
Approximating the Minimum Spanning Tree

Weight in Sublinear Time

Bernard Chazelle

�

Ronitt Rubinfeld

y

Lua Trevisan

z

Abstrat

We present a probabilisti algorithm that, given a onneted graph G

(represented by adjaeny lists) of maximum degree d, with edge weights

in the set f1; : : : ; wg, and given a parameter 0 < " < 1=2, estimates in

time O(dw�

�2

log

w

�

) the weight of the minimum spanning tree of G with a

relative error of at most ". Note that the running time does not depend on

the number of verties in G. We also prove a nearly mathing lower bound

of
(dw�

�2

) on the probe and time omplexity of any approximation

algorithm for MST weight.

The essential omponent of our algorithm is a proedure for estimat-

ing in time O(d"

�2

log "

�1

) the number of onneted omponents of an

unweighted graph to within an additive error of �n. The time bound

is shown to be tight up to within the log "

�1

fator. Our onneted-

omponents algorithm piks O(1=�

2

) verties in the graph and then grows

\loal spanning trees" whose sizes are spei�ed by a stohasti proess.

From the loal information olleted in this way, the algorithm is able

to infer, with high on�dene, an estimate of the number of onneted

omponents. We then show how estimates on the number of omponents

in various subgraphs of G an be used to estimate the weight of its MST.

1 Introdution

Traditionally, a linear time algorithm has been held as the gold standard of

eÆieny. In a wide variety of settings, however, large data sets have beome

inreasingly ommon, and it is often desirable and sometimes neessary to �nd

very fast algorithms whih an assert nontrivial properties of the data in sub-

linear time.

One diretion of researh that has been suggested is that of property test-

ing [15, 8℄, whih relaxes the standard notion of a deision problem. Property

testing algorithms distinguish between inputs that have a ertain property and

�

hazelle�s.prineton.edu. Prineton University and NEC Researh Institute, Prine-

ton, NJ. Part of this researh was supported by NSF grant CCR-99817 and ARO Grant

DAAH04-96-1-0181.

y

ronitt�researh.nj.ne.om. NEC Researh Institute, Prineton, NJ.

z

lua�ees.berkeley.edu. U.C. Berkeley, Berkeley, CA.

1

those that are far (in terms of Hamming distane, or some other natural dis-

tane) from having the property. Sublinear and even onstant time algorithms

have been designed for testing various algebrai and ombinatorial properties

(see [14℄ for a survey). Property testing an be viewed as a natural type of ap-

proximation problem and, in fat, many of the property testers have led to very

fast, even onstant time, approximation shemes for the assoiated problem (f.

[8, 6, 7, 1℄). For example, one an approximate the value of a maximum ut in

a dense graph in time 2

O(�

�3

log 1=�)

, with relative error at most ", by looking at

only O(�

�7

log 1=�) loations in the adjaeny matrix [8℄. Note that typially

suh shemes approximate the value of the optimal solution, here the size of a

maxut, without omputing the struture that ahieves it, i.e., the atual ut.

Sometimes, however, a solution an also be onstruted in linear or near-linear

time.

In this paper, we onsider the problem of �nding the weight of the min-

imum spanning tree (MST) of a graph. Finding the MST of a graph has a

long and interesting history [3, 10, 12℄. Currently the best known deterministi

algorithm of Chazelle [2℄ runs in O(m�(m;n)) time, where n (resp. m) is the

number of verties (resp. edges) and � is inverse-Akermann, and the random-

ized algorithm of Karger, Klein and Tarjan [11℄ runs in linear expeted time

(see also [5, 13℄ for alternative models).

In this paper, we show that there are onditions under whih it is possible to

approximate the weight of the MST of a onneted graph in time sublinear in the

number of edges. We give an algorithm whih approximates the MST of a graph

G to within a multipliative fator of 1+ � and runs in time O(dw�

�2

log

w

�

) for

any G with max degree d and edge weights in the set f1; : : : ; wg. The relative

error " (0 < " < 1=2) is spei�ed as an input parameter. Note that if d and "

are onstant and the ratios of the edge weights are bounded, then the algorithm

runs in onstant time. We also extend our algorithm to the ase where G has

nonintegral weights in the range [1; w℄, ahieving a omparable runtime with a

somewhat worse dependene on �.

