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Abstract

Over the last two decades, frameworks for distributed-memory parallel computation, such
as MapReduce, Hadoop, Spark and Dryad, have gained significant popularity with the growing
prevalence of large network datasets. The Massively Parallel Computation (MPC) model is
the de-facto standard for studying graph algorithms in these frameworks theoretically. Sub-
graph counting is one such fundamental problem in analyzing massive graphs, with the main
algorithmic challenges centering on designing methods which are both scalable and accurate.

Given a graph G = (V,E) with n vertices, m edges and T triangles, our first result is an
algorithm that outputs a (1 + ε)-approximation to T , with asymptotically optimal round and
total space complexity provided any S ≥ max (

√
m,n2/m) space per machine and assuming

T = Ω(
√
m/n). Our result gives a quadratic improvement on the bound on T over previous

works. We also provide a simple extension of our result to counting any subgraph of k size for
constant k ≥ 1. Our second result is an Oδ(log logn)-round algorithm for exactly counting the
number of triangles, whose total space usage is parametrized by the arboricity α of the input
graph. We extend this result to exactly counting k-cliques for any constant k. Finally, we prove
that a recent result of Bera, Pashanasangi and Seshadhri (ITCS 2020) for exactly counting all
subgraphs of size at most 5 can be implemented in the MPC model in Õδ(

√
log n) rounds, O(nδ)

space per machine and O(mα3) total space.
In addition to our theoretical results, we simulate our triangle counting algorithms in real-

world graphs obtained from the Stanford Network Analysis Project (SNAP) database. Our
results show that both our approximate and exact counting algorithms exhibit improvements
in terms of round complexity and approximation ratio, respectively, compared to two previous
widely used algorithms for these problems.

1 Introduction

Estimating the number of small subgraphs, cliques in particular, is a fundamental problem in
computer science, and has been extensively studied both theoretically and from an applied per-
spective. Given its importance, the task of counting subgraphs has been explored in vari-
ous computational settings, e.g., sequential [AYZ97, Vas09, BHKK09], distributed and paral-
lel [SV11, PT12, KPP+14, PSKP14, LQLC15], streaming [BYKS02, KMSS12, BC17, MVV16],
and sublinear-time [ELRS17, ABG+18, AKK19, ERS20]. There are usually two perspectives from
which subgraph counting is studied: first, optimizing the running time (especially relevant in the
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sequential and sublinear-time settings) and, second, optimizing the space or query requirement
(relevant in the streaming, parallel, and distributed settings). In each of these perspectives, there
are two, somewhat orthogonal, directions that one can take. The first is exact counting. However,
in most scenarios, algorithms that perform exact counting are prohibitive, e.g., they require too
much space or too many parallel rounds to be implementable in practice.

Hence, the second direction of obtaining an estimate/approximation on the number of small
subgraphs is both an interesting theoretical problem and of practical importance. If H# is the
number of subgraphs isomorphic to H, the main question in approximate counting is whether we can
design algorithms that, under given resource constraints, provide approximations that concentrate
well. This concentration is usually parametrized by H# (and potentially some other parameters).
In particular, most known results do not provide a strong approximation guarantee when H# is
very small, e.g., |H#| = O(1). So, the main attempts in this line of work is to provide an estimation
that concentrates well while imposing as small a lower bound on H# as possible.

Due to ever increasing sizes of data stores, there has been an increasing interest in de-
signing scalable algorithms. The Massively Parallel Computation (MPC) model is a theoreti-
cal abstraction of popular frameworks for large-scale computation such as MapReduce [DG08],
Hadoop [Whi12], Spark [ZCF+10] and Dryad [IBY+07]. MPC gained significant interest recently,
most prominently in building algorithmic toolkits for graph processing [GSZ11, LMSV11, BKS13,
ANOY14, BKS14, HP15, AG15, RVW16, IMS17, CLM+20, Ass17, ABB+19, GGK+18, HLL18,
BFU18, ASW18, BEG+18, BDH+19, BBD+19, BHH19, ASZ19, ASW19, GLM19, GKMS19, GU19,
LMOS19, ILMP19, CFG+19, GKU19, GNT20]. Efficiency of an algorithm in MPC is characterized
by three parameters: round complexity, the space per machine in the system, and the number of
machines/total memory used. Our work aims to design efficient algorithms with respect to all three
parameters and is guided by the following question:

How does one design efficient massively parallel algorithms for small subgraph counting?

