
Appearing in the Proceedings of the 26th Annual ACM Symposium on Theory of Computing, May, 1994.

On the Learnability of Discrete Distributions

(extended abstract)

Michael Kearns

AT&T Bell Laboratories

Yishay Mansour

Tel-Aviv University

Dana Ron

Hebrew University

Ronitt Rubinfeld

Cornell University

Robert E. Schapire

AT&T Bell Laboratories

Linda Sellie

University of Chicago

1 Introduction and History

We introduce and investigate a new model of learning prob-

ability distributions from independent draws. Our model

is inspired by the popular Probably Approximately Cor-

rect (PAC) model for learning boolean functions from la-

beled examples [24], in the sense that we emphasize e�cient

and approximate learning, and we study the learnability of

restricted classes of target distributions. The distribution

classes we examine are often de�ned by some simple compu-

tational mechanism for transforming a truly random string

of input bits (which is not visible to the learning algorithm)

into the stochastic observation (output) seen by the learn-

ing algorithm. In this paper, we concentrate on discrete

distributions over f0; 1g

n

.

The problem of inferring an approximation to an un-

known probability distribution on the basis of independent

draws has a long and complex history in the pattern recog-

nition and statistics literature. For instance, the problem

of estimating the parameters of a Gaussian density in high-

dimensional space is one of the most studied statistical prob-

lems. Distribution learning problems have often been inves-

tigated in the context of unsupervised learning, in which a

linear mixture of two or more distributions is generating the

observations, and the �nal goal is not to model the distri-

butions themselves, but to predict from which distribution

each observation was drawn. Data clustering methods are a

common tool here. There is also a large literature on non-

parametric density estimation, in which no assumptions are

made on the unknown target density. Nearest-neighbor ap-

proaches to the unsupervised learning problem often arise in

the nonparametric setting. While we obviously cannot do

justice to these areas here, the books of Duda and Hart [9]

and Vapnik [25] provide excellent overviews and introduc-

tions to the pattern recognition work, as well as many point-

ers for further reading. See also Izenman's recent survey

article [16].

Roughly speaking, our work departs from the traditional

statistical and pattern recognition approaches in two ways.

First, we place explicit emphasis on the computational com-

plexity of distribution learning. It seems fair to say that

while previous research has provided an excellent under-

standing of the information-theoretic issues involved in dis-

tribution learning | such as decay rates for the error of the

maximum likelihood procedure, unbiasedness of estimators,

and so on | little is known about how the computational

di�culty of distribution learning scales with the computa-

tional e�ort required either to generate a draw from the tar-

get distribution, or to compute the weight it gives to a point.

This scaling is the primary concern of this paper. Our sec-

ond departure from the classical literature is a consequence

of the �rst: in order to examine how this scaling behaves,

we tend to study distribution classes chosen for their circuit

complexity or computational complexity (in a sense to be

made precise), and these classes often look quite di�erent

from the classically studied ones. Despite these departures,

there remains overlap between our work and the classical

research that we shall discuss where appropriate, and we of

course invoke many valuable statistical tools in the course

of our study of e�cient distribution learning.

In our model, an unknown target distribution is chosen

from a known restricted class of distributions over f0; 1g

n

,

and the learning algorithm receives independent random

draws from the target distribution. The algorithm also re-

ceives a con�dence parameter � and an approximation pa-

rameter �. The goal is to output with probability at least 1�

�, and in polynomial time, a hypothesis distribution which

has distance at most � to the target distribution (where our

distance measure is de�ned precisely later).

Our results highlight the importance of distinguishing

between two rather di�erent types of representations for a

probability distribution D. The �rst representation, called

an evaluator for D, takes as input any vector ~y 2 f0; 1g

n

,

and outputs the real number D[~y] 2 [0; 1], that is, the weight

that ~y is given under D. The second and usually less de-

manding representation, called a generator for D, takes as

input a string of truly random bits, and outputs a vector

~y 2 f0; 1g

n

that is distributed according to D. It turns out

that it can sometimes make a tremendous di�erence whether

we insist that the hypothesis output by the learning algo-

rithm be an evaluator or a generator.

For instance, one of our main positive results examines a

natural class in which each distribution can be generated by

a simple circuit of OR gates, but for which it is intractable to

compute the probability that a given output is generated. In

other words, each distribution in the class has a generator of

polynomial size but not an evaluator of polynomial size; thus

it appears to be unreasonable to demand that a learning al-

gorithm's hypothesis be an evaluator. Nevertheless, we give

an e�cient algorithm for perfectly reconstructing the circuit

generating the target distribution. This demonstrates the

utility of the model of learning with a hypothesis that is

a generator: despite the fact that evaluating probabilities

for these distributions is #P -hard, there is still an e�cient

method for exactly reconstructing all high-order correlations

between the bits of the distribution.

We then go on to give an e�cient algorithm for learn-

ing distributions generated by simple circuits of parity gates.

This algorithm outputs a hypothesis that can act as both an

evaluator and a generator, and the algorithm relies on an in-

teresting reduction of the distribution learning problem to a

related PAC problem of learning a boolean function from la-

beled examples. In the part of our work that touches most

closely on classically studied problems, we next give two

di�erent and incomparable algorithms for learning distribu-

tions that are linear mixtures of Hamming balls, a discrete

version of mixtures of Gaussians.

We then turn our attention to hardness results for distri-

bution learning. We show that under an assumption about

the di�culty of learning parity functions with classi�cation

noise in the PAC model (a problem closely related to the

long-standing coding theory problem of decoding a random

linear code), the class of distributions de�ned by probabilis-

tic �nite automata is not e�ciently learnable when the hy-

pothesis must be an evaluator. Interestingly, if the hypoth-

esis is allowed to be a generator, we are able to prove in-

tractability only for the rather powerful class of distributions

generated by polynomial-size circuits. The intractability re-

sults, especially those for learning with a hypothesis that

is allowed to be a generator, seem to require methods sub-

stantially di�erent from those used to obtain hardness in the

PAC model.

We conclude with a discussion of a class of distributions

that is arti�cial, but that has a rather curious property. The

class is not e�ciently learnable if the hypothesis must be

an evaluator, but is e�ciently learnable if the hypothesis is

allowed to be a generator | but apparently only if the hy-

pothesis is allowed to store the entire sample of observations

drawn during the learning process. A function class with

similar properties in the PAC model (that is, a class that is

PAC learnable only if the hypothesis memorizes the training

sample) provably does not exist [22]. Thus this construction

is of some philosophical interest, since it is the �rst demon-

stration of a natural learning model in which the converse to

Occam's Razor | namely, that e�cient learning implies ef-

�cient compression | may fail. Note that this phenomenon

is fundamentally computational in nature, since it is well-

established in many learning models (including ours) that

learning and an appropriately de�ned notion of compres-

sion are always equivalent in the absence of computational

limitations.

2 Preliminaries

In this section, we describe our model of distribution learn-

ing. Our approach is directly inuenced by the popular PAC

model for learning boolean functions from labeled exam-

ples [24], in that we assume the unknown target distribution

is chosen from a known class of distributions that are charac-

terized by some simple computational device for generating

independent observations or outputs. Although we focus

on the learnability of discrete probability distributions over

f0; 1g

n

, the de�nitions are easily extended to distributions

and densities over other domains.

For any natural number n � 1, let D

n

be a class of prob-

ability distributions over f0; 1g

n

. Throughout the paper, we

regard n as a complexity parameter, and when considering

the class D

n

it is understood that our goal is to �nd a learn-

ing algorithm that works for any value of n, in time polyno-

mial in n (and other parameters to be discussed shortly).

In order to evaluate the performance of a distribution

learning algorithm, we need a measure of the distance be-

tween two probability distributions. For this we use the

well-known Kullback-Leibler divergence. Let D and

^

D be

two probability distributions over f0; 1g

n

. Then

KL(Djj

^

D) =

X

~y2f0;1g

n

D[~y] log

D[~y]

^

D[~y]

where D[~y] denotes the probability assigned to ~y under D.

Note that the Kullback-Leibler divergence is not actually a

metric due to its asymmetry.

One can think of the Kullback-Leibler divergence in cod-

ing-theoretic terms. Suppose we use a code that is optimal

for outputs drawn according to the distribution

^

D in order

to encode outputs drawn according to the distribution D.

