
Interactive Proofs with Space

Bounded Provers

Ronitt Rubinfeld ∗

Department of Computer Science
Princeton University
Princeton, NJ 08544

Joe Kilian †

NEC Research Institute
Princeton, NJ 08540

May 2, 2009

Abstract

Recent results in interactive proof systems [?][?] [?] seem to indicate that it is
easier for a prover in a single prover interactive proof system to cheat the verifier
than it is for a prover in a multiple prover interactive proof system. We show that
this is not the case for a single prover in which all but a fixed polynomial of the
prover’s space is erased between each round. One consequence of this is that any
multiple prover interactive protocol in which the provers need only a polynomial
amount of space can be easily transformed into a single prover interactive proto-
col where the prover has only a fixed polynomial amount of space. This result
also shows that one can easily transform checkers [?] into adaptive checkers [?] un-
der the assumption that the program being checked has space bounded by a fixed
polynomial.

1 Introduction

Recent results in complexity theory have shown that IP=PSPACE [?][?] and that MIP=NEXPTIME
[?]. This gives reason to believe that there is a significant difference in the power of a sin-
gle prover interactive proof system versus the power of multiple prover interactive proof
systems, i.e. that since the multiple provers are constrained to be consistent with each

∗Supported by DIMACS, NSF-STC88-09648.
†Supported by an NSF fellowship while at MIT.

1

other, they cannot cheat the verifier as easily, and thus more difficult languages can have
such proof systems. It has been shown that the same set of languages is accepted by the
following three types of interactive proof systems: multiple prover systems, single prover
systems where the prover is constrained to answer according to functions that are fixed
in advance, and single prover systems in which the memory of the prover gets wiped out
between each question (i.e. the prover has no memory of the conversation) [?][?].

One might conjecture that allowing the prover in a single prover system to have
partial memory of the conversation could increase his ability to cheat substantially, thus
decreasing the power of the system. We show that this is not the case: that if there
is an interactive protocol against a prover that does not remember anything between
questions, then for any s it can be modified into an interactive protocol that works
against a prover that remembers s bits between questions. The running time of the new
protocol is polynomial in the running time of the old protocol and s. Note that the IP
prover need only remember the history of the conversation between rounds, which is a
polynomial number of bits (however, here the polynomial is chosen after the protocol is
decided upon rather than before).

This result has the following application to cryptography: it shows that two prover
protocols for identification implemented by two credit cards can be implemented by a
single credit card, as long as the credit card is guaranteed to have a limited amount of
memory.

The results in this paper apply to program result checking as well [?] [?]. They show
how to transform a checker that works assuming that the program is a fixed function,
into an adaptive checker which instead assumes only that the program has polynomial
space at its disposal. This is interesting because it allows one to assume that the checker
works even if hardware faults evolve over time, or in the case that the software is written
such that running the program on certain inputs may have unintended side effects on
the program’s future behavior.

A somewhat related result in [?] shows how to self-correct [?] some functions from
space bounded tested programs. This result applies only to functions which are polyno-
mials, and does not show how to give program result checkers for those functions.

2 Definitions

We informally describe the following modifications of definitions of interactive proof
systems and IP given in [?]:

Definition 2.1 A s-space, t-round Interactive Protocol (A,B) is a pair of turing ma-
chines (TM) (A,B) which share an input tape (read only). Both have a private read/write
work tape and read-only random tape. There are two communication tapes: one which B

has write-only access to, and A has read-only access to, and one which A has write-only
access to, and B has read-only access to. We think of the first tape as containing messages
sent to, or “questions” asked of A, and the second as messages sent to, or “answers”
to B. The machines take t turns being active with B going first. Before each message
to A, all but the first s bits of A’s private work tape are erased. A is computationally
unbounded and B is polynomial time bounded.

Definition 2.2 Let L ⊂ {0, 1}∗. We say that L has a s-space t-round interactive proof
system (IPS) if there exists a TM V such that

1. There is a TM P s.t. (P, V) is a s-space t-round interactive protocol and for all
x ∈ L s.t. |x| is sufficiently large, Pr[V accepts] > 2/3 (when probabilities are over
coin tosses of P and V).

2. For all TM’s P ′ s.t. (P ′, V) is a s-space t-round interactive protocol and for all
x /∈ L s.t. |x| is sufficiently large, Pr[V accepts] < 1/3 (when probabilities are over
coin tosses of P ′ and V).

We say that (P, V) is a s-space t-round interactive proof system for L.

Define IP (s, t) = {L|L has an s-space t-round interactive proof system}

We may think of P as deterministic, giving optimal answers to maximize the proba-
bility that V accepts.

