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Abstrat

Given a funtion f mapping n-variate inputs from a �nite �eld F into F , we onsider

the task of reonstruting a list of all n-variate degree d polynomials that agree with

f on a tiny but non-negligible fration, Æ, of the input spae. We give a randomized

algorithm for solving this task. The algorithm aesses f as a blak box and runs in

time polynomial in

n

Æ

and exponential in d, provided Æ is 
(

p

d=jF j). For the speial

ase when d = 1, we solve this problem for all �

def

= Æ �

1

jF j

> 0. In this ase the

running time of our algorithm is bounded by a polynomial in

1

�

and n. Our algorithm

generalizes a previously known algorithm, due to Goldreih and Levin, that solves this

task for the ase when F = GF(2) (and d = 1).

In the proess we provide new bounds on the number of degree d polynomials that

may agree with any given funtion on Æ �

p

d=jF j fration of the inputs. This result

is derived by generalizing a well-known bound from oding theory on the number of

odewords from an error-orreting ode that an be \lose" to an arbitrary word; our

generalization works for odes over arbitrary alphabets, while the previous result held

only for binary alphabets.
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1 Introdution

We onsider the following arhetypal reonstrution problem:

Given: An orale (blak box) for an arbitrary funtion f : F

n

! F , a lass of funtions C,

and a parameter Æ.

Output: A list of all funtions g 2 C that agree with f on at least Æ fration of the inputs.

The reonstrution problem an be interpreted in several ways within the framework of

omputational learning theory. First, it falls within the framework of learning with persistent

noise. Here one assumes that the funtion f is derived from some funtion in the lass C by

\adding" noise to it. Typial works in this diretion either tolerate only small amounts of

noise [2, 41, 21, 39℄ (i.e., that the funtion is modi�ed only at a small fration of all possible

inputs) or assume that the noise is random [1, 26, 20, 25, 33, 13, 36℄ (i.e., that the deision of

whether or not to modify the funtion at any given input is made by a random proess). In

ontrast, we take the setting to an extreme, by onsidering a very large amount of (possibly

adversarially hosen) noise. In partiular, we onsider situations in whih the noise disturbs

the outputs for almost all inputs.

A seond interpretation of the reonstrution problem is within the framework of \agnos-

ti learning" introdued by Kearns et al. [23℄ (see also [29, 30, 24℄). In the setting of agnosti

learning, the learner is to make no assumptions regarding the natural phenomenon under-

lying the input/output relationship of the funtion, and the goal of the learner is to ome

up with a simple explanation that best �ts the examples. Therefore the best explanation

may aount for only part of the phenomenon. In some situations, when the phenomenon

appears very irregular, providing an explanation that �ts only part of it is better than noth-

ing. Kearns et al. did not onsider the use of queries (but rather examples drawn from an

arbitrary distribution), sine they were skeptial that queries ould be of any help. We show

that queries do seem to help (see below).

Yet another interpretation of the reonstrution problem, whih generalizes the \agnosti

learning" approah, is the following. Suppose that the natural phenomena an be explained

by several simple explanations that together over most of the input-output behavior but

not all of it. Namely, suppose that the funtion f agrees almost everywhere with one of a

small number of funtions g

i

2 C. In partiular, assume that eah g

i

agrees with f on at

least a Æ fration of the inputs but that for some (say 2Æ) fration of the inputs f does not

agree with any of the g

i

's. This setting was investigated by Ar et al. [3℄. The reonstrution

problem desribed above may be viewed as a (simpler) abstration of the problem onsidered

in [3℄. As in the ase of learning with noise, there is no expliit requirement in the setting of

[3℄ that the noise level be small, but all their results require that the fration of inputs left

unexplained by the g

i

's be smaller than the fration of inputs on whih eah g

i

agrees with

f . Our relaxation (and results) do not impose suh a restrition on the noise and thus make

the setting more appealing and loser in spirit to \agnosti learning".

1.1 Our Results

In this paper, we onsider the speial ase of the reonstrution problem when the hypothesis

lass is the set of n-variate polynomials of bounded total degree d. (The total degree of a

1



monomial

Q

i

x

d

i

i

is

P

i

d

i

; that is, the sum of the degrees of the variables in the monomial.

The total degree of a polynomial is the maximum total degree of monomials with non-zero

oeÆient in the polynomial. For example, the total degree of the polynomial x

2

1

x

3

2

+ 5x

4

2

is

5.) The most interesting aspet of our results is that they relate to very small values of the

parameter Æ (the fration of inputs on whih the hypothesis has to �t the funtion f). Our

main results are:

� An algorithm that given d, F and Æ = 
(

q

d=jF j), and provided orale aess to an

arbitrary funtion f : F

n

! F , runs in time (n=Æ)

O(d)

and outputs a list inluding all

degree d polynomials that agree with f on at least a Æ fration of the inputs.

� An algorithm that given F and � > 0, and provided orale aess to an arbitrary funtion

f : F

n

! F , runs in time poly(n=�) and outputs a list inluding all linear funtions

(degree d = 1 polynomials) that agree with f on at least a Æ

def

=

1

jF j

+ � fration of the

inputs.

� A new bound on the number of degree d polynomials that may agree with a given

funtion f : F

n

! F on a Æ �

q

d=jF j fration of the inputs. This bound is derived

from a more general result about the number of odewords from an error-orreting

ode that may be lose to a given word.

A speial ase of interest is when the funtion f is obtained by piking an arbitrary degree d

polynomial p, and letting f agree with p on an arbitrary Æ = 
(

q

d

jF j

) fration of the inputs

and be set at random otherwise.

1

In this ase, with high probability, only one polynomial

(i.e., p) agrees with f on a Æ fration of the inputs (see Setion 5). Thus, in this ase, the

above algorithm will output only the polynomial p.

Additional Remarks:

1. Any algorithm for the (expliit) reonstrution problem as stated above would need to

output all the oeÆients of suh a polynomial, requiring time at least

�

n+d

d

�

. Moreover

the number of suh polynomials ould grow as a funtion of

1

Æ

. Thus it seems reasonable

that the running time of suh a reonstrution proedure should grow as a polynomial

funtion of

1

Æ

and

�

n

d

�

.

We stress that the above omment does not apply to \impliit reonstrution" algo-

rithms as disussed in Setion 1.4.

2. For d < jF j, the ondition Æ >

d

jF j

seems a natural barrier for our investigation, sine

there are exponentially many (in n) degree d polynomials that are at distane �

d

jF j

from some funtions (see Proposition 21).

3. Queries seem essential to our learning algorithm. We provide two indiations to our

belief, both referring to the speial ase of F = GF(2) and d = 1. First, if queries

are not allowed, then a solution to the reonstrution problem yields a solution to the

(longstanding open) problem of \deoding random (binary) linear odes". (Note that

eah random example given to the reonstrution algorithm orresponds to a random

1

This is di�erent from \random noise" as the set of orrupted inputs is seleted adversarially { only the

values at these inputs are random.
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linear equation on the information variables. We admit that the longstanding open

problem is typially stated for a linear number of equations, but nothing is known even

in ase the number of equations is polynomial in the information length.)

Another well-studied problem that redues to the problem of noisy reonstrution

is the problem of \learning parity with noise" [20℄, whih is ommonly believed to be

hard when one is only allowed uniformly and independently hosen examples [20, 7, 22℄.

(Atually, learning parity with noise is onsidered hard even for random noise, whereas

here the noise is adversarial.)

4. In Setion 6, we give evidene that the reonstrution problem may be hard, for Æ

very lose to d=jF j, even in the ase where n = 2. A variant is shown to be hard even

for n = 1.

1.2 A Coding Theory Perspetive

We �rst introdue the formal de�nition of an error-orreting ode (see, e.g. [31℄). For

positive integers N;K;D and q, an [N;K;D℄

q

error-orreting ode is a olletion of q

K

sequenes of N -elements eah from f1; : : : ; qg, alled odewords, in whih no two sequenes

have a \Hamming distane" of less than D (i.e., every pair of odewords disagree on at least

D loations).

Polynomial funtions lead to some of the simplest known onstrutions of error-orreting

odes: A funtion from F

n

to F may be viewed as an element of F

jF j

n

| by writing down ex-

pliitly the funtion's value on all jF j

n

inputs. Then the \distane property" of polynomials

yields that the set of sequenes orresponding to bounded-degree polynomial funtions form

an error-orreting ode with non-trivial parameters (for details, see Proposition 16). Speif-

ially, the set of n-variate polynomial of total degree d over F = GF(q) yields a [N;K;D℄

q

error-orreting ode with N = jF j

n

, K =

�

n+d

d

�

and D = (jF j � d) � jF j

n�1

. These on-

strutions have been studied in the oding theory literature. The ase n = 1 leads to

\Reed-Solomon odes", while the ase of general n is studied under the name \Reed-Muller

odes".

Our reonstrution algorithm may be viewed as an algorithm that takes an arbitrary

word from F

jF j

n

and �nds a list of all odewords from the Reed-Muller ode that agree with

the given word in Æ fration of the oordinates (i.e., 1 � Æ fration of the oordinates have

been orrupted by errors). This task is referred to in the literature as the \list-deoding"

problem [11℄. For odes ahieved by setting d suh that d=jF j ! 0, our list deoding

algorithm reovers from errors when the rate of errors approahes 1. We are not aware of

any other ase where an approah other (and better) than brute-fore an be used to perform

list deoding with the error-rate approahing 1. Furthermore, our deoding algorithm works

without examining the entire odeword.

1.3 Related Previous Work

For sake of sholarly interest, we disuss several related areas in whih related work has been

done. In this subsetion, it would be more onvenient to refer to the error-rate 1� Æ rather

3



than to the rate of agreement Æ.

Polynomial interpolation: When the noise rate is 0, our problem is simply that of

polynomial interpolation. In this ase the problem is well analyzed and the reader is referred

to [46℄, for instane, for a history of the polynomial interpolation problem.

Self-Corretion: In the ase when the noise rate is positive but small, one approah used

to solving the reonstrution problem is to use self-orretors, introdued independently in

[8℄ and [28℄. Self-orretors onvert programs that are known to be orret on a fration Æ

of inputs into programs that are orret on eah input. Self-orretors for values of Æ that

are larger than 3=4 have been onstruted for several (algebrai) funtions [5, 8, 9, 28, 34℄,

and in one ase this was done for Æ > 1=2 [15℄.

2

We stress that self-orretors orret a

given program using only the information that the program is supposed to be omputing a

funtion from a given lass (e.g., a low-degree polynomial). Thus, when the error is larger

than

1

2

(and the lass ontains more than a single funtion) suh self-orretion is no longer

possible, sine there ould be more than one funtion (in the lass) that agrees with the

given program on an Æ < 1=2 fration of the inputs.

Cryptography and Learning Theory: In order to prove the seurity of a ertain \hard-

ore prediate" relative to any \one-way funtion", Goldreih and Levin solved a speial

ase of the (expliit) reonstrution problem [17℄. Spei�ally, they onsidered the linear

ase (i.e., d = 1) for the Boolean �eld (i.e., F = GF(2)) and any agreement rate that is

bigger than the error-rate (i.e., Æ >

1

2

). Their ideas were subsequently used by Kushilevitz

and Mansour [25℄ to devise an algorithm for learning Boolean deision trees.

1.4 Subsequent work

At the time this work was done (and �rst published [18℄) no algorithm (other than brute

fore) was known for reonstruting a list of degree d polynomials agreeing with an arbitrary

funtion on a vanishing fration of inputs, for any d � 2. Our algorithm solves this prob-

lem with exponential dependene on d, but with polynomial dependene on n, the number

of variables. Subsequently some new reonstrution algorithms for polynomials have been

developed. In partiular, Sudan [40℄, and Guruswami and Sudan [19℄ have provided new

algorithms for reonstruting univariate polynomials from large amounts of noise. Their

running time depends only polynomially in d and works for Æ = 
(

q

d=jF j). Notie that

the agreement required in this ase is larger than the level at whih our NP-hardness result

(of Setion 6) holds. The results of [40℄ also provide some reonstrution algorithms for

multivariate polynomials, but not for as low an error as given here. Also in his ase, the run-

ning time grows exponentially with n. Wasserman [42℄ gives an algorithm for reonstruting

polynomials from noisy data that works without making queries. The running time of the

algorithm of [42℄ also grows exponentially in n and polynomially in d.

As noted earlier (see Remark 1 in Setion 1.1), the running time of any expliit reon-

strution algorithm has to have an exponential dependene on either d or n. However this

2

Spei�ally, self-orretors orreting

1

�(d)

fration of error for f that are degree d polynomial funtions

over a �nite �eld F , jF j � d + 2, were found by [5, 28℄. For d=jF j ! 0, the fration of errors that a self-

orretor ould orret was improved to almost 1=4 by [14℄ and then to almost 1=2 by [15℄ (using a solution

for the univariate ase given by [43℄).

4



need not be true for impliit reonstrution algorithms: By the latter term we mean algo-

rithms that produe as output a sequene of orale mahines, suh that for every multivariate

polynomial that has agreement Æ with the funtion f , one of these orale mahines, given

aess to f , omputes that polynomial. Reently, Arora and Sudan [4℄ gave an algorithm for

this impliit reonstrution problem. The running time of their algorithm is bounded by a

polynomial in n and d, and it works orretly provided that Æ � (d

O(1)

)=jF j


(1)

; that is, their

algorithm needs a muh higher agreement, but works in time polynomial in all parameters.

The reader may verify that suh an impliit reonstrution algorithm yields an algorithm for

the expliit reonstrution problem with running time that is polynomial in

�

n+d

d

�

. (E.g.,

by applying (noise-free) polynomial-interpolation to eah of the orale mahines provided

above, and testing the resulting polynomial for agreement with f .)

