.h.p. over the choice of a function f
from D

P

, changing the queries by at most O(

p

n) bits, does
not change the value of the f on the queries.

The n=2-sets y
1

:::y

q

induce a standard partition of [n℄ into
2

q disjoint subsets, indexed by f0; 1gq . For I 2 f0; 1g

q , the
I’th element of the partition is A

I

=

T

i:I

i

=1

y

i

\

T

i:I

i

=0

y




i

.
Here y


i

is the set complement of y
i

. We define 2

q random
variables depending on B by setting R

I

(B) = jB \ A

I

j. If
A

I

is empty, R
I

is identically 0.
Note that fR

I

g are independent binomially distributed vari-
ables, and that they determine the restriction of f to y

1

:::y

q

. In
fact, is f(y

i

) = 1 if and only if jy
i

\Bj > jy




i

\Bj, which is
equivalent to

P

I:i2I

R

I

>

P

I:i=2I

R

I

.

Since E
�

P

I:i2I

R

I

�

= np=2 = E

�

P

I:i=2I

R

I

�

, we can
replace each R

I

by a random variable Z
I

= R

I

� ER

I

with
zero expectation.

Next, we would like to replace each Z

I

by a symmetric 2

random variable S
I

. Observe that once we do so, provided the
new distribution d

3

on f0; 1gq is close to d
2

, we are basically
done. Indeed, a choice of a point in f0; 1gq according to d

3

is
determined by the signs of q linear expressions in S

I

. Since
d

3

is invariant under flipping the sign of all the S
I

, a point a

2A real random variable X is symmetric if for all t, PrfX �

EX � tg = PrfX � EX + tg. The two notions of sym-
metric distributions in the proof should, hopefully, cause no
confusion.

and its complement �a would be chosen with almost 3 the same
probability. Therefore, d

3

is close to a symmetric distribution
s on f0; 1gq , completing the proof.

We know, say by the Berry-Esseen theorem ([9], p. 126)
that a binomial distribution with parameters k and p, such that
kp � 1, is, in some sense, close to the normal distribution
which is, of course, symmetric. We give a precise meaning
to this intuition, proving directly that such a binomial distri-
bution is stochastically close to a symmetric one. This allows
us to replace Z

I

with large parameter k = jA

I

j by symmetric
random variables.

As to Z
I

for which the parameter k is small, it turns out that
we can get rid of them simply by replacing them with 0.

8. FAMILIES OF GRAPHS WITH EFFI­

CIENT MONOTONICITY TESTS
This section describes several families of efficiently testable

graphs, including graphs with few edges in the transitive clo-
sure, graphs with small width, top-parallel graphs, trees and
graphs with small separators. All tests presented have 1-sided
error. Hence, we only need to analyze the probability of error
for functions that are far from monotone. Throughout the sec-
tion, we denote the transitive closure of a graph G by TC (G).

8.1 Tests with query complexity indepen­
dent of graph size

Our first test T
2

(q) works when the fraction of vertex pairs
violated by the input function is high and is useful for testing
graphs with few edges in the transitive closure, as well as small
width graphs. Note that test T

2

(q) queries at most 2q vertices.

TEST T
2

(q)

1. Pick q edges from the transitive closure of the
graph uniformly and independently.

2. For each edge, query its endpoints. Reject if it is
violated; otherwise, accept.

LEMMA 24. If G is a graph with at most 
N edges in

TC (G), then algorithm T

2

with parameter q set to 4
=" is

a 1-sided error ("; 8
=")-test for monotonicity on G.

A graph G has width w if every set of mutually incomparable
vertices has size at most w. The following shows that T

2

can
be used to test small width graphs.

LEMMA 25. If G is a graph of width w, then algorithm

T

2

with q set to 2w="

2 is a 1-sided error ("; 4w="2)-test for

monotonicity of Boolean functions on G.