3 Main Theorem

Theorem 1 If L ∈ IP (0, t), then for all s, L ∈ IP (s,O(st)).

Proof: We show that if there is a 0-space, t-round interactive protocol for L then we
can construct an s-space O(st)-round interactive protocol for L.

The 0-space, t-round protocol for L can be run O(s) times in order to reduce the
error probability from 1

3 to 1
62−s. Call the resulting low error protocol CV

P , and let
CV

P (w, r) = (x1, y1, . . . , xm, ym) denote the m-round conversation between verifier V and
prover P , where w is the input, r is the random string used by the verifier, the xi’s are
the “questions” sent by the verifier to the prover, and the yi’s are the “answers” sent by
the prover to the verifier (note that m is O(st)).

Let Φ(w, r, CV
P (w, r)) be the function which the verifier evaluates after the conversa-

tion in order to decide whether to accept or reject w.

Let P̃ denote any prover that can remember s bits between questions.

We are now ready to present the protocol:

s-space O(st)-round interactive protocol:
On input w:
1. Run protocol CV

P̃
(w, r) = (x1, y1, . . . , xm, ym). If Φ(w, r, CV

P̃
(w, r)) = “REJECT”

then reject and halt.
2. Do 3m times:

Pick i ∈R [1,m]
Verifier asks question xi and receives answer ŷi.
If yi 6= ŷi then reject and halt.

3. Accept w.

Proof of Correctness of s-space O(st)-round protocol: If w ∈ L, then it is obvious
from our assumption that L ∈ IP (0, t) that there is a prover P which can only remember
s bits after every question such that Prr[Φ(w, r, CV

P (w, r)) = “ACCEPT”] ≥ 2/3.

To prove the theorem for the case when w is not in L, we need to show that no prover
that can remember s bits is likely to fool the verifier into accepting L.

We first note that any space s prover P̃ can be viewed as a collection of 2s functions
in the following manner: consider a deterministic finite state automaton with 2s states,
where each state i is labeled with function P i. The transitions between functions are
labeled by all the possible questions that a verifier could ask of the prover. Then the
prover is at one of the 2s states, and whenever the verifier asks a question, the prover
answers the question according to the function which labels the state, and goes to a new
state according to the transition function applied to the current state and the question
just asked by the verifier.

For fixed i, we say that r is P i-bad for w if Φ(w, r, CV
P i(w, r)) = “ACCEPT” (where

the prover P i is the prover which answers according to function P i). Since CV
P i is a

0-space interactive protocol for L with error ≤ 1
62−s, we know that r is P i-bad with the

same probability. We say that r is P̃ -bad for w if there is an i such that r is P i-bad for
w. Since there are only 2s P i’s, Pr[r is P̃ − bad for w] ≤ 2s · 1

62−s = 1
6 .

For each r, one of the following three cases must hold

1. Φ(w, r, CV
P̃

(w, r)) = “REJECT”, in which case the verifier rejects.

2. r is P̃ -bad for w. By the above reasoning, this case happens with probability ≤ 1/6.

3. Φ(w, r, CV
P̃

(w, r)) = “ACCEPT”, but r is not P̃ -bad for w. Thus for all i,

Φ(w, r, CV
P i(w, r) = (a1, b1), . . . , (am, bm)) = “REJECT”.

Then for all i, there is a j such that xj = aj but yj 6= bj (since the conversations cannot
be the same, and the verifier follows the same algorithm, the first difference must come
from the prover). Therefore, no matter which state the prover is in during a loop of Step
2 of the protocol, the probability that a question is asked for which the answer yj 6= ŷj is
at least 1/m. After 3m times, the probability that the verifier will not reject is at most
e−3.

Thus, if w is not in L, the verifier will reject with probability at least 1− 1
6−e−3 ≥ 2/3.

4 Bounding the Power of an s-space Prover.

The transformation used in the proof of Theorem ?? works only for deterministic provers,
since a legitimate probabilistic prover might cause the verifier to reject in Step 2 by

giving inconsistent answers to its questions. One can replace any probabilistic prover
with an “optimal” deterministic prover, but this new prover may have much greater
computational requirements. Hence, such a simple fix will not allow us to carry over our
results to program result checking.

However, we can use the general idea used in the proof of Theorem ?? to directly
bound the advantage of an s-space bounded prover over a 0-space bounded prover. Our
theorem is as follows:1

1This result was independently discovered by Lund (personal communication).