Our algorithm onsiders several auxiliary graphs: If G is the weighted graph,

let us denote by G

(i)

the subgraph of G that ontains only edges of weight at

most i. We estimate the number of onneted omponents in eah G

(i)

. To do

so, we sample uniformly at random O(1=�

2

) verties in G

(i)

, and then estimate

the size of the omponent that ontains eah sampled vertex by onstruting

\loal trees" of some appropriate size de�ned by a random proess. Based

on information about these loal trees, we an produe a good approximation

for the weight of the MST of G. Our algorithm for estimating the number of

onneted omponents in a graph runs in time O(d"

�2

log "

�1

) and produes an

estimate that is within an additive error of �n of the true ount. The method is

based on a similar priniple as the property tester for graph onnetivity given

by Goldreih and Ron [9℄.

We give a lower bound of
(dw=�

2

) on the time omplexity of any algorithm

whih approximates the MST weight. In order to prove the lower bound, we give

two distributions on weighted graphs, where the support set of one distribution

2

ontains graphs with MST weight at least 1 + � times the MST weight of the

graphs in the support of the other distribution. We show that any algorithm that

reads o(dw=�

2

) weights from the input graph is unlikely to distinguish between

graphs from the two distributions. We also prove a lower bound of O(d="

2

)

on the running time of any approximation algorithm for ounting onneted

omponents.

2 Estimating the Number of Conneted Com-

ponents

We begin with the problem of estimating the number of omponents in an

arbitrary graph G. We present an algorithm whih gives an additive estimate

of the number of omponents in G to within �n in O(d�

�2

log �

�1

) time, for any

0 < " < 1=2. We later show how to use the ideas from our algorithm to aid in

estimating the weight of the MST of a graph.

Let be the number of onneted omponents in G. Let n

u

be the number

of verties in u's omponent in G. Our algorithm is built around a simple

observation:

Fat 1 Given a graph with vertex set V , for every onneted omponent I � V ,

P

u2I

1

n

u

= 1 and

P

u2V

1

n

u

= .

Our strategy is to estimate by approximating eah summand 1=n

u

. Com-

puting n

u

diretly an take linear time, so we onstrut an estimator of the

quantity 1=n

u

that has the same expeted value. We approximate the number

of onneted omponents via the algorithm given in Figure 1. The parameter

W is a threshold value, whih is set to 2=" for ounting onneted omponents

and somewhat higher for its use in MST weight estimation.

In the algorithm, doubling the number of verties does not inlude dupliate

visits to the same verties; in other words, at eah step the number of new

verties visited is supposed to math the number of verties already visited. In

our terminology, the �rst step of the BFS (shorthand for breadth �rst searh)

involves the visit of the single vertex u

i

. We now bound the expetation and

variane of the estimator �

i

for a �xed i. If the BFS from u

i

ompletes, the

number of oin ips assoiated with it is dlogn

u

i

e and the number of distint

verties visited is n

u

i

. Let S denote the set of verties in omponents of size

< W . If u

i

62 S, then �

i

= 0; otherwise, it is 2

dlogn

u

i

e

=n

u

i

with probability

2

�dlogn

u

i

e

and 0 otherwise. Sine �

i

< 2, the variane of �

i

is:

var�

i

� E�

2

i

� 2E�

i

=

2

n

X

u2S

1

n

u

�

2

n

:

Then the variane of ̂ is bounded by

var ̂ = var

�

n

r

X

i

�

i

�

=

n

2

r

2

� r � var �

i

�

2n

r

: (1)

3

approx-number-onneted-omponents(G; �;W)

uniformly hoose r = O(1=�

2

) verties u

1

; : : : ; u

r

for eah vertex u

i

,

set �

i

= 0

take the first step of a BFS from u

i

(*) flip a oin

if heads and number of verties visited in BFS < W

then resume BFS to double number of visited verties

if this allows BFS to omplete

then set �

i

= 2

#oinflips

=#verties visited in BFS

else go to (*)

output ̂ =

n

r

P

r

i=1

�

i

Figure 1: Estimating the number of onneted omponents

Sine the number of omponents with verties not in S is at most n=W , we have

that

�

n

W

� E ̂ =

X

u2S

1

n

u

� :

If we set W = 2=�, then

�

�n

2

� E ̂ � (2)

and, by Chebyshev,

Prob[ĵ�E ̂j > �n=2 ℄ <

var ̂

(�n=2)

2

�

8

�

2

rn

: (3)

Choosing r = O(1=�

2

) ensures that with onstant probability arbitrarily

lose to 1, our estimate ̂ of the number of onneted omponents deviates from

the atual value by at most �n.

