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Abstra
t

Given a fun
tion f mapping n-variate inputs from a �nite �eld F into F , we 
onsider

the task of re
onstru
ting a list of all n-variate degree d polynomials that agree with

f on a tiny but non-negligible fra
tion, Æ, of the input spa
e. We give a randomized

algorithm for solving this task. The algorithm a

esses f as a bla
k box and runs in

time polynomial in

n

Æ

and exponential in d, provided Æ is 
(

p

d=jF j). For the spe
ial


ase when d = 1, we solve this problem for all �

def

= Æ �

1

jF j

> 0. In this 
ase the

running time of our algorithm is bounded by a polynomial in

1

�

and n. Our algorithm

generalizes a previously known algorithm, due to Goldrei
h and Levin, that solves this

task for the 
ase when F = GF(2) (and d = 1).

In the pro
ess we provide new bounds on the number of degree d polynomials that

may agree with any given fun
tion on Æ �

p

d=jF j fra
tion of the inputs. This result

is derived by generalizing a well-known bound from 
oding theory on the number of


odewords from an error-
orre
ting 
ode that 
an be \
lose" to an arbitrary word; our

generalization works for 
odes over arbitrary alphabets, while the previous result held

only for binary alphabets.
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1 Introdu
tion

We 
onsider the following ar
hetypal re
onstru
tion problem:

Given: An ora
le (bla
k box) for an arbitrary fun
tion f : F

n

! F , a 
lass of fun
tions C,

and a parameter Æ.

Output: A list of all fun
tions g 2 C that agree with f on at least Æ fra
tion of the inputs.

The re
onstru
tion problem 
an be interpreted in several ways within the framework of


omputational learning theory. First, it falls within the framework of learning with persistent

noise. Here one assumes that the fun
tion f is derived from some fun
tion in the 
lass C by

\adding" noise to it. Typi
al works in this dire
tion either tolerate only small amounts of

noise [2, 41, 21, 39℄ (i.e., that the fun
tion is modi�ed only at a small fra
tion of all possible

inputs) or assume that the noise is random [1, 26, 20, 25, 33, 13, 36℄ (i.e., that the de
ision of

whether or not to modify the fun
tion at any given input is made by a random pro
ess). In


ontrast, we take the setting to an extreme, by 
onsidering a very large amount of (possibly

adversarially 
hosen) noise. In parti
ular, we 
onsider situations in whi
h the noise disturbs

the outputs for almost all inputs.

A se
ond interpretation of the re
onstru
tion problem is within the framework of \agnos-

ti
 learning" introdu
ed by Kearns et al. [23℄ (see also [29, 30, 24℄). In the setting of agnosti


learning, the learner is to make no assumptions regarding the natural phenomenon under-

lying the input/output relationship of the fun
tion, and the goal of the learner is to 
ome

up with a simple explanation that best �ts the examples. Therefore the best explanation

may a

ount for only part of the phenomenon. In some situations, when the phenomenon

appears very irregular, providing an explanation that �ts only part of it is better than noth-

ing. Kearns et al. did not 
onsider the use of queries (but rather examples drawn from an

arbitrary distribution), sin
e they were skepti
al that queries 
ould be of any help. We show

that queries do seem to help (see below).

Yet another interpretation of the re
onstru
tion problem, whi
h generalizes the \agnosti


learning" approa
h, is the following. Suppose that the natural phenomena 
an be explained

by several simple explanations that together 
over most of the input-output behavior but

not all of it. Namely, suppose that the fun
tion f agrees almost everywhere with one of a

small number of fun
tions g

i

2 C. In parti
ular, assume that ea
h g

i

agrees with f on at

least a Æ fra
tion of the inputs but that for some (say 2Æ) fra
tion of the inputs f does not

agree with any of the g

i

's. This setting was investigated by Ar et al. [3℄. The re
onstru
tion

problem des
ribed above may be viewed as a (simpler) abstra
tion of the problem 
onsidered

in [3℄. As in the 
ase of learning with noise, there is no expli
it requirement in the setting of

[3℄ that the noise level be small, but all their results require that the fra
tion of inputs left

unexplained by the g

i

's be smaller than the fra
tion of inputs on whi
h ea
h g

i

agrees with

f . Our relaxation (and results) do not impose su
h a restri
tion on the noise and thus make

the setting more appealing and 
loser in spirit to \agnosti
 learning".

1.1 Our Results

In this paper, we 
onsider the spe
ial 
ase of the re
onstru
tion problem when the hypothesis


lass is the set of n-variate polynomials of bounded total degree d. (The total degree of a

1



monomial

Q

i

x

d

i

i

is

P

i

d

i

; that is, the sum of the degrees of the variables in the monomial.

The total degree of a polynomial is the maximum total degree of monomials with non-zero


oeÆ
ient in the polynomial. For example, the total degree of the polynomial x

2

1

x

3

2

+ 5x

4

2

is

5.) The most interesting aspe
t of our results is that they relate to very small values of the

parameter Æ (the fra
tion of inputs on whi
h the hypothesis has to �t the fun
tion f). Our

main results are:

� An algorithm that given d, F and Æ = 
(

q

d=jF j), and provided ora
le a

ess to an

arbitrary fun
tion f : F

n

! F , runs in time (n=Æ)

O(d)

and outputs a list in
luding all

degree d polynomials that agree with f on at least a Æ fra
tion of the inputs.

� An algorithm that given F and � > 0, and provided ora
le a

ess to an arbitrary fun
tion

f : F

n

! F , runs in time poly(n=�) and outputs a list in
luding all linear fun
tions

(degree d = 1 polynomials) that agree with f on at least a Æ

def

=

1

jF j

+ � fra
tion of the

inputs.

� A new bound on the number of degree d polynomials that may agree with a given

fun
tion f : F

n

! F on a Æ �

q

d=jF j fra
tion of the inputs. This bound is derived

from a more general result about the number of 
odewords from an error-
orre
ting


ode that may be 
lose to a given word.

A spe
ial 
ase of interest is when the fun
tion f is obtained by pi
king an arbitrary degree d

polynomial p, and letting f agree with p on an arbitrary Æ = 
(

q

d

jF j

) fra
tion of the inputs

and be set at random otherwise.

1

In this 
ase, with high probability, only one polynomial

(i.e., p) agrees with f on a Æ fra
tion of the inputs (see Se
tion 5). Thus, in this 
ase, the

above algorithm will output only the polynomial p.

Additional Remarks:

1. Any algorithm for the (expli
it) re
onstru
tion problem as stated above would need to

output all the 
oeÆ
ients of su
h a polynomial, requiring time at least

�

n+d

d

�

. Moreover

the number of su
h polynomials 
ould grow as a fun
tion of

1

Æ

. Thus it seems reasonable

that the running time of su
h a re
onstru
tion pro
edure should grow as a polynomial

fun
tion of

1

Æ

and

�

n

d

�

.

We stress that the above 
omment does not apply to \impli
it re
onstru
tion" algo-

rithms as dis
ussed in Se
tion 1.4.

2. For d < jF j, the 
ondition Æ >

d

jF j

seems a natural barrier for our investigation, sin
e

there are exponentially many (in n) degree d polynomials that are at distan
e �

d

jF j

from some fun
tions (see Proposition 21).

3. Queries seem essential to our learning algorithm. We provide two indi
ations to our

belief, both referring to the spe
ial 
ase of F = GF(2) and d = 1. First, if queries

are not allowed, then a solution to the re
onstru
tion problem yields a solution to the

(longstanding open) problem of \de
oding random (binary) linear 
odes". (Note that

ea
h random example given to the re
onstru
tion algorithm 
orresponds to a random

1

This is di�erent from \random noise" as the set of 
orrupted inputs is sele
ted adversarially { only the

values at these inputs are random.
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linear equation on the information variables. We admit that the longstanding open

problem is typi
ally stated for a linear number of equations, but nothing is known even

in 
ase the number of equations is polynomial in the information length.)

Another well-studied problem that redu
es to the problem of noisy re
onstru
tion

is the problem of \learning parity with noise" [20℄, whi
h is 
ommonly believed to be

hard when one is only allowed uniformly and independently 
hosen examples [20, 7, 22℄.

(A
tually, learning parity with noise is 
onsidered hard even for random noise, whereas

here the noise is adversarial.)

4. In Se
tion 6, we give eviden
e that the re
onstru
tion problem may be hard, for Æ

very 
lose to d=jF j, even in the 
ase where n = 2. A variant is shown to be hard even

for n = 1.

1.2 A Coding Theory Perspe
tive

We �rst introdu
e the formal de�nition of an error-
orre
ting 
ode (see, e.g. [31℄). For

positive integers N;K;D and q, an [N;K;D℄

q

error-
orre
ting 
ode is a 
olle
tion of q

K

sequen
es of N -elements ea
h from f1; : : : ; qg, 
alled 
odewords, in whi
h no two sequen
es

have a \Hamming distan
e" of less than D (i.e., every pair of 
odewords disagree on at least

D lo
ations).

Polynomial fun
tions lead to some of the simplest known 
onstru
tions of error-
orre
ting


odes: A fun
tion from F

n

to F may be viewed as an element of F

jF j

n

| by writing down ex-

pli
itly the fun
tion's value on all jF j

n

inputs. Then the \distan
e property" of polynomials

yields that the set of sequen
es 
orresponding to bounded-degree polynomial fun
tions form

an error-
orre
ting 
ode with non-trivial parameters (for details, see Proposition 16). Spe
if-

i
ally, the set of n-variate polynomial of total degree d over F = GF(q) yields a [N;K;D℄

q

error-
orre
ting 
ode with N = jF j

n

, K =

�

n+d

d

�

and D = (jF j � d) � jF j

n�1

. These 
on-

stru
tions have been studied in the 
oding theory literature. The 
ase n = 1 leads to

\Reed-Solomon 
odes", while the 
ase of general n is studied under the name \Reed-Muller


odes".

Our re
onstru
tion algorithm may be viewed as an algorithm that takes an arbitrary

word from F

jF j

n

and �nds a list of all 
odewords from the Reed-Muller 
ode that agree with

the given word in Æ fra
tion of the 
oordinates (i.e., 1 � Æ fra
tion of the 
oordinates have

been 
orrupted by errors). This task is referred to in the literature as the \list-de
oding"

problem [11℄. For 
odes a
hieved by setting d su
h that d=jF j ! 0, our list de
oding

algorithm re
overs from errors when the rate of errors approa
hes 1. We are not aware of

any other 
ase where an approa
h other (and better) than brute-for
e 
an be used to perform

list de
oding with the error-rate approa
hing 1. Furthermore, our de
oding algorithm works

without examining the entire 
odeword.

1.3 Related Previous Work

For sake of s
holarly interest, we dis
uss several related areas in whi
h related work has been

done. In this subse
tion, it would be more 
onvenient to refer to the error-rate 1� Æ rather

3



than to the rate of agreement Æ.

Polynomial interpolation: When the noise rate is 0, our problem is simply that of

polynomial interpolation. In this 
ase the problem is well analyzed and the reader is referred

to [46℄, for instan
e, for a history of the polynomial interpolation problem.

Self-Corre
tion: In the 
ase when the noise rate is positive but small, one approa
h used

to solving the re
onstru
tion problem is to use self-
orre
tors, introdu
ed independently in

[8℄ and [28℄. Self-
orre
tors 
onvert programs that are known to be 
orre
t on a fra
tion Æ

of inputs into programs that are 
orre
t on ea
h input. Self-
orre
tors for values of Æ that

are larger than 3=4 have been 
onstru
ted for several (algebrai
) fun
tions [5, 8, 9, 28, 34℄,

and in one 
ase this was done for Æ > 1=2 [15℄.

2

We stress that self-
orre
tors 
orre
t a

given program using only the information that the program is supposed to be 
omputing a

fun
tion from a given 
lass (e.g., a low-degree polynomial). Thus, when the error is larger

than

1

2

(and the 
lass 
ontains more than a single fun
tion) su
h self-
orre
tion is no longer

possible, sin
e there 
ould be more than one fun
tion (in the 
lass) that agrees with the

given program on an Æ < 1=2 fra
tion of the inputs.

Cryptography and Learning Theory: In order to prove the se
urity of a 
ertain \hard-


ore predi
ate" relative to any \one-way fun
tion", Goldrei
h and Levin solved a spe
ial


ase of the (expli
it) re
onstru
tion problem [17℄. Spe
i�
ally, they 
onsidered the linear


ase (i.e., d = 1) for the Boolean �eld (i.e., F = GF(2)) and any agreement rate that is

bigger than the error-rate (i.e., Æ >

1

2

). Their ideas were subsequently used by Kushilevitz

and Mansour [25℄ to devise an algorithm for learning Boolean de
ision trees.

1.4 Subsequent work

At the time this work was done (and �rst published [18℄) no algorithm (other than brute

for
e) was known for re
onstru
ting a list of degree d polynomials agreeing with an arbitrary

fun
tion on a vanishing fra
tion of inputs, for any d � 2. Our algorithm solves this prob-

lem with exponential dependen
e on d, but with polynomial dependen
e on n, the number

of variables. Subsequently some new re
onstru
tion algorithms for polynomials have been

developed. In parti
ular, Sudan [40℄, and Guruswami and Sudan [19℄ have provided new

algorithms for re
onstru
ting univariate polynomials from large amounts of noise. Their

running time depends only polynomially in d and works for Æ = 
(

q

d=jF j). Noti
e that

the agreement required in this 
ase is larger than the level at whi
h our NP-hardness result

(of Se
tion 6) holds. The results of [40℄ also provide some re
onstru
tion algorithms for

multivariate polynomials, but not for as low an error as given here. Also in his 
ase, the run-

ning time grows exponentially with n. Wasserman [42℄ gives an algorithm for re
onstru
ting

polynomials from noisy data that works without making queries. The running time of the

algorithm of [42℄ also grows exponentially in n and polynomially in d.

As noted earlier (see Remark 1 in Se
tion 1.1), the running time of any expli
it re
on-

stru
tion algorithm has to have an exponential dependen
e on either d or n. However this

2

Spe
i�
ally, self-
orre
tors 
orre
ting

1

�(d)

fra
tion of error for f that are degree d polynomial fun
tions

over a �nite �eld F , jF j � d + 2, were found by [5, 28℄. For d=jF j ! 0, the fra
tion of errors that a self-


orre
tor 
ould 
orre
t was improved to almost 1=4 by [14℄ and then to almost 1=2 by [15℄ (using a solution

for the univariate 
ase given by [43℄).
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need not be true for impli
it re
onstru
tion algorithms: By the latter term we mean algo-

rithms that produ
e as output a sequen
e of ora
le ma
hines, su
h that for every multivariate

polynomial that has agreement Æ with the fun
tion f , one of these ora
le ma
hines, given

a

ess to f , 
omputes that polynomial. Re
ently, Arora and Sudan [4℄ gave an algorithm for

this impli
it re
onstru
tion problem. The running time of their algorithm is bounded by a

polynomial in n and d, and it works 
orre
tly provided that Æ � (d

O(1)

)=jF j


(1)

; that is, their

algorithm needs a mu
h higher agreement, but works in time polynomial in all parameters.

The reader may verify that su
h an impli
it re
onstru
tion algorithm yields an algorithm for

the expli
it re
onstru
tion problem with running time that is polynomial in

�

n+d

d

�

. (E.g.,

by applying (noise-free) polynomial-interpolation to ea
h of the ora
le ma
hines provided

above, and testing the resulting polynomial for agreement with f .)

1.5 Rest of this paper

The rest of the paper is organized as follows. In Se
tion 2 we motivate our algorithm,

starting with the spe
ial 
ase 
ase of the re
onstru
tion of linear polynomials. The general


ase algorithm is des
ribed formally in Se
tion 3, along with an analysis of its 
orre
tness and

running time assuming an upper bound on the number of polynomials that agree with a given

fun
tion at Æ fra
tion of the inputs. In Se
tion 4 we provide two su
h upper bounds. These

bounds do not use any spe
ial (i.e., algebrai
) property of polynomials, but rather apply in

general to 
olle
tions of fun
tions that have large distan
e between them. In Se
tion 5 we


onsider a random model for the noise applied to a fun
tion. Spe
i�
ally, the output either

agrees with a �xed polynomial or is random. In su
h a 
ase we provide a stronger upper

bound (spe
i�
ally, 1) on the number of polynomials that may agree with the bla
k box. In

Se
tion 6 we give eviden
e that the re
onstru
tion problem may be hard for small values of

the agreement parameter Æ, even in the 
ase when n = 1.