Theorem 2 Suppose that in an interactive protocol (P, V) the prover’s memory is par-
tially erased at most t times. Let Ps be a prover that is allowed to remember s bits between
partial erasures, and let P0 be an optimal prover that is not allowed to remember any bits
between erasures. Then, for all x,

Pr[(Ps, V) accepts x]
Pr[(P0, V) accepts x]

≤ 2st.

Proof: We assume without loss of generality that Ps is deterministic, and denote by
p the probability that (Ps, V) accepts x. We now construct a 0-space bounded prover
P0 such that (P0, V) will accept x with probability at least 2−stp. P0 works exactly as
does Ps, except that whenever its memory is (totally) erased it sets the first s bits of its
memory to a random s-bit string.

Suppose that (Ps, V) accepts when V uses r as its random input. It suffices to show
that (P0, V) will accept with probability 2−st when V uses r as its random input. Let
Sr

i denote the contents of the first s bits of Ps’s memory after the ith (partial) memory
erasure. With probability 2−st, it will be the case that for each i, 1 ≤ i ≤ t, P0 will fill
its memory with Sr

i after the ith memory erasure. Whenever this happens, the behavior
of P0 will be identical to that of Ps, and V will accept. Thus, (P0, V) will accept with
probability at least 2−st whenever (Ps, V) accepts, and the theorem follows.

Thus, any protocol which achieves a sufficiently low probability of error, using suffi-
ciently few memory erasures, is automatically robust against an s-space bounded prover,
without modification. Therefore, given an interactive proof system robust against 0-
space bounded provers, using only t memory erasures, one needs only to reduce the error
probability to less than 1

3 · 2
−st, while preserving the total number of memory erasures.

5 Acknowledgments

We would like to thank Dick Lipton for suggesting the problem. We would also like to
thank Uri Feige, Shafi Goldwasser, Diane Hernek, Hugo Krawczyk and Mike Luby for
very extensive and helpful discussions on this subject, and for helpful comments on the
writeup.

References

[1] Babai, L., Fortnow, L., Lund, C., “Non-Deterministic Exponential Time has Two-
Prover Interactive Protocols”, Technical Report 90-03, University of Chicago, Dept.
of Computer Science. Also in Proceedings of the 31st Annual Symposium on Foun-
dations of Computer Science,, 1990.

[2] Ben-Or, M., Goldwasser, S., Kilian, J., and Wigderson, A., “Efficient Identification
Schemes Using Two Prover Interactive Proofs”, Advances in Cryptology - CRYPTO
’89, Springer-Verlag.

[3] Ben-Or, M., Goldwasser, S., Kilian, J., and Wigderson, A., “Multi-Prover Interactive
Proofs: How to Remove Intractability Assumptions”, Proc. 20th ACM Symposium
on Theory of Computing, 1988, pp. 113-131.

[4] Blum, M., “Designing programs to check their work”, Submitted to CACM.

[5] Blum, M., Kannan, S., “Program correctness checking ... and the design of programs
that check their work”, Proc. 21st ACM Symposium on Theory of Computing, 1989.

[6] Blum, M., Luby, M., Rubinfeld, R., “Self-Testing/Correcting Programs with Appli-
cations to Numerical Problems”, Proc. 22nd ACM Symposium on Theory of Com-
puting, 1990.

[7] Blum, M., Luby, M., Rubinfeld, R., “Program Result Checking against Adaptive
Programs and in Cryptographic Settings”, Distributed Computing and Cryptography,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 2,
1991.

[8] Feige, U., “NEXPTIME has Two-Provers One-Round Proof Systems With Expo-
nentially Small Error Probability”, Manuscript.

[9] Fortnow, L., Rompel, J., Sipser, M., “On the Power of Multi-Prover Interactive
Protocols”, Proc. 3rd Structure in Complexity Theory Conference, 1988, pp. 156-
161.

[10] Gemmell, P., Lipton, R., Rubinfeld, R., Wigderson, A., “Self-Testing/Correcting
for Polynomials and for Approximate Functions”, Proceedings of 23rd ACM STOC,
1991.

[11] Goldwasser, S., Micali, S., Rackoff, C., The Knowledge Complexity of Interactive
Proof Systems”, SIAM J. Comput., 18(1),1989, pp. 186-208.

[12] Lund, C., Fortnow, L., Karloff, H., Nisan, N., “Algebraic Methods for Interactive
Proof Systems”, Proceedings of the 31st Annual Symposium on Foundations of Com-
puter Science,, 1990.

[13] Shamir, Adi, “IP=PSPACE”, Proceedings of the 31st Annual Symposium on Foun-
dations of Computer Science, 1990.