The expeted number of verties visited in a given exeution of the \for

loop" is O(logW), and eah newly visited vertex inurs a ost of O(d), so the

algorithm runs in expeted time O(d�

�2

logW). For our setting of W , this is

O(d�

�2

log �

�1

). As stated, the algorithm's running time is randomized. How-

ever, one an get a deterministi running time bound by stopping the algorithm

after Cd�

�2

log �

�1

steps and outputting 0 if the algorithm has not yet termi-

nated. This event ours with probability at most O(1=C), whih is a negligible

addition to the error probability. Thus we have the following theorem:

Theorem 2 Let be the number of omponents in a graph with n verties. Then

Algorithm approx-number-onneted-omponents runs in time O(d�

�2

log �

�1

)

and with probability at least 3=4 outputs ̂ suh that j� ̂j � �n.

4

We an improve the running time to O(("+=n)d�

�2

log �

�1

), whih is muh

better for small values of . First, run the algorithm for r = O(1="). By

Chebyshev and (1, 2),

Prob

h

ĵ�E ̂j >

E ̂+ �n

2

i

<

8n

r(+ "n=2)

2

�

8n

r(+ �n=2)

;

whih is arbitrarily small for r" large enough. Next, we use this approximation

̂ to \improve" the value of r. We set r = A=" + Â=("

2

n) for some large

enough onstant A and we run the algorithm again, with the e�et of produing

a seond estimate

�

. By (2, 3),

Prob[j

�

�E

�

j > �n=2 ℄ <

8

�

2

rn

�

16

A"n+AE ̂

�

16

A

;

and so with overwhelming probability, our seond estimate

�

of the number of

onneted omponents deviates from by at most �n. The running time of this

new algorithm is O((" + =n)d�

�2

log �

�1

).

3 Approximating the Weight of an MST

In this setion we present an algorithm for approximating the value of the MST

in bounded weight graphs. We are given a onneted graph G with maximum

degree d and with eah edge is assigned an integer weight between 1 and w.

We assume that G is represented by adjaeny lists or, for that matter, any

representation that allows one to aess all edges inident to a given vertex in

O(d) time. We show how to approximate the weight of the minimum spanning

tree of G with a relative error of at most �.

In Setion 3.1 we give a new way to haraterize the weight of the MST in

terms of the number of onneted omponents in subgraphs of G. In Setion

3.2 we give the main algorithm and its analysis. Finally, Setion 3.3 addresses

how to extend the algorithm to the ase where G has nonintegral weights.

3.1 MST Weight and Conneted Components

We redue the omputation of the MST weight to ounting onneted ompo-

nents in various subgraphs of G. To motivate the new haraterization, onsider

the speial ase when G has only edges of weight 1 or 2 (i.e., w = 2). Let G

(1)

be the subgraph of G onsisting preisely of the edges of weight 1, and let n

1

be its number of onneted omponents. Then, any MST in G must ontain

exatly n

1

� 1 edges of weight 2, with all the others being of weight 1. Thus,

the weight of the MST is exatly n�2+n

1

. We easily generalize this derivation

to any w.

For eah 0 � ` � w, let G

(`)

denote the subgraph of G onsisting of all the

edges of weight at most `. De�ne

(`)

to be the number of onneted omponents

in G

(`)

(with

(0)

de�ned to be n). By our assumption on the weights,

(w)

= 1.

Let M(G) be the weight of the minimum spanning tree of G. Using the above

quantities, we give an alternate way of omputing the value of M(G):

5

approx-MST-weight(G; �)

For i = 1; : : : ; w � 1

̂

(i)

= approx-number-onneted-omponents(G

(i)

; �; 2w=�)

output v̂ = n� w +

P

w�1

i=1

̂

(i)

Figure 2: Approximating the weight of the MST

Claim 3 For integer w � 2,

M(G) = n� w +

w�1

X

i=1

(i)

:

Proof: Let �

i

be the number of edges of weight i in an MST of G. (Note that �

i

is independent of whih MST we hoose [4℄.) Observe that for all 0 � ` � w�1,

P

i>`

�

i

=

(`)

� 1, therefore

M(G) =

w

X

i=1

i�

i

=

w�1

X

`=0

w

X

i=`+1

�

i

= �w +

w�1

X

`=0

(`)

= n� w +

w�1

X

i=1

(i)

:

2

Thus, omputing the number of onneted omponents allows us to ompute

the weight of the MST of G.