Notations: In what follows, we use GF(q) to denote the �nite �eld on q elements. We as-

sume arithmeti
 in this �eld (addition, subtra
tion, multipli
ation, division and 
omparison

with zero) may be performed at unit 
ost. For a �nite set A, we use the notation a 2

R

A

to denote that a is a random variable 
hosen uniformly at random from A. For a positive

integer n, we use [n℄ to denote the set f1; : : : ; ng.

2 Motivation to the algorithm

We start by presenting the algorithm for the linear 
ase, and next present some of the ideas

underlying the generalization to higher degrees. We stress that whereas Se
tion 2.1 provides

a full analysis of the linear 
ase, Se
tion 2.2 merely introdu
es the additional ideas that will

be employed in dealing with the general 
ase. The presentation in Se
tion 2.1 is aimed to

fa
ilitate the generalization from the linear 
ase to the general 
ase.

2.1 Re
onstru
ting linear polynomials

We are given ora
le a

ess to a fun
tion f : GF(q)

n

! GF(q) and need to �nd a polynomial

(or a
tually all polynomials) of degree d that agrees with f on at least a Æ =

d

q

+ � fra
tion

5



of the inputs, where � > 0. Our starting point is the linear 
ase (i.e., d = 1); namely, we are

looking for a polynomial of the form p(x

1

; :::; x

n

) =

P

n

i=1

p

i

x

i

. In this 
ase our algorithm is

a generalization of an algorithm due to Goldrei
h and Levin [17℄

3

. (The original algorithm

is regained by setting q = 2.)

We start with the following de�nition: The i-pre�x of a linear polynomial p(x

1

; :::; x

n

)

is the polynomial that results by summing up all of the monomials in whi
h only the �rst

i variables appear. That is, the i-pre�x of the polynomial

P

n

j=1

p

j

x

j

is

P

i

j=1

p

j

x

j

. The

algorithm pro
eeds in n rounds, so that in the i

th

round we �nd a list of 
andidates for the

i-pre�xes of p.

In the i

th

round, the list of i-pre�xes is generated by extending the list of (i�1)-pre�xes.

A simple (and ineÆ
ient) way to perform this extension is to �rst extend ea
h (i� 1)-pre�x

in all q possible ways, and then to \s
reen" the resulting list of i-pre�xes. A good s
reening

is the essen
e of the algorithm. It should guarantee that the i-pre�x of a 
orre
t solution p

does pass and that not too many other pre�xes pass (as otherwise the algorithm 
onsumes

too mu
h time).

The s
reening is done by subje
ting ea
h 
andidate pre�x, (


1

; :::; 


i

), to the following

test. Pi
k m = poly(n=�) sequen
es uniformly from GF(q)

n�i

. For ea
h su
h sequen
e

�s = (s

i+1

; :::; s

n

) and for every � 2 GF(q), estimate the quantity

P

�s

(�)

def

= Pr

r

1

;:::;r

i

2GF(q)

2

4

f(�r; �s) =

i

X

j=1




j

r

j

+ �

3

5

(1)

where �r = (r

1

; : : : ; r

i

). The value � 
an be thought of as a guess for

P

n

j=i+1

p

j

s

j

. For every

�xed suÆx �s, all these probabilities 
an be approximated simultaneously by using a sample

of poly(n=�) sequen
es (r

1

; :::; r

i

), regardless of q. If one of these probabilities is signi�
antly

larger than 1=q then the test a

epts due to this suÆx, and if no suÆx makes the test a

ept

then it reje
ts. The a
tual algorithm is presented in Figure 1.

Observe that a 
andidate (


1

; :::; 


i

) passes the test (of Figure 1) if for at least one sequen
e

of �s = (s

i+1

; :::; s

n

) there exists a � so that the estimate for P

�s

(�) is greater than

1

q

+

�

3

. Clearly,

for a 
orre
t 
andidate (i.e., (


1

; :::; 


i

) that is a pre�x of a polynomial p = (p

1

; :::; p

n

) having

at least

1

q

+ � agreement with f) and � =

P

n

j=i+1

p

j

s

j

, it holds that E

�s

[P

�s

(�)℄ �

1

q

+ �. Using

Markov's inequality, it follows that for a 
orre
t 
andidate, an �=2 fra
tion of the suÆxes are

su
h that for ea
h su
h suÆx �s and some �, it holds that P

�s

(�) �

1

q

+

�

2

; thus the 
orre
t


andidate passes the test with overwhelming probability. On the other hand, for any suÆx �s,

if a pre�x (


1

; : : : ; 


i

) is to pass the test (with non-negligible probability) due to suÆx �s, then

it must be the 
ase that the polynomial

P

i

j=1




j

x

j

has at least agreement-rate of

1

q

+

�

4

with

the fun
tion f

0

(x

1

; : : : ; x

i

)

def

= f(x

1

; : : : ; x

i

; s

i+1

; : : : ; s

n

). It is possible to bound the number

of (i-variate) polynomials that have so mu
h agreement with any fun
tion f

0

. (Se
tions 4


ontains some su
h bounds.) Thus, in ea
h iteration, only a small number of pre�xes pass

the test, thereby limiting the total number of pre�xes that may pass the test in any one of

the poly(n=�) iterations.

3

We refer to the original algorithm as in [17℄, not to a simpler algorithm that appears in later versions

(
f., [27, 16℄).
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Test-pre�x(f; �; n; (


1

; : : : ; 


i

))

Repeat poly(n=�) times:

Pi
k �s = s

i+1

; : : : ; s

n

2

R

GF(q).

Let t

def

= poly(n=�).

for k = 1 to t do

Pi
k �r = r

1

; : : : ; r

i

2

R

GF(q)

�

(k)

 f(�r; �s)�

P

i

j=1




j

r

j

.

endfor

If 9 � s.t. �

(k)

= � for at least

1

q

+

�

3

fra
tion of the k's

then output a

ept and halt.

endRepeat.

If all iterations were 
ompleted without a

epting, then reje
t.

Figure 1: Implementing the s
reening pro
ess

The above yields a poly(nq=�)-time algorithm. In order to get rid of the q fa
tor in

running-time, we need to modify the pro
ess by whi
h 
andidates are formed. Instead of

extending ea
h (i�1)-pre�x, (


1

; :::; 


i�1

), in all q possible ways, we do the following: We pi
k

uniformly s

def

= (s

i+1

; :::; s

n

) 2 GF(g)

n�i

, r

def

= (r

1

; :::; r

i�1

) 2 GF(q)

i�1

and r

0

; r

00

2 GF(q),

and solve the following system of equations

r

0

x+ y = f(r

1

; :::; r

i�1

; r

0

; s

i+1

; :::; s

n

)�

i�1

X

j=1




j

r

j

(2)

r

00

x+ y = f(r

1

; :::; r

i�1

; r

00

; s

i+1

; :::; s

n

)�

i�1

X

j=1




j

r

j

(3)

using the solution for x as the value of the i

th


oeÆ
ient (i.e., set 


i

= x). This extension

pro
ess is repeated poly(n=�) many times, obtaining at most poly(n=�) 
andidate i-pre�xes,

per ea
h 
andidate (i� 1)-pre�x. We then subje
t ea
h i-pre�x in the list to the s
reening

test (presented in Figure 1), and keep only the 
andidates that pass the test.

We need to show that if the (i� 1)-pre�x of a 
orre
t solution is in the list of 
andidates

(at the beginning of round i) then the i-pre�x of this solution will be found in the extension

pro
ess. Let p = (p

1

; :::; p

n

) be a 
orre
t solution (to the re
onstru
tion problem for f).

Then Pr

r;r;s

[p(r; r; s) = f(r; r; s)℄ �

1

q

+ � > �. It follows that for at least an �=2 fra
tion

of the sequen
es (r; s), the polynomial p satis�es p(r; r; s) = f(r; r; s) for at least an �=2

fra
tion of the possible r's. Let � represent the value of the sum

P

n

j=i+1

p

j

s

j

, and note

that p(r; r; s) =

P

i�1

j=1

p

j

r

j

+ p

i

r + �. Then, with probability 
(�

3

) over the 
hoi
es of

r

1

; : : : ; r

i�1

; s

i+1

; : : : ; s

n

and r

0

; r

00

, the following two equations hold:

r

0

p

i

+ � = f(r

1

; :::; r

i�1

; r

0

; s

i+1

; :::; s

n

)�

i�1

X

j=1

p

j

r

j

7



r

00

p

i

+ � = f(r

1

; :::; r

i�1

; r

00

; s

i+1

; :::; s

n

)�

i�1

X

j=1

p

j

r

j

and r

0

6= r

00

. (I.e., with probability at least

�

2

, the pair (�r; �s) is good, and 
onditioned on this

event r

0

is good with probability at least

�

2

, and similarly for r

00

losing a term of

1

q

<

�

4

to

a

ount for r

00

6= r

0

. We may assume that 1=q < �=4, sin
e otherwise q < 4=� and we 
an

a�ord to perform the simpler pro
edure above.) Thus, with probability 
(�

3

), solving the

system (2)-(3) with (


1

; :::; 


i�1

) = (p

1

; :::; p

i�1

) yields x = p

i

. Sin
e we repeat the pro
ess

poly(n=�) times for ea
h (i � 1)-pre�x, it follows that the 
orre
t pre�x always appears in

our 
andidate list.

Re
all that 
orre
t pre�xes pass the s
reening pro
ess with overwhelmingly high proba-

bility. Using Theorem 18 (of Se
tion 4) to bound the number of pre�xes passing the s
reening

pro
ess, we have:

Theorem 1 Given ora
le a

ess to a fun
tion f and parameters �; k, our algorithm runs in

poly(

k�n

�

)-time and outputs, with probability at least 1 � 2

�k

, a list satisfying the following

properties:

1. The list 
ontains all linear polynomials that agree with f on at least a Æ =

1

q

+� fra
tion

of the inputs.

2. The list does not 
ontain any polynomial that agrees with f on less than a

1

q

+

�

4

fra
tion

of the inputs.

2.2 Generalizing to higher degree

We remind the reader that in this subse
tion we merely introdu
e the additional ideas used

in extending the algorithm from the linear 
ase to the general 
ase. The algorithm itself is

presented and analyzed in Se
tion 3.

Dealing with polynomials of degree d > 1 is more involved than dealing with lin-

ear polynomials, still we employ a similar strategy. Our plan is (again) to \isolate" the

terms/monomials in the �rst i variables and �nd (
andidates for) their 
oeÆ
ients. In par-

ti
ular, if p(x

1

; : : : ; x

n

) is a degree d polynomial on n variables then p(x

1

; : : : ; x

i

; 0; : : : ; 0) is

a degree � d polynomial on i variables that has the same 
oeÆ
ients as p on all monomials

involving only variables in f1; : : : ; ig. Thus, p(x

1

; : : : ; x

i

; 0; : : : ; 0) is the i-pre�x of p.

We show how to extend a list of 
andidates for the (i� 1)-pre�xes polynomials agreeing

with f into a list of 
andidates for the i-pre�xes. Suppose we get the (i � 1)-pre�x p that

we want to extend. We sele
t d + 1 distin
t elements r

(1)

; :::; r

(d+1)

2 GF(q), and 
onsider

the fun
tions

f

(j)

(x

1

; :::; x

i�1

)

def

= f(x

1

; :::; x

i�1

; r

(j)

; 0; :::; 0)� p(x

1

; :::; x

i�1

): (4)

Suppose that f equals some degree d polynomial and that p is indeed the (i�1)-pre�x of this

polynomial. Then f

(j)

is a polynomial of degree d� 1 (sin
e all the degree d monomials in

the �rst i variables have been 
an
eled by p). Furthermore, given an expli
it representation

8



of f

(1)

; :::; f

(d+1)

, we 
an �nd (by interpolation) the extension of p to a i-pre�x. The last

assertion deserves some elaboration.

Consider the i-pre�x of f , denoted p

0

= p

0

(x

1

; :::; x

i�1

; x

i

). In ea
h f

(j)

, the monomials of

p

0

that agree on the exponents of x

1

; :::; x

i�1

are 
ollapsed together (sin
e x

i

is instantiated

and so monomials 
ontaining di�erent powers of x

i

are added together). However, using the

d + 1 
ollapsed values, we 
an retrieve the 
oeÆ
ients of the di�erent monomials (in p

0

).

That is, for ea
h sequen
e of exponents (e

1

; :::; e

i�1

) su
h that

P

i�1

j=1

e

j

� d, we retrieve the


oeÆ
ients of all the (

Q

i�1

j=1

x

e

j

) � x

k

i

in p

0

, by interpolation that refers to the 
oeÆ
ients of

Q

i�1

j=1

x

e

j

in the f

(`)

's.

4

To 
omplete the high level des
ription of the pro
edure we need to show how to obtain the

polynomials representing the f

(j)

's. Sin
e in reality we have only have a

ess to a (possibly

highly noisy) ora
le for the f

(j)

's, we use the main pro
edure for �nding a list of 
andidates

for these polynomials. We point out that the re
ursive 
all is to a problem of degree d� 1,

whi
h is lower than the degree we are 
urrently handling.

The above des
ription ignores a real diÆ
ulty that may o

ur: Suppose that the agree-

ment rate of f with some p

�

is at least Æ, and so we need to re
over p

�

. For our strategy to

work, the agreement rate of the f

(j)

's with p

�

(: : : ; 0

n�i

) must be 
lose to Æ. However, it may

be the 
ase that p

�

does not agree with f at all on the inputs in GF(q)

i

0

n�i

, although p

�

does

agrees with f on a Æ fra
tion of inputs in GF(q)

n

. Then solving the subproblem (i.e., trying

to retrieve polynomials 
lose to the f

(j)

's) gives us no information about p

�

. Thus, we must

make sure that the agreement rate on the subproblems on whi
h we re
urse is 
lose to the

original agreement rate. This 
an be a
hieved by applying a random linear transformation

to the 
oordinate system as follows: Pi
k a random nonsingular matrix R and de�ne new

variables y

1

; : : : ; y

n

as (y

1

; : : : ; y

n

) = �y � R�x (ea
h y

i

is a random linear 
ombination of

the x

i

's and vi
e versa). This transformation 
an be used to de�ne a new instan
e of the

re
onstru
tion problem in terms of the y

i

's, and for the new instan
e the agreement rate on

the subproblems on whi
h we re
urse is indeed 
lose to the original agreement rate. Observe

that

1. the total degree of the problem is preserved;

2. the points are mapped pairwise independently, and so the fra
tion of agreement points

in all subspa
es of the new problem is 
lose to the agreement rate in the original spa
e;

and

3. one 
an easily transform the 
oordinate system ba
k to the x

i

's, and so it is possible

to 
onstru
t a new bla
k box 
onsistent with f that takes �y as an input.

(It may be noted that the transformation does not preserve other properties of the polyno-

mial; e.g., its sparsity.)

Comment: The above solution to the above diÆ
ulty is di�erent than the one in the

original version of this paper [18℄. The solution there was to pi
k many di�erent suÆxes

(instead of 0

n�i

), and to argue that at least in one of them the agreement rate is preserved.

4

Let 


k

be the 
oeÆ
ient of (

Q

i�1

j=1

x

e

j

) � x

k

i

in p

0

, and v

`

be the 
oeÆ
ient of

Q

i�1

j=1

x

e

j

in f

(`)

. Then,

v

`

=

P

d

k=0

(r

(`)

)

k




k

, and the 


k

's 
an be found given the v

`

's.
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However, pi
king many di�erent suÆxes 
reates additional problems, whi
h needed to be

dealt with 
arefully. This resulted in a more 
ompli
ated algorithm in the original version.