PROOF OF LEMMA 25. Let G be a graph of width w and
let f be a Boolean labeling of V (G) that is "-far from mono-
tone. We will show that the number of violated edges in the
transitive closure is at least "2N2

=(2w) � o(1). Since the to-
tal number of edges in the graph is at most N2

=2, the test will
find a violated edge with probability at least 1� q

�2

> 2=3.

3Because in order to get 1 in i-th coordinate we need the cor-
responding linear expression to be strictly positive, and to get
0 we need it to be only non-positive (zero included).



CLAIM 26. If dist(f;G) � d for a Boolean labeling f ,

then there is a set T; jT j � w, of 0-labeled vertices, s.t. T is

incident to at least d violated pairs.

PROOF OF CLAIM. If dist(f;mon
G

) � d, by Lemma 4,
TC (G) has a matching of violated edges of size d. Call end-
points of the edges in the matching witnesses. Let Z be the
set of 0-labeled witnesses and let T � Z be a minimal set of
vertices s.t. 8z 2 Z; 9t 2 T with z �

G

t. Clearly, T contains
no comparable pairs, and hence is of size at most w. Each 1-
labeled witness is below one of the nodes in Z and hence in
T .

Applying the claim to TC (G) and removing the nodes in
T from the graph repeatedly until no vertices are left, we ob-
serve that the number of violated edges in TC (G) is at least
"N + ("N � w) + ("N � 2w) + � � � + ("N mod w) �

("

2

N

2

)=(2w):

Top-parallel graphs. Let G
1

= (V

1

; E

1

) and G
2

= (V

2

; E

2

)

be disjoint graphs. Graph G obtained by connecting G

1

and
G

2

in parallel is defined by G = (V

1

[ V

2

; E

1

[ E

2

). Graph
G obtained by connecting G

1

and G

2

using the top opera-

tion is defined by G = (V

1

[ V

2

; E

1

[ E

2

[ E

x

), where
E

x

= f(v

2

; v

1

)jv

1

2 V

1

and v
2

2 V

2

g. Top-parallel graphs
are defined recursively: the 1-vertex graph is top-parallel, and
a graph formed by top or parallel operations from two top-
parallel graphs is also top-parallel. Examples of top-parallel
graphs include the transitive closure of a rooted tree with all
edges directed either towards the root or away from the root,
and the transitive closure of a complete layered graph. The
proof of the following lemma is omitted.

LEMMA 27. If G is a top-parallel graph, it has a 1-sided

("; 4="

2

)-test for Boolean monotonicity.

Tree-like graphs. A directed graph G(V; E) is tree-like if it is
obtained by arbitrarily directing each edge of a forest (V;E).

LEMMA 28. IfG is a tree-like graph, it has a 1-sided error

("; 16="

2

)-test for Boolean monotonicity.

The full proof is technical, and we omit it. We sketch a sim-
plified proof for the case of a rooted tree G which is obtained
from a tree T = (V;E) by choosing a special vertex r 2 V

and directing the edges along paths from other vertices to r.
Let Low(v) denote fu 2 V ju �

G

vg for v 2 V . Observe
that in a rooted tree, Low(x) \ Low(y) = ; for all incompa-
rable vertices x; y. A vertex v 2 V is "-bad with respect to
a Boolean labeling f if f(v) = 0 and more than " fraction of
vertices in Low(v) are labeled 1 by f .

T

3

FOR BOOLEAN LABELINGS ON ROOTED TREES

1. Query 4

"

nodes uniformly and independently.

2. For each queried node with label 0, query 4

"

nodes
below it uniformly and independently. Reject if a
violated pair is found; otherwise, accept.

If at least an "=2 fraction of vertices in G are "=2-bad with
respect to the input labeling f , the test rejects with probability

� 2=3. Otherwise, we can obtain a monotone f 0 by changing
f on less than " fraction of the vertices. Let Z be the set
of 0-labeled vertices which are not "=2-bad, and S be the set
of maximal nodes of Z. Set f 0(x) to 0 if x 2 Low(v) for
some v 2 S and to 1 otherwise. It is not hard to show that
f

0 is monotone and close to f , as claimed, which implies the
correctness of the test.