3.2 The Main Algorithm

Our algorithm approximates the value of the MST by estimating eah of the

(`)

's. The algorithm is given in Figure 2.

Theorem 4 Let v be the weight of the MST of G. Algorithm approx-mst-weight

runs in time O(dw�

�2

log

w

�

) and outputs a value v̂ that, with probability at least

3/4, di�ers from v by at most "v.

Proof: Let =

P

w�1

i=1

(i)

. Sine we all approx-number-onneted-omponents

with parameter W = 2w=�, (1, 2) beome

(i)

�

�n

2w

� E ̂

(i)

�

(i)

and var ̂

(i)

�

2n

(i)

r

:

By summing over i, it follows that � �n=2 � E ̂ � and var ̂ � 2n=r.

Choosing r�

2

large enough, by Chebyshev we have

Prob[ĵ�E ̂j > (n� w +)�=3 ℄ <

18n

r�

2

(n� w +)

2

;

6

whih is arbitrarily small sine we may assume that w=n is suÆiently small

(else we might as well ompute the MST expliitly, whih an be done in O(dn)

time [11℄). It follows that, with high probability, the error on the estimate

satis�es

jv � v̂j = j� ̂j �

"n

2

+

"(n� w +)

3

� "v:

Sine the expeted running time of eah all to approx-number-onneted-ompo-

nents is O(dr logw=�), the total running time is O(dw�

�2

log

w

�

). As before, the

running time an be made deterministi by stopping exeution of the algorithm

after Cdw�

�2

log

w

�

steps for some appropriately hosen onstant C. 2

3.3 Nonintegral Weights

Suppose the weights of G are all in the range [1; w℄, but are not neessarily

integral. To extend the algorithm to this ase, one an multiply all the weights

by 1=� and round eah weight to the nearest integer. Then one an run the

above algorithm with error parameter �=2 and with a new range of weights

[1; dw=�e℄ to get a value v. Finally, output �v. The relative error introdued by

the rounding is at most �=2 per edge in the MST, and hene "=2 for the whole

MST, whih gives a total relative error of at most ". The runtime of the above

algorithm is O(dw�

�3

log

w

"

).

4 Lower Bounds

We prove that our algorithms for estimating the MST weight and ounting

onneted omponents are essentially optimal.

Theorem 5 Any probabilisti algorithm for approximating, with relative er-

ror ", the MST weight of a onneted graph with max degree d and weights in

f1; : : : ; wg requires
(dw�

�2

) edge weight lookups on average. It is assumed that

w > 1 and C

p

w=n < " < 1=2, for some large enough onstant C.

We an obviously assume that w > 1, otherwise the MST weight is always

n � 1 and no work is required. The lower bound on " is nonrestritive sine

we an always ompute the MST exatly in O(dn) time, whih is O(dw�

�2

) for

" = O(

p

w=n).

Theorem 6 Given a graph with n verties, any probabilisti algorithm for ap-

proximating the number of onneted omponents with an additive error of "n

requires
(d�

�2

) edge lookups on average. It is assumed that C=

p

n < " < 1=2,

for some large enough onstant C.

Again, note that the lower bound on " is nonrestritive sine we an always

solve the problem exatly in O(dn) time.

Both proofs revolve around the diÆulty of distinguishing between two

nearby distributions. For any 0 < q < 1=2 and s = 0; 1, let D

s

q

denote the

7

distribution indued by setting a 0/1 random variable to 1 with probability

q

s

= q(1 + (�1)

s

"). We de�ne a distribution D on n-bit strings as follows: (1)

pik s = 1 with probability 1=2 (and 0 else); (2) then draw a random string

from D

s

q

(by hoosing eah b

i

from D

s

q

independently). Consider a probabilisti

algorithm that, given aess to suh a random bit string, outputs an estimate

on the value of s. How well an it do?

Lemma 7 Any probabilisti algorithm that an guess the value of s with a prob-

ability of error below 1=4 requires
("

�2

=q) bit lookups on average.

Proof: By Yao's minimax priniple, we may assume that the algorithm is

deterministi and that the input is distributed aording to D. It is intuitively

obvious that any algorithm might as well san b

1

b

2

� � � until it deides it has

seen enough to produe an estimate of s. In other words, there is no need to be

adaptive in the hoie of bit indies to probe (but the running time itself an

be adaptive). To see why is easy. An algorithm an be modeled as a binary

tree with a bit index at eah node and a 0=1 label at eah edge. An adaptive

algorithm may have an arbitrary set of bit indies at the nodes, although we

an assume that the same index does not appear twie along any path. Eah

leaf is naturally assoiated with a probability, whih is that of a random input

from D following the path to that leaf. The performane of the algorithm is

entirely determined by these probabilities and the orresponding estimates of s.