3 Algorithm for degree d > 1 polynomials

Re
all that we are given ora
le a

ess to a fun
tion f : GF(q)

n

! GF(q), and need to �nd

all polynomials of degree d that agrees with f on at least a Æ fra
tion of the inputs.

The main algorithm Find-all-poly will use several subroutines: Compute-
oeÆ
ients, Test-

valid, Constants, Brute-for
e, and Extend. The main algorithm is re
ursive, in n (the number

of variables) and d (the degree), with the base 
ase d = 0 being handled by the subroutine

Constants and the other bases 
ases 
orresponding to n � 4 being handled by the subrou-

tine Brute-for
e. Most of the work is done in Find-all-poly and Extend, whi
h are mutually

re
ursive.

The algorithms have a number of parameters in their input. We des
ribe the 
ommonly

o

urring parameters �rst:

� q is the size of the �eld we will be working with; i.e., F = GF(q). (Unlike other

parameters, the �eld never 
hanges in the re
ursive 
alls.)

� f will be a fun
tion from GF(q)

n

to GF(q) given as an ora
le to the 
urrent pro
edure,

and n will denote the number of variables of f .

� d will denote the degree of the polynomial we are hoping to re
onstru
t, and Æ will

denote the agreement parameter. Typi
ally, the algorithm will have to re
onstru
t all

degree d polynomials having agreement at least Æ with f .

Many of the algorithms are probabilisti
 and make two-sided error.

�  will be the error parameter 
ontrolling the probability with whi
h a valid solution

may be omitted from the output.

� � will be the error parameter 
ontrolling the error with whi
h an invalid solution is

in
luded in the output list.

Pi
king a random element of GF(q) is assumed to take unit time, as are �eld operations and


alls to the ora
le f .

The symbol x will typi
ally stand for a ve
tor in GF(q)

n

, while the notation x

i

will refer

to the ith 
oordinate of x. When pi
king a sequen
e of ve
tors, we will use supers
ripts

to denote the ve
tors in the sequen
e. Thus, x

(j)

i

will denote the ith 
oordinate of the jth

element of the sequen
e of ve
tors x

(1)

; x

(2)

; : : :. For two polynomials p

1

and p

2

, we write

p

1

� p

2

if p

1

and p

2

are identi
al. (In this paper, we restri
t ourselves to polynomials of

degree less than the �eld size; thus identity of polynomials as fun
tions is equivalent to

identity of polynomials as a formal sum of monomials.) We now generalize the notion of the

pre�x of a polynomial in two ways. We extend it to arbitrary fun
tions, and then extend it

to arbitrary suÆxes (and not just 0

i

).
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De�nition 2 For 1 � i � n and a

1

; : : : ; a

n�i

2 F , the (a

1

; : : : ; a

n�i

)-pre�x of a fun
tion

f : F

n

! F , denoted f j

a

1

;:::;a

n�i

, is the i-variate fun
tion f j

a

1

;:::;a

n�i

: F

i

! F , given by

f j

a

1

;:::;a

n�i

(x

1

; :::; x

i

) = f(x

1

; : : : ; x

i

; a

1

; : : : ; a

n�i

). The i-pre�x of f is the fun
tion f j

0

n�i
.

When spe
ialized to a polynomial p, the i-pre�x of p yields a polynomial on the variables

x

1

; : : : ; x

i

whose 
oeÆ
ients are exa
tly the 
oeÆ
ients of p on monomials involving only

x

1

; : : : ; x

i

.

Fixing a �eld GF(q), we will use the notation N

n;d;Æ

to denote the maximum (over all

possible f) of the number of polynomials of degree d in n variables that have agreement

Æ with f . In this se
tion we will �rst determine our running time as a fun
tion of N

n;d;Æ

,

and only next use bounds on N

n;d;Æ

(proven in Se
tion 4) to derive the absolute running

times. We in
lude the intermediate bounds sin
e it is possible that the bounds of Se
tion 4

may be improved, and this would improve our running time as well. By de�nition, N

n;d;Æ

is

monotone non-de
reasing in d and n, and monotone non-in
reasing in Æ. These fa
ts will be

used in the analysis.

3.1 The subroutines

We �rst axiomatize the behavior of ea
h of the subroutines. Next we present an implemen-

tation of the subroutine, and analyze it with respe
t to the axiomatization.

(P1) Constants(f; Æ; n; q;  ), with probability at least 1 �  , returns every degree 0 (i.e.,


onstant) polynomial p su
h that f and p agree on Æ fra
tion of the points.

5

Constants works as follows: Set k = O(

1

Æ

2

log

1

 

) and pi
k x

(1)

; : : : ; x

(k)

independently and

uniformly at random from GF(q)

n

. Output the list of all 
onstants a (or equivalently the

polynomial p

a

= a) su
h that jfi 2 [k℄jf(x

(i)

) = agj �

3

4

Æk.

An easy appli
ation of Cherno� bounds indi
ates that the setting k = O(

1

Æ

2

log

1

 

) suÆ
es

to ensure that the error probability is at most  . Thus the running time of Constants is

bounded by the time to pi
k x

(1)

; : : : ; x

(k)

2 GF(q)

n

whi
h is O(kn) = O(

1

Æ

2

n log

1

 

).

Proposition 3 Constants(f; Æ; n; q;  ) satis�es (P1). Its running time is O(

1

Æ

2

n log

1

 

).

Another simple pro
edure is the testing of agreement between a given polynomial and a

bla
k box.

(P2) Test-valid(f; p; Æ; n; d; q;  ; �) returns true, with probability at least 1 �  , if p is an

n-variate degree d polynomial with agreement at least Æ with f . It returns false with

probability at least 1 � � if the agreement between f and p is less than

Æ

2

. (It may

return anything if the agreement is between

Æ

2

and Æ.)

5

Noti
e that we do not make any 
laims about the probability with whi
h 
onstants that do not have

signi�
ant agreement with f may be reported. In fa
t we do not need su
h a 
ondition for our analysis.

If required, su
h a 
ondition may be expli
itly enfor
ed by \testing" every 
onstant that is returned for

suÆ
ient agreement. Note also that the list is allowed to be empty if no polynomial has suÆ
iently large

agreement.
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Brute-for
e(f; Æ; n; d; q;  ; �)

Set l =

�

n+d

d

�

k = O

�

(Æ �

d

q

)

�l

�

log

1

 

��

L  �.

Repeat k times

Pi
k x

(1)

; : : : ; x

(l)

2

R

GF(q)

n

.

Multivariate interpolation step:

Find p : GF(q)

n

! GF(q) of degree d s.t. 8i 2 [l℄, p(x

(i)

) = f(x

(i)

).

If Test-valid(f; p; Æ; n; d; q;

1

2

; �=k) then L  L [ fpg.

endRepeat

return(L)

Figure 2: Brute-for
e

Test-valid works as follows: Set k = O(

1

Æ

2

log

1

minf ;�g

) and pi
k x

(1)

; : : : ; x

(k)

independently

and uniformly at random from GF(q)

n

. If f(x

(i)

) = p(x

(i)

) for at least

3

4

Æ fra
tion of the

values of i 2 [k℄ then output true else false.

Again an appli
ation of Cherno� bounds yields the 
orre
tness of Test-valid. The running

time of Test-valid is bounded by the time to pi
k the k points from GF(q)

n

and the time to

evaluate p on them, whi
h is O(

1

Æ

2

(log

1

minf ;�g

)

�

n+d

d

�

).

Proposition 4 Test-valid(f; p; Æ; n; d; q;  ; �) satis�es (P2). Its running time is bounded by

O(

1

Æ

2

(log

1

minf ;�g

)

�

n+d

d

�

).

Next we des
ribe the properties of a \brute-for
e" algorithm for re
onstru
ting polyno-

mials.

(P3) Brute-for
e(f; Æ; n; d; q;  ; �) returns a list that in
ludes, with probability 1�  , every

degree d polynomial p su
h that f and p agree on Æ fra
tion of the points. With

probability at least 1� � it does not output any polynomial p whose agreement with

f is less than

Æ

2

.

Noti
e that the goal of Brute-for
e is what one would expe
t to be the goal of Find-all-poly.

Its weakness will be its running time, whi
h is doubly exponential in n and exponential in

d. However, we only invoke it for n � 4. In this 
ase its running time is of the order of Æ

�d

4

.

The des
ription of Brute-for
e is given in Figure 2.

Lemma 5 Brute-for
e(f; Æ; n; d; q;  ; �) satis�es (P3). Its runs in time O(

kl

3

Æ

2

(log

k

�

)) where

l =

�

n+d

d

�

and k = O

�

(Æ �

d

q

)

�l

�

log

1

 

��

.
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Proof: The running time of Brute-for
e is immediate from its des
ription (using the fa
t

that a naive interpolation algorithm for a (multivariate) polynomial with l 
oeÆ
ients runs

in time O(l

3

) and the fa
t that ea
h 
all to Test-valid takes at most O(

l

Æ

2

log

k

�

) time). If a

polynomial p that is the output of the multivariate interpolation step has agreement less than

Æ

2

with f , then by the 
orre
tness of Test-valid it follows that p is passed with probability

at most �=k. Summing up over the k iterations, we have that the probability that any

polynomial with agreement less than

Æ

2

is in
luded in the output list is at most �.

To prove that with probability at least 1� , Test-valid outputs every polynomial p with

Æ agreement f , let us �x p and argue that in any one of the k iterations, p is likely to be

added to the output list with probability � =

1

2(Æ�

d

q

)

l

. The lemma follows from the fa
t that

the number of iterations is a suÆ
iently large multiple of

1

�

.

To prove that with probability at least � the polynomial p is added to L (in a single

iteration), we show that with probability at least 2� the polynomial interpolated in the

iteration equals p. The lemma follows from the fa
t that Test-valid will return true with

probability at least

1

2

.

To show that p is the polynomial returned in the interpolation step, we look at the task

of �nding p as the task of solving a linear system. Let ~p denote the l dimensional ve
tor


orresponding to the 
oeÆ
ients of p. Let M be the l � l dimensional matrix whose rows


orrespond to the points x

(1)

; : : : ; x

(l)

and whose 
olumns 
orrespond to the monomials in

p. Spe
i�
ally, the entry M

i;j

, where j 
orresponds to the monomial x

d

1

1

: : : x

d

n

n

, is given by

(x

(i)

1

)

d

1

: : : (x

(i)

n

)

d

n

. Finally let

~

f be the ve
tor (f(x

(1)

); : : : ; f(x

(l)

)). To show that p is the

polynomial returned in this step, we show that M is of full rank and p(x

(i)

) = f(x

(i)

) for

every i.

The last assertion is proven by indu
tion on i. Let M

(i)

denote the i� l matrix with the

�rst i rows of M . Fix x

(1)

; : : : ; x

(i�1)

su
h that p(x

(j)

) = f(x

(j)

) for every j 2 [i � 1℄. We

argue that with probability at least Æ�

d

q

over the 
hoi
e of x

(i)

, it holds that p(x

(i)

) = f(x

(i)

)

AND the rank of M

(i)

is greater than that of M

(i�1)

. It is easy to see that f(x

(i)

) = p(x

(i)

)

with probability at least Æ. To 
omplete the proof it suÆ
es to establish that the probability,

over a random 
hoi
e of x

(i)

, that M

(i)

has the same rank as M

(i�1)

is at most

d

q

. Consider

two polynomials p

1

and p

2

su
h that p

1

(x

(j)

) = p

2

(x

(j)

) for every j 2 [i � 1℄. Then for the

rank of M

(i)

to be the same as the rank of M

(i�1)

it must be that p

1

(x

(i)

) = p

2

(x

(i)

) (else

the solutions to the ith system are not the same as the solutions to the i� 1th system). But

for distin
t polynomials p

1

and p

2

the event p

1

(x

(i)

) = p

2

(x

(i)

) happens with probability at

most

d

q

for randomly 
hosen x

(i)

. This 
on
ludes the proof of the lemma.

As an extension of univariate interpolations, we have:

(P4) Compute-
oeÆ
ients(p

(1)

; : : : ; p

(d+1)

; r

(1)

; : : : ; r

(d+1)

; n; d; q;  ) takes as input d+1 poly-

nomials p

(j)

in n�1 variables of degree d�1 and d+1 values r

(j)

2 GF(q) and returns

a degree d polynomial p : GF(q)

n

! GF(q) su
h that pj

r

(j)

� p

(j)

for every j 2 [d+1℄,

if su
h a polynomial p exists (otherwise it may return anything).

Compute-
oeÆ
ients works as a simple interpolation algorithm: Spe
i�
ally it �nds d+1

univariate polynomials h

1

; : : : ; h

d+1

su
h that h

i

(r

(j)

) equals 1 if i = j and 0 otherwise and

13



then returns the polynomial p(x

1

; : : : ; x

n

) =

P

d+1

j=1

h

j

(x

n

)�p

(j)

(x

1

; : : : ; x

n�1

). Note that indeed

p(x

1

; :::; x

n�1

; r

(j)

) =

d+1

X

k=1

h

k

(x

n

) � p

(k)

(x

1

; : : : ; x

n�1

)

= p

(j)

(x

1

; : : : ; x

n�1

)

Note that the polynomials h

i

(x) =

Q

j2f1;:::;d+1g;j 6=i

�

x�r

(j)

r

(i)

�r

(j)

�

depend only on the r

(j)

's. (Thus,

it suÆ
es to 
ompute them on
e, rather than 
omputing them from s
rat
h for ea
h monomial

of p as suggested in Se
tion 2.2.)

Proposition 6 Compute-
oeÆ
ients(p

(1)

; : : : ; p

(d+1)

; r

(1)

; : : : ; r

(d+1)

; n; d; q;  ) satis�es (P4).

Its running time is O(d

2

�

n+d

d

�

).

3.2 The main routines

As mentioned earlier, the main subroutines are Find-all-poly and Extend, whose inputs and

properties are des
ribed next. They take, among other inputs, a spe
ial parameter � whi
h

will be �xed later. For sake of simpli
ity, we do not require Find-all-poly and Extend at this

point to output only polynomials with good agreement. We will 
onsider this issue later,

when analyzing the running times of Find-all-poly and Extend.

(P5) Find-all-poly(f; Æ; n; d; q;  ; �; �) returns a list of polynomials 
ontaining every polyno-

mial of degree d on n variables that agrees with f on at least a Æ fra
tion of the inputs.

Spe
i�
ally, the output list 
ontains every degree d polynomial p with agreement Æ

with f , with probability at least 1�  .

The algorithm is des
ribed formally in Figure 3. Informally, the algorithm uses the

(\trivial") subroutines for the base 
ases n � 4 or d = 0, and in the remaining (interesting)


ases it iterates a randomized pro
ess several times. Ea
h iteration is initiated by a random

linear transformation of the 
oordinates. Then in this new 
oordinate system, Find-all-poly

�nds (using the \trivial" subroutine Brute-for
e) a list of all 4-variate polynomials having

signi�
ant agreement with the 4-pre�x of the ora
le.

6

It then extends ea
h polynomial in the

list one variable at a time till it �nds the n-pre�x of the polynomial (whi
h is the polynomial

itself). Thus the 
ru
ial pie
e of the work is relegated to the subroutine Extend, whi
h is

supposed to extend a given (i� 1)-pre�x of a polynomial with signi�
ant agreement with f

to its i-pre�x. The goals of Extend are des
ribed next.

(P6) Extend(f; p; Æ; n; d; q;  ; �; �) takes as input a degree d polynomial p in n� 1 variables

and with probability at least 1� returns a list of degree d polynomials in n variables

that in
ludes every polynomial p

�

that satis�es the following 
onditions:

6

In prin
iple we 
ould apply Brute-for
e for any 
onstant number of variables (and not just 4). However,

sin
e the running time is doubly-exponential in the number of variables, we try to use Brute-for
e only for a

small number of variables. The need for using Brute-for
e when the number of variables is very small 
omes

about due to the fa
t that in su
h a 
ase (e.g., two variables) the randomization of the 
oordinate system

does not operate well. Furthermore, applying Brute-for
e for univariate polynomials seems unavoidable. For

simpli
ity of exposition, we 
hoose to apply Brute-for
e also for 2, 3 and 4-variate polynomials. This allows

better settings of some parameters and simpli�es the 
al
ulations at the end of the proof of Lemma 7.
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1. p

�

has agreement at least Æ with f .