1.1 The MPC Model

In this paper, we are working in the Massively Parallel Computation (MPC) model introduced
by [KSV10, GSZ11, BKS13]. The model operates as follows. There exist M machines that com-
municate with each other in synchronous rounds. The graph input is initially distributed across the
machines in some organized way such that machines know how to access the relevant information
via communication with other machines. During each round, the machines first perform compu-
tation locally without communicating with other machines. The computation done locally can be
unbounded (although the machines have limited space so any reasonable program will not do an
absurdly large amount of computation). At the end of the round, the machines exchange messages
to inform the computation for the next round. The total size of all messages that can be received
by a machine is upper bounded by the size of its local memory, and each machine outputs messages
of sufficiently small size that can fit into its memory. If N is the total size of the data and each
machine has S words of space, we are interested in the settings when S is sublinear in N . We use
total space to refer to M · S, which is the total space that is available across all the machines.

1.2 Our Contributions

1.2.1 Triangle Counting

We provide a number of results for triangle counting in both the approximate and exact settings.
Let G = (V,E) be a graph with n vertices, m edges and T triangles. First we study the question
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Problem Work MPC Rounds Space Per Machine Total Space ALB

Exact Triangle Counting

[SV11]
[SV11]
[CC11]
folklore
Ours

2
1

O(n)
O(logn)

Oδ(log log n)

O(
√
m)

o(m)
O(n)
Ω(α2)

O(nδ)

O(m3/2)
ω(m)
O(m)
O(mα)
O(mα)

-
-
-
-
-

Approximate Triangle Counting
[PT12]

[SPK13]
Ours

O(1)
O(1)
O(1)

Ω(m)

O(nδ)

Õ(n)

O(m)
O(m)

Õ(m)

Ω(davg)
Ω
(∑

v∈V deg(v)2
)

Ω(
√

davg)

Table 1: Summary of our main MPC triangle counting results compared to previous work. Our
results are bolded. “ALB” refers to the approximation lower bound on the number of triangles
required to obtain a (1 + ε)-approximation, with high probability. α is the arboricity of the input
graph and is generally small (logarithmic) in real-world networks. Parameter δ > 0 is any constant.

of approximately counting the number of triangles under the restriction that the round and total
space complexities are essentially optimal, i.e., O(1) and Õ(m), where Õ hides O(poly log n) factors,
respectively. Here and throughout, we use Oδ and Oε to hide factors of δ and ε, respectively, where
we consider constant factors of δ, ε > 0 in this paper.

Our algorithm is surprisingly simple with a more complicated analysis, but improves on the
previous best-known result by giving a (1+ε)-approximation, with high probability, while achieving
a quadratic improvement on the number of triangles required to ensure this approximation. The
specific bounds are given in Table 1.

Theorem 1.1. Let G = (V,E) be a graph with n vertices, m edges, and let T be the number of
triangles in G. Assuming

(i) T = Ω̃
(√

m
S

)
, (ii) S = Ω̃

(
max

{√
m
ε , n

2

m

})
,

there exists an MPC algorithm, using M machines, each with local space S, and total space
MS = Õε(m), that outputs a (1± ε)-approximation of T , with high probability, in O(1) rounds.

For S = Θ(n log n) (specifically, S > 100n log n) in Theorem 1.1, we derive the following
corollary.

Corollary 1.2. Let G be a graph and T be the number of triangles it contains. If T ≥
√
davg,

then there exists an MPC algorithm that in O(1) rounds with high probability outputs a (1 + ε)-
approximation of T . This algorithm uses a total space of Õ(m) and space Õ(n) per machine. davg
is the average degree of the vertices in the graph.

There is a long line of work on computing approximate triangle counting in parallel com-
putation [Coh09, TKMF09, SV11, YK11, PT12, KMPT12, PC13, SPK13, AKM13, PSKP14,
KPP+14, JS17, DLSY21] and references therein. Despite this progress, and to the best of our
knowledge, on one hand, each MPC algorithm for exact triangle counting either requires strictly
super-polynomial in m total space, or the number of rounds is super-constant (as seen in Table 1).
On the other hand, the best-known, classic algorithm for approximate triangle counting by Pagh
and Tsourakakis [PT12] requires T ≥ davg even when the space per machine is Θ(n). We design an
algorithm that has essentially optimal total space and round complexity, while at least quadratically
improving the requirement on T .
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Furthermore, since the amount of messages sent and received by each machine is bounded by
O(n), by [BDH18], our algorithm directly implies an O(1)-rounds algorithm in the Congested-
Clique model1 under the same restriction T = Ω(

√
m/n). The best known (to our knowledge)

triangle approximation algorithm for general graphs in this model, is an O(n1/3/T 2/3)-rounds al-
gorithm by [DLP12]. The best-known previous bound only results in constant round complexity
when T = Ω(

√
n).