1.5 Rest of this paper

The rest of the paper is organized as follows. In Setion 2 we motivate our algorithm,

starting with the speial ase ase of the reonstrution of linear polynomials. The general

ase algorithm is desribed formally in Setion 3, along with an analysis of its orretness and

running time assuming an upper bound on the number of polynomials that agree with a given

funtion at Æ fration of the inputs. In Setion 4 we provide two suh upper bounds. These

bounds do not use any speial (i.e., algebrai) property of polynomials, but rather apply in

general to olletions of funtions that have large distane between them. In Setion 5 we

onsider a random model for the noise applied to a funtion. Spei�ally, the output either

agrees with a �xed polynomial or is random. In suh a ase we provide a stronger upper

bound (spei�ally, 1) on the number of polynomials that may agree with the blak box. In

Setion 6 we give evidene that the reonstrution problem may be hard for small values of

the agreement parameter Æ, even in the ase when n = 1.

Notations: In what follows, we use GF(q) to denote the �nite �eld on q elements. We as-

sume arithmeti in this �eld (addition, subtration, multipliation, division and omparison

with zero) may be performed at unit ost. For a �nite set A, we use the notation a 2

R

A

to denote that a is a random variable hosen uniformly at random from A. For a positive

integer n, we use [n℄ to denote the set f1; : : : ; ng.

2 Motivation to the algorithm

We start by presenting the algorithm for the linear ase, and next present some of the ideas

underlying the generalization to higher degrees. We stress that whereas Setion 2.1 provides

a full analysis of the linear ase, Setion 2.2 merely introdues the additional ideas that will

be employed in dealing with the general ase. The presentation in Setion 2.1 is aimed to

failitate the generalization from the linear ase to the general ase.

2.1 Reonstruting linear polynomials

We are given orale aess to a funtion f : GF(q)

n

! GF(q) and need to �nd a polynomial

(or atually all polynomials) of degree d that agrees with f on at least a Æ =

d

q

+ � fration

5



of the inputs, where � > 0. Our starting point is the linear ase (i.e., d = 1); namely, we are

looking for a polynomial of the form p(x

1

; :::; x

n

) =

P

n

i=1

p

i

x

i

. In this ase our algorithm is

a generalization of an algorithm due to Goldreih and Levin [17℄

3

. (The original algorithm

is regained by setting q = 2.)

We start with the following de�nition: The i-pre�x of a linear polynomial p(x

1

; :::; x

n

)

is the polynomial that results by summing up all of the monomials in whih only the �rst

i variables appear. That is, the i-pre�x of the polynomial

P

n

j=1

p

j

x

j

is

P

i

j=1

p

j

x

j

. The

algorithm proeeds in n rounds, so that in the i

th

round we �nd a list of andidates for the

i-pre�xes of p.

In the i

th

round, the list of i-pre�xes is generated by extending the list of (i�1)-pre�xes.

A simple (and ineÆient) way to perform this extension is to �rst extend eah (i� 1)-pre�x

in all q possible ways, and then to \sreen" the resulting list of i-pre�xes. A good sreening

is the essene of the algorithm. It should guarantee that the i-pre�x of a orret solution p

does pass and that not too many other pre�xes pass (as otherwise the algorithm onsumes

too muh time).

The sreening is done by subjeting eah andidate pre�x, (

1

; :::; 

i

), to the following

test. Pik m = poly(n=�) sequenes uniformly from GF(q)

n�i

. For eah suh sequene

�s = (s

i+1

; :::; s

n

) and for every � 2 GF(q), estimate the quantity

P

�s

(�)

def

= Pr

r

1

;:::;r

i

2GF(q)

2

4

f(�r; �s) =

i

X

j=1



j

r

j

+ �

3

5

(1)

where �r = (r

1

; : : : ; r

i

). The value � an be thought of as a guess for

P

n

j=i+1

p

j

s

j

. For every

�xed suÆx �s, all these probabilities an be approximated simultaneously by using a sample

of poly(n=�) sequenes (r

1

; :::; r

i

), regardless of q. If one of these probabilities is signi�antly

larger than 1=q then the test aepts due to this suÆx, and if no suÆx makes the test aept

then it rejets. The atual algorithm is presented in Figure 1.

Observe that a andidate (

1

; :::; 

i

) passes the test (of Figure 1) if for at least one sequene

of �s = (s

i+1

; :::; s

n

) there exists a � so that the estimate for P

�s

(�) is greater than

1

q

+

�

3

. Clearly,

for a orret andidate (i.e., (

1

; :::; 

i

) that is a pre�x of a polynomial p = (p

1

; :::; p

n

) having

at least

1

q

+ � agreement with f) and � =

P

n

j=i+1

p

j

s

j

, it holds that E

�s

[P

�s

(�)℄ �

1

q

+ �. Using

Markov's inequality, it follows that for a orret andidate, an �=2 fration of the suÆxes are

suh that for eah suh suÆx �s and some �, it holds that P

�s

(�) �

1

q

+

�

2

; thus the orret

andidate passes the test with overwhelming probability. On the other hand, for any suÆx �s,

if a pre�x (

1

; : : : ; 

i

) is to pass the test (with non-negligible probability) due to suÆx �s, then

it must be the ase that the polynomial

P

i

j=1



j

x

j

has at least agreement-rate of

1

q

+

�

4

with

the funtion f

0

(x

1

; : : : ; x

i

)

def

= f(x

1

; : : : ; x

i

; s

i+1

; : : : ; s

n

). It is possible to bound the number

of (i-variate) polynomials that have so muh agreement with any funtion f

0

. (Setions 4

ontains some suh bounds.) Thus, in eah iteration, only a small number of pre�xes pass

the test, thereby limiting the total number of pre�xes that may pass the test in any one of

the poly(n=�) iterations.

3

We refer to the original algorithm as in [17℄, not to a simpler algorithm that appears in later versions

(f., [27, 16℄).
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Test-pre�x(f; �; n; (

1

; : : : ; 

i

))

Repeat poly(n=�) times:

Pik �s = s

i+1

; : : : ; s

n

2

R

GF(q).

Let t

def

= poly(n=�).

for k = 1 to t do

Pik �r = r

1

; : : : ; r

i

2

R

GF(q)

�

(k)

 f(�r; �s)�

P

i

j=1



j

r

j

.

endfor

If 9 � s.t. �

(k)

= � for at least

1

q

+

�

3

fration of the k's

then output aept and halt.

endRepeat.

If all iterations were ompleted without aepting, then rejet.

Figure 1: Implementing the sreening proess

The above yields a poly(nq=�)-time algorithm. In order to get rid of the q fator in

running-time, we need to modify the proess by whih andidates are formed. Instead of

extending eah (i�1)-pre�x, (

1

; :::; 

i�1

), in all q possible ways, we do the following: We pik

uniformly s

def

= (s

i+1

; :::; s

n

) 2 GF(g)

n�i

, r

def

= (r

1

; :::; r

i�1

) 2 GF(q)

i�1

and r

0

; r

00

2 GF(q),

and solve the following system of equations

r

0

x+ y = f(r

1

; :::; r

i�1

; r

0

; s

i+1

; :::; s

n

)�

i�1

X

j=1



j

r

j

(2)

r

00

x+ y = f(r

1

; :::; r

i�1

; r

00

; s

i+1

; :::; s

n

)�

i�1

X

j=1



j

r

j

(3)

using the solution for x as the value of the i

th

oeÆient (i.e., set 

i

= x). This extension

proess is repeated poly(n=�) many times, obtaining at most poly(n=�) andidate i-pre�xes,

per eah andidate (i� 1)-pre�x. We then subjet eah i-pre�x in the list to the sreening

test (presented in Figure 1), and keep only the andidates that pass the test.

We need to show that if the (i� 1)-pre�x of a orret solution is in the list of andidates

(at the beginning of round i) then the i-pre�x of this solution will be found in the extension

proess. Let p = (p

1

; :::; p

n

) be a orret solution (to the reonstrution problem for f).

Then Pr

r;r;s

[p(r; r; s) = f(r; r; s)℄ �

1

q

+ � > �. It follows that for at least an �=2 fration

of the sequenes (r; s), the polynomial p satis�es p(r; r; s) = f(r; r; s) for at least an �=2

fration of the possible r's. Let � represent the value of the sum

P

n

j=i+1

p

j

s

j

, and note

that p(r; r; s) =

P

i�1

j=1

p

j

r

j

+ p

i

r + �. Then, with probability 
(�

3

) over the hoies of

r

1

; : : : ; r

i�1

; s

i+1

; : : : ; s

n

and r

0

; r

00

, the following two equations hold:

r

0

p

i

+ � = f(r

1

; :::; r

i�1

; r

0

; s

i+1

; :::; s

n

)�

i�1

X

j=1

p

j

r

j

7



r

00

p

i

+ � = f(r

1

; :::; r

i�1

; r

00

; s

i+1

; :::; s

n

)�

i�1

X

j=1

p

j

r

j

and r

0

6= r

00

. (I.e., with probability at least

�

2

, the pair (�r; �s) is good, and onditioned on this

event r

0

is good with probability at least

�

2

, and similarly for r

00

losing a term of

1

q

<

�

4

to

aount for r

00

6= r

0

. We may assume that 1=q < �=4, sine otherwise q < 4=� and we an

a�ord to perform the simpler proedure above.) Thus, with probability 
(�

3

), solving the

system (2)-(3) with (

1

; :::; 

i�1

) = (p

1

; :::; p

i�1

) yields x = p

i

. Sine we repeat the proess

poly(n=�) times for eah (i � 1)-pre�x, it follows that the orret pre�x always appears in

our andidate list.

Reall that orret pre�xes pass the sreening proess with overwhelmingly high proba-

bility. Using Theorem 18 (of Setion 4) to bound the number of pre�xes passing the sreening

proess, we have:

Theorem 1 Given orale aess to a funtion f and parameters �; k, our algorithm runs in

poly(

k�n

�

)-time and outputs, with probability at least 1 � 2

�k

, a list satisfying the following

properties:

1. The list ontains all linear polynomials that agree with f on at least a Æ =

1

q

+� fration

of the inputs.

2. The list does not ontain any polynomial that agrees with f on less than a

1

q

+

�

4

fration

of the inputs.

2.2 Generalizing to higher degree

We remind the reader that in this subsetion we merely introdue the additional ideas used

in extending the algorithm from the linear ase to the general ase. The algorithm itself is

presented and analyzed in Setion 3.

Dealing with polynomials of degree d > 1 is more involved than dealing with lin-

ear polynomials, still we employ a similar strategy. Our plan is (again) to \isolate" the

terms/monomials in the �rst i variables and �nd (andidates for) their oeÆients. In par-

tiular, if p(x

1

; : : : ; x

n

) is a degree d polynomial on n variables then p(x

1

; : : : ; x

i

; 0; : : : ; 0) is

a degree � d polynomial on i variables that has the same oeÆients as p on all monomials

involving only variables in f1; : : : ; ig. Thus, p(x

1

; : : : ; x

i

; 0; : : : ; 0) is the i-pre�x of p.

We show how to extend a list of andidates for the (i� 1)-pre�xes polynomials agreeing

with f into a list of andidates for the i-pre�xes. Suppose we get the (i � 1)-pre�x p that

we want to extend. We selet d + 1 distint elements r

(1)

; :::; r

(d+1)

2 GF(q), and onsider

the funtions

f

(j)

(x

1

; :::; x

i�1

)

def

= f(x

1

; :::; x

i�1

; r

(j)

; 0; :::; 0)� p(x

1

; :::; x

i�1

): (4)

Suppose that f equals some degree d polynomial and that p is indeed the (i�1)-pre�x of this

polynomial. Then f

(j)

is a polynomial of degree d� 1 (sine all the degree d monomials in

the �rst i variables have been aneled by p). Furthermore, given an expliit representation

8



of f

(1)

; :::; f

(d+1)

, we an �nd (by interpolation) the extension of p to a i-pre�x. The last

assertion deserves some elaboration.

Consider the i-pre�x of f , denoted p

0

= p

0

(x

1

; :::; x

i�1

; x

i

). In eah f

(j)

, the monomials of

p

0

that agree on the exponents of x

1

; :::; x

i�1

are ollapsed together (sine x

i

is instantiated

and so monomials ontaining di�erent powers of x

i

are added together). However, using the

d + 1 ollapsed values, we an retrieve the oeÆients of the di�erent monomials (in p

0

).

That is, for eah sequene of exponents (e

1

; :::; e

i�1

) suh that

P

i�1

j=1

e

j

� d, we retrieve the

oeÆients of all the (

Q

i�1

j=1

x

e

j

) � x

k

i

in p

0

, by interpolation that refers to the oeÆients of

Q

i�1

j=1

x

e

j

in the f

(`)

's.

4

To omplete the high level desription of the proedure we need to show how to obtain the

polynomials representing the f

(j)

's. Sine in reality we have only have aess to a (possibly

highly noisy) orale for the f

(j)

's, we use the main proedure for �nding a list of andidates

for these polynomials. We point out that the reursive all is to a problem of degree d� 1,

whih is lower than the degree we are urrently handling.