2. p

�

j

j

has agreement at least � � Æ with f j

j

for every j 2 f0; : : : ; dg.

3. p

�

j

0

� p.

Figure 4 des
ribes the algorithm formally. Extend returns all n-variable extensions p

�

,

of a given (n � 1)-variable polynomial p, provided p

�

agrees with f in a strong sense: p

�

has signi�
ant agreement with f and ea
h p

�

j

j

has signi�
ant agreement with f j

j

(for every

j 2 f0; : : : ; dg). (The latter agreement requirement is slightly lower than the former.) To

re
over p

�

, Extend �rst invokes Find-all-poly to �nd the polynomials p

�

j

j

for d+1 values of j.

This is feasible only if a polynomial p

�

j

j

has good agreement with f j

j

, for every j 2 f0; : : : ; dg.

Thus, it is 
ru
ial that when Extend is 
alled with f and p, all p

�

's with good agreement

with f also satisfy the stronger agreement property (above). We will show that the 
alling

program (i.e., Find-all-poly at the higher level of re
ursion) will, with high probability, satisfy

this property, by virtue of the random linear transformation of 
oordinates.

All the re
ursive 
alls (of Find-all-poly within Extend) always involve a smaller degree

parameter, thereby ensuring that the algorithms terminate (qui
kly). Having found a list of

possible values of p

�

j

j

, Extend uses a simple interpolation (subroutine Compute-
oeÆ
ients)

to �nd a 
andidate for p

�

. It then uses Test-valid to prune out the many invalid polynomials

that are generated this way, returning only polynomials that are 
lose to f .

We now go on the formal analysis of the 
orre
tness of Find-all-poly and Extend.

3.3 Corre
tness of Find-all-poly and Extend

Lemma 7 If � � 1 �

1

q

, Æ �

d+1

q

, and q � 3 then Find-all-poly satis�es (P5) and Extend

satis�es (P6).

Proof: We prove the lemma by a double indu
tion, �rst on d and for any �xed d, we

perform indu
tion on n. We shall rely on the properties of Compute-
oeÆ
ients, Test-valid,

Constants, and Brute-for
e, as established above.

Assume that Find-all-poly is 
orre
t for every d

0

< d (for every n

0

� n for any su
h d

0

.)

We use this to establish the 
orre
tness of Extend(f; p; n

0

; d; q;  ; �) for every n

0

� n. Fix a

polynomial p

�

satisfying the hypothesis in (P6). We will prove that p

�

is in the output list

with probability 1 �

 

N

n

0

;d;Æ

. The 
orre
tness of Extend follows from the fa
t that there are

at most N

n

0

;d;Æ

su
h polynomials p

�

and the probability that there exists one for whi
h the


ondition is violated is at most  .

To see that p

�

is part of the output list, noti
e that, by the indu
tive hypothesis on

Find-all-poly, when invoked with agreement parameter � � Æ, it follows that for any �xed

j 2 f0; : : : ; dg, the polynomial p

�

j

j

� p is in
luded in L

(j)

with probability 1 �

 

2(d+1)N

n

0

;d;Æ

.

This follows from the fa
t that p

�

j

j

�p and f j

j

�p have agreement at least � �Æ, the fa
t that

p

�

j

j

� p = p

�

j

j

� p

�

j

0

is a degree d� 1 polynomial

7

, and thus, by the indu
tive hypothesis on

7

To see that p

�

j

j

� p

�

j

0

is a polynomial of total degree at most d � 1, noti
e that p

�

(x

1

; : : : ; x

n

) 
an

be expressed uniquely as r(x

1

; : : : ; x

n�1

) + x

n

q(x

1

; : : : ; x

n

), where degree of q is at most d � 1. Thus

p

�

j

j

� p

�

j

0

= j � q(x

1

; : : : ; x

n�1

; j) is also of degree d� 1.
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Find-all-poly(f; Æ; n; d; q;  ; �; �);

If d = 0 return(Constants(f; Æ; n; q;  ));

If n � 4 return(Brute-for
e(f; Æ; n; d; q;  ; �));

L  fg;

Repeat O(log

N

n;d;Æ

 

) times:

Pi
k a random nonsingular n� n matrix R over GF(q)

Pi
k a random ve
tor b 2 GF(q)

n

.

Let g denote the ora
le given by g(y) = f(R

�1

(y � b)).

L

4

 Brute-for
e(gj

0

n�4

; Æ; 4; d; q;

1

10n

; �).

for i = 5 to n do

L

i

 fg /* List of (d; i)-prefixes */

for every polynomial p 2 L

i�1

do

L

i

= L

i

[ Extend(gj

0

n�i
; p; Æ; i; d; q;

1

10n

; �; �)

endfor

endfor

Untransform L

n

: L

0

n

 fp

0

(x)

def

= p(Rx + b)jp 2 L

n

g.

L  L [ L

0

n

.

endRepeat

return(L)

Figure 3: Find-all-poly

the 
orre
tness of Find-all-poly, su
h a polynomial should be in the output list. By the union

bound, we have that for every j 2 f0; : : : ; dg, the polynomial p

�

j

j

�p is in
luded in L

(j)

with

probability 1 �

 

2N

n

0

;d;��Æ

, and in su
h a 
ase p

�

� p will be one of the polynomials returned

by an invo
ation of Compute-
oeÆ
ients. In su
h a 
ase p

�

will be tested by Test-valid and

a

epted with probability at least 1�

 

2N

n

0

;d;��Æ

. Again summing up all the error probabilities,

we have that p

�

is in the output list with probability at least 1 �

 

N

n

0

;d;��Æ

. This 
on
ludes

the 
orre
tness of Extend.

We now move on to the 
orre
tness of Find-all-poly(f; Æ; n; d; q;  ; �; �). Here we will try

to establish that for a �xed polynomial p with agreement Æ with f , the polynomial p is

added to the list L with 
onstant probability in ea
h iteration of the Repeat loop. Thus

the probability that it is not added in any of the iterations is at most

 

N

n;d;Æ

and thus the

probability that there exists a polynomial that is not added in any iteration is at most  .

We may assume that n � 5 and d � 1 (or else 
orre
tness is guaranteed by the trivial

subroutines).

Fix a degree d polynomial p with agreement Æ with the fun
tion f : GF(q)

n

! GF(q).

16



Extend(f; Æ; p; n; d; q;  ; �; �).

L

0

 fg.

L

(0)

 f

�

0g (where

�

0 is the 
onstant 0 polynomial).

for j = 1 to d do

f

(j)

 f j

j

� p.

L

(j)

 Find-all-poly(f

(j)

; � � Æ; n; d� 1; q;

 

2N

n;d;��Æ

(d+1)

; �; �).

endfor

for every (d+ 1)-tuple (p

(0)

; : : : ; p

(d)

) with p

(k)

2 L

(k)

do

p

0

 Compute-
oeÆ
ients(p

(0)

; : : : ; p

(d)

; 0; : : : ; d; n; d; q).

if Test-valid(f; p+ p

0

; Æ; n; d; q;  =(2N

n;d;��Æ

); �) then

L

0

 L

0

[ fp+ p

0

g;

endfor

return(L

0

).

Figure 4: Extend

We �rst argue that (R; b) form a \good" linear transformation with 
onstant probability.

Re
all that from now onwards Find-all-poly works with the ora
le g : GF(q)

n

! GF(q) given

by g(y) = f(R

�1

(y � b)). Analogously de�ne p

0

(y) = p(R

�1

(y � b)), and noti
e p

0

is also a

polynomial of degree d. For any i 2 f5; : : : ; ng and j 2 f0; : : : ; dg, we say that (R; b) is good

for (i; j) if the agreement between gj

j;0

n�i
and p

0

j

j;0

n�i
is at least �Æ. Lemma 8 (below) shows

that the probability that (R; b) is good for (i; j) with probability at least 1�

1

q

i�1

�

�

2 +

1

Æ(1��)

2

�

.

Now 
all (R; b) good if it is good for every pair (i; j), where i 2 f5; : : : ; ng and j 2 f0; : : : ; dg.

Summing up the probabilities that (R; b) is not good for (i; j) we �nd that (R; b) is not good

with probability at most

d

X

j=0

n

X

i=5

 

2 +

1

Æ(1� �)

2

!

� q

�i+1

= (d+ 1) �

 

2 +

1

Æ(1� �)

2

!

�

n

X

i=5

q

�i+1

< (d+ 1) �

 

2 +

1

Æ(1� �)

2

!

�

q

�3

q � 1

�

2

q

2

(q � 1)

+

1

q � 1

(Using � � 1�

1

q

, Æ �

d+1

q

, and d+ 1 � q.)

�

11

18

(Using q � 3.)

Conditioned upon (R; b) being good and relying on the property of Brute-for
e, it follows

that L

4


ontains the 4-pre�x of p with probability at least 1 �

1

10n

. Indu
tively, we have
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that the i-pre�x of p is not 
ontained in the list L

i

with probability at most

i

10n

. (By the

indu
tive hypothesis on Extend, with probability at most

1

10n

the (i � 1)-pre�x of p is in

L

i�1

and yet the i-pre�x is not returned by Extend.) Thus, with probability at most

1

10

, the

polynomial p is not in
luded in L

n

(
onditioned upon (R; b) being good). Adding ba
k the

probability that (R; b) is not good, we 
on
lude that with probability at most

11

18

+

1

10

<

3

4

, the

polynomial p is not in L

n

in any single iteration. This 
on
ludes the proof of the 
orre
tness

of Find-all-poly.

3.4 Analysis of the random linear transformation

We now �ll in the missing lemma establishing the probability of the \goodness" of a random

linear transformation.

Lemma 8 Let f and g be fun
tions mapping GF(q)

n

to GF(q) that have Æ agreement with

ea
h other, and let R be a random non-singular n� n matrix and b be a random element of

GF(q)

n

. Then, for every i 2 f1; : : : ; ng and j 2 GF(q):

Pr

R;b

h

f

0

j

j;0

n�i
and g

0

j

j;0

n�i
have less than �Æ agreement

i

�

1

q

i�1

�

 

2 +

1

Æ(1� �)

2

!

;

where f

0

(y) = f(R

�1

(y � b)) and g

0

(y) = g(R

�1

(y � b)).

Proof: Let G = fx 2 GF(q)

n

jf(x) = g(x)g, be the set of \good" points. Observe that

Æ = jGj=q

n

. Let S

R;b

= fx 2 GF(q)

n

jRx+ b has j0

n�i

as suÆxg. Then we wish to show that

Pr

R;b

"

jS

R;b

\Gj

jS

R;b

j

< � �

jGj

q

n

#

�

1

q

i�1

 

2 +

1

Æ(1� �)

2

!

: (5)

Observe that the set S

R;b


an be expressed as the pre-image of (j; 0

n�i

) in the map � :

GF(q)

n

! GF(q)

m

, where m = n � i + 1, given by �(x) = R

0

x + b

0

where R

0

is the m � n

matrix obtained by taking the bottom m rows of R and b

0

is the ve
tor obtained by taking

the last m elements of b. Note that R

0

is a uniformly distributed m� n matrix of full rank

over GF(q) and b

0

is just a uniformly distributed m-dimensional ve
tor over GF(q). We �rst

analyze what happens when one drops the full-rank 
ondition on R

0

.

Claim 9 Let R

0

be a random m � n matrix over GF(q) and b

0

be a random element of

GF(q)

m

. For some �xed ve
tor ~s 2 GF(q)

m

let S = fxjR

0

x + b

0

= ~sg. Then, for any set

G � GF(q)

n

,

Pr

R

0

;b

0

"

jS \Gj

jSj

< � �

jGj

q

n

#

�

q

m

(1� �)

2

jGj

+ q

�(n�m)

:
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Proof: We rewrite the probability in the 
laim as

Pr

R

0

;b

0

"

jS \Gj < � �

jGj � jSj

q

n

#

� Pr

R

0

;b

0

"

jS \Gj < � �

jGj � q

n�m

q

n

or jSj > q

n�m

#

� Pr

R

0

;b

0

"

jS \Gj < � �

jGj

q

m

#

+ Pr

R

0

;b

0

h

jSj > q

n�m

i

The event in the se
ond term o

urs only if the matrix R

0

is not full rank, and so the se
ond

term is bounded by q

�(n�m)

(see Claim 10). We thus fo
us on the �rst term.

For x 2 G � GF(q)

n

, let I(x) denote an indi
ator random variable that is 1 if x 2 S (i.e.,

R

0

x+ b

0

= ~s) and 0 otherwise. Then, the expe
ted value of I(x), over the 
hoi
e of (R

0

; b

0

), is

q

�m

. Furthermore, the random variables I(x

1

) and I(x

2

) are independent, for any distin
t

x

1

and x

2

. Now, jS \Gj =

P

x2G

I(x), and we are interested in the probability that the sum

P

x2G

I(x) is smaller than � � jGj � q

�m

(whereas the expe
ted value of the sum is jGj � q

�m

).

A standard appli
ation of Cheby
hev's inequality yields the desired bound.

8

To �ll the gap 
aused by the \full rank 
lause" (in the above dis
ussion), we use the

following 
laim.

Claim 10 The probability that a randomly 
hosen m � n matrix over GF(q) is not of full

rank is at most q

�(n�m)

.

Proof: We 
an 
onsider the matrix as being 
hosen one row at a time. The probability

that the jth row is dependent on the previous j � 1 rows is at most q

j�1

=q

n

. Summing up

over j going from 1 to m we get that the probability of getting a matrix not of full rank is

at most q

�(n�m)

.

Finally we establish (5). Let E

R

0

;b

0

denote the event that

jS\Gj

jSj

< � �

jGj

q

n

(re
all that

S = S

R

0

;b

0

) and let F

R

0

;b

0

denote the event that R

0

is of full row rank. Then 
onsidering the

spa
e of uniformly 
hosen matri
es R

0

and uniformly 
hosen ve
tors b

0

we are interested in

the quantity:

Pr

R

0

;b

0

[E

R

0

;b

0

jF

R

0

;b

0

℄ � Pr

R

0

;b

0

[E

R

0

;b

0

℄ + Pr

R

0

;b

0

[:(F

R

0

;b

0

)℄

�

q

m

(1� �)

2

jGj

+ 2 � q

�(n�m)

:

The lemma follows by substituting m = n� i + 1 and jGj = Æ � 2

n

.

8

Spe
i�
ally, we obtain a probability bound of

jGj�q

�m

((1��)�(jGj�q

�m

))

2

=

q

m

(1��)

2

�jGj

as required.
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3.5 Analysis of the running time of Find-all-poly

Lemma 11 For integers d

0

; n

0

; q and �; Æ

0

2 [0; 1℄ satisfying �

d

0

Æ

0

� 2d

0

=q, let M =

max

0�d�d

0

fN

n

0

;d;(�

d

0

�d

)�(Æ

0

=2)

g: Then, with probability 1���(n

2

0

(d

0

+1)

2

M logM)

d

0

+1

�log(1= 

0

),

the running time of Find-all-poly(f; Æ

0

; n

0

; d

0

; q;  

0

; �; �) is bounded by a polynomial inM

d

0

+1

,

(n

0

+ d

0

)

d

0

, (

1

�

d

0

Æ

0

)

(d

0

+4)

4

, log

1

 

0

and log

1

�

.