Then KL(Djj

^

D) measures how many additional bits we use

compared to an optimal code for D.

The Kullback-Leibler divergence is the most standard

notion of the di�erence between distributions, and has been

studied extensively in the information theory literature. One

of its nicest properties is that it upper bounds other natural

distance measures such as the L

1

distance:

L

1

(D;

^

D) =

X

~y2f0;1g

n

jD[~y]�

^

D[~y]j:

Thus it can be shown [8] that we always have

2 ln 2

q

KL(Djj

^

D) � L

1

(D;

^

D):

It is also easily veri�ed that if D is any distribution over

f0; 1g

n

and U is the uniform distribution, then KL(DjjU) �

n (since we can always encode each output of U using n

bits). Thus, the performance of the \random guessing" hy-

pothesis has at worst Kullback-Leibler divergence n, and

this will form our measuring stick for the performance of

\weak learning" algorithms later in the paper. Another use-

ful fact is that KL(Djj

^

D) � 0 always, with equality only

when

^

D = D.

Since we are interested in the computational complexity

of distribution learning, we �rst need to de�ne a notion of

the complexity of a distribution. For our results it turns

out to be crucial to distinguish between distributions that

can be only generated e�ciently, and distributions that can

be both generated and evaluated e�ciently. Similar distinc-

tions have been made before in the context of average-case

complexity [2, 13]. We now make these notions precise. We

start by de�ning an e�cient generator.

De�nition 1 Let D

n

be a class of distributions over f0; 1g

n

.

We say that D

n

has polynomial-size generators if there are

polynomials p(�) and r(�) such that for any n � 1, and

for any distribution D 2 D

n

, there is a circuit G

D

, of

size at most p(n) and with r(n) input bits and n output

bits, whose induced distribution on f0; 1g

n

is exactly D when

the distribution of the r(n) input bits is uniform. Thus, if

~r 2 f0; 1g

r(n)

is a randomly chosen vector, then the random

variable G

D

(~r) is distributed according to D. We call G

D

a

generator for D.

Next we de�ne an e�cient evaluator.

De�nition 2 Let D

n

be a class of distributions over f0; 1g

n

.

We say that D

n

has polynomial-size evaluators if there is a

polynomial p(�) such that for any n � 1, and for any distri-

bution D 2 D

n

, there is a circuit E

D

, of size at most p(n)

and with n input bits, that on input ~y 2 f0; 1g

n

outputs the

2

binary representation of the probability assigned to ~y by D.

Thus, if ~y 2 f0; 1g

n

, then E

D

(~y) is the weight of ~y under D.

We call E

D

an evaluator for D.

All of the distribution classes studied in this paper have

polynomial-size generators, but only some of them also have

polynomial-size evaluators. Thus, we are interested both in

algorithms that output hypotheses that are e�cient gener-

ators only, and algorithms that output hypotheses that are

e�cient evaluators as well. To judge the performance of

these hypotheses, we introduce the following notions.

De�nition 3 Let D be a distribution over f0; 1g

n

, and let

G be a circuit taking r(n) input bits and producing n out-

put bits. Then we say that G is an �-good generator for D

if KL(DjjG) � �, where KL(DjjG) denotes the Kullback-

Leibler divergence of D and the induced distribution of G on

f0; 1g

n

(when the distribution of the r(n) input bits to G is

uniform). If E is a circuit with n input bits, we say that E is

an �-good evaluator for D if KL(DjjE) � �, where KL(DjjE)

denotes the Kullback-Leibler divergence of D and the dis-

tribution on f0; 1g

n

de�ned by the mapping E : f0; 1g

n

!

[0; 1].

We are now ready to de�ne our learning protocol. Let

D

n

be a distribution class. When learning a particular target

distribution D 2 D

n

, a learning algorithm is given access to

the oracle GEN (D) that runs in unit time and returns a

vector ~y 2 f0; 1g

n

that is distributed according to D. We

will often refer to a draw from GEN (D) as an observation

from D.

De�nition 4 Let D

n

be a class of distributions. We say

that D

n

is e�ciently learnable with a generator (evaluator,

respectively) if there is an algorithm that, when given inputs

� > 0 and 0 < � � 1 and access to GEN (D) for any unknown

target distribution D 2 D

n

, runs in time polynomial in 1=�,

1=� and n and outputs a circuit G (E, respectively) that with

probability at least 1 � � is an �-good generator (evaluator,

respectively) for D.

We will make use of several variations of this de�nition.

First of all, we will say D

n

is (e�ciently) exactly learnable

(either with a generator or with an evaluator) if the result-

ing hypothesis achieves Kullback-Leibler divergence 0 to the

target (with high probability). In the opposite vein, we also

wish to allow a notion of weak learning, in which the learning

algorithm, although unable to obtain arbitrarily small error,

still achieves some �xed but nontrivial accuracy. Thus, for

any �xed � > 0 (possibly a function of n and �), we say

that D

n

is (e�ciently) �-learnable with a generator or an

evaluator, respectively, if the learning algorithm �nds an �-

good generator or evaluator, respectively. In cases where

our algorithms do not run in polynomial time but in quasi-

polynomial time, or in cases where we wish to emphasize the

dependence of the running time on some particular param-

eters of the problem, we may replace \e�ciently learnable"

by an explicit bound on the running time.

3 Learning OR-Gate Distributions

In this section and the next, we examine two classes of dis-

tributions over f0; 1g

n

in which each distribution can most

easily be thought of as being generated by a boolean circuit

with exactly n outputs. The distribution is the output dis-

tribution of the circuit that is induced by providing truly

random inputs to the circuit.

For any k = k(n), we say that a distribution D over

f0; 1g

n

is a k-OR distribution if there is a depth-one circuit

of n OR gates, each of fan-in at most k, such that when

truly random input bits are given to the circuit, the re-

sulting induced distribution on the n output bits is exactly

D. Note that if every gate in such a circuit has fan-in ex-

ceeding log(2n

2

=�), then the output of the circuit is

~

1 with

probability at least 1� �=2n, and such a distribution is triv-

ially learnable both with a generator and with an evaluator.

(Consider the evaluator that assigns

~

1 probability 1� �=2n

and probability �=(2n(2

n

�1)) to any other vector; this eval-

uator is �-good.) However, even for a �xed k there can be

correlations of arbitrarily high order in a k-OR distribution,

because there are no restrictions on the fan-out of the in-

puts to the circuit. Thus, in some sense the smaller values

of k are the most interesting. Also, note that without loss

of generality any k-OR distribution over f0; 1g

n

has at most

kn inputs (corresponding to the case where each output gate

has a disjoint set of inputs and is therefore independent of

all other outputs).

Let OR

k

n

denote the class of all k-OR distributions over

f0; 1g

n

. What should we expect of a learning algorithm

for the class OR

k

n

? We begin by giving evidence that it

would be overly ambitious to ask for an algorithm that learns

with an evaluator, since polynomial-size evaluators for OR

k

n

probably do not even exist:

Theorem 1 For any k � 3, there is a �xed sequence of

fan-in k OR-gate circuits C

1

; : : : ; C

n

; : : : such that it is #P -

hard to determine for a given ~y 2 f0; 1g

n

the probability that

~y is generated by C

n

. In other words, OR

k

n

does not have

polynomial-size evaluators, unless #P � P=poly.

Proof: We use the fact that exactly counting the number

of satisfying assignments to a monotone 2-CNF formula is a

#P -complete problem [23]. The circuit C

n

will have inputs

x

1

; : : : ; x

n

that will correspond to the variables of a mono-

tone 2-CNF formula, and also inputs z

i;j

for each possible

monotone clause (x

i

_ x

j

). The outputs will consist of the

\control" outputs w

i;j

, each of which is connected to only

the input z

i;j

, and the outputs y

i;j

, each of which is con-

nected to z

i;j

, x

i

and x

j

. The fan-in of each output gate is

at most 3.

Now given a monotone 2-CNF formula f , we create a

setting for the outputs of C

n

as follows: for each clause

(x

i

_x

j

) appearing in f , we set w

i;j

to 0, and the rest of the

w

i;j

are set to 1. The y

i;j

are also all set to 1. Let us call

the resulting setting of the outputs ~v. Note that the e�ect of

setting a w

i;j

is to force its only input z

i;j

to assume the same

value. If this value is 1, then the condition y

i;j

= 1 is already

satis�ed (and thus we have \deleted" the clause (x

i

_ x

j

)),

and if this value is 0, then y

i;j

= 1 will be satis�ed only if

x

i

= 1 or x

j

= 1 (and thus we have included the clause).