Beause of the independene of the random b

i

's, we an relabel the tree so that

eah path is a pre�x of the same sequene of bit probes b

1

b

2

� � �. This oblivious

algorithm has the same performane as the adaptive one.

We an go one step further and assume that the running time is the same for

all inputs. Let t

�

be the expeted number of probes, and let 0 < � < 1 be a small

onstant. With probability at most �, a random input takes time � t

def

= t

�

=�.

Suppose that the pre�x of bits examined by the algorithm is b

1

� � � b

u

. If u < t,

simply go on probing b

u+1

� � � b

t

without hanging the outome. If u > t, then

stop at b

t

and output s = 1. Thus, by adding � to the probability of error, we

an assume that the algorithm onsists of looking up b

1

� � � b

t

regardless of the

input string.

Let p

s

(b

1

� � � b

t

) be the probability that a random t-bit string hosen from

D

s

q

is equal to b

1

� � � b

t

. The probability of error satis�es

p

err

�

1

2

X

b

1

���b

t

min

s

p

s

(b

1

� � � b

t

):

Obviously, p

s

(b

1

� � � b

t

) depends only on the number of ones in the string, so if

p

s

(k) denotes the probability that b

1

+ � � �+ b

t

= k, then

p

err

�

1

2

t

X

k=0

min

s

p

s

(k): (4)

By the normal approximation of the binomial distribution,

p

s

(k)!

1

p

2�tq

s

(1� q

s

)

e

�

(k�tq

s

)

2

2tq

s

(1�q

s

)

;

8

as t ! 1. This shows that p

s

(k) =
(1=

p

qt) over an interval I

s

of length

(

p

qt) entered at tq

s

. If qt"

2

is smaller than a suitable onstant

0

, then

jtq

0

� tq

1

j is small enough that I

0

\ I

1

is itself an interval of length
(

p

qt);

therefore p

err

=
(1). This shows that if the algorithm runs in expeted time

0

"

�2

=q, for some onstant

0

> 0 small enough, then it will fail with probability

at least some absolute onstant. By setting � small enough, we an make that

onstant larger than 2�. This means that, prior to uniformizing the running

time, the algorithm must still fail with probability �.

Note that by hoosing

0

small enough, we an always assume that � > 1=4.

Indeed, suppose by ontradition that even for an extremely small

1

, there is

an algorithm that runs in time at most

1

"

�2

=q and fails with probability � 1=4.

Then run the algorithm many times and take a majority vote. In this way we

an bring the failure probability below � for a suitable

1

=

1

(�;

0

) <

0

, and

therefore reah a ontradition. This means that an expeted time lower than

"

�2

=q by a large enough onstant fator auses a probability of error at least

1=4. 2

Proof (Theorem 6): Consider the graph G onsisting of a simple yle of n

verties v

1

; : : : ; v

n

. Pik s 2 f0; 1g at random and take a random n-bit string

b

1

� � � b

n

with bits drawn independently from D

s

1=2

. Next, remove from G any

edge (v

i

; v

i+1 mod n

) if b

i

= 0. Beause " > C=

p

n, the standard deviation of

the number of omponents, whih is �(

p

n), is suÆiently smaller than "n so

that with overwhelming probability any two graphs derived from D

0

1=2

and D

1

1=2

di�er by more than "n=2 in their numbers of onneted omponents. That

means that any probabilisti algorithm that estimates the number of onneted

omponents with an additive error of "n=2 an be used to identify the orret

s. By Lemma 7, this requires
("

�2

) edge probes into G on average. Replaing

" by 2" proves Theorem 6 for graphs of degree d = 2. For arbitrary d, we may

simply add d � 2 loops to eah vertex. Eah linked list thus onsists of two

\yle" pointers and d�2 \loop" ones. If we plae the yle pointers at random

among the loop ones, then it takes
(d) probes on average to hit a yle pointer.