Proof: We �x n

0

and d

0

. Observe that in all re
ursive 
alls to Find-all-poly, Æ and d are

related by the invariant Æ = �

d

0

�d

Æ

0

. Now, assuming the algorithms run 
orre
tly, they

should only return polynomials with agreement at least Æ=2 (whi
h motivates the quantity

M). Further, in all su
h 
alls, we have that �

d

0

Æ

0

�

d

q

� �

d

0

Æ

0

=2. Observe further that

the parameter � never 
hanges and the parameter  only a�e
ts the number of iterations

of the outermost 
all to Find-all-poly. In all other 
alls, this parameter (i.e.,  ) is at least

 

1

def

=

1

20n

0

(d

0

+1)M

. Assume for simpli
ity that  

0

�  

1

. Let T

1

; T

2

; T

3

; and T

4

denote the

maximum running time of any of the subroutine 
alls to Constants, Test-valid, Brute-for
e,

and Compute-
oeÆ
ients, respe
tively. Let T = maxfT

1

; T

2

; T

3

; T

4

g. Then

T

1

= O

 

n

�

2d

0

Æ

2

0

� log

1

 

0

!

T

2

= O

 

1

�

2d

0

Æ

2

0

�

 

n

0

+ d

0

d

0

!

� log

1

minf 

0

; �g

!

T

3

= O

 

kl

3

(�

d

0

Æ

0

=2)

2

� log

k

�

!

where l = O((d

0

+ 4)

4

) and k = O

�

�

�(d

0

+4)

4

� (Æ

0

=2)

�(d

0

+4)

4

� log

1

 

0

�

.

T

4

= O

 

d

2

0

�

 

n

0

+ d

0

d

0

!!

Note that all the above quantities are bounded by polynomials in (n

0

+ d

0

)

d

0

, (

2

�

d

0

Æ

0

)

(d

0

+4)

4

,

logM , log

1

�

, and thus so is T . In what follows we show that the running time is bounded

by some polynomial in (n

0

d

0

M)

(d

0

+1)

and T and this will suÆ
e to prove the lemma.

Let P (d) denote an upper bound on the probability that any of the re
ursive 
alls made

to Find-all-poly by Find-all-poly(f; �

d

0

�d

Æ

0

; n; d; q;  ; �; �) returns a list of length greater than

M , maximized over f , 1 � n � n

0

,  �  

0

. Let F (d) denote an upper bound on the running

time on Find-all-poly(f; �

d

0

�d

Æ

0

; n; d; q;  ; �; �), 
onditioned upon the event that no re
ursive


all returns a list of length greater than M . Similarly let E(d) denote an upper bound on

the running time of Extend, under the same 
ondition.

We �rst derive re
urren
es for P . Noti
e that the subroutine Constants never returns

a list of length greater than

2

�

d

0

Æ

0

(every 
onstant output must have a fra
tion of

�

d

0

Æ

0

2

representation in the sampled points). Thus P (0) = 0. To bound P (d) in other 
ases, we

observe that every iteration of the Repeat loop in Find-all-poly 
ontributes an error probability

of at most � from the 
all to Brute-for
e, and at most n

0

�4 times the probability that Extend

returns an invalid polynomial (i.e., a polynomial with agreement less than Æ

d

=2 with its input

fun
tion f). The probability that Extend returns su
h an invalid polynomial is bounded by
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the sum of (d+1) �P (d� 1) [from the re
ursive 
alls to Find-all-poly℄ and M

d+1

�� [from the


alls to Test-valid℄. (Noti
e that to get the �nal bound we use the fa
t that we estimate this

probability only when previous 
alls do not produ
e too long a list.) Finally the number of

iterations of the Repeat loop in Find-all-poly is at most log(M= ), by the de�nition of M .

Re
all that in the outer most 
all of Find-all-poly, we have  =  

0

whereas in all other 
alls

 �  

1

, where log(1= 

1

) = log(20n

0

(d

0

+ 1)M) < n

0

(d

0

+ 1) logM , for suÆ
iently large n

0

.

Thus summing up all the error probabilities , we have

P (d) < log(M= ) � n

0

�

�

(d+ 1) � P (d� 1) +M

d+1

� �

�

where for d = d

0

we use  =  

0

and otherwise  =  

1

. It follows that

P (d

0

) < log(M= 

0

) � n

0

�

�

(d

0

+ 1) � P (d

0

� 1) +M

d+1

� �

�

< log(M= 

0

) � n

0

� (d

0

+ 1) �

�

(n

0

� (d

0

+ 1))

2

logM

�

d

0

�M

d+1

� �

<

�

n

2

0

� (d

0

+ 1)

2

�M logM

�

d

0

+1

� � � log(1= 

0

)

A similar analysis for F and E yields the following re
urren
es:

F (0) � T

F (d) � n

2

0

(d

0

+ 1)(logM) � E(d)

E(d) � (d+ 1)F (d� 1) +M

d+1

T

Solving the re
urren
e yields F (d) � (n

2

0

(d

0

+ 1)

2

M logM)

d+1

T . This 
on
ludes the proof

of the lemma.

Lemma 12 For integers d

0

; n

0

and �; Æ

0

2 [0; 1℄, let M = max

0�d�d

0

fN

n

0

;d;(�

d

0

�d

)�(Æ

0

=2)

g: If

� � 1�

1

d

0

+1

and Æ

0

� 2e

q

d

0

q

then M � O(

1

Æ

2

0

).

Proof: We use Part (2) of Theorem 17, whi
h 
laims that N

n;d;Æ

�

1

Æ

2

�(d=q)

, provided

Æ

2

� d=q. Let Æ

d

= �

d

0

�d

Æ

0

. Then Æ

d

=2 � (1 �

1

d

0

+1

)

d

0

+1

� (Æ

0

=2) � Æ

0

=2e �

q

d=q, by the


ondition in the lemma. Thus M is at most

1

Æ

2

d

�(d=q)

�

2

Æ

2

d

= O(

1

Æ

2

0

).

Theorem 13 Given ora
le a

ess to a fun
tion f and suppose Æ; k; d and q are parameters

satisfying Æ � maxf

d+1

q

; 2e

q

d=qg and q � 3. Let � = 1 �

1

d+1

,  = 2

�k

and � = 2

�k

�

(n(d + 1)

1

Æ

2

0

)

�2(d+1)

. Then, given ora
le a

ess to a fun
tion f : GF(q)

n

! GF(q), the

algorithm Find-all-poly(f; Æ; n; d; q;  ; �; �) runs in poly((k�nd=Æ)

O(d

4

)

)-time and outputs, with

probability at least 1� 2

�k

, a list 
ontaining all degree d polynomials that agree with f on at

least an Æ fra
tion of the inputs. Furthermore, the list does not 
ontain any polynomials that

agree with f on less than an

Æ

2

fra
tion of the inputs.

Remarks:
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1. Thus, 
ombining Theorems 1 and 13, we get re
onstru
tion algorithms for all d < q,

provided Æ is large enough. Spe
i�
ally, for the 
ase q = 2 and d = 1, we invoke

Theorem 1.

2. The 
onstant 2e in the lower bound on Æ 
an be repla
ed by (1 + �)e

d=q

, for any � > 0,

by re-
alibrating the subroutine Test-valid and by setting � = 1�

1

q

.

Proof: The main part of the 
orre
tness 
laim follows from Lemma 7, and the running-time

bound follows from Lemmas 11 and 12. (In parti
ular, note that the 
ondition �

d

0

Æ

0

� 2d=q

from Lemma 11 is met, sin
e �

d

0

=

1

e

and Æ

0

� 2

q

d=q � 2d=q.) The furthermore part

follows from the proof of Lemma 11.

4 Counting: Worst Case

In this se
tion we give a worst-
ase bound on the number of polynomials that agree with

a given fun
tion f on Æ fra
tion of the points. In the 
ase of linear polynomials our bound

works for any Æ >

1

q

, while in the general 
ase our bound works only for Æ that is large

enough. The bounds are derived using a very elementary property of polynomial fun
tions,

namely that two of them do not agree on too many points. In fa
t we �rst state and prove

bounds for any generi
 \error 
orre
ting 
ode" and then spe
ialize the bound to the 
ase of

polynomials.

4.1 General error-
orre
ting bounds

We �rst re
all the standard de�nition of error-
orre
ting 
odes. To do so we refer to strings

over an alphabet [q℄. For a string R 2 [q℄

N

(R for re
eived word) and i 2 [N ℄, we let R(i)

denote the ith 
oordinate of R. The Hamming distan
e between strings R

1

and R

2

, denoted

�(R

1

; R

2

), is the number of 
oordinates i where R

1

(i) 6= R

2

(i).

De�nition 14 (Error 
orre
ting 
ode) For integers N;K;D and q an [N;K;D℄

q


ode

is a family of q

K

strings from [q℄

N

su
h that for any two distin
t strings in the family, the

Hamming distan
e between them is at least D. That is, if C � [q℄

N

is an [N;K;D℄

q


ode

then jCj = q

K

and for every C

1

6= C

1

2 C it holds that �(C

1

; C

2

) � D.

In the following theorem we take an arbitrary word R 2 [q℄

N

and 
onsider the number of


odeword that may have a Hamming distan
e of at most (1� Æ) �N from R (i.e., 
odewords

that agree with R on at least Æ � N 
oordinates). We give an upper bound provided Æ is

suÆ
iently large (as a fun
tion of D=N).

Theorem 15 Let N;D and q satisfy

D

N

< 1 and de�ne 


def

= 1 �

D

N

> 0. Let Æ > 0 and

R 2 [q℄

N

. Suppose that C

1

; : : : ; C

m

2 [q℄

N

are distin
t 
odewords from an [N;K;D℄

q


ode

that satisfy �(R;C

j

) � (1� Æ) �N , for all j 2 f1; : : : ; mg. Then the following bounds hold:

22



1. If Æ >

q

2 +




4

�

p


 �




2

then m <

2

Æ+




2

.

It follows that if Æ >

p

2
 then m < 2=Æ.

2. If 
 �

1

q

and Æ >

1

q

+

q

(
 �

1

q

) � (1�

1

q

) then m �

(1�
)�

(

1�

1

q

)

(Æ�(1=q))

2

�(1�

1

q

)(
�

1

q

)

.

It follows that if (
 �

1

q

and) Æ > minf

p


;

1

q

+

q


 �

1

q

g then m �

1�


Æ

2

�


<

1

Æ

2

�


. In

parti
ular, for 
 =

1

q

, the bounds hold for every Æ >

1

q

.

For small 
, the latter (simpler) expressions given in ea
h of the two parts of the theorem

provide good approximations to the former (tighter) expressions. The fa
t that the former

expressions imply the latter ones is obvious for Part (1), and is proved below for Part (2).

Additional Remarks:

1. The bounds in the two parts of the theorem apply in di�erent situations and yield

di�erent bounds on m. The �rst bound applies for somewhat larger values of Æ and

yields a stronger bound that is O(

1

Æ

). The se
ond bound applies also for smaller values

of Æ and yields a bound that grows as �(

1

Æ

2

).

2. Note that Part (2) only 
onsiders 
odes with distan
e D � (1�1=q) �N (i.e., 
 � 1=q).

Still, the bound m �

(1�
)�

(

1�

1

q

)

(Æ�(1=q))

2

�(1�

1

q

)(
�

1

q

)

, holds also in 
ase 
 < 1=q, provided Æ � 1=q.

(See Footnote 9 at the end of the proof of Part (2).) We mention that it is well

known that 
odes with distan
e D � (1� 1=q) �N have at most qN 
odewords, whi
h

immediately implies m � qN � N=
 (for any 
 � 1=q regardless of Æ).

Proof (of Part 1): The bound in Part (1) is proven by a simple in
lusion-ex
lusion

argument. For any m

0

� m, we 
ount the number of 
oordinates i 2 [N ℄ that satisfy the

property that one of the �rst m

0


odewords agree with R on 
oordinate i. Namely, let

�

j

(i) = 1 if C

j

(i) = R(i) and �

j

(i) = 0 otherwise. Then, by in
lusion-ex
lusion we get

N � jfi : 9j �

j

(i) = 1gj

�

m

0

X

j=1

X

i

�

j

(i)�

X

1�j

1

<j

2

�m

0

X

i

�

j

1

(i)�

j

2

(i)

� m

0

� ÆN �

 

m

0

2

!

� max

1�j

1

<j

2

�m

0

jfi : C

j

1

(i) = C

j

2

(i)gj

where the last inequality is due to the fa
t that C

j

agrees with R on at least ÆN 
oordinates.

Sin
e two 
odewords R

1

and R

2


an agree on at most N �D 
oordinates, we get:

8m

0

� m; m

0

ÆN �

m

0

(m

0

� 1)

2

� (N �D) � N: (6)

Consider the fun
tion g(y)

def

=




2

� y

2

� (Æ+




2

) � y+1. Then (6) says that g(m

0

) � 0, for every

integer m

0

� m. Let �

1

and �

2

be the roots of g. To establish Part (1) we show that

23



� The roots �

1

and �

2

are both real numbers.

� The roots are both non-negative.

� j�

1

� �

2

j > 1.

� min(�

1

; �

2

) <

2

Æ+




2

.

Without loss of generality, suppose �

1

� �

2

. It follows that m � �

1

, sin
e otherwise

g(m

0

) < 0 for every m

0

2 (�

1

; �

2

) and in parti
ular for the integer m

0

= b�

1


 + 1, in


ontradi
tion to the above (i.e., g(m

0

) � 0 for every m

0

� m).

Let � = 
=2. Then g(y) = �y

2

� (� + Æ) � y + 1. The roots, �

1

and �

2

are real, provided

that �

def

= (� + Æ)

2

� 4� is positive whi
h follows from a stronger requirement (see below).

Without loss of generality, suppose �

1

� �

2

. To guarantee �

2

��

1

> 1, we require 2 �

p

�

2�

> 1

whi
h translates to � > �

2

(and hen
e � > 0 as required above). We need to show that

(� + Æ)

2

� 4� > �

2

whi
h o

urs if Æ >

p

�

2

+ 4���. Plugging in the value of � we �nd that the last inequality

is exa
tly what is guaranteed in the hypothesis of Part (1) of the theorem statement. Thus

�

1

and �

2

are real and �

2

� �

1

> 1. Lastly, we bound the smaller root �

1

. First we prove

the upper bound.

�

1

=

� + Æ �

q

(� + Æ)

2

� 4�

2�

=

� + Æ

2�

�

2

4

1�

 

1�

4�

(� + Æ)

2

!

1=2

3

5

<

� + Æ

2�

�

"

1�

 

1�

4�

(� + Æ)

2

!#

=

2

� + Æ

where the inequality follows by � > 0. Again by plugging in the value of � we get the

desired bound. For the lower bound, 
onsider the �rst equality in the above displayed set of

inequalities and note that sin
e � > 0, we have

�

1

=

� + Æ �

q

(� + Æ)

2

� 4�

2�

> 0:
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Proof (of Part 2): We �rst introdu
e some notation. In what follows we will use the

arithmeti
 of integers modulo q to simplify some of our notation. This arithmeti
 will

be used on the letters of the alphabet, i.e., the set [q℄. For j 2 f1; : : : ; mg and i 2 [N ℄

let �

j

(i) = 1 if C

j

(i) 6= R(i) and 0 otherwise. (Noti
e that �

j

(i) = 1 � �

j

(i).) For j 2

f1; : : : ; mg, t 2 f0; : : : ; q � 1g and i 2 [N ℄ let �

(t)

j

(i) = 1 if C

j

(i) � R(i) � t (mod q) and

0 otherwise. Thus �

j

(i) = 1 if and only if there exists t 6= 0 su
h that �

(t)

j

(i) = 1. Let

w

j

def

= jfi : C

j

(i) 6= R(i)gj =

P

i

�

j

(i) and let w =

P

m

j=1

w

j

m

. The fa
t that the C

j

's are 
lose

to R implies that w

j

� (1� Æ) �N , for all j.