Corollary 1.3. Given a graph G = (V,E) with T triangles, if T = Ω(
√
m/n), then there exists a

O(1)-rounds algorithm in the Congested-Clique model that gives a (1 + ε)-approximation of T
with high probability.

The second question we consider is the question of exact counting, for which we present an
algorithm whose total space depends on the arboricity of the input graph. The arboricity of
a graph (roughly) equals the average degree of its densest subgraph. The class of graphs with
bounded arboricity includes many important graph families such as planar graphs, bounded degree
graphs and randomly generated preferential attachment graphs. In addition, many real-world
graphs exhibit bounded arboricity [GG06, ELS13, SERF18], making this property important also
in practical settings. For many problems, a bound on the arboricity of the graph allows for much
more efficient algorithms and/or better approximation ratios [AG09, ELS13].

Specifically for the task of subgraph counting, in a seminal paper, Chiba and Nishizeki [CN85]
prove that triangle enumeration can be performed in O(mα) time, and assuming 3SUM-hardness
this result is optimal up to dependencies in O(poly log n) [Pat10, KPP16]. Many applied algorithms
also rely on the property of having bounded arboricity in order to achieve better space and time
bounds, e.g., [SW05, CC11, Lat08]. Our main theorem with respect to this question is the following.

Theorem 1.4. Let G = (V,E) be a graph with n vertices, m edges and arboricity α. Count-
Triangles(G) takes Oδ (log log n) rounds, O

(
nδ
)

space per machine for any δ > 0, and O (mα)
total space.

It is interesting to note that our total space complexity matches the time complexity (both up-
per and conditional lower bounds) of combinatorial2 triangle counting algorithms in the sequential
model [CN85, Pat10, KPP16]. The best-known previous algorithm in this setting is the folklore al-
gorithm of placing each vertex and its out-neighbors in the same machine and counting the incident
triangles. Such an approach requires O(log n) rounds and Ω(α2) space per machine (summarized
in Table 1). We prove the above theorem in Section 4.

1.2.2 Clique Counting

All of our above triangle counting results can be extended to k-clique counting. In Section 5, we
prove that our exact triangle counting result can be extended to exactly counting k-cliques for any
constant k:

Theorem 1.5. Let G = (V,E) be a graph with n vertices, m edges and arboricity α. Count-
Cliques(G) takes Oδ (log log n) rounds, O

(
nδ
)

space per machine for any δ > 0, and O
(
mαk−2

)
total space.

1A distributed model where nodes communicate with each other over a complete network using O(logn) bit
messages [LPSPP05].

2Combinatorial algorithms, usually, refer to algorithms that do not rely on fast matrix multiplication.
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We can improve on the total space usage if we are given machines where the memory for each
individual machine satisfies α < nδ

′/2 where δ′ < δ. In this case, we obtain an algorithm that
counts the number of k-cliques in G using O(nα2) total space and Oδ(log log n) communication
rounds.

Furthermore, our approximate triangle counting results can be extended to counting any sub-
graph of size K where K is constant. Specifically, we obtain the following result:

Theorem 1.6. Let G = (V,E) be a graph with n vertices, m edges, and let B be the number

of occurrences of a subgraph H with K vertices in G. If B ≥ d
K/2−1
avg , then there exists an MPC

algorithm that gives a (1+ε)-approximation of B in O(1) rounds, total space Õ(m), and Õ(n) space
per machine, with high probability. Here, davg is the average degree of the vertices in the graph.

1.3 Other Small Subgraphs

Finally, in Section 7, we consider the problem of exactly counting subgraphs of size at most 5, and
show that the recent result of Bera, Pashanasangi and Seshadhri [BPS20] for this question in the
sequential model, can be implemented in the MPC model. Ours is the first result for counting any
arbitrary subgraph of size at most 5 in poly(log n) rounds in the MPC model. Here too, our total
space complexity matches the time complexity of the sequential model algorithm. It is an interesting
open question whether our results can be extended to more general subgraphs following the results
of [Bre19, BPS21]. Section 9 summarizes the difficulties of implementing these algorithms in the
MPC model and we present this question as interesting future work.

Theorem 1.7. Let G = (V,E) be a graph with n vertices, m edges, and arboricity α. The algorithm
of BPS for counting the number of occurrences of a subgraph H over k ≤ 5 vertices in G can be
implemented in the MPC model in Oδ(

√
log n log logm) rounds, with high probability. The space

requirement per machine is O(n2δ) and the total space is O(mα3).