The above desription ignores a real diÆulty that may our: Suppose that the agree-

ment rate of f with some p

�

is at least Æ, and so we need to reover p

�

. For our strategy to

work, the agreement rate of the f

(j)

's with p

�

(: : : ; 0

n�i

) must be lose to Æ. However, it may

be the ase that p

�

does not agree with f at all on the inputs in GF(q)

i

0

n�i

, although p

�

does

agrees with f on a Æ fration of inputs in GF(q)

n

. Then solving the subproblem (i.e., trying

to retrieve polynomials lose to the f

(j)

's) gives us no information about p

�

. Thus, we must

make sure that the agreement rate on the subproblems on whih we reurse is lose to the

original agreement rate. This an be ahieved by applying a random linear transformation

to the oordinate system as follows: Pik a random nonsingular matrix R and de�ne new

variables y

1

; : : : ; y

n

as (y

1

; : : : ; y

n

) = �y � R�x (eah y

i

is a random linear ombination of

the x

i

's and vie versa). This transformation an be used to de�ne a new instane of the

reonstrution problem in terms of the y

i

's, and for the new instane the agreement rate on

the subproblems on whih we reurse is indeed lose to the original agreement rate. Observe

that

1. the total degree of the problem is preserved;

2. the points are mapped pairwise independently, and so the fration of agreement points

in all subspaes of the new problem is lose to the agreement rate in the original spae;

and

3. one an easily transform the oordinate system bak to the x

i

's, and so it is possible

to onstrut a new blak box onsistent with f that takes �y as an input.

(It may be noted that the transformation does not preserve other properties of the polyno-

mial; e.g., its sparsity.)

Comment: The above solution to the above diÆulty is di�erent than the one in the

original version of this paper [18℄. The solution there was to pik many di�erent suÆxes

(instead of 0

n�i

), and to argue that at least in one of them the agreement rate is preserved.

4

Let 

k

be the oeÆient of (

Q

i�1

j=1

x

e

j

) � x

k

i

in p

0

, and v

`

be the oeÆient of

Q

i�1

j=1

x

e

j

in f

(`)

. Then,

v

`

=

P

d

k=0

(r

(`)

)

k



k

, and the 

k

's an be found given the v

`

's.
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However, piking many di�erent suÆxes reates additional problems, whih needed to be

dealt with arefully. This resulted in a more ompliated algorithm in the original version.

3 Algorithm for degree d > 1 polynomials

Reall that we are given orale aess to a funtion f : GF(q)

n

! GF(q), and need to �nd

all polynomials of degree d that agrees with f on at least a Æ fration of the inputs.

The main algorithm Find-all-poly will use several subroutines: Compute-oeÆients, Test-

valid, Constants, Brute-fore, and Extend. The main algorithm is reursive, in n (the number

of variables) and d (the degree), with the base ase d = 0 being handled by the subroutine

Constants and the other bases ases orresponding to n � 4 being handled by the subrou-

tine Brute-fore. Most of the work is done in Find-all-poly and Extend, whih are mutually

reursive.

The algorithms have a number of parameters in their input. We desribe the ommonly

ourring parameters �rst:

� q is the size of the �eld we will be working with; i.e., F = GF(q). (Unlike other

parameters, the �eld never hanges in the reursive alls.)

� f will be a funtion from GF(q)

n

to GF(q) given as an orale to the urrent proedure,

and n will denote the number of variables of f .

� d will denote the degree of the polynomial we are hoping to reonstrut, and Æ will

denote the agreement parameter. Typially, the algorithm will have to reonstrut all

degree d polynomials having agreement at least Æ with f .

Many of the algorithms are probabilisti and make two-sided error.

�  will be the error parameter ontrolling the probability with whih a valid solution

may be omitted from the output.

� � will be the error parameter ontrolling the error with whih an invalid solution is

inluded in the output list.

Piking a random element of GF(q) is assumed to take unit time, as are �eld operations and

alls to the orale f .

The symbol x will typially stand for a vetor in GF(q)

n

, while the notation x

i

will refer

to the ith oordinate of x. When piking a sequene of vetors, we will use supersripts

to denote the vetors in the sequene. Thus, x

(j)

i

will denote the ith oordinate of the jth

element of the sequene of vetors x

(1)

; x

(2)

; : : :. For two polynomials p

1

and p

2

, we write

p

1

� p

2

if p

1

and p

2

are idential. (In this paper, we restrit ourselves to polynomials of

degree less than the �eld size; thus identity of polynomials as funtions is equivalent to

identity of polynomials as a formal sum of monomials.) We now generalize the notion of the

pre�x of a polynomial in two ways. We extend it to arbitrary funtions, and then extend it

to arbitrary suÆxes (and not just 0

i

).

10



De�nition 2 For 1 � i � n and a

1

; : : : ; a

n�i

2 F , the (a

1

; : : : ; a

n�i

)-pre�x of a funtion

f : F

n

! F , denoted f j

a

1

;:::;a

n�i

, is the i-variate funtion f j

a

1

;:::;a

n�i

: F

i

! F , given by

f j

a

1

;:::;a

n�i

(x

1

; :::; x

i

) = f(x

1

; : : : ; x

i

; a

1

; : : : ; a

n�i

). The i-pre�x of f is the funtion f j

0

n�i
.

When speialized to a polynomial p, the i-pre�x of p yields a polynomial on the variables

x

1

; : : : ; x

i

whose oeÆients are exatly the oeÆients of p on monomials involving only

x

1

; : : : ; x

i

.

Fixing a �eld GF(q), we will use the notation N

n;d;Æ

to denote the maximum (over all

possible f) of the number of polynomials of degree d in n variables that have agreement

Æ with f . In this setion we will �rst determine our running time as a funtion of N

n;d;Æ

,

and only next use bounds on N

n;d;Æ

(proven in Setion 4) to derive the absolute running

times. We inlude the intermediate bounds sine it is possible that the bounds of Setion 4

may be improved, and this would improve our running time as well. By de�nition, N

n;d;Æ

is

monotone non-dereasing in d and n, and monotone non-inreasing in Æ. These fats will be

used in the analysis.

3.1 The subroutines

We �rst axiomatize the behavior of eah of the subroutines. Next we present an implemen-

tation of the subroutine, and analyze it with respet to the axiomatization.

(P1) Constants(f; Æ; n; q;  ), with probability at least 1 �  , returns every degree 0 (i.e.,

onstant) polynomial p suh that f and p agree on Æ fration of the points.

5

Constants works as follows: Set k = O(

1

Æ

2

log

1

 

) and pik x

(1)

; : : : ; x

(k)

independently and

uniformly at random from GF(q)

n

. Output the list of all onstants a (or equivalently the

polynomial p

a

= a) suh that jfi 2 [k℄jf(x

(i)

) = agj �

3

4

Æk.

An easy appliation of Cherno� bounds indiates that the setting k = O(

1

Æ

2

log

1

 

) suÆes

to ensure that the error probability is at most  . Thus the running time of Constants is

bounded by the time to pik x

(1)

; : : : ; x

(k)

2 GF(q)

n

whih is O(kn) = O(

1

Æ

2

n log

1

 

).

Proposition 3 Constants(f; Æ; n; q;  ) satis�es (P1). Its running time is O(

1

Æ

2

n log

1

 

).

Another simple proedure is the testing of agreement between a given polynomial and a

blak box.

(P2) Test-valid(f; p; Æ; n; d; q;  ; �) returns true, with probability at least 1 �  , if p is an

n-variate degree d polynomial with agreement at least Æ with f . It returns false with

probability at least 1 � � if the agreement between f and p is less than

Æ

2

. (It may

return anything if the agreement is between

Æ

2

and Æ.)

5

Notie that we do not make any laims about the probability with whih onstants that do not have

signi�ant agreement with f may be reported. In fat we do not need suh a ondition for our analysis.

If required, suh a ondition may be expliitly enfored by \testing" every onstant that is returned for

suÆient agreement. Note also that the list is allowed to be empty if no polynomial has suÆiently large

agreement.
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Brute-fore(f; Æ; n; d; q;  ; �)

Set l =

�

n+d

d

�

k = O

�

(Æ �

d

q

)

�l

�

log

1

 

��

L  �.

Repeat k times

Pik x

(1)

; : : : ; x

(l)

2

R

GF(q)

n

.

Multivariate interpolation step:

Find p : GF(q)

n

! GF(q) of degree d s.t. 8i 2 [l℄, p(x

(i)

) = f(x

(i)

).

If Test-valid(f; p; Æ; n; d; q;

1

2

; �=k) then L  L [ fpg.

endRepeat

return(L)

Figure 2: Brute-fore

Test-valid works as follows: Set k = O(

1

Æ

2

log

1

minf ;�g

) and pik x

(1)

; : : : ; x

(k)

independently

and uniformly at random from GF(q)

n

. If f(x

(i)

) = p(x

(i)

) for at least

3

4

Æ fration of the

values of i 2 [k℄ then output true else false.

Again an appliation of Cherno� bounds yields the orretness of Test-valid. The running

time of Test-valid is bounded by the time to pik the k points from GF(q)

n

and the time to

evaluate p on them, whih is O(

1

Æ

2

(log

1

minf ;�g

)

�

n+d

d

�

).

Proposition 4 Test-valid(f; p; Æ; n; d; q;  ; �) satis�es (P2). Its running time is bounded by

O(

1

Æ

2

(log

1

minf ;�g

)

�

n+d

d

�

).

Next we desribe the properties of a \brute-fore" algorithm for reonstruting polyno-

mials.

(P3) Brute-fore(f; Æ; n; d; q;  ; �) returns a list that inludes, with probability 1�  , every

degree d polynomial p suh that f and p agree on Æ fration of the points. With

probability at least 1� � it does not output any polynomial p whose agreement with

f is less than

Æ

2

.

Notie that the goal of Brute-fore is what one would expet to be the goal of Find-all-poly.

Its weakness will be its running time, whih is doubly exponential in n and exponential in

d. However, we only invoke it for n � 4. In this ase its running time is of the order of Æ

�d

4

.

The desription of Brute-fore is given in Figure 2.

Lemma 5 Brute-fore(f; Æ; n; d; q;  ; �) satis�es (P3). Its runs in time O(

kl

3

Æ

2

(log

k

�

)) where

l =

�

n+d

d

�

and k = O

�

(Æ �

d

q

)

�l

�

log

1

 

��

.
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Proof: The running time of Brute-fore is immediate from its desription (using the fat

that a naive interpolation algorithm for a (multivariate) polynomial with l oeÆients runs

in time O(l

3

) and the fat that eah all to Test-valid takes at most O(

l

Æ

2

log

k

�

) time). If a

polynomial p that is the output of the multivariate interpolation step has agreement less than

Æ

2

with f , then by the orretness of Test-valid it follows that p is passed with probability

at most �=k. Summing up over the k iterations, we have that the probability that any

polynomial with agreement less than

Æ

2

is inluded in the output list is at most �.

To prove that with probability at least 1� , Test-valid outputs every polynomial p with

Æ agreement f , let us �x p and argue that in any one of the k iterations, p is likely to be

added to the output list with probability � =

1

2(Æ�

d

q

)

l

. The lemma follows from the fat that

the number of iterations is a suÆiently large multiple of

1

�

.

To prove that with probability at least � the polynomial p is added to L (in a single

iteration), we show that with probability at least 2� the polynomial interpolated in the

iteration equals p. The lemma follows from the fat that Test-valid will return true with

probability at least

1

2

.

To show that p is the polynomial returned in the interpolation step, we look at the task

of �nding p as the task of solving a linear system. Let ~p denote the l dimensional vetor

orresponding to the oeÆients of p. Let M be the l � l dimensional matrix whose rows

orrespond to the points x

(1)

; : : : ; x

(l)

and whose olumns orrespond to the monomials in

p. Spei�ally, the entry M

i;j

, where j orresponds to the monomial x

d

1

1

: : : x

d

n

n

, is given by

(x

(i)

1

)

d

1

: : : (x

(i)

n

)

d

n

. Finally let

~

f be the vetor (f(x

(1)

); : : : ; f(x

(l)

)). To show that p is the

polynomial returned in this step, we show that M is of full rank and p(x

(i)

) = f(x

(i)

) for

every i.

The last assertion is proven by indution on i. Let M

(i)

denote the i� l matrix with the

�rst i rows of M . Fix x

(1)

; : : : ; x

(i�1)

suh that p(x

(j)

) = f(x

(j)

) for every j 2 [i � 1℄. We

argue that with probability at least Æ�

d

q

over the hoie of x

(i)

, it holds that p(x

(i)

) = f(x

(i)

)

AND the rank of M

(i)

is greater than that of M

(i�1)

. It is easy to see that f(x

(i)

) = p(x

(i)

)

with probability at least Æ. To omplete the proof it suÆes to establish that the probability,

over a random hoie of x

(i)

, that M

(i)

has the same rank as M

(i�1)

is at most

d

q

. Consider

two polynomials p

1

and p

2

suh that p

1

(x

(j)

) = p

2

(x

(j)

) for every j 2 [i � 1℄. Then for the

rank of M

(i)

to be the same as the rank of M

(i�1)

it must be that p

1

(x

(i)

) = p

2

(x

(i)

) (else

the solutions to the ith system are not the same as the solutions to the i� 1th system). But

for distint polynomials p

1

and p

2

the event p

1

(x

(i)

) = p

2

(x

(i)

) happens with probability at

most

d

q

for randomly hosen x

(i)

. This onludes the proof of the lemma.

As an extension of univariate interpolations, we have:

(P4) Compute-oeÆients(p

(1)

; : : : ; p

(d+1)

; r

(1)

; : : : ; r

(d+1)

; n; d; q;  ) takes as input d+1 poly-

nomials p

(j)

in n�1 variables of degree d�1 and d+1 values r

(j)

2 GF(q) and returns

a degree d polynomial p : GF(q)

n

! GF(q) suh that pj

r

(j)

� p

(j)

for every j 2 [d+1℄,

if suh a polynomial p exists (otherwise it may return anything).