Our proof generalizes a proof due to S. Johnson (
.f., Ma
Williams and Sloane [31℄) for

the 
ase q = 2. The 
entral quantity used to bound m in the binary 
ase 
an be generalized

in one of the two following ways:

S �

X

j

1

;j

2

;i

�

j

1

(i)�

j

2

(i):

S

0

�

X

j

1

;j

2

;i

X

t6=0

�

(t)

j

1

(i)�

(t)

j

2

(i):

The �rst quantity sums, over all j

1

; j

2

, the number of 
oordinates for whi
h C

j

1

and C

j

2

both

di�er from R. The se
ond quantity sums, over all j

1

; j

2

, the number of 
oordinate where C

j

1

and C

j

2

agree with ea
h other, but disagree from R by t. (Noti
e that the two quantities are

the same for the 
ase q = 2.) While neither one of the two quantities are suÆ
ient for our

analysis, their sum provides good bounds.

Lower bound on S + S

0

: The following bound is shown using 
ounting arguments whi
h


onsider the worst way to pla
e a given number of di�eren
es between the C

j

's and R. Let

N

i

= jfjjC

j

(i) 6= R(i)gj =

P

j

�

j

(i) and let N

(t)

i

= jfjjC

j

(i) � R(i) � t (mod q)gj =

P

j

�

(t)

j

(i). Note that

P

i

N

i

=

P

i

P

t6=0

N

(t)

i

= mw. We 
an lower bound S as follows:

S =

X

j

1

;j

2

;i

�

j

1

(i)�

j

2

(i) =

X

i

N

2

i

�

(mw)

2

N

:

where the last inequality above follows from the fa
t that subje
t to the 
ondition

P

i

N

i

=

mw, the sum of N

i

's squared is minimized when all the N

i

's are equal. Similarly, using

P

i

P

t6=0

N

(t)

i

= mw, we lower bound S

0

as follows:

S

0

=

X

j

1

;j

2

;i

X

t6=0

�

(t)

j

1

(i)�

(t)

j

2

(i) =

X

i

X

t6=0

(N

(t)

i

)

2

�

(mw)

2

(q � 1)N

:

By adding the two lower bounds above we obtain:

S + S

0

�

(mw)

2

N

+

(mw)

2

(q � 1)N

=

q

q�1

m

2

w

2

N

: (7)

Upper bound on S + S

0

: For the upper bound we perform a 
areful 
ounting argument

using the fa
t that the C

j

's are 
odewords from an error-
orre
ting 
ode. For �xed j

1

; j

2

2

f1; : : : ; mg and t

1

; t

2

2 [q℄, let

M

(j

1

j

2

)

t

1

t

2

� jfij�

(t

1

)

j

1

(i) = �

(t

2

)

j

2

(i) = 1gj:
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For every j

1

; j

2

, we view the M

(j

1

j

2

)

t

1

t

2

's as elements of a q � q matrix M

(j

1

j

2

)

. Now, S and S

0


an be expressed as sums of some of the elements of the matri
esM

(j

1

j

2

)

. Summing over the

(q � 1)� (q � 1) minors of all the matri
es we get:

S =

X

j

1

;j

2

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

and summing the diagonal elements of M

(j

1

j

2

)

over all j

1

j

2

, we get

S

0

=

X

j

1

j

2

X

t6=0

M

(j

1

j

2

)

tt

:

We start by upper bounding the internal sum above for �xed pair (j

1

; j

2

), j

1

6= j

2

. Sin
e

the C

j

's are 
odewords from an [N;K;D℄

q


ode we have R

j

1

(i) = R

j

2

(i) for at most N �D

values of i, so

X

t6=0

M

(j

1

j

2

)

tt

� N �D �M

(j

1

j

2

)

00

= 
N �M

(j

1

j

2

)

00

:

Note that the sum of the values of all elements of M

(j

1

j

2

)

equals N , and N � w

j

1

(resp.

N�w

j

2

) is equal to the sum of the values of the 0

th


olumn (resp. row) ofM

(j

1

j

2

)

. To bound

the remaining term in the summation above we use in
lusion-ex
lusion as follows:

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

=

X

t

1

X

t

2

M

(j

1

j

2

)

t

1

t

2

�

X

t

1

M

(j

1

j

2

)

t

1

0

�

X

t

2

M

(j

1

j

2

)

0t

2

+M

(j

1

j

2

)

00

= N � (N � w

j

1

)� (N � w

j

2

) +M

(j

1

j

2

)

00

= w

j

1

+ w

j

2

�N +M

(j

1

j

2

)

00

:

Combining the bounds above we have (for j

1

6= j

2

)

X

t6=0

M

(j

1

j

2

)

tt

+

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

� (
N �M

(j

1

j

2

)

00

) + (w

j

1

+ w

j

2

�N +M

(j

1

j

2

)

00

)

= w

j

1

+ w

j

2

� (1� 
) �N:

(The key point above is the 
an
ellation of M

(j

1

j

2

)

00

.) Observe that if j

1

= j

2

= j, then the

quantity

P

t

1

6=0

P

t

2

6=0

M

(jj)

t

1

t

2

=

P

t6=0

M

(jj)

tt

= w

j

.

We now 
ombine the bounds above as follows:

S + S

0

=

X

j

0

�

X

t6=0

M

(jj)

tt

+

X

t

1

6=0

X

t

2

6=0

M

(jj)

t

1

t

2

1

A

+

X

j

1

6=j

2

0

�

X

t6=0

M

(j

1

j

2

)

tt

+

X

t

1

6=0

X

t

2

6=0

M

(j

1

j

2

)

t

1

t

2

1

A

� 2

X

j

w

j

+

X

j

1

6=j

2

(w

j

1

+ w

j

2

� (1� 
)N)

= 2m

2

w �m(m� 1)(1� 
)N:

Thus, we get:

S + S

0

� (2w � (1� 
) �N) �m

2

+ (1� 
) �N �m: (8)
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Putting it together: Combining (7) and (8) and letting Æ = 1� w=N , we get

m � (1� 
) �

1

(

w

N

)

2

q

q�1

+ 1� 
 � 2 �

w

N

= (1� 
) �

1

(1� Æ)

2

q

q�1

+ 1� 
 � 2(1� Æ)

:

provided (1� Æ)

2

q

q�1

+ 1� 
 � 2(1 � Æ) � 0. Let g(x)

def

=

q

q�1

x

2

� 2x + (1 � 
). Note that

g(x) is monotone de
reasing when x �

q�1

q

. Note further that

1

q

� Æ � Æ and thus we get:

m � (1� 
) �

1

g(1� Æ)

;

provided g(1 � Æ) > 0. We need to bound Æ so that g(1 � Æ) > 0. Observe �rst that

g(x) =

q

q�1

�

�

q�1

q

� x

�

2

�

�


 �

1

q

�

. Thus g(x) > 0 if

q�1

q

� x >

q

q�1

q

� (
 �

1

q

). (Note

that the expression in the square root is non-negative, sin
e 
 �

1

q

.)

9

In other words,

g(1� Æ) > 0, provided Æ >

1

q

+

r

�

1�

1

q

�

�

�


 �

1

q

�

. In this 
ase the bound obtained on m is

1�


g(1�Æ)

=

1�


q

q�1

�

(

Æ�

1

q

)

2

�

(


�

1

q

)

. This is exa
tly as 
laimed in the main part of Part (2).

We now move on to prove se
ondary bounds 
laimed in Part (2). Firstly, we show that

g(1�Æ) > 0 for Æ >

1

q

+

q


 �

1

q

. This follows immediately from the above and the inequality:

1

q

+

s


 �

1

q

>

1

q

+

v

u

u

t

 

1�

1

q

!

�

 


 �

1

q

!

:

Next, we verify that g(1� Æ) > 0 for every Æ >

p


. Let x = 1� Æ. Then 1� x = Æ >

p


.

In this 
ase we have:

g(x) =

 

1 +

1

q � 1

!

x

2

� 2x+ 1� 


= (1� x)

2

+

1

q � 1

x

2

� 


� (1� x)

2

� 


> 0

Thus g(1 � Æ) > 0 provided Æ > minf

p


;

1

q

+

q


 �

1

q

g. We now derive the 
laimed upper

bounds on m. Setting x = 1� Æ, and using g(x) � (1� x)

2

� 
, we get g(1� Æ) � Æ

2

� 
.

Thus m �

1�


g(1�Æ)

�

1�


Æ

2

�


<

1

Æ

2

�


.

9

For 
 <

1

q

, the fun
tion g is positive everywhere. However to use the inequality g(1� Æ) � g(1� Æ), we

need Æ �

1

q

. This gives the bound 
laimed in Additional Remark 2 after Theorem 15.
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4.2 The spe
ial 
ase of polynomials

Re
all that a fun
tion f : GF(q)

n

! GF(q) may be viewed as a string of length q

n

with

letters from the set [q℄. Viewed in this way we get the following 
onstru
tion of a 
ode using

multivariate polynomials. These 
odes are known as Reed-Muller 
odes in the 
oding theory

literature.

Proposition 16 The 
olle
tion of degree d polynomials in n variables over GF(q) form an

[N;K;D℄

q


ode, for N = q

n

, K =

�

n+d

d

�

and D = (q � d) � q

n�1

.

Proof: The parameters N and K follow by de�nition. The distan
e bound D is equivalent

to the well-known fa
t [10, 38, 44℄ that two degree d (multivariate) polynomials over GF(q)

may agree in at most d=q fra
tion of the inputs.

Combining Theorem 15 with Proposition 16 (and using 
 =

d

q

in the theorem), we get

the following upper bound on the number of polynomials with Æ agreement with an arbitrary

fun
tion.

Theorem 17 Let Æ > 0 and f : GF(q)

n

! GF(q). Suppose that p

1

; : : : ; p

m

: GF(q)

n

!

GF(q) are distin
t degree d polynomials that satisfy Pr

x2GF(q)

n

[f(x) = p

i

(x)℄ � Æ, for all

i 2 f1; : : : ; mg. Then the following bounds hold:

1. If Æ >

q

2 +

d

4q

�

q

d

q

�

d

2q

then m <

2

Æ+

d

2q

.

In parti
ular, if Æ >

q

2d=q then m < 2=Æ.

2. If Æ >

1+

p

(d�1)(q�1)

q

then m �

(q�d)(q�1)

q

2

�

1

(

Æ�

1

q

)

2

�

(q�1)(d�1)

q

2

.

In parti
ular, if Æ > minf

q

d

q

;

1

q

+

q

d�1

q

g then m <

1

Æ

2

�(d=q)

.

We emphasize the spe
ial 
ase of linear polynomials (i.e., d = 1):

Theorem 18 Let � > 0 and f : GF(q)

n

! GF(q). Suppose that p

1

; : : : ; p

m

: GF(q)

n

!

GF(q) are distin
t linear fun
tions that satisfy Pr

x2GF(q)

n

[f(x) = p

i

(x)℄ �

1

q

+ �, for all

i 2 f1; : : : ; mg. Then m �

�

1�

1

q

�

2

�

1

�

2

�

4

�

2

.

Proof: Just substitute d = 1 and Æ =

1

q

+ � in the main part of Part (2) of Theorem 17.
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4.3 On the tightness of the upper bounds

We show that several aspe
ts of the bounds presented above are tight. We start with the

observation that Theorem 15 
an not be extended to smaller Æ without (possibly) relying on

some spe
ial properties of the 
ode.

Proposition 19 Let Æ

0

; 


0

satisfy the identity

Æ

0

=

1

q

+

v

u

u

t

 




0

�

1

q

!

�

 

1�

1

q

!

:

(9)

Then for any � > 0, and for suÆ
iently large N , there exists an [N;K;D℄

q


ode C, with

N�D

N

� 


0

+ �, a word R 2 [q℄

N

and M � 2


(�

2

N)


odewords C

1

; : : : ; C

M

2 C su
h that

�(R;C

j

) � (1� (Æ

0

� �)) �N , for every j 2 [M ℄.

Remark: The proposition above should be 
ompared against Part (2) of Theorem 15. That

part says that for Æ

0

and 


0

satisfying (9) and any [N;K;D℄

q


ode with

N�D

N

= 


0

, there

exist at most O(

1

Æ

2

0

) 
odewords at distan
e at most (1� Æ

0

) �N from any string of length N .

In 
ontrast, the proposition says that if Æ

0

is redu
ed slightly (to Æ

0

� �) and 


0

in
reased

slightly (to 


0

+ �), then there 
ould be exponentially many 
odewords at this distan
e.

Proof: The bound is proven by a standard probabilisti
 argument. The 
ode C will 
onsist

only of the 
odewords C

1

; : : : ; C

M

that will be 
lose to the string R. The 
odewords C

j

's are


hosen randomly and independently by the following pro
ess. Let p 2 [0; 1℄, to be determined

shortly.

For every 
odeword C

j

, ea
h 
oordinate is 
hosen independently as follows: With prob-

ability p it is set to be 1, and with probability 1� p it is 
hosen uniformly from f2; : : : ; qg.

The string R is simply 1

N

.

Observe that for any �xed j, the expe
ted number of 
oordinates where R and C

j

agree

is pN . Thus with probability at most 2

�
(�

2

N)

, the agreement between R and C

j

is less than

(p � �)N . It is possible to set M = 2


(�

2

N)

so that the probability that there exists su
h a

word C

j

is less than

1

2

.

Similarly the expe
ted agreement between C

i

and C

j

is

�

p

2

+

(1�p)

2

q�1

�

� N . Thus the

probability that the agreement between a �xed pair is �N larger than this number is at most

2

�
(�

2

N)

. Again it is possible to set M = 2


(�

2

N)

su
h that the probability that su
h a pair

C

i

and C

j

exists is less than

1

2

.

Thus there is a positive probability that the 
onstru
tion yields an [N;
(

�

2

N

log q

); D℄

q


ode

with

N�D

N

= p

2

+

(1�p)

2

q�1

+ �, so that all 
odewords are within a distan
e of (1� (p� �))N of

the word R. Thus, the setting Æ

0

= p and 


0

= p

2

+

(1�p)

2

q�1

would yield the proposition, on
e

it is veri�ed that this setting satis�es (9). The latter fa
t is easily veri�ed by the following

algebrai
 manipulations, starting with our setting of Æ

0

and 


0

.




0

= Æ

2

0

+

(1� Æ

0

)

2

q � 1
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,

q

q � 1

� Æ

2

0

�

2

q � 1

� Æ

0

+

1

q � 1

� 


0

= 0

, Æ

2

0

�

2

q

� Æ

0

+

1

q

�

q � 1

q

� 


0

= 0

,

 

Æ

0

�

1

q

!

2

=

 




0

�

1

q

!

�

 

1�

1

q

!

, Æ

0

=

1

q

+

v

u

u

t

 




0

�

1

q

!

�

 

1�

1

q

!

This 
on
ludes the proof.

Next we move on to the tightness of the bounds regarding polynomials. We show that

Theorem 18 is tight for Æ = O(1=q), whereas Part (1) of Theorem 17 is tight for Æ = �(1=

p

q)

and d = 1. The results below show that for a given value of Æ that meets the 
onditions of

the appropriate theorem, the value of m 
an not be made mu
h smaller.

Proposition 20 Given a prime p, and an integer k satisfying 1 < k � p=3, let Æ = k=p.

Then, there exists a fun
tion f : GF(p)! GF(p) and at least m

def

=

1

18(k�1)Æ

2

linear fun
tions

f

1

; : : : ; f

m

: GF(p) ! GF(p) su
h that jfxjf

i

(x) = f(x)gj � Æp = k, for all i 2 f1; : : : ; mg.

Furthermore, if Æ >

q

1=p then m >

1

Æ

� 1.

For Æ =

2

p

=

1

p

+ �, we get m =

1

18Æ

2

(whi
h establishes tightness of the bound m �

4

�

2

=

16

Æ

2

given in Theorem 18). For Æ =

q

2

p

+

1

p

>

q

2

p

, we get m >

1

Æ

� 1 (whi
h establishes tightness

of the bound m �

2

Æ

given for d = 1 in Part (1) of Theorem 17).

Proof: We start by 
onstru
ting a relation R � GF(p) � GF(p) su
h that jRj � p and

there exist many linear fun
tions g

1

; : : : ; g

m

su
h that jR \ f(x; g

i

(x))jx 2 GF(p)gj � k for

all i. Later we show how to transform R and the g

i

's so that R be
omes a fun
tion that still

agrees with ea
h transformed g

i

on k inputs.