If we single out the probes involving yle pointers, it is not hard to argue that

the probes involving yle pointers are, alone, suÆient to solve the onneted

omponents problem on the graph deprived of its loops: one expets at most

O(T=d) suh probes and therefore T =
(d"

�2

). 2

Proof (Theorem 5): Again we begin with the ase d = 2. The input graph G

is a simple path of n verties. Pik s 2 f0; 1g at random and take a random

(n � 1)-bit string b

1

� � � b

n�1

with bits drawn independently from D

s

q

, where

q = 1=w. Assign weight w (resp. 1) to the i-th edge along the path if b

i

= 1

(resp. 0). The MST of G has weight n�1+(w�1)

P

b

i

, and so its expetation

is �(n). Also, note that the di�erene � in expetations between drawing from

D

0

q

or D

1

q

is �("n).

Beause " > C

p

w=n, the standard deviation of the MST weight, whih is

�(

p

nw), is suÆiently smaller than � that with overwhelming probability any

9

two graphs derived from D

0

q

and D

1

q

di�er by more than �=2 in MST weight.

Therefore, any probabilisti algorithm that estimates the weight with a relative

error of "=D, for some large enough onstant D, an be used to identify the

orret s. By Lemma 7, this means that
(w"

�2

) probes into G are required

on average.

For d > 2, simply join eah vertex in the yle to d � 2 others (say, at

distane > 2 to avoid introduing multiple edges) and, as usual, randomize the

ordering in eah linked list. Assign weight w + 1 to the new edges. (Allowing

the maximum weight to be w + 1 instead of w has no inuene on the lower

bound we are aiming for.) Clearly none of the new edges are used in the MST,

so the problem is the same as before, exept that we now have to �nd our way

amidst d� 2 spurious edges, whih takes the omplexity to
(dw"

�2

). 2

5 Open Questions

It is natural to ask what an be done if the max degree restrition is lifted. We

have made some progress on the ase of graphs of bounded mean degree. Our

algorithm for the ase of nonintegral weights requires extra time. Is this ne-

essary? Can the ideas in this paper be extended to �nding maximum weighted

independent sets in general matroids? There are now a small number of exam-

ples of approximation problems that an be solved in sublinear time; what other

problems lend themselves to sublinear approximation shemes? More generally,

it would be interesting to gain a more global understanding of what an and

annot be approximated in sublinear time.

Referenes

[1℄ Alon, N., Dar, S., Parnas, M., Ron, D., Testing of lustering, Pro. FOCS,

2000.

[2℄ Chazelle, B., A minimum spanning tree algorithm with inverse-Akermann

type omplexity, J. ACM, 47 (2000), 1028{1047.

[3℄ Chazelle, B., The Disrepany Method: Randomness and Complexity, Cam-

bridge University Press, 2000.

[4℄ Eppstein, D., Representing all minimum spanning trees with appliations

to ounting and generation, Teh. Rep. 95-50, ICS, UCI, 1995.

[5℄ Fredman, M.L., Willard, D.E. Trans-dihotomous algorithms for minimum

spanning trees and shortest paths, J. Comput. and System Si., 48 (1993),

424{436.

[6℄ Frieze, A., Kannan, R. Quik approximation to matries and appliations,

Combinatoria, 19 (1999).

10

[7℄ Frieze, A., Kannan, R., Vempala, S., Fast monte-arlo algorithms for �nd-

ing low-rank approximations, Pro. 39th FOCS (1998).

[8℄ Goldreih, O., Goldwasser, S., Ron, D., Property testing and its onnetion

to learning and approximation, Pro. 37th FOCS (1996), 339{348.

[9℄ Goldreih, O., Ron, D., Property testing in bounded degree graphs, Pro.

29th STOC (1997), 406{415.

[10℄ Graham, R.L., Hell, P. On the history of the minimum spanning tree prob-

lem, Ann. Hist. Comput. 7 (1985), 43{57.

[11℄ Karger, D.R., Klein, P.N, Tarjan, R.E., A randomized linear-time algorithm

to �nd minimum spanning trees, J. ACM, 42 (1995), 321{328.

[12℄ Ne�set�ril, J. A few remarks on the history of MST-problem, Arhivum Math-

ematium, Brno 33 (1997), 15{22. Prelim. version in KAM Series, Charles

University, Prague, No. 97{338, 1997.

[13℄ Pettie, S., Ramahandran, V. An optimal minimum spanning tree algo-

rithm, Pro. 27th ICALP (2000).

[14℄ Ron, D., Property testing (a tutorial), to appear in \Handbook on Ran-

domization."

[15℄ Rubinfeld, R., Sudan, M., Robust haraterizations of polynomials with

appliations to program testing, SIAM J. Comput. 25 (1996), 252{271.

11