Compute-oeÆients works as a simple interpolation algorithm: Spei�ally it �nds d+1

univariate polynomials h

1

; : : : ; h

d+1

suh that h

i

(r

(j)

) equals 1 if i = j and 0 otherwise and
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then returns the polynomial p(x

1

; : : : ; x

n

) =

P

d+1

j=1

h

j

(x

n

)�p

(j)

(x

1

; : : : ; x

n�1

). Note that indeed

p(x

1

; :::; x

n�1

; r

(j)

) =

d+1

X

k=1

h

k

(x

n

) � p

(k)

(x

1

; : : : ; x

n�1

)

= p

(j)

(x

1

; : : : ; x

n�1

)

Note that the polynomials h

i

(x) =

Q

j2f1;:::;d+1g;j 6=i

�

x�r

(j)

r

(i)

�r

(j)

�

depend only on the r

(j)

's. (Thus,

it suÆes to ompute them one, rather than omputing them from srath for eah monomial

of p as suggested in Setion 2.2.)

Proposition 6 Compute-oeÆients(p

(1)

; : : : ; p

(d+1)

; r

(1)

; : : : ; r

(d+1)

; n; d; q;  ) satis�es (P4).

Its running time is O(d

2

�

n+d

d

�

).

3.2 The main routines

As mentioned earlier, the main subroutines are Find-all-poly and Extend, whose inputs and

properties are desribed next. They take, among other inputs, a speial parameter � whih

will be �xed later. For sake of simpliity, we do not require Find-all-poly and Extend at this

point to output only polynomials with good agreement. We will onsider this issue later,

when analyzing the running times of Find-all-poly and Extend.

(P5) Find-all-poly(f; Æ; n; d; q;  ; �; �) returns a list of polynomials ontaining every polyno-

mial of degree d on n variables that agrees with f on at least a Æ fration of the inputs.

Spei�ally, the output list ontains every degree d polynomial p with agreement Æ

with f , with probability at least 1�  .

The algorithm is desribed formally in Figure 3. Informally, the algorithm uses the

(\trivial") subroutines for the base ases n � 4 or d = 0, and in the remaining (interesting)

ases it iterates a randomized proess several times. Eah iteration is initiated by a random

linear transformation of the oordinates. Then in this new oordinate system, Find-all-poly

�nds (using the \trivial" subroutine Brute-fore) a list of all 4-variate polynomials having

signi�ant agreement with the 4-pre�x of the orale.

6

It then extends eah polynomial in the

list one variable at a time till it �nds the n-pre�x of the polynomial (whih is the polynomial

itself). Thus the ruial piee of the work is relegated to the subroutine Extend, whih is

supposed to extend a given (i� 1)-pre�x of a polynomial with signi�ant agreement with f

to its i-pre�x. The goals of Extend are desribed next.

(P6) Extend(f; p; Æ; n; d; q;  ; �; �) takes as input a degree d polynomial p in n� 1 variables

and with probability at least 1� returns a list of degree d polynomials in n variables

that inludes every polynomial p

�

that satis�es the following onditions:

6

In priniple we ould apply Brute-fore for any onstant number of variables (and not just 4). However,

sine the running time is doubly-exponential in the number of variables, we try to use Brute-fore only for a

small number of variables. The need for using Brute-fore when the number of variables is very small omes

about due to the fat that in suh a ase (e.g., two variables) the randomization of the oordinate system

does not operate well. Furthermore, applying Brute-fore for univariate polynomials seems unavoidable. For

simpliity of exposition, we hoose to apply Brute-fore also for 2, 3 and 4-variate polynomials. This allows

better settings of some parameters and simpli�es the alulations at the end of the proof of Lemma 7.
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1. p

�

has agreement at least Æ with f .

2. p

�

j

j

has agreement at least � � Æ with f j

j

for every j 2 f0; : : : ; dg.

3. p

�

j

0

� p.

Figure 4 desribes the algorithm formally. Extend returns all n-variable extensions p

�

,

of a given (n � 1)-variable polynomial p, provided p

�

agrees with f in a strong sense: p

�

has signi�ant agreement with f and eah p

�

j

j

has signi�ant agreement with f j

j

(for every

j 2 f0; : : : ; dg). (The latter agreement requirement is slightly lower than the former.) To

reover p

�

, Extend �rst invokes Find-all-poly to �nd the polynomials p

�

j

j

for d+1 values of j.

This is feasible only if a polynomial p

�

j

j

has good agreement with f j

j

, for every j 2 f0; : : : ; dg.

Thus, it is ruial that when Extend is alled with f and p, all p

�

's with good agreement

with f also satisfy the stronger agreement property (above). We will show that the alling

program (i.e., Find-all-poly at the higher level of reursion) will, with high probability, satisfy

this property, by virtue of the random linear transformation of oordinates.

All the reursive alls (of Find-all-poly within Extend) always involve a smaller degree

parameter, thereby ensuring that the algorithms terminate (quikly). Having found a list of

possible values of p

�

j

j

, Extend uses a simple interpolation (subroutine Compute-oeÆients)

to �nd a andidate for p

�

. It then uses Test-valid to prune out the many invalid polynomials

that are generated this way, returning only polynomials that are lose to f .

We now go on the formal analysis of the orretness of Find-all-poly and Extend.

3.3 Corretness of Find-all-poly and Extend

Lemma 7 If � � 1 �

1

q

, Æ �

d+1

q

, and q � 3 then Find-all-poly satis�es (P5) and Extend

satis�es (P6).

Proof: We prove the lemma by a double indution, �rst on d and for any �xed d, we

perform indution on n. We shall rely on the properties of Compute-oeÆients, Test-valid,

Constants, and Brute-fore, as established above.

Assume that Find-all-poly is orret for every d

0

< d (for every n

0

� n for any suh d

0

.)

We use this to establish the orretness of Extend(f; p; n

0

; d; q;  ; �) for every n

0

� n. Fix a

polynomial p

�

satisfying the hypothesis in (P6). We will prove that p

�

is in the output list

with probability 1 �

 

N

n

0

;d;Æ

. The orretness of Extend follows from the fat that there are

at most N

n

0

;d;Æ

suh polynomials p

�

and the probability that there exists one for whih the

ondition is violated is at most  .

To see that p

�

is part of the output list, notie that, by the indutive hypothesis on

Find-all-poly, when invoked with agreement parameter � � Æ, it follows that for any �xed

j 2 f0; : : : ; dg, the polynomial p

�

j

j

� p is inluded in L

(j)

with probability 1 �

 

2(d+1)N

n

0

;d;Æ

.

This follows from the fat that p

�

j

j

�p and f j

j

�p have agreement at least � �Æ, the fat that

p

�

j

j

� p = p

�

j

j

� p

�

j

0

is a degree d� 1 polynomial

7

, and thus, by the indutive hypothesis on

7

To see that p

�

j

j

� p

�

j

0

is a polynomial of total degree at most d � 1, notie that p

�

(x

1

; : : : ; x

n

) an

be expressed uniquely as r(x

1

; : : : ; x

n�1

) + x

n

q(x

1

; : : : ; x

n

), where degree of q is at most d � 1. Thus

p

�

j

j

� p

�

j

0

= j � q(x

1

; : : : ; x

n�1

; j) is also of degree d� 1.
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Find-all-poly(f; Æ; n; d; q;  ; �; �);

If d = 0 return(Constants(f; Æ; n; q;  ));

If n � 4 return(Brute-fore(f; Æ; n; d; q;  ; �));

L  fg;

Repeat O(log

N

n;d;Æ

 

) times:

Pik a random nonsingular n� n matrix R over GF(q)

Pik a random vetor b 2 GF(q)

n

.

Let g denote the orale given by g(y) = f(R

�1

(y � b)).

L

4

 Brute-fore(gj

0

n�4

; Æ; 4; d; q;

1

10n

; �).

for i = 5 to n do

L

i

 fg /* List of (d; i)-prefixes */

for every polynomial p 2 L

i�1

do

L

i

= L

i

[ Extend(gj

0

n�i
; p; Æ; i; d; q;

1

10n

; �; �)

endfor

endfor

Untransform L

n

: L

0

n

 fp

0

(x)

def

= p(Rx + b)jp 2 L

n

g.

L  L [ L

0

n

.

endRepeat

return(L)

Figure 3: Find-all-poly

the orretness of Find-all-poly, suh a polynomial should be in the output list. By the union

bound, we have that for every j 2 f0; : : : ; dg, the polynomial p

�

j

j

�p is inluded in L

(j)

with

probability 1 �

 

2N

n

0

;d;��Æ

, and in suh a ase p

�

� p will be one of the polynomials returned

by an invoation of Compute-oeÆients. In suh a ase p

�

will be tested by Test-valid and

aepted with probability at least 1�

 

2N

n

0

;d;��Æ

. Again summing up all the error probabilities,

we have that p

�

is in the output list with probability at least 1 �

 

N

n

0

;d;��Æ

. This onludes

the orretness of Extend.

We now move on to the orretness of Find-all-poly(f; Æ; n; d; q;  ; �; �). Here we will try

to establish that for a �xed polynomial p with agreement Æ with f , the polynomial p is

added to the list L with onstant probability in eah iteration of the Repeat loop. Thus

the probability that it is not added in any of the iterations is at most

 

N

n;d;Æ

and thus the

probability that there exists a polynomial that is not added in any iteration is at most  .

We may assume that n � 5 and d � 1 (or else orretness is guaranteed by the trivial

subroutines).

Fix a degree d polynomial p with agreement Æ with the funtion f : GF(q)

n

! GF(q).
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Extend(f; Æ; p; n; d; q;  ; �; �).

L

0

 fg.

L

(0)

 f

�

0g (where

�

0 is the onstant 0 polynomial).

for j = 1 to d do

f

(j)

 f j

j

� p.

L

(j)

 Find-all-poly(f

(j)

; � � Æ; n; d� 1; q;

 

2N

n;d;��Æ

(d+1)

; �; �).

endfor

for every (d+ 1)-tuple (p

(0)

; : : : ; p

(d)

) with p

(k)

2 L

(k)

do

p

0

 Compute-oeÆients(p

(0)

; : : : ; p

(d)

; 0; : : : ; d; n; d; q).

if Test-valid(f; p+ p

0

; Æ; n; d; q;  =(2N

n;d;��Æ

); �) then

L

0

 L

0

[ fp+ p

0

g;

endfor

return(L

0

).

Figure 4: Extend

We �rst argue that (R; b) form a \good" linear transformation with onstant probability.

Reall that from now onwards Find-all-poly works with the orale g : GF(q)

n

! GF(q) given

by g(y) = f(R

�1

(y � b)). Analogously de�ne p

0

(y) = p(R

�1

(y � b)), and notie p

0

is also a

polynomial of degree d. For any i 2 f5; : : : ; ng and j 2 f0; : : : ; dg, we say that (R; b) is good

for (i; j) if the agreement between gj

j;0

n�i
and p

0

j

j;0

n�i
is at least �Æ. Lemma 8 (below) shows

that the probability that (R; b) is good for (i; j) with probability at least 1�

1

q

i�1

�

�

2 +

1

Æ(1��)

2

�

.

Now all (R; b) good if it is good for every pair (i; j), where i 2 f5; : : : ; ng and j 2 f0; : : : ; dg.

Summing up the probabilities that (R; b) is not good for (i; j) we �nd that (R; b) is not good

with probability at most

d

X

j=0

n

X

i=5

 

2 +

1

Æ(1� �)

2

!

� q

�i+1

= (d+ 1) �

 

2 +

1

Æ(1� �)

2

!

�

n

X

i=5

q

�i+1

< (d+ 1) �

 

2 +

1

Æ(1� �)

2

!

�

q

�3

q � 1

�

2

q

2

(q � 1)

+

1

q � 1

(Using � � 1�

1

q

, Æ �

d+1

q

, and d+ 1 � q.)

�

11

18

(Using q � 3.)

Conditioned upon (R; b) being good and relying on the property of Brute-fore, it follows

that L

4

ontains the 4-pre�x of p with probability at least 1 �

1

10n

. Indutively, we have
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that the i-pre�x of p is not ontained in the list L

i

with probability at most

i

10n

. (By the

indutive hypothesis on Extend, with probability at most

1

10n

the (i � 1)-pre�x of p is in

L

i�1

and yet the i-pre�x is not returned by Extend.) Thus, with probability at most

1

10

, the

polynomial p is not inluded in L

n

(onditioned upon (R; b) being good). Adding bak the

probability that (R; b) is not good, we onlude that with probability at most

11

18

+

1

10

<

3

4

, the

polynomial p is not in L

n

in any single iteration. This onludes the proof of the orretness

of Find-all-poly.

3.4 Analysis of the random linear transformation

We now �ll in the missing lemma establishing the probability of the \goodness" of a random

linear transformation.

Lemma 8 Let f and g be funtions mapping GF(q)

n

to GF(q) that have Æ agreement with

eah other, and let R be a random non-singular n� n matrix and b be a random element of

GF(q)

n

. Then, for every i 2 f1; : : : ; ng and j 2 GF(q):

Pr

R;b

h

f

0

j

j;0

n�i
and g

0

j

j;0

n�i
have less than �Æ agreement

i

�

1

q

i�1

�

 

2 +

1

Æ(1� �)

2

!

;

where f

0

(y) = f(R

�1

(y � b)) and g

0

(y) = g(R

�1

(y � b)).

Proof: Let G = fx 2 GF(q)

n

jf(x) = g(x)g, be the set of \good" points. Observe that

Æ = jGj=q

n

. Let S

R;b

= fx 2 GF(q)

n

jRx+ b has j0

n�i

as suÆxg. Then we wish to show that

Pr

R;b

"

jS

R;b

\Gj

jS

R;b

j

< � �

jGj

q

n

#

�

1

q

i�1

 

2 +

1

Æ(1� �)

2

!