Let l = bp=k
 and re
all that Æ = k=p. Noti
e l �

1

Æ

and l �

1

Æ

� 1. The relation R


onsists of the k � l � p pairs in the square f(i; j)j0 � i < k; 0 � j < lg. Let G be the set of

all linear fun
tions that agree with R in at least k pla
es. We shall show that G has size at

least 1=(18Æ

2

(k � 1)). Given non-negative integers a; b s.t. a � (k � 1) + b < l, 
onsider the

linear fun
tion g

a;b

(x) = ax + b mod p. Then, g

a;b

(i) 2 f0; : : : ; l� 1g, for ever su
h (a; b) and

i 2 f0; : : : ; k � 1g. Thus, g

a;b

(i) interse
ts R in k pla
es. Lastly, we observe that there are

at least 1=(18Æ

2

(k � 1)) distin
t pairs (a; b) s.t. a � (k � 1) + b < l: Fixing any a < l, there

are at least l� (k� 1)a� 1 possible values for b, and so that the total number of pairs is at

least

l�1

k�1

X

a=0

l � (k � 1)a� 1 =

 

l � 1

k � 1

+ 1

!

� (l � 1)� (k � 1) �

l�1

k�1

�

�

l�1

k�1

+ 1

�

2

>

(l � 1)

2

2(k � 1)
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�

(1� 2Æ)

2

2Æ

2

(k � 1)

(Using l �

1�Æ

Æ

.)

�

1

18Æ

2

(k � 1)

(Using Æ �

1

3

.)

Next, we 
onvert the relation R into a fun
tion in two stages. First we stret
h the relation

by a fa
tor of l to get a new relation R

0

. That is, R

0

def

= f(l � i; j)j(i; j) 2 Rg. We modify

the fun
tions g

a;b

2 G a

ordingly: That is, g

0

a;b

(x)

def

= g

a;b

(l

�1

� x) = (a � l

�1

)x+ b, where l

�1

is the multipli
ative inverse of l (mod p) and g

a;b

(x) = ax + b. Thus, if g

a;b

(i) = j, then

g

0

a;b

(l � i) = j, and so if (i; g

a;b

(i)) 2 R then (l � i; g

0

a;b

(l � i)) 2 R

0

. It follows that is g

a;b

agrees

with R on at least k pla
es then g

0

a;b

agrees with R

0

on at least k pla
es. Thus, letting G

0

denote the set of linear fun
tions that agree with R

0

in k pla
es, we have g

0

a;b

2 G

0

if g

a;b

2 G.

Moreover the map from G to G

0

is one-to-one (i.e., g

a;b

is mapped to g

0

a;b

� g

l

�1

�a;b

), implying

jG

0

j � jGj. (A
tually, the argument above extends to show that jG

0

j = jGj.)

We note that for all a < l (whi
h in turn is smaller than p=2), it holds that l

�1

� a6� � 1

(mod p). (This is the 
ase sin
e otherwise a � �l � p � l (mod p), in 
ontradi
tion to

a < p=2.)

Last we introdu
e a slope to R

0

, so that it be
omes a fun
tion. Spe
i�
ally, R

00

def

= f(i +

j; j)j(i; j) 2 R

0

g = f(l � i+ j; j)j(i; j) 2 Rg. Noti
e that for any two distin
t (i

1

; j

1

); (i

1

; j

2

) 2

R

00

, we have i

1

6= i

2

(sin
e i

1

= l � i

0

1

+ j

1

, i

2

= l � i

0

2

+ j

2

, and j

1

; j

2

2 f0; :::; l � 1g), and so

R

00


an be extended to a fun
tion f : GF(p) ! GF(p) (i.e., if (i; j) 2 R

00

then j = f(i)).

Now for every fun
tion g

0

(x) = a

0

x + b

0

2 G

0

, 
onsider the fun
tion g

00

(x) = a

00

x + b

00

, where

a

00

= a

0

=(1 + a

0

) and b

00

= b

0

=(1 + a

0

) (and re
alling that a

0

6� � 1 (mod p)). Observe that if

g

0

(x) = y, then

g

00

(x + y) =

a

0

1 + a

0

� (x + g

0

(x)) +

b

0

1 + a

0

=

a

0

1 + a

0

� (x + a

0

x + b

0

) +

1

1 + a

0

� b

0

= a

0

x + b

0

= y

Thus, if g

0

agrees with R

0

in at least k pla
es then g

00

agrees with R

00

in at least k pla
es (sin
e

(x; g

0

(x)) 2 R

0

implies (x + g

0

(x); g

00

(x + g

0

(x))) 2 R

00

and x

1

+ g

0

(x

1

) = (a

0

+ 1) � x

1

+ b

0

1

6=

(a

0

+ 1) � x

2

+ b

0

1

= x

2

+ g

0

(x

2

) for all x

1

6= x

2

), and hen
e g

00

agrees with f in at least k

pla
es. Again, the mapping of g

0

to g

00

is one-to-one (sin
e the system a

00

= a

0

=(1 + a

0

) and

b

00

= b

0

=(1 + a

0

) has at most one solution in (a

0

; b

0

)). Thus, if we use G

00

to denote the set of

linear fun
tions that agree with f in k pla
es, then we have jG

00

j � jG

0

j � jGj �

1

18Æ

2

(k�1)

, as

desired.

For the furthermore 
lause, observe that if Æ >

q

1=p then our setting di
tates l � 1 <

p

p < k and so

l�1

k�1

< 1. A
tually, in this 
ase we may use fg

0;b

: b = 0; :::; l � 1g in role of

G, G

0

and G

00

, and derive jGj � l �

1

Æ

� 1.

Finally we note that the bounds in Theorem 17 always require Æ to be larger than

d=q. Su
h a threshold is also ne
essary, or else there 
an be exponentially many degree

d polynomials 
lose to the given fun
tion. This is shown in the following proposition.
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Proposition 21 Let q be a prime-power, d < q and Æ =

d

q

�

d�1

q

2

. Then, there exist an

n-variate fun
tion f over GF(q), and at least q

n�1

degree d polynomials that agree with f on

at least a Æ fra
tion of the inputs.

Note that for d = 1 we have Æ =

1

q

. Also, by a minor extension of the following proof, we

may use in role of f any n-variate degree d polynomial over GF(q).

Proof: We use the all-zero fun
tion in role of f . Consider the family of polynomials having

the form

Q

d�1

i=1

(x

1

� i) �

P

n

i=2




i

x

i

, where 


2

; :::; 


n

2 GF(q). Clearly, ea
h member of this

family is a degree d polynomial and the family 
ontains q

n�1

di�erent polynomials. Now,

ea
h polynomial in the family is zero on inputs (a

1

; :::; a

n

) satisfying either a

1

2 f1; :::; (d�1)g

or

P

n

i=2




i

a

i

= 0, where the 


i

's are these spe
ifying the polynomial in the 
olle
tion. Sin
e

at least a

d�1

q

+ (1 �

d�1

q

) �

1

q

fra
tion of the inputs satisfy this 
ondition, the proposition

follows.

5 Counting: A Random Case

In this se
tion we present a bound on the number of polynomials that 
an agree with a

fun
tion f if f is 
hosen to look like a polynomial p on some domain D and random on other

points. Spe
i�
ally, for jDj � 2(d+ 1) � q

n�1

, we show that with high probability p itself is

the only polynomial that agrees with f on at least jDj (and even jDj=2) points.

Theorem 22 Let Æ �

2(d+1)

q

. Suppose that D is an arbitrary subset of density Æ in GF(q)

n

,

and p(x

1

; :::; x

n

) is a degree d polynomial. Consider a fun
tion f sele
ted as follows:

1. f agrees with p on D;

2. the value of f on ea
h of the remaining points is uniformly and independently 
hosen.

That is, for every x 2 D

def

= GF(q)

n

n D, the value of f(x) is sele
ted at random in

GF(q).

Then, with probability at least 1 � expf(n

d

log

2

q) � Æ

2

q

n�2

g, the polynomial p is the only

degree d polynomial that agrees with f on at least a Æ=2 fra
tion of the inputs.

Thus, for fun
tions 
onstru
ted in this manner, the output of our re
onstru
tion algorithm

will be a single polynomial; namely, p itself.

Proof: We use the fa
t that for two polynomials p

1

6= p

2

in GF(q)

n

, p

1

(x) = p

2

(x) on

at most d=q fra
tion of the points in GF(q)

n

[10, 38, 44℄. Thus, ex
ept for p, no other

degree d polynomial 
an agree with f on more than

d

q

� q

n

points in D. The probability

that any polynomial p

0

agrees with f on more than a

1

q

+ � fra
tion of the points in D is at

most expf��

2

q

n

g. Furthermore, in order to agree with f on more than an

Æ

2

fra
tion of all

points, p

0

must agree with f on at least

�

Æ

2

�

d

q

�

� q

n

of the points in D, and so we 
an use

� �

(Æ=2)�(d=q)

1�Æ

�

1

q

>

Æ

2

�

d+1

q

+

Æ�((Æ=2)�(d=q))

q

�

Æ

q

. Thus, the probability that there exists a

32



degree d n-variate polynomial, other than p, that agrees with f on at least an Æ=2 fra
tion

of all points is at most q

n

d

� expf�

�

Æ

q

�

2

q

n

g, and the theorem follows.

6 Hardness Results

In this se
tion we give eviden
e that the (expli
it or impli
it) re
onstru
tion problem may

be hard for some 
hoi
es of d and the agreement parameter Æ, even in the 
ase when n = 1.

We warn the reader that the problems shown to be hard does di�er in some very signi�
ant

ways from the re
onstru
tion problems 
onsidered in previous se
tions. In parti
ular, the

problems will 
onsider fun
tions and relations de�ned on some �nite subset of a large �eld,

either the �eld of rational numbers or a suÆ
iently large �eld of prime order, where the

prime is spe
i�ed in binary. The hardness results use the \large" �eld size 
ru
ially.

Furthermore, the agreement threshold for whi
h the problem is shown hard is very small.

For example, the hardness results of Se
tion 6.2, de�nes a fun
tion f : H

1

�H

2

! F , where

F is a large �eld and H

1

; H

2

are small subsets of F . In su
h a hardness result, one should


ompare the threshold Æ of agreement that is required, against

d

maxfjH

1

j;jH

2

jg

, sin
e the latter

ratio that determines the \distan
e" between two polynomials on this subset of the inputs.

Our hardness results typi
ally hold for Æ �

d+2

maxfjH

1

j;jH

2

jg

. We stress that the agreement

is measured as a fra
tion of the subset mentioned above, rather than as a fra
tion of the

n-tuples over the �eld (in 
ase it is �nite), whi
h is mu
h smaller.

6.1 NP-hardness for a variant of the univariate re
onstru
tion

problem

We de�ne the following (variant of the) interpolation problem PolyAgree:

Input: Integers d; k;m, and a set of pairs P = f(x

1

; y

1

); : : : ; (x

m

; y

m

)g su
h that 8i 2

[m℄; x

i

2 F , y

i

2 F , where F is either the �eld of rationals or a prime �eld given by its size

in binary.

10

Question: Does there exist a degree d polynomial p : F

n

! F for whi
h p(x

i

) = y

i

for at

least k di�erent i's?

We stress that the pairs in P are not required to have distin
t x-
omponents (i.e., x

i

= x

j

may hold for some i 6= j). Our result takes advantage of this fa
t.

Theorem 23 PolyAgree is NP-hard.

Remark: This result should be 
ontrasted with the results of [40, 19℄. They show that

PolyAgree is easy provided k �

p

dm, while our result shows it is hard without this 
ondition.

In parti
ular, the proof uses m = 2d+3 and k = d+2 (and so k <

p

dm). Furthermore, our

result is established using a set of pairs in whi
h x

i

= x

j

holds for some i 6= j, whereas this

never happens when given ora
le a

ess to a fun
tion (as in previous se
tions and in [40, 19℄).

10

When F is the �eld of rational numbers, the input elements are assumed to be given as a ratio of two

N -bit integers. In su
h a 
ase the input size is measured in terms of the total bit length of all inputs.
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Proof: We present the proof for the 
ase of the �eld of rational numbers only. It is easy

to verify that the proof also holds if the �eld F has prime order that is suÆ
iently large (see

parentheti
al 
omments at the end of the proof for further details.)

We redu
e from subset sum: Given integers B; a

1

; : : : ; a

`

, does there exist a subset of the

a

i

's that sum to B (without loss of generality, a

i

6= 0 for all i).

In our redu
tion we use the fa
t that degree d polynomials satisfy 
ertain interpolation

identities. In parti
ular, let �

i

= (�1)

i+1

�

d+1

i

�

for 1 � i � d + 1 and �

0

= �1. Then

P

d+1

i=0

�

i

f(i) = 0 if and only if (0; f(0)); (1; f(1)); : : : ; (d + 1; f(d + 1)) lies on a degree d

univariate polynomial.

We 
onstru
t the following instan
e of PolyAgree. Set d = l�1, m = 2d+3 and k = d+2.

Next, set x

i

 i, x

d+1+i

 i, y

i

 a

i

=�

i

, and y

d+1+i

 0 for 1 � i � d + 1. Finally, set

x

2d+3

 0 and y

2d+3

 B.

No polynomial 
an pass through both (x

i

; y

i

) = (i; a

i

=�

i

) and (x

d+1+i

; y

d+1+i

) = (i; 0) for

any i, sin
e a

i

6= 0. We show that there is a polynomial of degree d that passes through

(0; B) and one of either (i; 0) or (i; a

i

=�

i

) for ea
h 1 � i � d + 1 if and only if there is a

subset of a

1

; : : : ; a

d+1

whose sum is B.

Assume that there is a polynomial p of degree d that passes through (0; B) and one

of (i; 0) and (i; a

i

=�

i

) for ea
h 1 � i � d + 1. Let S denote the set of indi
es for whi
h

p(i) = a

i

=�

i

(and p(i) = 0 for i 2 [d+ 1℄nS). Then

0 =

d+1

X

i=0

�

i

p(i) = �

0

�B +

X

i2S

�

i

�

a

i

�

i

= �B +

X

i2S

a

i

Similarly, if there is set of indi
es S su
h that

P

i2S

a

i

= B, then we de�ne f so that f(0) = B,

f(i) = a

i

=�

i

for i 2 S and f(i) = 0 for i 2 [d + 1℄nS. Observing that

P

d+1

i=0

�

i

f(i) = 0 it

follows that there is a degree d polynomial that agrees with f on i = 0; :::; d+ 1.

(For the 
ase where F is a �nite �eld of order q, we assume that the integers B and

a

1

; : : : ; a

d+1

are all multiples of �

i

for every i. (This assumption 
an be realized easily by

multiplying all integers in the input by l
m(j�

0

j; : : : ; j�

d+1

j).) Further we pi
k q > jBj +

P

d+1

i=1

ja

i

j. The only 
hange to the proof is that the equalities in Equation (10) dire
tly hold

only modulo q. At this stage, we use the 
ondition q > jBj +

P

d+1

i=1

ja

i

j to 
on
lude that

B =

P

i2S

a

i

.)

6.2 NP-hardness of the re
onstru
tion problem for n � 2

In the above problem, we did not require that the x

i

's be distin
t. Thus this result does not

dire
tly relate to the bla
k box model used in this paper. The following result applies to our

bla
k box model for n-variate fun
tions, for any n � 2.

We de�ne a multivariate version of PolyAgree that requires that the x

i

's be distin
t. We

a
tually de�ne a parameterized family Fun
tionalPolyAgree

n

, for any n � 1.

Input: Integer d, a �eld F , a �nite subset H � F

n

, a rational number Æ, and a fun
tion

f : H ! F , given as a table of values.

Question: Does there exist a degree d polynomial p : F

n

! F for whi
h p(x) = f(x) for at

least Æ fra
tion of the x's from H?
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Theorem 24 For every n � 2, Fun
tionalPolyAgree

n

is NP-hard.