It is easy to verify that if ` = n(n � 1)=2 is the number of

possible clauses, then the probability that ~v is generated by

C

n

is exactly 1=2

`

times the probability that the formula f is

satis�ed by a random assignment of its inputs, which in turn

yields the number of satisfying assignments. (Theorem 1)

Since the distributions in OR

k

n

probably do not have

polynomial-size evaluators, it is unlikely that this class is

e�ciently learnable with an evaluator. The main result of

this section is that for small values of k, OR

k

n

is in fact ef-

�ciently learnable with a generator, even when we insist on

exact learning (that is, � = 0). This result provides motiva-

tion for the model of learning with a generator: despite the

fact that evaluating probabilities is intractable for this class,

we can still learn to perfectly generate the distribution, and

in fact can exactly reconstruct all of the dependencies be-

tween the output bits (since the structure of the generating

circuit reveals this information).

3

Theorem 2 The class OR

k

n

is exactly learnable with a gen-

erator in time O(n

2

(2k)

2k+log k+1

(log

2

k+log(n=�))), which

is polynomial in n, k

k

and log 1=�.

Proof: We start by giving an overview of our algorithm.

The goal of the algorithm is to construct an OR circuit which

is isomorphic (up to renaming of the input bits) to the un-

known target circuit, and thus generates the same distribu-

tion. Let o

1

; : : : ; o

n

denote the n OR gates forming the out-

puts of the target circuit. The algorithm works in n phases.

At any given time, the algorithm has a partial hypothesis

OR circuit, and in phase i, it \correctly reconstructs" the

connections of the ith OR gate to its inputs. It does so under

the inductive assumption that in the previous i�1 phases it

correctly reconstructed the connections of o

1

; : : : ; o

i�1

. The

term correctly reconstructed means that the connections are

correct up to isomorphism, and is formally de�ned as fol-

lows.

Let S

j

be the set of input bits that feed the jth OR gate

o

j

in the target circuit, and let S

0

j

be the corresponding set

in the hypothesis OR circuit constructed by the algorithm.

Then the gates o

1

; : : : ; o

i�1

have been correctly reconstructed

by the algorithm if there exists a one-to-one mapping � :

S

i�1

j=1

S

0

j

!

S

i�1

j=1

S

j

, such that for every 1 � j � i � 1,

�(S

0

j

) = S

j

, where �(S

0

j

) is the image of S

0

j

under �. If we

correctly reconstruct all n gates of the target circuit, then by

de�nition we have a circuit that is isomorphic to the target

circuit, and thus generates the same distribution.

In order to correctly reconstruct the ith gate o

i

, the al-

gorithm �rst determines the number of inputs feeding o

i

,

and then determines which inputs feed o

i

. The �rst task is

simple to perform. Let k

i

� k be the number of inputs feed-

ing gate o

i

in the target circuit (that is, k

i

= jS

i

j), and let

y

i

denote the output of gate o

i

. Then Pr[y

i

= 0] = 1=2

k

i

.

This probability (and hence k

i

) can be computed exactly,

with high probability, by observing O(2

k

) output vectors

generated by the target circuit.

The second task, that of determining which inputs feed

gate o

i

, is considerably more involved. We shall eventually

show that it reduces to the problem of computing the sizes

of unions of input bit sets feeding at most 2 log k + 2 given

gates in the target circuit. The next lemma shows that

the sizes of such unions can be computed exactly with high

probability from a sample of random vectors generated by

the target circuit.

Lemma 3 There is a procedure that, given access to ran-

dom outputs of the target circuit and any set of r OR gates

o

i

1

; : : : ; o

i

r

of fan-in k of the target circuit, computes jS

i

1

[

� � � [S

i

r

j exactly with probability at least 1 � �

0

in time

O(2

2rk

log 1=�

0

).

Proof: If y

i

1

; : : : ; y

i

r

are the outputs of gates o

i

1

; : : : ; o

i

r

,

let y = y

i

1

_� � � _y

i

r

. Note that the value of y can be easily

computed for every random output vector, and

Pr[y = 1] = 1 � 1=2

jS

i

1

[���[S

i

r

j

:

Thus the procedure will simply use an estimate of Pr[y = 1]

on a su�ciently large random sample in the obvious way.

Since jS

i

1

[� � �[S

i

r

j � kr, the lemma follows from a Cherno�

bound analysis. (Lemma 3)

Later, we will set r = 2 log k + 2 and �x �

0

to be

�=(n

2

k

log k+1

), which implies O((2k)

2k

(log

2

k + log(n=�)))

running time.

We now show how the problem of determining which

inputs should feed a given gate can be reduced to compu-

tations of the sizes of small unions of the S

j

. For simplic-

ity in the following presentation, we assume without loss of

generality that if for some i, o

1

; : : : ; o

i�1

are reconstructed

correctly, then for every 1 � j � i� 1, S

0

j

= S

j

.

We de�ne a basic block as a set of inputs that are in-

distinguishable with respect to the part of the target circuit

that the algorithm has correctly reconstructed so far, in that

every input in the basic block feeds exactly the same set of

gates. More formally, given the connections of the gates

o

1

; : : : ; o

i�1

, let us associate with each input bit x

j

the set

O

i

j

= fo

`

: ` 2 [i� 1]; j 2 S

`

g, which consists of the gates in

o

1

; : : : ; o

i�1

that are fed by the input x

j

. Then we say that

x

s

and x

t

are in the same basic block at phase i if O

i

s

= O

i

t

.

The number of basic blocks in each phase is bounded by the

number of inputs, which is at most kn.

Suppose for the moment that given any basic block B

in phase i, we have a way of determining exactly how many

of the inputs in B feed the next gate o

i

(that is, we can

compute jS

i

\Bj). Then we can correctly reconstruct o

i

in

the following manner. For each basic block B, we connect

any subset of the inputs in B having the correct size jS

i

\

Bj to o

i

. It is clear from the de�nition of a basic block

that the choice of which subset of B is connected to o

i

is

irrelevant. If, after testing all the basic blocks, the number

r of inputs feeding o

i

is less than k

i

, then o

i

is connected to

k

i

� r additional new inputs (that is, inputs which are not

connected to any of the previously reconstructed gates). It

can easily be veri�ed that if o

1

; : : : ; o

i�1

were reconstructed

correctly, then after reconstructing o

i

as described above,

o

1

; : : : ; o

i

are reconstructed correctly as well.

Hence the only remaining problem is how to compute

jS

i

\Bj. Without loss of generality let the inputs in B feed

exactly the gates o

1

; : : : ; o

l

, where l � i � 1. Then we may

write

B = S

1

\ � � � \ S

l

\

�

S

l+1

\ � � � \

�

S

i�1

:

This expression for B involves the intersection of i� 1 sets,

which may be as large as n� 1. The following lemma shows

that there is a much shorter expression for B.

Lemma 4 The basic block B can be expressed as an inter-

section of at most k sets in fS

1

; : : : ; S

i�1

;

�

S

1

; : : : ;

�

S

i�1

g.

Proof: Pick any gate fed by the inputs in B, say o

1

. If

B = S

1

then we are done. Otherwise, let S = S

1

, and pick

either a set S

j

such that S\S

j

is a proper subset of S or a set

�

S

j

such that S\

�

S

j

is a proper subset of S, and let S become

S \S

j

or S \

�

S

j

, respectively. Continue adding such subsets

to the intersection S until S = B. Since initially jSj = k,

and after each new intersection the size of S becomes strictly

smaller, the number of sets in the �nal intersection is at most

k. (Lemma 4)

Based on this lemma, we can assume without loss of

generality that

B =

t

\

j=1

S

j

!

\

t+

�

t

\

j=t+1

�

S

j

!

where t+

�

t � k. Hence,

jS

i

\Bj =

�

�

�

�

�

S

i

\

t

\

j=1

S

j

!

\

t+

�

t

\

j=t+1

�

S

j

!
�

�

�

�

�

:

In order to simplify the evaluation of this expression,

we show in the next lemma that there is an equivalent ex-

pression for jS

i

\ Bj which includes intersections of only

uncomplemented sets S

j

.