: (5)

Observe that the set S

R;b

an be expressed as the pre-image of (j; 0

n�i

) in the map � :

GF(q)

n

! GF(q)

m

, where m = n � i + 1, given by �(x) = R

0

x + b

0

where R

0

is the m � n

matrix obtained by taking the bottom m rows of R and b

0

is the vetor obtained by taking

the last m elements of b. Note that R

0

is a uniformly distributed m� n matrix of full rank

over GF(q) and b

0

is just a uniformly distributed m-dimensional vetor over GF(q). We �rst

analyze what happens when one drops the full-rank ondition on R

0

.

Claim 9 Let R

0

be a random m � n matrix over GF(q) and b

0

be a random element of

GF(q)

m

. For some �xed vetor ~s 2 GF(q)

m

let S = fxjR

0

x + b

0

= ~sg. Then, for any set

G � GF(q)

n

,

Pr

R

0

;b

0

"

jS \Gj

jSj

< � �

jGj

q

n

#

�

q

m

(1� �)

2

jGj

+ q

�(n�m)

:
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Proof: We rewrite the probability in the laim as

Pr

R

0

;b

0

"

jS \Gj < � �

jGj � jSj

q

n

#

� Pr

R

0

;b

0

"

jS \Gj < � �

jGj � q

n�m

q

n

or jSj > q

n�m

#

� Pr

R

0

;b

0

"

jS \Gj < � �

jGj

q

m

#

+ Pr

R

0

;b

0

h

jSj > q

n�m

i

The event in the seond term ours only if the matrix R

0

is not full rank, and so the seond

term is bounded by q

�(n�m)

(see Claim 10). We thus fous on the �rst term.

For x 2 G � GF(q)

n

, let I(x) denote an indiator random variable that is 1 if x 2 S (i.e.,

R

0

x+ b

0

= ~s) and 0 otherwise. Then, the expeted value of I(x), over the hoie of (R

0

; b

0

), is

q

�m

. Furthermore, the random variables I(x

1

) and I(x

2

) are independent, for any distint

x

1

and x

2

. Now, jS \Gj =

P

x2G

I(x), and we are interested in the probability that the sum

P

x2G

I(x) is smaller than � � jGj � q

�m

(whereas the expeted value of the sum is jGj � q

�m

).

A standard appliation of Chebyhev's inequality yields the desired bound.

8

To �ll the gap aused by the \full rank lause" (in the above disussion), we use the

following laim.

Claim 10 The probability that a randomly hosen m � n matrix over GF(q) is not of full

rank is at most q

�(n�m)

.

Proof: We an onsider the matrix as being hosen one row at a time. The probability

that the jth row is dependent on the previous j � 1 rows is at most q

j�1

=q

n

. Summing up

over j going from 1 to m we get that the probability of getting a matrix not of full rank is

at most q

�(n�m)

.

Finally we establish (5). Let E

R

0

;b

0

denote the event that

jS\Gj

jSj

< � �

jGj

q

n

(reall that

S = S

R

0

;b

0

) and let F

R

0

;b

0

denote the event that R

0

is of full row rank. Then onsidering the

spae of uniformly hosen matries R

0

and uniformly hosen vetors b

0

we are interested in

the quantity:

Pr

R

0

;b

0

[E

R

0

;b

0

jF

R

0

;b

0

℄ � Pr

R

0

;b

0

[E

R

0

;b

0

℄ + Pr

R

0

;b

0

[:(F

R

0

;b

0

)℄

�

q

m

(1� �)

2

jGj

+ 2 � q

�(n�m)

:

The lemma follows by substituting m = n� i + 1 and jGj = Æ � 2

n

.

8

Spei�ally, we obtain a probability bound of

jGj�q

�m

((1��)�(jGj�q

�m

))

2

=

q

m

(1��)

2

�jGj

as required.
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3.5 Analysis of the running time of Find-all-poly

Lemma 11 For integers d

0

; n

0

; q and �; Æ

0

2 [0; 1℄ satisfying �

d

0

Æ

0

� 2d

0

=q, let M =

max

0�d�d

0

fN

n

0

;d;(�

d

0

�d

)�(Æ

0

=2)

g: Then, with probability 1���(n

2

0

(d

0

+1)

2

M logM)

d

0

+1

�log(1= 

0

),

the running time of Find-all-poly(f; Æ

0

; n

0

; d

0

; q;  

0

; �; �) is bounded by a polynomial inM

d

0

+1

,

(n

0

+ d

0

)

d

0

, (

1

�

d

0

Æ

0

)

(d

0

+4)

4

, log

1

 

0

and log

1

�

.

Proof: We �x n

0

and d

0

. Observe that in all reursive alls to Find-all-poly, Æ and d are

related by the invariant Æ = �

d

0

�d

Æ

0

. Now, assuming the algorithms run orretly, they

should only return polynomials with agreement at least Æ=2 (whih motivates the quantity

M). Further, in all suh alls, we have that �

d

0

Æ

0

�

d

q

� �

d

0

Æ

0

=2. Observe further that

the parameter � never hanges and the parameter  only a�ets the number of iterations

of the outermost all to Find-all-poly. In all other alls, this parameter (i.e.,  ) is at least

 

1

def

=

1

20n

0

(d

0

+1)M

. Assume for simpliity that  

0

�  

1

. Let T

1

; T

2

; T

3

; and T

4

denote the

maximum running time of any of the subroutine alls to Constants, Test-valid, Brute-fore,

and Compute-oeÆients, respetively. Let T = maxfT

1

; T

2

; T

3

; T

4

g. Then

T

1

= O

 

n

�

2d

0

Æ

2

0

� log

1

 

0

!

T

2

= O

 

1

�

2d

0

Æ

2

0

�

 

n

0

+ d

0

d

0

!

� log

1

minf 

0

; �g

!

T

3

= O

 

kl

3

(�

d

0

Æ

0

=2)

2

� log

k

�

!

where l = O((d

0

+ 4)

4

) and k = O

�

�

�(d

0

+4)

4

� (Æ

0

=2)

�(d

0

+4)

4

� log

1

 

0

�

.

T

4

= O

 

d

2

0

�

 

n

0

+ d

0

d

0

!!

Note that all the above quantities are bounded by polynomials in (n

0

+ d

0

)

d

0

, (

2

�

d

0

Æ

0

)

(d

0

+4)

4

,

logM , log

1

�

, and thus so is T . In what follows we show that the running time is bounded

by some polynomial in (n

0

d

0

M)

(d

0

+1)

and T and this will suÆe to prove the lemma.

Let P (d) denote an upper bound on the probability that any of the reursive alls made

to Find-all-poly by Find-all-poly(f; �

d

0

�d

Æ

0

; n; d; q;  ; �; �) returns a list of length greater than

M , maximized over f , 1 � n � n

0

,  �  

0

. Let F (d) denote an upper bound on the running

time on Find-all-poly(f; �

d

0

�d

Æ

0

; n; d; q;  ; �; �), onditioned upon the event that no reursive

all returns a list of length greater than M . Similarly let E(d) denote an upper bound on

the running time of Extend, under the same ondition.

We �rst derive reurrenes for P . Notie that the subroutine Constants never returns

a list of length greater than

2

�

d

0

Æ

0

(every onstant output must have a fration of

�

d

0

Æ

0

2

representation in the sampled points). Thus P (0) = 0. To bound P (d) in other ases, we

observe that every iteration of the Repeat loop in Find-all-poly ontributes an error probability

of at most � from the all to Brute-fore, and at most n

0

�4 times the probability that Extend

returns an invalid polynomial (i.e., a polynomial with agreement less than Æ

d

=2 with its input

funtion f). The probability that Extend returns suh an invalid polynomial is bounded by
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the sum of (d+1) �P (d� 1) [from the reursive alls to Find-all-poly℄ and M

d+1

�� [from the

alls to Test-valid℄. (Notie that to get the �nal bound we use the fat that we estimate this

probability only when previous alls do not produe too long a list.) Finally the number of

iterations of the Repeat loop in Find-all-poly is at most log(M= ), by the de�nition of M .

Reall that in the outer most all of Find-all-poly, we have  =  

0

whereas in all other alls

 �  

1

, where log(1= 

1

) = log(20n

0

(d

0

+ 1)M) < n

0

(d

0

+ 1) logM , for suÆiently large n

0

.

Thus summing up all the error probabilities , we have

P (d) < log(M= ) � n

0

�

�

(d+ 1) � P (d� 1) +M

d+1

� �

�

where for d = d

0

we use  =  

0

and otherwise  =  

1

. It follows that

P (d

0

) < log(M= 

0

) � n

0

�

�

(d

0

+ 1) � P (d

0

� 1) +M

d+1

� �

�

< log(M= 

0

) � n

0

� (d

0

+ 1) �

�

(n

0

� (d

0

+ 1))

2

logM

�

d

0

�M

d+1

� �

<

�

n

2

0

� (d

0

+ 1)

2

�M logM

�

d

0

+1

� � � log(1= 

0

)

A similar analysis for F and E yields the following reurrenes:

F (0) � T

F (d) � n

2

0

(d

0

+ 1)(logM) � E(d)

E(d) � (d+ 1)F (d� 1) +M

d+1

T

Solving the reurrene yields F (d) � (n

2

0

(d

0

+ 1)

2

M logM)

d+1

T . This onludes the proof

of the lemma.

Lemma 12 For integers d

0

; n

0

and �; Æ

0

2 [0; 1℄, let M = max

0�d�d

0

fN

n

0

;d;(�

d

0

�d

)�(Æ

0

=2)

g: If

� � 1�

1

d

0

+1

and Æ

0

� 2e

q

d

0

q

then M � O(

1

Æ

2

0

).

Proof: We use Part (2) of Theorem 17, whih laims that N

n;d;Æ

�

1

Æ

2

�(d=q)

, provided

Æ

2

� d=q. Let Æ

d

= �

d

0

�d

Æ

0

. Then Æ

d

=2 � (1 �

1

d

0

+1

)

d

0

+1

� (Æ

0

=2) � Æ

0

=2e �

q

d=q, by the

ondition in the lemma. Thus M is at most

1

Æ

2

d

�(d=q)

�

2

Æ

2

d

= O(

1

Æ

2

0

).

Theorem 13 Given orale aess to a funtion f and suppose Æ; k; d and q are parameters

satisfying Æ � maxf

d+1

q

; 2e

q

d=qg and q � 3. Let � = 1 �

1

d+1

,  = 2

�k

and � = 2

�k

�

(n(d + 1)

1

Æ

2

0

)

�2(d+1)

. Then, given orale aess to a funtion f : GF(q)

n

! GF(q), the

algorithm Find-all-poly(f; Æ; n; d; q;  ; �; �) runs in poly((k�nd=Æ)

O(d

4

)

)-time and outputs, with

probability at least 1� 2

�k

, a list ontaining all degree d polynomials that agree with f on at

least an Æ fration of the inputs. Furthermore, the list does not ontain any polynomials that

agree with f on less than an

Æ

2

fration of the inputs.

Remarks:
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1. Thus, ombining Theorems 1 and 13, we get reonstrution algorithms for all d < q,

provided Æ is large enough. Spei�ally, for the ase q = 2 and d = 1, we invoke

Theorem 1.

2. The onstant 2e in the lower bound on Æ an be replaed by (1 + �)e

d=q

, for any � > 0,

by re-alibrating the subroutine Test-valid and by setting � = 1�

1

q

.

Proof: The main part of the orretness laim follows from Lemma 7, and the running-time

bound follows from Lemmas 11 and 12. (In partiular, note that the ondition �

d

0

Æ

0

� 2d=q

from Lemma 11 is met, sine �

d

0

=

1

e

and Æ

0

� 2

q

d=q � 2d=q.) The furthermore part

follows from the proof of Lemma 11.

4 Counting: Worst Case

In this setion we give a worst-ase bound on the number of polynomials that agree with

a given funtion f on Æ fration of the points. In the ase of linear polynomials our bound

works for any Æ >

1

q

, while in the general ase our bound works only for Æ that is large

enough. The bounds are derived using a very elementary property of polynomial funtions,

namely that two of them do not agree on too many points. In fat we �rst state and prove

bounds for any generi \error orreting ode" and then speialize the bound to the ase of

polynomials.

4.1 General error-orreting bounds

We �rst reall the standard de�nition of error-orreting odes. To do so we refer to strings

over an alphabet [q℄. For a string R 2 [q℄

N

(R for reeived word) and i 2 [N ℄, we let R(i)

denote the ith oordinate of R. The Hamming distane between strings R

1

and R

2

, denoted

�(R

1

; R

2

), is the number of oordinates i where R

1

(i) 6= R

2

(i).

De�nition 14 (Error orreting ode) For integers N;K;D and q an [N;K;D℄

q

ode

is a family of q

K

strings from [q℄

N

suh that for any two distint strings in the family, the

Hamming distane between them is at least D. That is, if C � [q℄

N

is an [N;K;D℄

q

ode

then jCj = q

K

and for every C

1

6= C

1

2 C it holds that �(C

1

; C

2

) � D.

In the following theorem we take an arbitrary word R 2 [q℄

N

and onsider the number of

odeword that may have a Hamming distane of at most (1� Æ) �N from R (i.e., odewords

that agree with R on at least Æ � N oordinates). We give an upper bound provided Æ is

suÆiently large (as a funtion of D=N).

Theorem 15 Let N;D and q satisfy

D

N

< 1 and de�ne 

def

= 1 �

D

N

> 0. Let Æ > 0 and

R 2 [q℄

N

. Suppose that C

1

; : : : ; C

m

2 [q℄

N

are distint odewords from an [N;K;D℄

q

ode

that satisfy �(R;C

j

) � (1� Æ) �N , for all j 2 f1; : : : ; mg. Then the following bounds hold:
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1. If Æ >

q

2 +



4

�

p

 �



2

then m <

2

Æ+



2

.

It follows that if Æ >

p

2 then m < 2=Æ.