Proof: We prove the theorem for n = 2. The other 
ases follow by simply making an

instan
e where only the values of �rst two variables vary in the set H and the remaining

variables are assigned some �xed value (say 0).

The proof of this theorem builds on the previous proof. As above we redu
e from subset

sum. Given an instan
e B; a

1

; : : : ; a

l

of the subset sum problem, we set d = l � 1 and

k = 2(d + 1) and F to be the �eld of rationals. (We 
ould also work over any prime �eld

GF(p), provided p �

P

n

i=1

a

i

.) Let Æ =

d+3

2(d+2)

. We set H

1

= f0; : : : ; d + 1g, H

2

= [2k℄. and

let H = H

1

� H

2

. For i 2 H

1

we let �

i

= (�1)

i+1

�

d+1

i

�

as before. For i 2 H

1

� f0g, let

y

i

= a

i

=�

i

as before. The fun
tion f is de�ned as follows:

f(i; j) =

8

>

<

>

:

B if i = 0

y

i

if i 2 H

1

� f0g and j 2 [k℄

0 otherwise (i.e., if i 2 H

1

� f0g and j 2 fk + 1; : : : ; 2kg

This 
ompletes the spe
i�
ation of the instan
e of the Fun
tionalPolyAgree

2

problem. We

now argue that if the subset sum instan
e is satis�able then there exists a polynomial p with

agreement Æ (on inputs from H) with f . Let S 2 [l℄ be a subset su
h that

P

i2S

a

i

= B.

Then the fun
tion

p(i; j)

def

= p

0

(i)

def

=

8

>

<

>

:

B if i = 0

y

i

if i 2 S

0 if i 2 H

1

n S

is a polynomial in i of degree d (sin
e

P

d+1

i=0

�

i

p

0

(i) = �B +

P

i2S

a

i

= 0). Furthermore, p

and f agree in 2k + k(d + 1) inputs from H. In parti
ular p(0; j) = f(0; j) = B for every

j 2 [2k℄, p(i; j) = f(i; j) = y

i

if i 2 S and j 2 [k℄ and p(i; j) = f(i; j) = 0 if i 62 S and

j 2 fk + 1; : : : ; 2kg. Thus p and f agree on a fra
tion

2k+k(d+1)

2(d+2)k

=

d+3

2(d+2)

= Æ of the inputs

from H, as required.

We now argue that if the redu
tion leads to a satis�able instan
e of the Fun
tionalPolyAgree

2

problem then the subset sum instan
e is satis�able. Fix a polynomial p that has agreement

Æ with f ; i.e., p(i; j) = f(i; j) for at least 2k + k(d + 1) inputs from H. We argue �rst that

in su
h a 
ase p(i; j) = p

0

(i) for some polynomial p

0

(i) and then the proof will be similar to

that of Theorem 23. The following 
laim is 
ru
ial in this proof.

Claim 25 For any i 2 [d+ 1℄, if jfjjp(i; j) = f(i; j)gj � k, then there exists 


i

2 f0; y

i

g s.t.

p(i; j) = 


i

for every j 2 [2k℄.

Proof: Consider the fun
tion p

(i)

(j)

def

= p(i; j). p

(i)

is a degree d polynomial in j. By

hypothesis (and the de�nition of f(i; j)) we have, p

(i)

(j) 2 f0; y

i

g for k values of j 2 [2k℄.

Hen
e p

(i)

(j) = 0 for k=2 values of j or p

(i)

(j) = y

i

for k=2 values of j. In either 
ase we

have that p

(i)

, a degree d polynomial, equals a 
onstant polynomial for k=2 = d + 1 points

implying that p

(i)

is a 
onstant. That p

(i)

(j) = 


i

2 f0; y

i

g follows from the hypothesis and

de�nition of f .
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From the 
laim above it follows immediately that for any i 2 [d + 1℄, jfjjf(i; j) =

p(i; j)gj � k. Now using the fa
t that f and p agree on 2k + k(d+ 1) inputs it follows that

for every i 2 [d + 1℄, f(i; j) = p(i; j) for exa
tly k values of j; and f(0; j) = p(0; j) = B

for all values of j. Using the above 
laim again we 
on
lude that we 
an de�ne a fun
tion

p

0

(i)

def

= 


i

2 f0; y

i

g if i 2 [d + 1℄ and p

0

(0) = B su
h that p(i; j) = p

0

(i) for every (i; j) 2 H.

Furthermore p

0

(i) is a degree d polynomial, sin
e p is a degree d polynomial; and hen
e

P

d+1

i=0

�

i

p

0

(i) = 0. Letting S = fi 2 [d + 1℄jy

i

6= 0g, we get �B +

P

i2S

�

i

y

i

= 0 whi
h in

turns implies B =

P

i2S

a

i

. Thus the instan
e of the subset sum problem is satis�able. This


on
ludes the proof.

A
knowledgments

We thank Mike Kearns, Eyal Kushilevitz, Yishay Mansour, Dana Ron and Salil Vadhan for

helpful dis
ussions and 
omments.

Referen
es

[1℄ Dana Angluin and Philip Laird. Learning from noisy examples. Ma
hine Learning,

2(4):343{370, 1988.

[2℄ Dana Angluin and M�arti�n�s Krik�is. Learning with mali
ious membership queries and ex-


eptions. Pro
eedings of the Seventh Annual ACM Conferen
e on Computational Learn-

ing Theory, pages 57{66, New Brunswi
k, New Jersey, 12-15 July 1994. ACM Press.

[3℄ Sigal Ar, Ri
hard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. Re
onstru
ting al-

gebrai
 fun
tions from mixed data. SIAM Journal on Computing 28(2): 487{510, April

1999.

[4℄ Sanjeev Arora and Madhu Sudan. Improved low degree testing and its appli
ations.

Pro
eedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing,

pages 485{495, El Paso, Texas, 4-6 May 1997.

[5℄ Donald Beaver and Joan Feigenbaum. Hiding instan
es in multiora
le queries. 7th An-

nual Symposium on Theoreti
al Aspe
ts of Computer S
ien
e, volume 415 of Le
ture

Notes in Computer S
ien
e, pages 37{48, Rouen, Fran
e, 22-24 February 1990. Springer.

[6℄ Avrim Blum and Prasad Chalasani. Learning swit
hing 
on
epts. Pro
eedings of the

Fifth Annual ACM Workshop on Computational Learning Theory, pages 231-242, Pitts-

burgh, Pennsylvania, 27-29 July 1992. ACM Press.

[7℄ Avrim Blum, Merri
k Furst, Mi
hael Kearns, and Ri
hard J. Lipton. Cryptographi


primitives based on hard learning problems. In D. R. Stinson, editor, Advan
es in Cryp-

tology { CRYPTO '93, volume 773 of Le
ture Notes in Computer S
ien
e, pages 278-291,

22-26 August 1993. Springer-Verlag.

36



[8℄ Manuel Blum, Mi
hael Luby, and Ronitt Rubinfeld. Self-testing/
orre
ting with appli
a-

tions to numeri
al problems. Journal of Computer and System S
ien
es, 47(3):549{595,

De
ember 1993.

[9℄ Ri
hard Cleve and Mi
hael Luby. A note on self-testing/
orre
ting methods for trigono-

metri
 fun
tions. International Computer S
ien
e Institute Te
hni
al Report, TR-90-

032, July, 1990.

[10℄ Ri
hard A. DeMillo and Ri
hard J. Lipton. A probabilisti
 remark on algebrai
 program

testing. Information Pro
essing Letters, 7(4):193{195, June 1978.

[11℄ P. Elias. List de
oding for noisy 
hannels. 1957-IRE WESCON Convention Re
ord, Pt.

2, pages 94-104, 1957.

[12℄ Yoav Freund and Dana Ron. Learning to model sequen
es generated by swit
hing dis-

tributions. Pro
eedings of the Eighth Annual Conferen
e on Computational Learning

Theory, pages 41{50, Santa Cruz, California, ACM Press, 1995.

[13℄ Sally A. Goldman, Mi
hael J. Kearns, and Robert E. S
hapire. Exa
t identi�
ation

of read-on
e formulas using �xed points of ampli�
ation fun
tions. SIAM Journal on

Computing, 22(4):705-726, August 1993.

[14℄ Peter Gemmell, Ri
hard J. Lipton, Ronitt Rubinfeld, Madhu Sudan and Avi Wigderson.

Self-testing/
orre
ting for polynomials and for approximate fun
tions. Pro
eedings of the

Twenty Third Annual ACM Symposium on Theory of Computing, pages 32{42, New

Orleans, Louisiana, 6-8 May 1991.

[15℄ Peter Gemmell and Madhu Sudan. Highly resilient 
orre
tors for polynomials. Informa-

tion Pro
essing Letters, 43(4): 169{174, September 1992.

[16℄ Oded Goldrei
h. Foundations of Cryptography { Fragments of a Book.

Weizmann Institute of S
ien
e, February 1995. Available from the ECCC,

http://www.e


.uni-trier.de/e


/.

[17℄ Oded Goldrei
h and Leonid A. Levin. A hard-
ore predi
ate for all one-way fun
tions.

Pro
eedings of the Twenty First Annual ACM Symposium on Theory of Computing,

pages 25-32, Seattle, Washington, 15-17 May 1989.

[18℄ Oded Goldrei
h, Ronitt Rubinfeld and Madhu Sudan. Learning polynomials with

queries: The highly noisy 
ase. 36th Annual Symposium on Foundations of Computer

S
ien
e, pages 294{303, Milwaukee, Wis
onsin, 23-25 O
tober 1995. IEEE.

[19℄ Venkatesan Guruswami and Madhu Sudan. Improved de
oding of Reed-Solomon and

algebrai
-geometri
 
odes. IEEE Transa
tions on Information Theory, 45(6):1757-1767,

September 1999.

[20℄ Mi
hael Kearns. EÆ
ient noise-tolerant learning from statisti
al queries. Pro
eedings of

the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, pages 392-401,

San Diego, California, 16-18 May 1993.

[21℄ Mi
hael Kearns and Ming Li. Learning in the presen
e of mali
ious errors. SIAM Journal

on Computing, 22(4): 807{837, August 1993.

37



[22℄ Mi
hael Kearns, Yishay Mansour, Dana Ron, Ronitt Rubinfeld, Robert E. S
hapire,

and Linda Sellie. On the learnability of dis
rete distributions (extended abstra
t). Pro-


eedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, pp.

273-282, Montreal, Quebe
, Canada, 23-25 May 1994.

[23℄ Mi
hael J. Kearns, Robert E. S
hapire, and Linda M. Sellie. Toward eÆ
ient agnos-

ti
 learning (extended abstra
t). Pro
eedings of the Fifth Annual ACM Workshop on

Computational Learning Theory, pp. 341-352, Pittsburgh, Pennsylvania, ACM Press,

1992.

[24℄ Pas
al Koiran. EÆ
ient learning of 
ontinuous neural networks. Pro
eedings of the Sev-

enth Annual ACM Conferen
e on Computational Learning Theory, pages 348-355, New

Brunswi
k, New Jersey, 12-15 July 1994. ACM Press.

[25℄ Eyal Kushilevitz and Yishay Mansour. Learning de
ision trees using the Fourier spe
-

trum. SIAM Journal on Computing, 22(6):1331-1348, De
ember 1993.

[26℄ Phillip D. Laird. Learning From Good and Bad Data. Kluwer A
ademi
 Publishers,

Boston, 1988.

[27℄ Leonid A. Levin, Randomness and non-determinism. Journal of Symboli
 Logi
,

58(3):1102-1103, 1993. Also in International Congress of Mathemati
ians: Abstra
ts

of Invited Le
tures. p.155, Zuri
h, August 4, 1994.

[28℄ Ri
hard J. Lipton. New dire
tions in testing. Distributed Computing and Cryptography:

Pro
eedings of a DIMACS Workshop, J. Feigenbaum and M. Merritt (Eds.), pages 191-

202, Ameri
an Mathemati
al So
iety, Providen
e, RI, 1991.

[29℄ Wolfgang Maass. EÆ
ient agnosti
 PAC-learning with simple hypotheses. Pro
eedings

of the Seventh Annual ACM Conferen
e on Computational Learning Theory, pp. 67-75,

New Brunswi
k, New Jersey, ACM Press, 1994.

[30℄ Wolfgang Maass. Agnosti
 PAC-learning of fun
tions on analog neural nets. Pro
eedings

of the 6th 
onferen
e on Advan
es in Neural Information Pro
essing Systems, Ja
k D.

Cowan, Gerald Tesauro, and Joshua Alspe
tor (Eds.), pp. 311{318, Morgan Kaufmann

Publishers, In
., 1994.

[31℄ Floren
e J. Ma
Williams and Neil J. A. Sloane. The Theory of Error-Corre
ting Codes.

North-Holland, Amsterdam, 1981.

[32℄ Yishay Mansour. Randomized interpolation and approximation of sparse polynomials.

SIAM Journal on Computing, 24(2):357{368, April 1995.

[33℄ Dana Ron and Ronitt Rubinfeld. Learning fallible deterministi
 �nite automata. Ma-


hine Learning, 18(2/3):149-185, Kluwer A
ademi
 Publishers, Boston, 1995.

[34℄ Ronitt Rubinfeld. On the robustness of fun
tional equations. SIAM Journal on Com-

puting, 28(6):1972{1997, De
ember 1999.

[35℄ Ronitt Rubinfeld and Madhu Sudan. Robust 
hara
terizations of polynomials with ap-

pli
ations to program testing. SIAM Journal on Computing, 25(2):252{271, April 1996.

38



[36℄ Yasubumi Sakakibara. On learning from queries and 
ounterexamples in the presen
e

of noise. Information Pro
essing Letters, 37(5):279{284, 14 Mar
h 1991.

[37℄ Yasubumi Sakakibara and Rani Siromoney. A noise model on learning sets of strings.

Pro
eedings of the Fifth Annual ACM Workshop on Computational Learning Theory,

pp. 295{302, Pittsburgh, Pennsylvania, 27-29 July 1992. ACM Press.

[38℄ J. T. S
hwartz. Fast probabilisti
 algorithms for veri�
ation of polynomial identities.

Journal of the ACM, 27(4):701{717, O
tober 1980.

[39℄ Robert Sloan. Types of noise in data for 
on
ept learning (extended abstra
t). Pro
eed-

ings of the 1988 Workshop on Computational Learning Theory, pp. 91-96, MIT, ACM

Press, 1988.

[40℄ Madhu Sudan. De
oding of Reed Solomon 
odes beyond the error-
orre
tion bound.

Journal of Complexity, 13(1): 180{193, Mar
h 1997.

[41℄ Leslie G. Valiant. Learning disjun
tions of 
onjun
tions. Pro
eedings of the 9th Inter-

national Joint Conferen
e on Arti�
ial Intelligen
e, pp. 560{566, Morgan Kau�man

Publishers, 1985.

[42℄ Hal Wasserman. Re
onstru
ting randomly sampled multivariate polynomials from

highly noisy data. Pro
eedings of the Ninth Annual ACM-SIAM Symposium on Dis-


rete Algorithms, pages 59{67, San Fran
is
o, California, 25-27 January 1998.

[43℄ Lloyd R. Wel
h and Elwyn R. Berlekamp. Error 
orre
tion of algebrai
 blo
k 
odes. US

Patent, Number 4,633,470, De
ember 30, 1986.

[44℄ Ri
hard E. Zippel. Probabilisti
 algorithms for sparse polynomials. Pro
eedings of EU-

ROSAM '79: International Symposium on Symboli
 and Algebrai
 Manipulation, E. Ng

(Ed.), Le
ture Notes in Computer S
ien
e, vol. 72, pp. 216{226, Springer 1979.

[45℄ Ri
hard E. Zippel. Interpolating polynomials from their values. Journal of Symboli


Computation, 9(3):375{403, Mar
h 1990.

[46℄ Ri
hard E. Zippel. E�e
tive Polynomial Computation. Kluwer A
ademi
 Publishers,

Boston, 1993.

39