Lemma 5 jS

i

\Bj can be expressed as a sum and di�erence

of the sizes of at most 2

k+1

intersections of sets in

fS

i

; S

1

; : : : ; S

t+

�

t

g:

4

Proof: (Sketch) The lemma is proved by induction on the

number

�

t of complemented sets in the expression for jS

i

\Bj

following Lemma 4. The induction step is based on the

identity that for any sets C and D, jC \

�

Dj = jCj� jC \Dj.

(Lemma 5)

Hence the problem of computing jS

i

\Bj reduces to com-

puting the sizes of all possible intersections among (at most)

k + 1 sets of inputs. Naively, we would explicitly compute

the sizes of all 2

k+1

intersections. We can obtain an im-

proved bound by using a new result of Kahn, Linial, and

Samorodintsky [17] which shows that the sizes of all 2

k+1

intersections are in fact uniquely determined by the sizes of

all intersections of at most 2 log k + 2 sets. More formally:

Lemma 6 (Implicit in Kahn et al. [17]) Let fT

i

g

m

i=1

and

fT

0

i

g

m

i=1

be two families of sets, where T

i

; T

0

i

� [`]. For any

R � [m] let a

R

be the size of

T

i2R

T

i

, and let a

0

R

be the size

of

T

i2R

T

0

i

. If a

R

= a

0

R

for every subset R of size at most

log ` + 1, then a

R

= a

0

R

for every R.

How exactly can we use this lemma? Let us �rst note

that in our case, the size of the domain over which the sets

S = fS

i

; S

1

; : : : ; S

t+

�

t

g are de�ned is bounded by (t +

�

t +

1)k � (k+1)k. Assume that we have a way of computing the

sizes of all intersections of at most 2 log k+2 � log((k+1)k)+

1 of the sets in S. Since the sets fS

1

; : : : ; S

t+

�

t

g are known,

we need only �nd a set S

0

i

so that the size of any intersection

of at most 2 log k + 2 sets in S

0

= fS

0

i

; S

1

; : : : ; S

t+

�

t

g equals

the size of the corresponding intersection in S. Lemma 6

then tells us that the size of any intersection (of any number

of sets) in S

0

equals the size of the respective intersection

in S. In order to �nd such a set S

0

i

, we search through

all O(k

2k

) possible S

0

i

(that is, all possible connections of

the new gate o

i

to the inputs feeding the already correctly

reconstructed gates o

1

; : : : ; o

t+

�

t

) until we �nd a connection

consistent with the sizes of the intersections computed.

Thus, we are �nally left only with the problem of com-

puting the sizes of all small intersections. The next com-

binatorial lemma shows that this problem further reduces

to computing the sizes of the corresponding unions, which

�nally allows us to apply the procedure of Lemma 3.

Lemma 7 Let T

1

; : : : ; T

r

be sets over some domainX. Given

the sizes of all unions of the T

i

, the sizes of all intersections

of the T

i

can be computed exactly in time O(2

2r

).

Proof: (Sketch) Follows from the inclusion-exclusion iden-

tity and a simple inductive argument. (Lemma 7)

We are now ready to complete the proof of the main

theorem. By combining Lemma 5, Lemma 7, and Lemma 3,

we have proved the following: for every 1 � i � n, and

for every basic block B in phase i, with probability at least

1� �=(n

2

k), and in time O((2k)

2k+log k

(log

2

k + log(n=�))),

our algorithm computes exactly the number of inputs in B

which should be connected to o

i

.

In each phase there are at most kn basic blocks, and

there are n phases. Hence, with probability at least 1�� all

computations are done correctly and consequently all gates

are reconstructed correctly. The total running time of the

algorithm is

O(n

2

(2k)

2k+log k+1

(log

2

k + log(n=�))):

(Theorem 2)

4 Learning Parity Gate Distributions

We say that distribution D over f0; 1g

n

is a parity distri-

bution if there is a depth-one circuit of n polynomially-

bounded fan-in parity gates, such that when truly random

bits are given as inputs to the circuit, the resulting induced

distribution on the n output bits is exactly D.

Let PARITY

n

denote the class of all parity distributions

on n outputs. Unlike the class OR

k

n

distribution, this class

has polynomial-size evaluators (see the remarks following

the proof of Theorem 8), and in fact we show that it can

be learned exactly with both a generator and an evaluator.

Perhaps the most interesting aspect of this result is that it

demonstrates a case in which a distribution learning problem

can be solved using an algorithm for a related PAC learning

problem.

Theorem 8 The class PARITY

n

is e�ciently exactly learn-

able with a generator and evaluator.

Proof: The learning algorithm uses as a subroutine an al-

gorithm for learning parity functions in the PAC model [10,

15] by solving a system of linear equations over the �eld

of integers modulo 2. In the current context, this subrou-

tine receives random examples of the form h~x; f

S

(~x)i, where

~x 2 f0; 1g

n

is chosen uniformly, and f

S

computes the parity

of the vector ~x on the subset S � fx

1

; : : : ; x

n

g. With high

probability, the subroutine determines S exactly.

Let y

1

; : : : ; y

n

denote the output bits of the unknown

parity circuit. Our algorithm relies on the following easy

lemma, whose proof we omit.

Lemma 9 For any i, either y

i

can be computed as the lin-

ear sum u

1

y

1

+� � �+u

i�1

y

i�1

mod 2 for some u

1

; : : : ; u

i�1

2

f0; 1g, or the output bit y

i

is independent of y

1

; : : : ; y

i�1

.

This lemma immediately suggests the following simple

learning algorithm. The �rst output bit of our hypothesis

distribution will always be determined by a fair coin ip.

Now inductively at the ith phase of the learning algorithm,

we take many random output vectors ~y from the target par-

ity distribution, and give the pairs h~y[i�1];y

i

i (where ~y[i�1]

is the �rst i � 1 bits of ~y) as labeled examples to the sub-

routine for PAC learning parity functions. Lemma 9 shows

that either the subroutine succeeds in �nding coe�cients

u

1

; : : : ; u

i�1

giving a linear expression for y

i

in terms of

y

1

; : : : ; y

i�1

(in which case the ith output bit of the hypoth-

esis distribution will simply compute this linear function of

the �rst i � 1 output bits), or it is impossible to �nd any

such functional relationship (in which case the ith output

bit of the hypothesis distribution will be determined by a

fair coin ip). Which case has occurred is easily determined

since, if given randomly labeled examples, it can be shown

that the subroutine will fail to produce any hypothesis with

high probability. A simple inductive argument establishes

the correctness of the algorithm. (Theorem 8)

Note that the proof establishes the fact that PARITY

n

has polynomial-size evaluators. Given a vector ~y, we can use

the hypothesis of our algorithm to evaluate the probability

~y is generated as follows: let ` be the number of hypothesis

output bits determined by coin ips. Then if ~y is consistent

with the linear dependencies of our hypothesis, the proba-

bility of generation is 1=2

`

, otherwise it is 0.

5 Learning Mixtures of Hamming Balls

A Hamming ball distribution over f0; 1g

n

is de�ned by a

center vector ~x 2 f0; 1g

n

and a corruption probability p 2

[0; 1]. The distribution h~x; pi generates a vector ~y 2 f0; 1g

n

in the following simple way: for each bit 1 � i � n, y

i

= x

i

with probability 1� p, and y

i

= x

i

with probability p. Note

that p = 1=2 yields the uniform distribution for any center

vector ~x. It is easy to see that Hamming ball distributions

5

have both polynomial-size generators and polynomial-size

evaluators.

Hamming ball distributions are a natural model for con-

cepts in which there is a \canonical" example of the concept

(represented by the center vector) that is the most probable

or typical example, and in which the probability decreases as

the number of attributes in common with this canonical ex-

ample decreases. For instance, we might suppose that there

is a canonical robin (with typical size, wing span, markings,

and so on) and that the distribution of robins resembles a

Hamming ball around this canonical robin.