2. If  �

1

q

and Æ >

1

q

+

q

( �

1

q

) � (1�

1

q

) then m �

(1�)�

(

1�

1

q

)

(Æ�(1=q))

2

�(1�

1

q

)(�

1

q

)

.

It follows that if ( �

1

q

and) Æ > minf

p

;

1

q

+

q

 �

1

q

g then m �

1�

Æ

2

�

<

1

Æ

2

�

. In

partiular, for  =

1

q

, the bounds hold for every Æ >

1

q

.

For small , the latter (simpler) expressions given in eah of the two parts of the theorem

provide good approximations to the former (tighter) expressions. The fat that the former

expressions imply the latter ones is obvious for Part (1), and is proved below for Part (2).

Additional Remarks:

1. The bounds in the two parts of the theorem apply in di�erent situations and yield

di�erent bounds on m. The �rst bound applies for somewhat larger values of Æ and

yields a stronger bound that is O(

1

Æ

). The seond bound applies also for smaller values

of Æ and yields a bound that grows as �(

1

Æ

2

).

2. Note that Part (2) only onsiders odes with distane D � (1�1=q) �N (i.e.,  � 1=q).

Still, the bound m �

(1�)�

(

1�

1

q

)

(Æ�(1=q))

2

�(1�

1

q

)(�

1

q

)

, holds also in ase  < 1=q, provided Æ � 1=q.

(See Footnote 9 at the end of the proof of Part (2).) We mention that it is well

known that odes with distane D � (1� 1=q) �N have at most qN odewords, whih

immediately implies m � qN � N= (for any  � 1=q regardless of Æ).

Proof (of Part 1): The bound in Part (1) is proven by a simple inlusion-exlusion

argument. For any m

0

� m, we ount the number of oordinates i 2 [N ℄ that satisfy the

property that one of the �rst m

0

odewords agree with R on oordinate i. Namely, let

�

j

(i) = 1 if C

j

(i) = R(i) and �

j

(i) = 0 otherwise. Then, by inlusion-exlusion we get

N � jfi : 9j �

j

(i) = 1gj

�

m

0

X

j=1

X

i

�

j

(i)�

X

1�j

1

<j

2

�m

0

X

i

�

j

1

(i)�

j

2

(i)

� m

0

� ÆN �

 

m

0

2

!

� max

1�j

1

<j

2

�m

0

jfi : C

j

1

(i) = C

j

2

(i)gj

where the last inequality is due to the fat that C

j

agrees with R on at least ÆN oordinates.

Sine two odewords R

1

and R

2

an agree on at most N �D oordinates, we get:

8m

0

� m; m

0

ÆN �

m

0

(m

0

� 1)

2

� (N �D) � N: (6)

Consider the funtion g(y)

def

=



2

� y

2

� (Æ+



2

) � y+1. Then (6) says that g(m

0

) � 0, for every

integer m

0

� m. Let �

1

and �

2

be the roots of g. To establish Part (1) we show that
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� The roots �

1

and �

2

are both real numbers.

� The roots are both non-negative.

� j�

1

� �

2

j > 1.

� min(�

1

; �

2

) <

2

Æ+



2

.

Without loss of generality, suppose �

1

� �

2

. It follows that m � �

1

, sine otherwise

g(m

0

) < 0 for every m

0

2 (�

1

; �

2

) and in partiular for the integer m

0

= b�

1

 + 1, in

ontradition to the above (i.e., g(m

0

) � 0 for every m

0

� m).

Let � = =2. Then g(y) = �y

2

� (� + Æ) � y + 1. The roots, �

1

and �

2

are real, provided

that �

def

= (� + Æ)

2

� 4� is positive whih follows from a stronger requirement (see below).

Without loss of generality, suppose �

1

� �

2

. To guarantee �

2

��

1

> 1, we require 2 �

p

�

2�

> 1

whih translates to � > �

2

(and hene � > 0 as required above). We need to show that

(� + Æ)

2

� 4� > �

2

whih ours if Æ >

p

�

2

+ 4���. Plugging in the value of � we �nd that the last inequality

is exatly what is guaranteed in the hypothesis of Part (1) of the theorem statement. Thus

�

1

and �

2

are real and �

2

� �

1

> 1. Lastly, we bound the smaller root �

1

. First we prove

the upper bound.

�

1

=

� + Æ �

q

(� + Æ)

2

� 4�

2�

=

� + Æ

2�

�

2

4

1�

 

1�

4�

(� + Æ)

2

!

1=2

3

5

<

� + Æ

2�

�

"

1�

 

1�

4�

(� + Æ)

2

!#

=

2

� + Æ

where the inequality follows by � > 0. Again by plugging in the value of � we get the

desired bound. For the lower bound, onsider the �rst equality in the above displayed set of

inequalities and note that sine � > 0, we have

�

1

=

� + Æ �

q

(� + Æ)

2

� 4�

2�

> 0:
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Proof (of Part 2): We �rst introdue some notation. In what follows we will use the

arithmeti of integers modulo q to simplify some of our notation. This arithmeti will

be used on the letters of the alphabet, i.e., the set [q℄. For j 2 f1; : : : ; mg and i 2 [N ℄

let �

j

(i) = 1 if C

j

(i) 6= R(i) and 0 otherwise. (Notie that �

j

(i) = 1 � �

j

(i).) For j 2

f1; : : : ; mg, t 2 f0; : : : ; q � 1g and i 2 [N ℄ let �

(t)

j

(i) = 1 if C

j

(i) � R(i) � t (mod q) and

0 otherwise. Thus �

j

(i) = 1 if and only if there exists t 6= 0 suh that �

(t)

j

(i) = 1. Let

w

j

def

= jfi : C

j

(i) 6= R(i)gj =

P

i

�

j

(i) and let w =

P

m

j=1

w

j

m

. The fat that the C

j

's are lose

to R implies that w

j

� (1� Æ) �N , for all j.

Our proof generalizes a proof due to S. Johnson (.f., MaWilliams and Sloane [31℄) for

the ase q = 2. The entral quantity used to bound m in the binary ase an be generalized

in one of the two following ways:

S �

X

j

1

;j

2

;i

�

j

1

(i)�

j

2

(i):

S

0

�

X

j

1

;j

2

;i

X

t6=0

�

(t)

j

1

(i)�

(t)

j

2

(i):

The �rst quantity sums, over all j

1

; j

2

, the number of oordinates for whih C

j

1

and C

j

2

both

di�er from R. The seond quantity sums, over all j

1

; j

2

, the number of oordinate where C

j

1

and C

j

2

agree with eah other, but disagree from R by t. (Notie that the two quantities are

the same for the ase q = 2.) While neither one of the two quantities are suÆient for our

analysis, their sum provides good bounds.

Lower bound on S + S

0

: The following bound is shown using ounting arguments whih

onsider the worst way to plae a given number of di�erenes between the C

j

's and R. Let

N

i

= jfjjC

j

(i) 6= R(i)gj =

P

j

�

j

(i) and let N

(t)

i

= jfjjC

j

(i) � R(i) � t (mod q)gj =

P

j

�

(t)

j

(i). Note that

P

i

N

i

=

P

i

P

t6=0

N

(t)

i

= mw. We an lower bound S as follows:

S =

X

j

1

;j

2

;i

�

j

1

(i)�

j

2

(i) =

X

i

N

2

i

�

(mw)

2

N

:

where the last inequality above follows from the fat that subjet to the ondition

P

i

N

i

=

mw, the sum of N

i

's squared is minimized when all the N

i

's are equal. Similarly, using

P

i

P

t6=0

N

(t)

i

= mw, we lower bound S

0

as follows:

S

0

=

X

j

1

;j

2

;i

X

t6=0

�

(t)

j

1

(i)�

(t)

j

2

(i) =

X

i

X

t6=0

(N

(t)

i

)

2

�

(mw)

2

(q � 1)N

:

By adding the two lower bounds above we obtain:

S + S

0

�

(mw)

2

N

+

(mw)

2

(q � 1)N

=

q

q�1

m

2

w

2

N

: (7)

Upper bound on S + S

0

: For the upper bound we perform a areful ounting argument

using the fat that the C

j

's are odewords from an error-orreting ode. For �xed j

1

; j

2

2

f1; : : : ; mg and t

1

; t

2

2 [q℄, let

M

(j

1

j

2

)

t

1

t

2

� jfij�

(t

1

)

j

1

(i) = �

(t

2

)

j

2

(i) = 1gj:
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For every j

1

; j

2

, we view the M

(j

1

j

2

)

t

1

t

2

's as elements of a q � q matrix M

(j

1

j

2

)

. Now, S and S

0

an be expressed as sums of some of the elements of the matriesM

(j

1

j

2

)

. Summing over the

(q � 1)� (q � 1) minors of all the matries we get:

S =

X

j

1

;j

2

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

and summing the diagonal elements of M

(j

1

j

2

)

over all j

1

j

2

, we get

S

0

=

X

j

1

j

2

X

t6=0

M

(j

1

j

2

)

tt

:

We start by upper bounding the internal sum above for �xed pair (j

1

; j

2

), j

1

6= j

2

. Sine

the C

j

's are odewords from an [N;K;D℄

q

ode we have R

j

1

(i) = R

j

2

(i) for at most N �D

values of i, so

X

t6=0

M

(j

1

j

2

)

tt

� N �D �M

(j

1

j

2

)

00

= N �M

(j

1

j

2

)

00

:

Note that the sum of the values of all elements of M

(j

1

j

2

)

equals N , and N � w

j

1

(resp.

N�w

j

2

) is equal to the sum of the values of the 0

th

olumn (resp. row) ofM

(j

1

j

2

)

. To bound

the remaining term in the summation above we use inlusion-exlusion as follows:

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

=

X

t

1

X

t

2

M

(j

1

j

2

)

t

1

t

2

�

X

t

1

M

(j

1

j

2

)

t

1

0

�

X

t

2

M

(j

1

j

2

)

0t

2

+M

(j

1

j

2

)

00

= N � (N � w

j

1

)� (N � w

j

2

) +M

(j

1

j

2

)

00

= w

j

1

+ w

j

2

�N +M

(j

1

j

2

)

00

:

Combining the bounds above we have (for j

1

6= j

2

)

X

t6=0

M

(j

1

j

2

)

tt

+

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

� (N �M

(j

1

j

2

)

00

) + (w

j

1

+ w

j

2

�N +M

(j

1

j

2

)

00

)

= w

j

1

+ w

j

2

� (1� ) �N:

(The key point above is the anellation of M

(j

1

j

2

)

00

.) Observe that if j

1

= j

2

= j, then the

quantity

P

t

1

6=0

P

t

2

6=0

M

(jj)

t

1

t

2

=

P

t6=0

M

(jj)

tt

= w

j

.

We now ombine the bounds above as follows:

S + S

0

=

X

j

0

�

X

t6=0

M

(jj)

tt

+

X

t

1

6=0

X

t

2

6=0

M

(jj)

t

1

t

2

1

A

+

X

j

1

6=j

2

0

�

X

t6=0

M

(j

1

j

2

)

tt

+

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

1

A

� 2

X

j

w

j

+

X

j

1

6=j

2

(w

j

1

+ w

j

2

� (1� )N)

= 2m

2

w �m(m� 1)(1� )N:

Thus, we get:

S + S

0

� (2w � (1� ) �N) �m

2

+ (1� ) �N �m: (8)
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Putting it together: Combining (7) and (8) and letting Æ = 1� w=N , we get

m � (1� ) �

1

(

w

N

)

2

q

q�1

+ 1�  � 2 �

w

N

= (1� ) �

1

(1� Æ)

2

q

q�1

+ 1�  � 2(1� Æ)

:

provided (1� Æ)

2

q

q�1

+ 1�  � 2(1 � Æ) � 0. Let g(x)

def

=

q

q�1

x

2

� 2x + (1 � ). Note that

g(x) is monotone dereasing when x �

q�1

q

. Note further that

1

q

� Æ � Æ and thus we get:

m � (1� ) �

1

g(1� Æ)

;

provided g(1 � Æ) > 0. We need to bound Æ so that g(1 � Æ) > 0. Observe �rst that

g(x) =

q

q�1

�

�

q�1

q

� x

�

2

�

�

 �

1

q

�

. Thus g(x) > 0 if

q�1

q

� x >

q

q�1

q

� ( �

1

q

). (Note

that the expression in the square root is non-negative, sine  �

1

q

.)

9

In other words,

g(1� Æ) > 0, provided Æ >

1

q

+

r

�

1�

1

q

�

�

�

 �

1

q

�

. In this ase the bound obtained on m is

1�

g(1�Æ)

=

1�

q

q�1

�

(

Æ�

1

q

)

2

�

(

�

1

q

)

. This is exatly as laimed in the main part of Part (2).

We now move on to prove seondary bounds laimed in Part (2). Firstly, we show that

g(1�Æ) > 0 for Æ >

1

q

+

q

 �

1

q

. This follows immediately from the above and the inequality:

1

q

+

s

 �

1

q

>

1

q

+

v

u

u

t

 

1�

1

q

!

�

 

 �

1

q

!

:

Next, we verify that g(1� Æ) > 0 for every Æ >

p

. Let x = 1� Æ. Then 1� x = Æ >

p

.

In this ase we have:

g(x) =

 

1 +

1

q � 1

!

x

2

� 2x+ 1� 

= (1� x)

2

+

1

q � 1

x

2

� 

� (1� x)

2

� 

> 0

Thus g(1 � Æ) > 0 provided Æ > minf

p

;

1

q

+

q

 �

1

q

g. We now derive the laimed upper

bounds on m. Setting x = 1� Æ, and using g(x) � (1� x)

2

� , we get g(1� Æ) � Æ

2

� .