A generalization of a bad vertex yields a similar test for
tree-like graphs.

8.2 A test for graphs with small separators
Here we consider graphs that can be broken into relatively

small connected components by removing a few vertices.

Definition 3. LetU be an infinite family of undirected graphs
that is closed under taking subgraphs. We say that U is k-
separable if every N -vertex graph U 2 U can be broken into
connected components of size at most 2N=3 by removing a
subset of at most k vertices, called a separator.

E.g., forests are 1-separable, bounded tree-width graphs have
bounded separators and planar graphs are O(

p

N)-separable
[20]. In the sequel k might be a sublinear non-decreasing func-
tion of N .

Let G = (V;E) be a directed graph. Let U
G

be the undi-
rected graph obtained from G by undirecting its edges. Call G
k-separable if U

G

belongs to a k-separable family of graphs.
Consider a ‘standard’ tree structure over disjoint subgraphs

of G generated by inductively taking out separators. Namely,
generate a rooted tree T where each node x in T is associated
with a set of vertices V (x) of G. Let V

0

be a separator for U
G

of size � k, and suppose that U
G

(V � V

0

) has l components.
The root x of T is associated with V

0

(i.e., V (x) = V

0

) and
has l children, one for each component. The subtrees of the
children are generated recursively from their respective com-
ponents by the same procedure. The recursion stops at compo-
nents of size less than k logN . The leaves are associated with
vertex sets of their components. Note that the depth of the tree
is O(logN).

Let r = x

0

; x

1

; :::; x

j

= x be the path from the root to
a node x in T . Denote [j

i=0

V (x

i

) by Path(x). Namely,
Path(x) contains all vertices of G associated with x and all
vertices from separators that appear on the path from the root
of T to x. For a vertex v 2 V let T (v) denote the node x of T
so that v 2 V (x).

We present a 1-sided error test for G using the structure T .

TEST FOR GRAPHS WITH SMALL SEPARATORS, T
4

(")

1. Pick 4

"

nodes of G uniformly and independently.

2. For each node v, query all nodes in Path(T (v)).
Reject if a violated pair is found; otherwise, ac-
cept.

Call a vertex v bad if Path(T (v)) contains a violated pair.

CLAIM 29. If a function is "-far from monotone, at least

"=2 fraction of vertices are bad.

PROOF. Consider a violated pair (v; u). We will prove that
either v or u is bad. The claim then follows as the graph has at
least "N=2 vertex-disjoint violated pairs (by Lemma 3).



If T (v) and T (u) are on the same path from the root to a leaf
in T , then v 2 Path(T (u)) or u 2 Path(T (v)). W.l.o.g.,
suppose v 2 Path(T (u)), then u is bad because Path(T (u))
contains a violated pair (v; u). If T (v) and T (u) are not on
the same path from the root to a leaf, they got separated when
T was constructed, i.e., some vertex w on a directed path from
v to u, inG, is in a common ancestor of T (v) and T (u). Since
(v; w) or (w; u) has to be violated, either v or u is bad.

LEMMA 30. Let G = (V;E) be a k-separable N -vertex

graph. Then algorithm T

4

is a 1-sided error
�

"; O

�

k

"

logN

��

-

test for monotonicity of functions (with general ranges) on G.

This generalizes the more efficient tests for Boolean func-
tions over tree-like graphs and bounded-width graphs for which
tighter results (by logN factor) are obtained in lemmas 28

and 25. It also provides an alternative
�

"; O

�

p

N logN

��

-

test for planar graphs, which performs more queries than the
general algorithm from section 4, but requires fewer label com-
parisons. We note that this result cannot be dramatically im-
proved as the general monotonicity test for the line (which is
1-separable) requires 
(logN) queries [11].
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