As we shall see shortly, there is an extremely simple

and e�cient algorithm for exactly learning Hamming balls

with a generator and evaluator. In this section, we are in-

terested in the learnability of linear mixtures of Hamming

ball distributions. Thus, for any natural numbers n and

k, the distribution class HB

k

n

is de�ned as follows. Each

distribution D 2 HB

k

n

is parameterized by k triples D =

(h~x

1

; p

1

; q

1

i; : : : ; h~x

k

; p

k

; q

k

i), where ~x

i

2 f0; 1g

n

, p

i

2 [0; 1],

and q

i

2 [0; 1]. The q

i

are additionally constrained by

P

k

i=1

q

i

= 1. The q

i

are the mixture coe�cients, and the

distribution D is generated by �rst choosing an index i ac-

cording to the distribution de�ned by the mixture coe�-

cients q

i

, and then generating ~y 2 f0; 1g

n

according to the

Hamming ball distribution h~x

i

; p

i

i.

Linear mixtures of Hamming balls are a natural model

for concepts in which there may be several unrelated subcat-

egories of the concept, each with its own canonical represen-

tative. For instance, we might suppose that the distribution

of birds can be approximated by a mixture of Hamming balls

around a canonical robin, a canonical chicken, a canonical

amingo, and so on, with the mixture coe�cient for chickens

being considerably larger than that for amingos.

The class HB

k

n

[U] is the subclass of HB

k

n

in which the

mixture coe�cients are uniform, so q

1

= q

2

= � � � = q

k

=

1=k. The class HB

k

n

[C] is the subclass with the restriction

that for each distribution, there is a common corruption

probability for all balls in the mixture, so p

1

= p

2

= � � � =

p

k

. The class HB

k

n

[U;C] obeys both restrictions.

In this section, we give two rather di�erent algorithms for

the class HB

k

n

[C] whose performance is incomparable. The

�rst is a \weak" learning algorithm that is mildly superpoly-

nomial. The second is a \strong" algorithm that is actually

an exact learning algorithm for the subclass HB

k

n

[U;C] and

runs in time polynomial in n but exponential in k. For k a

superlogarithmic function of n, the �rst algorithm is faster,

otherwise the second is faster.

Hamming ball mixtures are the distributions we study

that perhaps come closest to those classically studied in pat-

tern recognition, and they provide a natural setting for con-

sideration of the unsupervised learning problem mentioned

briey in Section 1. The goal in the unsupervised learning

problem for Hamming ball mixtures would not be to simply

model the distribution of birds, but for each draw from the

target distribution, to predict the type of bird (that is, to

correctly associate each draw with the Hamming ball that

actually generated the draw). Thus, we must classify the

observations from the target distribution despite the fact

that no classi�cations are provided with these observations,

even during the training phase (hence the name unsuper-

vised learning). There obviously may be some large residual

error that is inevitable in this classi�cation task | even if

we know the target mixture exactly, there are some observa-

tions that may be equally likely to have been generated by

several di�erent centers. The optimal classi�er is obtained

by simply associating each observation with the center that

assigns the highest likelihood to the observation (taking the

mixture coe�cients into account). Although we omit the

details, the reader can easily establish that while our �rst

learning algorithm for Hamming ball mixtures has no obvi-

ous application to the unsupervised learning problem, our

second algorithm can in fact be used to obtain near-optimal

classi�cation in polynomial time.

In presenting our algorithms, we assume that the com-

mon corruption probability p is known; in the full paper, we

show how this assumption can be weakened using a standard

binary search method.

Recall that in Section 2 we argued that Kullback-Leibler

divergence n was the equivalent of random guessing, so the

accuracy achieved by the algorithm of the following theorem

is nontrivial, although far from perfect.

Theorem 10 The class HB

k

n

[C] is

~

O(

p

pn)-learnable

1

with

an evaluator and generator in time

O

�

k

�

�

p

(1�2p)

2

log

n

�

�

�

:

Proof: (Sketch) We sketch the main ideas for the smaller

class HB

k

n

[U;C], and indicate how we can remove the as-

sumption of uniform mixture coe�cients at the end of the

proof. Thus let f~x

1

; : : : ; ~x

k

g be the target centers, let q

1

=

� � � = q

k

= 1=k, and let p < 1=2 be the �xed common corrup-

tion probability. We begin by giving a simple but important

lemma.

Lemma 11 For any Hamming ball h~x; pi, the vector ~x can

be recovered exactly in polynomial time with probability at

least 1� �, using only

O

�

p

(1� 2p)

2

log

n

�

�

observations.

Proof: (Sketch) The algorithm takes the bitwise majority

vote of the observations to compute its hypothesis center. A

simple Cherno� bound analysis yields the stated bound on

the number of observations. (Lemma 11)

We can now explain the main ideas behind our algorithm

and its analysis. The algorithm is divided into two stages:

the candidate centers stage, and the covering stage. In the

candidate centers stage, we take a sample of vectors of size

�(k log k � (p=(1� 2p)

2

) log(n=�)) from the mixture. This

sample size is su�cient to ensure that with high probability,

each of the target centers was used
((p=(1� 2p)

2

) log(n=�))

times to generate a sample vector (here we are using the

fact that the mixture coe�cients are uniform; in the general

analysis, we replace this by a sample su�ciently large to hit

all the \heavy" centers many times). By Lemma 11, if we

knew a large enough subset of sample vectors which were

all generated by corruptions of the same target center, we

could simply take the bitwise majority of these vectors to

recover this target center exactly. Since we do not know such

a subsample, we instead obtain a bitwise majority candidate

center for every subset of size �((p=(1� 2p)

2

) log(n=�)) in

the sample. Lemma 11 guarantees that for those subsets

that were actually generated by corruptions of a single target

center, the bitwise majority will recover that center. The

number of sample subsets we examine is thus

` =

�

�(k log k � (p=(1� 2p)

2

) log(n=�))

�((p=(1� 2p)

2

) log(n=�))

�

= k

�

�

p

(1�2p)

2

log

n

�

�

1

The

~

O(�) notation hides logarithmic factors in the same way that

O(�) notation hides constant factors.

6

The dependence on n in the bound on ` is mildly super-

polynomial, and it is this quantity that dominates our �nal

running time. Thus, the candidate centers stage results in a

large set of vectors f~x

0

1

; : : : ; ~x

0

`

g that with high probability

contains all the target centers. Our goal now is to construct

a set covering problem in order to choose a polynomial-size

subset of the ` candidate centers that form a \good" hypoth-

esis mixture. This covering stage will run in time polynomial

in `.

We begin the covering stage by drawing an additional

sample of m vectors S = f~y

1

; : : : ; ~y

m

g, where m will be de-

termined by the analysis. We say that a candidate center

~x

0

i

d-covers the sample vector ~y

j

if �(~x

0

i

; ~y

j

) � pn+d, where

�(~x

0

i

; ~y

j

) denotes the Hamming distance between the vec-

tors. Thus, a center covers a sample vector if the Hamming

distance between them exceeds the expected value pn by

at most d (where the expected value is taken under the as-

sumption that the center actually did generate the vector).

A collection C of candidate centers will be called a d-cover

of S if each s 2 S is d-covered by some center c 2 C.

The following lemma, whose proof is straightforward and

omitted, provides a value for d ensuring that the target cen-

ters form a d-cover.

Lemma 12 For any m and any �, with probability 1 � �

over the generation of the observations S = f~y

1

; : : : ; ~y

m

g,

the target centers f~x

1

; : : : ; ~x

k

g form an O(

p

pn log(m=�))-

cover of S.

By identifying each candidate center with the subset of S

that it O(

p

pn log(m=�))-covers, by Lemma 12 we have con-

structed an instance of set cover in which the optimal cover

has cardinality at most k. By applying the greedy algorithm,

we obtain a subcollection of at most k logm candidate cen-

ters that covers S [7]. Let us assume without loss of general-

ity that this subcollection is simply f~x

0

1

; : : : ; ~x

0

k logm

g = C

0

.

Our hypothesis distribution is this subcollection, with cor-

ruption probability p and uniform mixture coe�cients, that

is, q

i

= 1=(k logm).

To analyze our performance, we will take the standard

approach of comparing the log-loss of our hypothesis on S to

the log-loss of the target distribution on S [14]. We de�ne

the log-loss by loss(D;S) =

P

~y2S

� logD[~y] where D[~y]

denotes the probability ~y is generated by the distribution D.

Eventually we shall use the fact that for a su�ciently large

sample, the di�erence between the log-loss of our hypothesis

and the log-loss of the target gives an upper bound on the

Kullback-Leibler divergence [14].