Thus m �

1�

g(1�Æ)

�

1�

Æ

2

�

<

1

Æ

2

�

.

9

For  <

1

q

, the funtion g is positive everywhere. However to use the inequality g(1� Æ) � g(1� Æ), we

need Æ �

1

q

. This gives the bound laimed in Additional Remark 2 after Theorem 15.
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4.2 The speial ase of polynomials

Reall that a funtion f : GF(q)

n

! GF(q) may be viewed as a string of length q

n

with

letters from the set [q℄. Viewed in this way we get the following onstrution of a ode using

multivariate polynomials. These odes are known as Reed-Muller odes in the oding theory

literature.

Proposition 16 The olletion of degree d polynomials in n variables over GF(q) form an

[N;K;D℄

q

ode, for N = q

n

, K =

�

n+d

d

�

and D = (q � d) � q

n�1

.

Proof: The parameters N and K follow by de�nition. The distane bound D is equivalent

to the well-known fat [10, 38, 44℄ that two degree d (multivariate) polynomials over GF(q)

may agree in at most d=q fration of the inputs.

Combining Theorem 15 with Proposition 16 (and using  =

d

q

in the theorem), we get

the following upper bound on the number of polynomials with Æ agreement with an arbitrary

funtion.

Theorem 17 Let Æ > 0 and f : GF(q)

n

! GF(q). Suppose that p

1

; : : : ; p

m

: GF(q)

n

!

GF(q) are distint degree d polynomials that satisfy Pr

x2GF(q)

n

[f(x) = p

i

(x)℄ � Æ, for all

i 2 f1; : : : ; mg. Then the following bounds hold:

1. If Æ >

q

2 +

d

4q

�

q

d

q

�

d

2q

then m <

2

Æ+

d

2q

.

In partiular, if Æ >

q

2d=q then m < 2=Æ.

2. If Æ >

1+

p

(d�1)(q�1)

q

then m �

(q�d)(q�1)

q

2

�

1

(

Æ�

1

q

)

2

�

(q�1)(d�1)

q

2

.

In partiular, if Æ > minf

q

d

q

;

1

q

+

q

d�1

q

g then m <

1

Æ

2

�(d=q)

.

We emphasize the speial ase of linear polynomials (i.e., d = 1):

Theorem 18 Let � > 0 and f : GF(q)

n

! GF(q). Suppose that p

1

; : : : ; p

m

: GF(q)

n

!

GF(q) are distint linear funtions that satisfy Pr

x2GF(q)

n

[f(x) = p

i

(x)℄ �

1

q

+ �, for all

i 2 f1; : : : ; mg. Then m �

�

1�

1

q

�

2

�

1

�

2

�

4

�

2

.

Proof: Just substitute d = 1 and Æ =

1

q

+ � in the main part of Part (2) of Theorem 17.
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4.3 On the tightness of the upper bounds

We show that several aspets of the bounds presented above are tight. We start with the

observation that Theorem 15 an not be extended to smaller Æ without (possibly) relying on

some speial properties of the ode.

Proposition 19 Let Æ

0

; 

0

satisfy the identity

Æ

0

=

1

q

+

v

u

u

t

 



0

�

1

q

!

�

 

1�

1

q

!

:

(9)

Then for any � > 0, and for suÆiently large N , there exists an [N;K;D℄

q

ode C, with

N�D

N

� 

0

+ �, a word R 2 [q℄

N

and M � 2


(�

2

N)

odewords C

1

; : : : ; C

M

2 C suh that

�(R;C

j

) � (1� (Æ

0

� �)) �N , for every j 2 [M ℄.

Remark: The proposition above should be ompared against Part (2) of Theorem 15. That

part says that for Æ

0

and 

0

satisfying (9) and any [N;K;D℄

q

ode with

N�D

N

= 

0

, there

exist at most O(

1

Æ

2

0

) odewords at distane at most (1� Æ

0

) �N from any string of length N .

In ontrast, the proposition says that if Æ

0

is redued slightly (to Æ

0

� �) and 

0

inreased

slightly (to 

0

+ �), then there ould be exponentially many odewords at this distane.

Proof: The bound is proven by a standard probabilisti argument. The ode C will onsist

only of the odewords C

1

; : : : ; C

M

that will be lose to the string R. The odewords C

j

's are

hosen randomly and independently by the following proess. Let p 2 [0; 1℄, to be determined

shortly.

For every odeword C

j

, eah oordinate is hosen independently as follows: With prob-

ability p it is set to be 1, and with probability 1� p it is hosen uniformly from f2; : : : ; qg.

The string R is simply 1

N

.

Observe that for any �xed j, the expeted number of oordinates where R and C

j

agree

is pN . Thus with probability at most 2

�
(�

2

N)

, the agreement between R and C

j

is less than

(p � �)N . It is possible to set M = 2


(�

2

N)

so that the probability that there exists suh a

word C

j

is less than

1

2

.

Similarly the expeted agreement between C

i

and C

j

is

�

p

2

+

(1�p)

2

q�1

�

� N . Thus the

probability that the agreement between a �xed pair is �N larger than this number is at most

2

�
(�

2

N)

. Again it is possible to set M = 2


(�

2

N)

suh that the probability that suh a pair

C

i

and C

j

exists is less than

1

2

.

Thus there is a positive probability that the onstrution yields an [N;
(

�

2

N

log q

); D℄

q

ode

with

N�D

N

= p

2

+

(1�p)

2

q�1

+ �, so that all odewords are within a distane of (1� (p� �))N of

the word R. Thus, the setting Æ

0

= p and 

0

= p

2

+

(1�p)

2

q�1

would yield the proposition, one

it is veri�ed that this setting satis�es (9). The latter fat is easily veri�ed by the following

algebrai manipulations, starting with our setting of Æ

0

and 

0

.



0

= Æ

2

0

+

(1� Æ

0

)

2

q � 1
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,

q

q � 1

� Æ

2

0

�

2

q � 1

� Æ

0

+

1

q � 1

� 

0

= 0

, Æ

2

0

�

2

q

� Æ

0

+

1

q

�

q � 1

q

� 

0

= 0

,

 

Æ

0

�

1

q

!

2

=

 



0

�

1

q

!

�

 

1�

1

q

!

, Æ

0

=

1

q

+

v

u

u

t

 



0

�

1

q

!

�

 

1�

1

q

!

This onludes the proof.

Next we move on to the tightness of the bounds regarding polynomials. We show that

Theorem 18 is tight for Æ = O(1=q), whereas Part (1) of Theorem 17 is tight for Æ = �(1=

p

q)

and d = 1. The results below show that for a given value of Æ that meets the onditions of

the appropriate theorem, the value of m an not be made muh smaller.

Proposition 20 Given a prime p, and an integer k satisfying 1 < k � p=3, let Æ = k=p.

Then, there exists a funtion f : GF(p)! GF(p) and at least m

def

=

1

18(k�1)Æ

2

linear funtions

f

1

; : : : ; f

m

: GF(p) ! GF(p) suh that jfxjf

i

(x) = f(x)gj � Æp = k, for all i 2 f1; : : : ; mg.

Furthermore, if Æ >

q

1=p then m >

1

Æ

� 1.

For Æ =

2

p

=

1

p

+ �, we get m =

1

18Æ

2

(whih establishes tightness of the bound m �

4

�

2

=

16

Æ

2

given in Theorem 18). For Æ =

q

2

p

+

1

p

>

q

2

p

, we get m >

1

Æ

� 1 (whih establishes tightness

of the bound m �

2

Æ

given for d = 1 in Part (1) of Theorem 17).

Proof: We start by onstruting a relation R � GF(p) � GF(p) suh that jRj � p and

there exist many linear funtions g

1

; : : : ; g

m

suh that jR \ f(x; g

i

(x))jx 2 GF(p)gj � k for

all i. Later we show how to transform R and the g

i

's so that R beomes a funtion that still

agrees with eah transformed g

i

on k inputs.

Let l = bp=k and reall that Æ = k=p. Notie l �

1

Æ

and l �

1

Æ

� 1. The relation R

onsists of the k � l � p pairs in the square f(i; j)j0 � i < k; 0 � j < lg. Let G be the set of

all linear funtions that agree with R in at least k plaes. We shall show that G has size at

least 1=(18Æ

2

(k � 1)). Given non-negative integers a; b s.t. a � (k � 1) + b < l, onsider the

linear funtion g

a;b

(x) = ax + b mod p. Then, g

a;b

(i) 2 f0; : : : ; l� 1g, for ever suh (a; b) and

i 2 f0; : : : ; k � 1g. Thus, g

a;b

(i) intersets R in k plaes. Lastly, we observe that there are

at least 1=(18Æ

2

(k � 1)) distint pairs (a; b) s.t. a � (k � 1) + b < l: Fixing any a < l, there

are at least l� (k� 1)a� 1 possible values for b, and so that the total number of pairs is at

least

l�1

k�1

X

a=0

l � (k � 1)a� 1 =

 

l � 1

k � 1

+ 1

!

� (l � 1)� (k � 1) �

l�1

k�1

�

�

l�1

k�1

+ 1

�

2

>

(l � 1)

2

2(k � 1)
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�

(1� 2Æ)

2

2Æ

2

(k � 1)

(Using l �

1�Æ

Æ

.)

�

1

18Æ

2

(k � 1)

(Using Æ �

1

3

.)

Next, we onvert the relation R into a funtion in two stages. First we streth the relation

by a fator of l to get a new relation R

0

. That is, R

0

def

= f(l � i; j)j(i; j) 2 Rg. We modify

the funtions g

a;b

2 G aordingly: That is, g

0

a;b

(x)

def

= g

a;b

(l

�1

� x) = (a � l

�1

)x+ b, where l

�1

is the multipliative inverse of l (mod p) and g

a;b

(x) = ax + b. Thus, if g

a;b

(i) = j, then

g

0

a;b

(l � i) = j, and so if (i; g

a;b

(i)) 2 R then (l � i; g

0

a;b

(l � i)) 2 R

0

. It follows that is g

a;b

agrees

with R on at least k plaes then g

0

a;b

agrees with R

0

on at least k plaes. Thus, letting G

0

denote the set of linear funtions that agree with R

0

in k plaes, we have g

0

a;b

2 G

0

if g

a;b

2 G.

Moreover the map from G to G

0

is one-to-one (i.e., g

a;b

is mapped to g

0

a;b

� g

l

�1

�a;b

), implying

jG

0

j � jGj. (Atually, the argument above extends to show that jG

0

j = jGj.)

We note that for all a < l (whih in turn is smaller than p=2), it holds that l

�1

� a6� � 1

(mod p). (This is the ase sine otherwise a � �l � p � l (mod p), in ontradition to

a < p=2.)

Last we introdue a slope to R

0

, so that it beomes a funtion. Spei�ally, R

00

def

= f(i +

j; j)j(i; j) 2 R

0

g = f(l � i+ j; j)j(i; j) 2 Rg. Notie that for any two distint (i

1

; j

1

); (i

1

; j

2

) 2

R

00

, we have i

1

6= i

2

(sine i

1

= l � i

0

1

+ j

1

, i

2

= l � i

0

2

+ j

2

, and j

1

; j

2

2 f0; :::; l � 1g), and so

R

00

an be extended to a funtion f : GF(p) ! GF(p) (i.e., if (i; j) 2 R

00

then j = f(i)).

Now for every funtion g

0

(x) = a

0

x + b

0

2 G

0

, onsider the funtion g

00

(x) = a

00

x + b

00

, where

a

00

= a

0

=(1 + a

0

) and b

00

= b

0

=(1 + a

0

) (and realling that a

0

6� � 1 (mod p)). Observe that if

g

0

(x) = y, then

g

00

(x + y) =

a

0

1 + a

0

� (x + g

0

(x)) +

b

0

1 + a

0

=

a

0

1 + a

0

� (x + a

0

x + b

0

) +

1

1 + a

0

� b

0

= a

0

x + b

0

= y

Thus, if g

0

agrees with R

0

in at least k plaes then g

00

agrees with R

00

in at least k plaes (sine

(x; g

0

(x)) 2 R

0

implies (x + g

0

(x); g

00

(x + g

0

(x))) 2 R

00

and x

1

+ g

0

(x

1

) = (a

0

+ 1) � x

1

+ b

0

1

6=

(a

0

+ 1) � x

2

+ b

0

1

= x

2

+ g

0

(x

2

) for all x

1

6= x

2

), and hene g

00

agrees with f in at least k

plaes. Again, the mapping of g

0

to g

00

is one-to-one (sine the system a

00

= a

0

=(1 + a

0

) and

b

00

= b

0

=(1 + a

0

) has at most one solution in (a

0

; b

0

)). Thus, if we use G

00

to denote the set of

linear funtions that agree with f in k plaes, then we have jG

00

j � jG

0

j � jGj �

1

18Æ

2

(k�1)

, as

desired.

For the furthermore lause, observe that if Æ >

q

1=p then our setting ditates l � 1 <

p

p < k and so

l�1

k�1

< 1. Atually, in this ase we may use fg

0;b

: b = 0; :::; l � 1g in role of

G, G

0

and G

00

, and derive jGj � l �

1

Æ

� 1.

Finally we note that the bounds in Theorem 17 always require Æ to be larger than

d=q. Suh a threshold is also neessary, or else there an be exponentially many degree

d polynomials lose to the given funtion. This is shown in the following proposition.
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Proposition 21 Let q be a prime-power, d < q and Æ =

d

q

�

d�1

q

2

. Then, there exist an

n-variate funtion f over GF(q), and at least q

n�1

degree d polynomials that agree with f on

at least a Æ fration of the inputs.

Note that for d = 1 we have Æ =

1

q

. Also, by a minor extension of the following proof, we

may use in role of f any n-variate degree d polynomial over GF(q).

Proof: We use the all-zero funtion in role of f . Consider the family of polynomials having

the form

Q

d�1

i=1

(x

1

� i) �

P

n

i=2



i

x

i

, where 

2

; :::; 

n

2 GF(q). Clearly, eah member of this

family is a degree d polynomial and the family ontains q

n�1

di�erent polynomials. Now,

eah polynomial in the family is zero on inputs (a

1

; :::; a

n

) satisfying either a

1

2 f1; :::; (d�1)g

or

P

n

i=2



i

a

i

= 0, where the 

i

's are these speifying the polynomial in the olletion. Sine

at least a

d�1

q

+ (1 �

d�1

q

) �

1

q

fration of the inputs satisfy this ondition, the proposition

follows.

5 Counting: A Random Case

In this setion we present a bound on the number of polynomials that an agree with a

funtion f if f is hosen to look like a polynomial p on some domain D and random on other

points. Spei�ally, for jDj � 2(d+ 1) � q

n�1

, we show that with high probability p itself is

the only polynomial that agrees with f on at least jDj (and even jDj=2) points.

Theorem 22 Let Æ �

2(d+1)

q

. Suppose that D is an arbitrary subset of density Æ in GF(q)

n

,

and p(x

1

; :::; x

n

) is a degree d polynomial. Consider a funtion f seleted as follows:

1. f agrees with p on D;

2. the value of f on eah of the remaining points is uniformly and independently hosen.

That is, for every x 2 D

def

= GF(q)

n

n D, the value of f(x) is seleted at random in

GF(q).

Then, with probability at least 1 � expf(n

d

log

2

q) � Æ

2

q

n�2

g, the polynomial p is the only

degree d polynomial that agrees with f on at least a Æ=2 fration of the inputs.

Thus, for funtions onstruted in this manner, the output of our reonstrution algorithm

will be a single polynomial; namely, p itself.

Proof: We use the fat that for two polynomials p

1

6= p

2

in GF(q)

n

, p

1

(x) = p

2

(x) on

at most d=q fration of the points in GF(q)

n

[10, 38, 44℄. Thus, exept for p, no other

degree d polynomial an agree with f on more than

d

q

� q

n

points in D. The probability

that any polynomial p

0

agrees with f on more than a

1

q

+ � fration of the points in D is at

most expf��

2

q

n

g. Furthermore, in order to agree with f on more than an

Æ

2

fration of all

points, p

0

must agree with f on at least

�

Æ

2

�

d

q

�

� q

n

of the points in D, and so we an use

� �

(Æ=2)�(d=q)

1�Æ

�

1

q

>

Æ

2

�

d+1

q

+

Æ�((Æ=2)�(d=q))

q

�

Æ

q

. Thus, the probability that there exists a
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degree d n-variate polynomial, other than p, that agrees with f on at least an Æ=2 fration

of all points is at most q

n

d

� expf�

�

Æ

q

�

2

q

n

g, and the theorem follows.

6 Hardness Results

In this setion we give evidene that the (expliit or impliit) reonstrution problem may

be hard for some hoies of d and the agreement parameter Æ, even in the ase when n = 1.

We warn the reader that the problems shown to be hard does di�er in some very signi�ant

ways from the reonstrution problems onsidered in previous setions. In partiular, the

problems will onsider funtions and relations de�ned on some �nite subset of a large �eld,

either the �eld of rational numbers or a suÆiently large �eld of prime order, where the

prime is spei�ed in binary. The hardness results use the \large" �eld size ruially.

Furthermore, the agreement threshold for whih the problem is shown hard is very small.

For example, the hardness results of Setion 6.2, de�nes a funtion f : H

1

�H

2

! F , where

F is a large �eld and H

1

; H

2

are small subsets of F . In suh a hardness result, one should

ompare the threshold Æ of agreement that is required, against

d

maxfjH

1

j;jH

2

jg

, sine the latter

ratio that determines the \distane" between two polynomials on this subset of the inputs.

Our hardness results typially hold for Æ �

d+2

maxfjH

1

j;jH

2

jg

. We stress that the agreement

is measured as a fration of the subset mentioned above, rather than as a fration of the

n-tuples over the �eld (in ase it is �nite), whih is muh smaller.

6.1 NP-hardness for a variant of the univariate reonstrution

problem

We de�ne the following (variant of the) interpolation problem PolyAgree:

Input: Integers d; k;m, and a set of pairs P = f(x

1

; y

1

); : : : ; (x

m

; y

m

)g suh that 8i 2

[m℄; x

i

2 F , y

i

2 F , where F is either the �eld of rationals or a prime �eld given by its size

in binary.

10

Question: Does there exist a degree d polynomial p : F

n

! F for whih p(x

i

) = y

i

for at

least k di�erent i's?

We stress that the pairs in P are not required to have distint x-omponents (i.e., x

i

= x

j

may hold for some i 6= j). Our result takes advantage of this fat.

Theorem 23 PolyAgree is NP-hard.

Remark: This result should be ontrasted with the results of [40, 19℄. They show that

PolyAgree is easy provided k �

p

dm, while our result shows it is hard without this ondition.

In partiular, the proof uses m = 2d+3 and k = d+2 (and so k <

p

dm). Furthermore, our

result is established using a set of pairs in whih x

i

= x

j

holds for some i 6= j, whereas this

never happens when given orale aess to a funtion (as in previous setions and in [40, 19℄).

10

When F is the �eld of rational numbers, the input elements are assumed to be given as a ratio of two

N -bit integers. In suh a ase the input size is measured in terms of the total bit length of all inputs.
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Proof: We present the proof for the ase of the �eld of rational numbers only. It is easy

to verify that the proof also holds if the �eld F has prime order that is suÆiently large (see

parenthetial omments at the end of the proof for further details.)

We redue from subset sum: Given integers B; a

1

; : : : ; a

`

, does there exist a subset of the

a

i

's that sum to B (without loss of generality, a

i

6= 0 for all i).

In our redution we use the fat that degree d polynomials satisfy ertain interpolation

identities. In partiular, let �

i

= (�1)

i+1

�

d+1

i

�

for 1 � i � d + 1 and �

0

= �1. Then

P

d+1

i=0

�

i

f(i) = 0 if and only if (0; f(0)); (1; f(1)); : : : ; (d + 1; f(d + 1)) lies on a degree d

univariate polynomial.

We onstrut the following instane of PolyAgree. Set d = l�1, m = 2d+3 and k = d+2.

Next, set x

i

 i, x

d+1+i

 i, y

i

 a

i

=�

i

, and y

d+1+i

 0 for 1 � i � d + 1. Finally, set

x

2d+3

 0 and y

2d+3

 B.

No polynomial an pass through both (x

i

; y

i

) = (i; a

i

=�

i

) and (x

d+1+i

; y

d+1+i

) = (i; 0) for

any i, sine a

i

6= 0. We show that there is a polynomial of degree d that passes through

(0; B) and one of either (i; 0) or (i; a

i

=�

i

) for eah 1 � i � d + 1 if and only if there is a

subset of a

1

; : : : ; a

d+1

whose sum is B.

Assume that there is a polynomial p of degree d that passes through (0; B) and one

of (i; 0) and (i; a

i

=�

i

) for eah 1 � i � d + 1. Let S denote the set of indies for whih

p(i) = a

i

=�

i

(and p(i) = 0 for i 2 [d+ 1℄nS). Then

0 =

d+1

X

i=0

�

i

p(i) = �

0

�B +

X

i2S

�

i

�

a

i

�

i

= �B +

X

i2S

a

i

Similarly, if there is set of indies S suh that

P

i2S

a

i

= B, then we de�ne f so that f(0) = B,

f(i) = a

i

=�

i

for i 2 S and f(i) = 0 for i 2 [d + 1℄nS. Observing that

P

d+1

i=0

�

i

f(i) = 0 it

follows that there is a degree d polynomial that agrees with f on i = 0; :::; d+ 1.

(For the ase where F is a �nite �eld of order q, we assume that the integers B and

a

1

; : : : ; a

d+1

are all multiples of �

i

for every i. (This assumption an be realized easily by

multiplying all integers in the input by lm(j�

0

j; : : : ; j�

d+1

j).) Further we pik q > jBj +

P

d+1

i=1

ja

i

j. The only hange to the proof is that the equalities in Equation (10) diretly hold

only modulo q. At this stage, we use the ondition q > jBj +

P

d+1

i=1

ja

i

j to onlude that

B =

P

i2S

a

i

.)

6.2 NP-hardness of the reonstrution problem for n � 2

In the above problem, we did not require that the x

i

's be distint. Thus this result does not

diretly relate to the blak box model used in this paper. The following result applies to our

blak box model for n-variate funtions, for any n � 2.

We de�ne a multivariate version of PolyAgree that requires that the x

i

's be distint. We

atually de�ne a parameterized family FuntionalPolyAgree

n

, for any n � 1.

Input: Integer d, a �eld F , a �nite subset H � F

n

, a rational number Æ, and a funtion

f : H ! F , given as a table of values.

Question: Does there exist a degree d polynomial p : F

n

! F for whih p(x) = f(x) for at

least Æ fration of the x's from H?
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Theorem 24 For every n � 2, FuntionalPolyAgree

n

is NP-hard.

Proof: We prove the theorem for n = 2. The other ases follow by simply making an

instane where only the values of �rst two variables vary in the set H and the remaining

variables are assigned some �xed value (say 0).

The proof of this theorem builds on the previous proof. As above we redue from subset

sum. Given an instane B; a

1

; : : : ; a

l

of the subset sum problem, we set d = l � 1 and

k = 2(d + 1) and F to be the �eld of rationals. (We ould also work over any prime �eld

GF(p), provided p �

P

n

i=1

a

i

.) Let Æ =

d+3

2(d+2)

. We set H

1

= f0; : : : ; d + 1g, H

2

= [2k℄. and

let H = H

1

� H

2

. For i 2 H

1

we let �

i

= (�1)

i+1

�

d+1

i

�

as before. For i 2 H

1

� f0g, let

y

i

= a

i

=�

i

as before. The funtion f is de�ned as follows:

f(i; j) =

8

>

<

>

:

B if i = 0

y

i

if i 2 H

1

� f0g and j 2 [k℄

0 otherwise (i.e., if i 2 H

1

� f0g and j 2 fk + 1; : : : ; 2kg

This ompletes the spei�ation of the instane of the FuntionalPolyAgree

2

problem. We

now argue that if the subset sum instane is satis�able then there exists a polynomial p with

agreement Æ (on inputs from H) with f . Let S 2 [l℄ be a subset suh that

P

i2S

a

i

= B.

Then the funtion

p(i; j)

def

= p

0

(i)

def

=

8

>

<

>

:

B if i = 0

y

i

if i 2 S

0 if i 2 H

1

n S

is a polynomial in i of degree d (sine

P

d+1

i=0

�

i

p

0

(i) = �B +

P

i2S

a

i

= 0). Furthermore, p

and f agree in 2k + k(d + 1) inputs from H. In partiular p(0; j) = f(0; j) = B for every

j 2 [2k℄, p(i; j) = f(i; j) = y

i

if i 2 S and j 2 [k℄ and p(i; j) = f(i; j) = 0 if i 62 S and

j 2 fk + 1; : : : ; 2kg. Thus p and f agree on a fration

2k+k(d+1)

2(d+2)k

=

d+3

2(d+2)

= Æ of the inputs

from H, as required.

We now argue that if the redution leads to a satis�able instane of the FuntionalPolyAgree

2

problem then the subset sum instane is satis�able. Fix a polynomial p that has agreement

Æ with f ; i.e., p(i; j) = f(i; j) for at least 2k + k(d + 1) inputs from H. We argue �rst that

in suh a ase p(i; j) = p

0

(i) for some polynomial p

0

(i) and then the proof will be similar to

that of Theorem 23. The following laim is ruial in this proof.

Claim 25 For any i 2 [d+ 1℄, if jfjjp(i; j) = f(i; j)gj � k, then there exists 

i

2 f0; y

i

g s.t.

p(i; j) = 

i

for every j 2 [2k℄.

Proof: Consider the funtion p

(i)

(j)

def

= p(i; j). p

(i)

is a degree d polynomial in j. By

hypothesis (and the de�nition of f(i; j)) we have, p

(i)

(j) 2 f0; y

i

g for k values of j 2 [2k℄.

Hene p

(i)

(j) = 0 for k=2 values of j or p

(i)

(j) = y

i

for k=2 values of j. In either ase we

have that p

(i)

, a degree d polynomial, equals a onstant polynomial for k=2 = d + 1 points

implying that p

(i)

is a onstant. That p

(i)

(j) = 

i

2 f0; y

i

g follows from the hypothesis and

de�nition of f .
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From the laim above it follows immediately that for any i 2 [d + 1℄, jfjjf(i; j) =

p(i; j)gj � k. Now using the fat that f and p agree on 2k + k(d+ 1) inputs it follows that

for every i 2 [d + 1℄, f(i; j) = p(i; j) for exatly k values of j; and f(0; j) = p(0; j) = B

for all values of j. Using the above laim again we onlude that we an de�ne a funtion

p

0

(i)

def

= 

i

2 f0; y

i

g if i 2 [d + 1℄ and p

0

(0) = B suh that p(i; j) = p

0

(i) for every (i; j) 2 H.

Furthermore p

0

(i) is a degree d polynomial, sine p is a degree d polynomial; and hene

P

d+1

i=0

�

i

p

0

(i) = 0. Letting S = fi 2 [d + 1℄jy

i

6= 0g, we get �B +

P

i2S

�

i

y

i

= 0 whih in

turns implies B =

P

i2S

a

i

. Thus the instane of the subset sum problem is satis�able. This

onludes the proof.
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