Note that since our hypothesis centers O(

p

pn log(m=�))-

cover the sample S, and each hypothesis center is given mix-

ture coe�cient 1=(k logm), our hypothesis assigns probabil-

ity at least

1

k logm

p

pn+O

�

p

pn log(m=�)

�

(1� p)

n�

�

pn+O

�

p

pn log(m=�)

��

to every vector in S. The following lemma translates this

lower bound on the probability our hypothesis assigns to

each vector into an upper bound on the log-loss incurred by

our hypothesis on each vector.

Lemma 13

� log

�

1

k logm

p

pn+d

(1� p)

n�(pn+d)

�

= nH(p) + d

�

log

1

p

� log

1

1� p

�

+ log k + log logm:

(Here, H(p) = �p log(p)� (1� p) log(1� p) is the standard

binary entropy function.)

Furthermore, it can be shown that the expected log-loss

of the target distribution is lower bounded by nH(p) [8].

Thus, provided m is su�ciently large for the uniform con-

vergence of the expected log-losses to the true log-losses [14],

we are ensured that the expected log-loss of our hypothesis

exceeds that of the target by at most

O

�

p

pn log(m=�)

�

�

log

1

p

� log

1

1� p

�

+ log k + log logm

and this is by de�nition an upper bound on the Kullback-

Leibler divergence. It can be shown (details omitted) that

the choice m =
(log(1=p)kn

3

) su�ces, giving a �nal diver-

gence bound that is

~

O(

p

pn) as desired.

To dispose of the assumption of uniform mixture co-

e�cients requires two steps that we merely sketch here.

First, as we have already mentioned, in the candidate cen-

ters phase we will sample only enough to obtain a su�ciently

large number of observations from the \heavy" centers. This

will mean that in the covering phase, we will not be ensured

that there is a complete covering of the second set of obser-

vations S in our candidate centers set, but there will be a

partial covering. We can then use the greedy heuristic for

the partial cover problem [19] and conduct a similar analysis.

(Theorem 10)

In contrast to the covering approach taken in the algo-

rithm of Theorem 10, the algorithm of the following theorem

uses an equation-solving technique.

Theorem 14 For corruption probability p < 1=2, the class

HB

k

n

[C] is learnable with an evaluator and a generator in

time polynomial in n, 1=�, 1=�, 2

k

and (1� 2p)

�k

.

Proof: (Sketch) Let the target distribution D 2 HB

k

n

[C]

be (h~x

1

; p; q

1

i; : : : ; h~x

k

; p; q

k

i). Let X be the random vari-

able representing the randomly chosen center vector (that

is, X = ~x

i

with probability q

i

). Note that we do not have

direct access to the random variable X.

Our algorithm for learning such a distribution makes use

of a subroutine prob which estimates the probability that

a chosen set of bits of X are set to particular values. That

is, prob takes as input lists i

1

; : : : ; i

`

2 [n] and b

1

; : : : ; b

`

2

f0; 1g, and returns (with high probability) an estimate (to

any given accuracy) of the probability that X

i

j

= b

j

for j =

1; : : : ; `. Assuming for now that such a subroutine exists, we

show how to learn D. Later, we sketch an implementation

of the subroutine prob.

To learn the distribution D, it su�ces to learn the dis-

tribution of the random center X since the noise process is

known. To do this, we use prob to construct a binary tree T

which represents an approximation of X's distribution (and

that can be used for either generation or evaluation of the

distribution D).

Each (internal) node of the tree T is labeled with an

index i 2 [n] and a probability r. Each node has a 0-child

and a 1-child. The leaves are labeled with an assignment ~a 2

f0; 1g

n

. We interpret such a tree as a representation of the

distribution induced by the following process for choosing a

vector ~y: beginning at the root node labeled (i; r), we ip

a biased coin with probability r of heads. If heads, we set

y

i

= 1 and we traverse to the 1-child of the current node;

if tails, we set y

i

= 0 and we move on to the 0-child. This

process is repeated until a leaf node is reached with label ~a.

At this point, all the bits of ~y that have not already been

assigned are set to the value given by ~a.

7

A tree T representing approximately the distribution on

centers X can be constructed using prob as follows. Ini-

tially, the tree is empty. We begin by obtaining from prob

for each i 2 [n] an estimate of the probability that X

i

= 1.

If all of these estimates are very close to 0 or 1, then the

probability must be high that X is equal to some vector ~a;

we therefore make the root a leaf labeled by ~a. Clearly, T

in this case is a good approximation of X.

On the other hand, if for some i, the estimated proba-

bility r that X

i

= 1 is not close to 0 or 1, then we make the

root a node labeled (i; r), and we recursively compute the

subtrees subtended by the children of this node; these sub-

trees represent the distribution of the center X conditioned

on X

i

set to 0 or 1.

More speci�cally, we follow essentially the same proce-

dure to compute the rest of the tree T . Suppose we are

currently attempting to label a node in T that is reached by

following a sequence of nodes labeled i

1

; : : : ; i

`

where i

j+1

is

the b

j

-child of i

j

(j = 1; : : : ; `� 1) and the current node is

the b

`

-child of i

`

. For each i 2 [n], we use prob to estimate

the conditional probability that X

i

= 1 given that X

i

j

= b

j

for j = 1; : : : ; `. If, for all i, these estimates are close to 0

or 1, then this node is made into a leaf with the appropriate

label. Otherwise, if the estimated conditional probability r

for some index i is su�ciently far from 0 and 1, then the

node is labeled (i; r), and the process continues recursively

with the current node's children.

Assuming the reliability of subroutine prob, we show in

the full paper that the resulting tree T has at most k leaves.

Briey, this is shown by arguing that the number of centers

~x

i

compatible with a node of the tree (so that the labels on

the path to the node agree with the corresponding bits of

~x

i

) is strictly greater than the number of centers compatible

with either of the node's children. Using this fact, it can

be shown that only polynomially many calls to prob are

needed, and moreover that each call involves a list of at

most k indices (that is, ` � k on each call to prob). That

T represents a good approximation of the distribution of X

follows by a straightforward induction argument.

It remains then only to show how to construct the sub-

routine prob. For ease of notation, assume without loss of

generality that we are attempting to estimate the probabil-

ity distribution on the �rst ` bits of X. We will show how

this can be done in time polynomial in the usual parameters

and (1� 2p)

�`

.

For a set S � [`], let P

S

be the probability that the

chosen center vector X is such that X

i

= 1 for i 2 S and

X

i

= 0 for i 2 [`]�S. Our goal is to estimate one of the P

S

's.

Similarly, let Q

S

be the probability that the observed vector

Y is such that Y

i

= 1 for i 2 S and Y

i

= 0 for i 2 [`]� S.

Note that the Q

S

's can be easily estimated from a random

sample using Cherno� bounds.

Each Q

S

can be written as a linear combination of the

P

S

's. Speci�cally,

Q

S

=

X

T�[`]

(1� p)

n�jS4T j

p

jS4T j

P

T

(where S4T is the symmetric di�erence of S and T). That

is, in matrix form, Q = A

p

P for some matrix A

p

that de-

pends only on the noise rate p. Since A

p

is known, we thus

can estimate the vector P by �rst estimating Q from a ran-

dom sample by a vector

^

Q, and then computing

^

P = A

�1

p

^

Q.

To see that

^

P is a good estimate of P , it can be shown

that jj

^

P � P jj � j�j

�1

� jj

^

Q � Qjj, where � is the smallest

eigenvalue of A

p

. Moreover, it can shown that � = (1� 2p)

`

(details omitted).

This completes the sketch of prob, and of the proof of

Theorem 14. (Theorem 14)

6 Hardness Results

In this section we give hardness results indicating the limits

of e�cient learnability in our model. Note that just as in the

PAC model, we should distinguish between representation

dependent hardness results, in which the intractability is

the result of demanding that the learning algorithm output

a hypothesis of certain syntactic form, and representation

independent hardness results, in which a learning problem

is shown hard regardless of the form of the hypothesis [20]

and thus is inherently hard.

While we seek only results of the second type, we must

still specify whether it is learning with an evaluator or learn-

ing with a generator that is hard, or both. We prove below

that it is hard to learn certain probabilistic �nite automata

with an evaluator, under an assumption on the intractability

of PAC learning parity functions with noise.

For learning with a generator, it is only for the powerful

class of all polynomial-size circuit generators that we can

prove hardness; the proof relies on the strong properties of

pseudo-random functions [12].

6.1 Hardness of Learning Probabilistic Finite Automata

with an Evaluator

We de�ne a class of distributions PFA

n

over f0; 1g

n

gen-

erated by probabilistic �nite automata. A distribution in

PFA

n

is de�ned by a �nite automaton in which the num-

ber of states is bounded by a �xed polynomial in n, each

state has a single outgoing transition labeled 0 and a single

outgoing transition labeled 1, and each transition is also la-

beled by a probability such that for each state the sum of

the two probabilities from that state is 1. There are no la-

bels on the states. This automaton is used to generate n-bit

strings by the following process: the automaton starts at

its designated start state, and takes n steps. At each step,

an outgoing transition is chosen at random according to its

associated probability, and the f0; 1g label of the chosen

transition is the next output bit. The resulting distribution

has both polynomial-size generators and evaluators.

Abe and Warmuth [1] showed that it is hard in a repre-

sentation dependent sense to learn a probabilistic automa-

ton de�ned over a large alphabet. Here, we give evidence

for the representation independent intractability of learn-

ing PFA

n

with an evaluator (even when the alphabet has

cardinality two). We argue this by demonstrating that the

problem of learning parity functions in the presence of clas-

si�cation noise with respect to the uniform distribution can

be embedded in the PFA

n

learning problem. Thus we prove

our theorem under the following conjecture, for which some

evidence has been provided in recent papers [18, 3].

Conjecture 15 (Noisy Parity Assumption) There is a con-

stant 0 < � <

1

2

such that there is no e�cient algorithm for

learning parity functions under the uniform distribution in

the PAC model with classi�cation noise rate �.

Theorem 16 Under the Noisy Parity Assumption, the class

PFA

n

is not e�ciently learnable with an evaluator.

Proof: (Sketch) We show that for any parity function f

S

on f0; 1g

n�1

, where S � fx

1

; : : : ; x

n�1

g and f

S

(~x) = 1 if and

only if the parity of ~x on the set S is 1, there is a distribution

D

S

in PFA

n

that is uniform on the �rst n�1 bits, and whose

nth bit is f

S

applied to the �rst n� 1 bits with probability

1� �, and is the complement of this value with probability

8

�. Thus, the distribution D

S

essentially generates random

noisy labeled examples of f

S

. This is easily accomplished by

a probabilistic �nite automaton with two parallel \tracks",

the 0-track and the 1-track, of n levels each. If at any time

during the generation of a string we are in the b-track, b 2

f0; 1g, this means that the parity of the string generated

so far restricted to the variable set S is b. Let s

b;i

denote

the ith state in the b-track. If the variable x

i

62 S (so x

i

is

irrelevant to f

S

), then both the 0 and 1 transitions from s

b;i

go to s

b;i+1

(there is no switching of tracks). If x

i

2 S, then

the 0-transition of s

b;i

goes to s

b;i+1

, but the 1-transition

goes to s

:b;i+1

(we switch tracks because the parity of S so

far has changed). All these transitions are given probability

1=2, so the bits are uniformly generated. Finally, from s

b;n�1

we make a b-transition with probability 1 � � and a :b-

transition with probability �. It is easily veri�ed that this

construction implements the promised noisy distribution for

random labeled examples of f

S

.

It can be shown that if

^

D is a hypothesis evaluator sat-

isfying KL(D

S

jj

^

D) � �(1 � H(�)), then for a random ~x 2

f0; 1g

n�1

we can determine f

S

(~x) with probability 1� � by

checking which of ~x0 and ~x1 has larger probability under

^

D and answering accordingly. This contradicts the Noisy

Parity Assumption. (Theorem 16)

6.2 Hardness of Learning Polynomial-Size Circuit Distri-

butions with a Generator

While Theorem 16 demonstrates that we should not seek

algorithms for learning probabilistic automata with an eval-

uator, it leaves open the possibility of learning with a gener-

ator. Which classes are hard to learn even with a generator?

Let POLY

n

denote the class of distributions over f0; 1g

n

generated by circuits of size at most some �xed polynomial

in n. In the following theorem, we show that POLY

n

is not

e�ciently learnable with a generator. The construction uses

the strong properties of pseudo-random functions [12].

Theorem 17 If there exists a one-way function, POLY

n

is

not e�ciently learnable with an evaluator or with a genera-

tor.

Proof: (Sketch) We use the construction of small circuits

indistinguishable from truly random functions due to Gol-

dreich, Goldwasser and Micali [12]. Briey, for every n there

exists a class of functions f

1

; : : : ; f

2

n

: f0; 1g

n

! f0; 1g

n

,

each computable by a circuit of size polynomial in n, and

with the following remarkable property: let k be chosen ran-

domly, and let A be any polynomial-time algorithm provided

with an oracle for the function f

k

. After making a polyno-

mial number of dynamically chosen queries ~x

1

; : : : ; ~x

p(n)

2

f0; 1g

n

and receiving the responses f

k

(~x

1

); : : : ; f

k

(~x

p(n)

), al-

gorithm A chooses any exam vector ~x satisfying ~x 6= ~x

i

for

all 1 � i � p(n). A then receives f

k

(~x) and a random

~r 2 f0; 1g

n

, but in a random order. Then the advantage

that A has in distinguishing f

k

(~x) from ~r vanishes faster

than any inverse polynomial in n.

The hard subclass of distributions in POLY

2n

is de�ned

as follows: for each of the functions f

k

over f0; 1g

n

, let D

k

denote the distribution over f0; 1g

2n

that is uniform on the

�rst n bits, but whose last n bits are always f

k

applied to

the �rst n bits. The fact that the D

k

can be generated by

polynomial-size circuits follows immediately from the small

circuits for the f

k

(in fact, the D

k

have polynomial-size eval-

uators as well).

Now suppose for contradiction that A is a polynomial-

time algorithm for learning POLY with a generator. Then

given an oracle for f

k

, we can simulate A by generating

many 2n-bit vectors of the form h~x

i

; f

k

(~x

i

)i by choosing ~x 2

f0; 1g

n

randomly; these 2n-bit vectors will be distributed

exactly according to D

k

. Let

^

D denote the generator out-

put by A following this simulation. Assume that the KL

divergence is at most `, that is,

KL(D

k

jj

^

D) =

X

~x2f0;1g

n

1

2

n

log

1

^

D[~x; f

k

(~x)]

� n � `:

The probability that

^

D actually generates a correct pair

h~x; f

k

(~x)i is simply

P

x

^

D[~x; f

k

(~x)]. We claim that for at

least a fraction 1=n of the ~x,

^

D[~x; f

k

(~x)] � 1=2

2+`+n

; oth-

erwise the KL divergence would be more than `. Therefore

the probability that

^

D generates a correct pair is at least

1=(4n2

`

). Since only p(n) of the 2

n

=n correct pairs were

drawn for the simulation of A, it follows that the probabil-

ity that

^

D outputs a new correct pair h~x; f

k

(~x)i is at least

1=5n2

`

. Therefore, for ` = O(log n) this probability is an in-

verse polynomial, which is a contradiction. (Theorem 17)

7 Distribution Learning and Compression

It is true in many probabilistic learning models that \com-

pression implies learning": if there is an e�cient algorithm

that can always �nd a \short explanation" for a random

sample, then that algorithm is a learning algorithm provided

it is given a su�ciently large sample. This powerful principle

goes by the name Occam's Razor, and it can be veri�ed for

many learning models, including our distribution learning

model [5, 6, 21, 14].

In the distribution-free PAC model, the converse to Oc-

cam's Razor can be shown to hold as well [11, 22]. Specif-

ically, if any class of polynomial-size circuits over f0; 1g

n

is

e�ciently learnable in the distribution-free PAC model, then

it is e�ciently learnable by an algorithm whose hypothesis

is a boolean circuit whose size depends polynomially on n

but only logarithmically on 1=�. (Such statements are inter-

esting only in the computationally bounded setting; without

computational constraints, they hold trivially.) This should

be contrasted with the fact that for many distributions, it

is possible to prove an
(1=�) lower bound on the number

of examples any learning algorithm must see when learning

under those speci�c distributions [6]. In other words, in the

distribution-free PAC model it is impossible to construct a

class of functions that is e�ciently learnable only by an al-

gorithm whose hypothesis stores a complete table of all the

examples seen during training | there must always exist

an e�cient algorithm whose hypothesis manages to \forget"

most of the sample.

Intriguingly, in our model, it seems entirely possible that

there might be classes of distributions that are e�ciently

learnable only by \memorizing" algorithms | that is, al-

gorithms whose hypothesis distribution has small log-loss,

but whose size is not signi�cantly smaller than the sample

itself. It is interesting to note as an aside that many of the

standard statistical algorithms (such as the nearest-neighbor

and kernel-based algorithms surveyed by Izenman [16]) also

involve the memorization of the entire sample.

We now make a concrete proposal for a counterexample

to the converse of Occam's Razor for learning with a genera-

tor. We call the distribution class HC

n

, standing for Hidden

Coin, because each distribution can be thought of as gen-

erating a biased coin ip \hidden" in a number, with the

property that no polynomial-time algorithm can determine

the outcome of the coin ip, but the numbers are su�cient

to generate further biased ips. The construction is simple,

9

and based on quadratic residues. For any n, each distribu-

tion in the class HC

n

will be de�ned by a tuple hp; q; r; zi.

Here p and q are n=4-bit primes (let N = p � q), r 2 [0; 1],

and z 2 Z

�

N

is any element such that z 6= x

2

mod N for all

x 2 Z

�

N

(that is, z is a quadratic non-residue). The tuple

hp; q; r; zi generates the following distribution: �rst a ran-

dom x 2 Z

�

N

is chosen. Then with probability r, we set

y = x

2

mod N (a residue), and with probability 1 � r, we

set y = zx

2

mod N (a non-residue). The generated output

is (y;N) 2 f0; 1g

n

. It is easy to verify that HC

n

has both

polynomial-size generators and evaluators.

Theorem 18 The class HC

n

is e�ciently learnable with a

generator, and under the Quadratic Residue Assumption [4]

is not e�ciently learnable with an evaluator.

Proof: (Sketch) The hardness of learning with an eval-

uator is straightforward and omitted. The algorithm for

learning with a generator simply takes a large sample S =

h(y

1

;N); : : : ; (y

m

; N)i from the distribution. Note that if r̂

is the fraction of the y

i

appearing in S that are residues,

then if m =
(1=�

2

) we have jr� r̂j � � with high probabil-

ity (although of course our polynomial-time algorithm has

no obvious means of determining r̂). Our algorithm simply

outputs the entire sample S as its hypothesis representation.

The distribution D

S

de�ned by S is understood to be gen-

erated by �rst choosing x 2 Z

�

N

randomly, then randomly

selecting a y

i

appearing in S, and letting the generated out-

put be (y

i

x

2

mod N;N) (note that N is available from S).

It is easy to see that D

S

outputs a random residue with

probability exactly r̂, and thus has divergence at most � to

the target. (Theorem 18)

The challenge is to �nd an e�cient algorithm whose hy-

pothesis is considerably more succinct than the one provided

above, but we do not believe that such an algorithm exists.

The following conjecture, if correct, would establish the fail-

ure of a strong converse to Occam's Razor for learning with

a generator: unlike the PAC model, where hypothesis size

always has an O(log(1=�)) dependence on �, we conjecture

that for some positive �, an
(1=�

�

) hypothesis size depen-

dence is required for the e�cient learning of HC

n

with a

generator.

Conjecture 19 Under the Quadratic Residue Assumption,

for some � > 0 there is no e�cient algorithm for learning

the class HC

n

with a generator whose hypothesis size has an

O(1=�

�

) dependence on �.

Acknowledgments

We would like to thank Nati Linial for helpful discussions on the

inclusion-exclusion problem. Part of this research was conducted

while Dana Ron, Ronitt Rubinfeld and Linda Sellie were visit-

ing AT&T Bell Laboratories. Yishay Mansour was supported in

part by the Israel Science Foundation administered by the Israel

Academy of Science and Humanities, and by a grant from the

Israeli Ministry of Science and Technology. Dana Ron would like

to thank the Eshkol fellowship for its support. Ronitt Rubinfeld

was supported by ONR Young Investigator Award N00014-93-

1-0590 and United States-Israel Binational Science Foundation

Grant 92-00226.

References

[1] Naoki Abe and Manfred K. Warmuth. On the computational

complexity of approximating distributions by probabilistic

automata. Machine Learning, 9(2{3):205{260, 1992.

[2] Shai Ben-David, Benny Chor, Oded Goldreich, and Michael

Luby. On the theory of average case complexity. Journal of

Computer and System Sciences, 44(2):193{219, 1992.

[3] Avrim Blum, Merrick Furst, Michael Kearns, and Richard J.

Lipton. Cryptographic primitives based on hard learning

problems. In Pre-Proceedings of CRYPTO '93, pages 24.1{

24.10, 1993.

[4] L. Blum, M. Blum, and M. Shub. A simple unpredictable

pseudo-random number generator. SIAM Journal on Com-

puting, 15(2):364{383, May 1986.

[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and

Manfred K. Warmuth. Occam's razor. Information Process-

ing Letters, 24(6):377{380, April 1987.

[6] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and

Manfred K. Warmuth. Learnability and the Vapnik-

Chervonenkis dimension. Journal of the Association for

Computing Machinery, 36(4):929{965, October 1989.

[7] V. Chvatal. A greedy heuristic for the set covering problem.

Mathematics of Operations Research, 4(3):233{235, 1979.

[8] Thomas M. Cover and Joy A. Thomas. Elements of Infor-

mation Theory. Wiley, 1991.

[9] Richard O. Duda and Peter E. Hart. Pattern Classi�cation

and Scene Analysis. Wiley, 1973.

[10] Paul Fischer and Hans Ulrich Simon. On learning ring-sum-

expansions. SIAM Journal on Computing, 21(1):181{192,

February 1992.

[11] Yoav Freund. An improved boosting algorithmand its impli-

cations on learning complexity. In Proceedings of the Fifth

Annual ACM Workshop on Computational Learning The-

ory, pages 391{398, July 1992.

[12] Oded Goldreich, Sha� Goldwasser, and Silvio Micali. How

to construct random functions. Journal of the Association

for Computing Machinery, 33(4):792{807, October 1986.

[13] Yuri Gurevich. Average case completeness. Journal of Com-

puter and System Sciences, 42(3):346{398, 1991.

[14] David Haussler. Decision theoretic generalizations of the

PAC model for neural net and other learning applications.

Information and Computation, 100(1):78{150, 1992.

[15] David Helmbold, Robert Sloan, and Manfred K. Warmuth.

Learning integer lattices. SIAM Journal on Computing,

21(2):240{266, 1992.

[16] Alan Julian Izenman. Recent developments in nonparamet-

ric density estimation. Journal of the American Statistical

Association, 86(413):205{224, March 1991.

[17] Je� Kahn, Nathan Linial, and Alex Samorodintsky.

Inclusion-exclusion: exact and approximate. Manuscript,

1993.

[18] Michael Kearns. E�cient noise-tolerant learning from sta-

tistical queries. In Proceedings of the Twenty-Fifth Annual

ACM Symposium on the Theory of Computing, pages 392{

401, 1993.

[19] Michael Kearns and Ming Li. Learning in the presence of

malicious errors. SIAM Journal on Computing, 22(4):807{

837, August 1993.

[20] Michael Kearns and Leslie G. Valiant. Cryptographic limita-

tions on learning Boolean formulae and �nite automata. In

Proceedings of the Twenty First Annual ACM Symposium

on Theory of Computing, pages 433{444, May 1989. To ap-

pear, Journal of the Association for Computing Machinery.

[21] Michael J. Kearns and Robert E. Schapire. E�cient

distribution-free learning of probabilistic concepts. In 31st

Annual Symposium on Foundations of Computer Science,

pages 382{391, October 1990. To appear, Journal of Com-

puter and System Sciences.

[22] Robert E. Schapire. The strength of weak learnability. Ma-

chine Learning, 5(2):197{227, 1990.

[23] L. G. Valiant. The complexity of enumeration and reliability

problems. SIAM Journal on Computing, 8(3):410{421, 1979.

[24] L. G. Valiant. A theory of the learnable. Communications

of the ACM, 27(11):1134{1142, November 1984.

[25] V. N. Vapnik. Estimation of Dependences Based on Empir-

ical Data. Springer-Verlag, 1982.

10