1.4 Related Work

There has been a long line of work on small subgraph counting in massive networks in the MapRe-
duce model whose results translate to the MPC model. We first describe the works for exact triangle
and k-clique counting. [SV11] first designed an algorithm for triangle counting, but their approach
requires a super-linear total space of O(m3/2). Another work, [AFU13], shows how to count small
subgraphs by using b3 machines, each requiring O(m/b2) space per machine. Hence, it uses a total
space of O(mb). Therefore, this approach either requires super-linear total space or almost O(m)
space per machine. [SV11] were the first to achieve constant number of rounds in MPC, where
they design two algorithms. The first of those algorithms, that runs in 2 rounds, requires O(

√
m)

space per machine and total space O(m3/2). Their second algorithm requires only one round for
exact triangle counting, total space O(ρm) and space per machine O(m/ρ2). Therefore, for this
algorithm to work with polynomially less than space m per machine, it has to allow for a total
space that is polynomially larger than m. [CC11] focus on algorithms that require a total space
of O(m). In the worst case, their algorithm performs O(|E|/S) MPC rounds to output the exact
count where S is the maximum space per machine. [FFF15] extended and provided new algorithms
for clique counting but they also require Ω(m3/2) total space.

[TKMF09, AKM13] designed randomized algorithms for approximate triangle counting also in
the MapReduce model (whose results, again, can be translated rather straightforwardly to the
MPC model). Their approach first sparsifies the input graph by sampling a subset of edges, and
executes some of the known algorithms for triangle counting on the sampled subgraph. Denoting
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their sampling probability by p, their approach outputs a (1 + ε)-approximate triangle count with
probability at most 1− 1/(ε2p3T ). 3 To contrast this result with our approach, consider a graph G
where m = Θ(n2). Let G′ be the edge-sparsified graph as explained above. To be able to execute
the first algorithm of [SV11] on G′ such that the total space requirement is O(m), one can verify
that it is needed to set p = Θ(n−2/3). This in turn implies that the result in [TKMF09, AKM13]
outputs the correct approximation with constant probability only if T = Ω(n2). An improved
lower-bound can be obtained by using the second algorithm of [SV11]. By balancing out ρ and p
and for S = O(n), one can show that the sparsification results in a constant probability of success
for T = Ω(n). On the other hand, for S = O(n), our approach obtains the same guarantee even
when T = Θ(

√
davg(G)) = Θ(

√
n).

The best-known algorithm of [PT12] is a randomized algorithm for approximate triangle count-
ing based on graph partitioning. The graph is partitioned into 1/p pieces, where p is at least the
ratio of the maximum number of triangles sharing an edge and T . When all the triangles share one
edge, then p ≥ 1, and hence such an approach would require the space per machine to be Ω(m).
Furthermore, this approach requires the number of triangles to be lower bounded by T = Ω (davg).
Another more recent work of [SPK13] uses wedge sampling and provides a (1 + ε)-approximation
of the triangle count in O(1) rounds when T is a constant fraction of the sum of squares of degrees.
The comparison of our bounds with these previous results are summarized in Table 1.
Other related work. Subgraph counting (primarily triangles) was also extensively studied in the
streaming model, see [BYKS02, KMSS12, BOV13, JSP13, MVV16, BC17, AKK19] and references
therein. This culminated in a result that requires space Õ

(
m3/2/(Tε2)

)
to estimate the number

of triangles within a (1 + ε)-factor. In the semi-streaming setting it is assumed that one has Õ(n)
space at their disposal. This result fits in this regime for T ≥ m3/2/n = davg ·m1/2. As a reminder,

our MPC result requires T ≥
√
davg when S = Õ(n).

In a celebrated result, [AYZ97] designed an algorithm for triangle counting in the sequential set-
tings that runs in O(m2ω/(ω+1)) time, where ω is the best-known exponent of matrix multiplication.
Since then, several important works have extended this result to k-clique counting [EG04, Vas09].
In the work-depth (shared-memory parallel processors) model, several results are known for this
problem. There has been significant work on practical parallel algorithms for the case of triangle
counting (e.g. [AKM13, SV11, PC13, PSKP14, ST15] among others). There is even an annual
competition for parallel triangle counting algorithms [Gra]. For counting k = 4 and k = 5 cliques,
efficient practical solutions have also been developed [ANR+17, DAH17, ESBD16, HD14, PSV17].
[DBS18] recently implemented the Chiba-Nishizeki algorithm [CN85] for k-cliques in the parallel
setting; although, their work does not achieve polylogarithmic depth. Even more recently, [SDS20]
enumerated k-cliques in the work-depth model in O

(
mαk−2

)
expected work and O

(
logk−2 n

)
depth

with high probability, using O(m) space. Among other distinctions from our setting, the work-depth
model assumes a shared, common memory.

In the CONGESTED-CLIQUE model, [CHKK+19] present an Õ(n1−2/ω) = Õ(n0.158) rounds
algorithm for matrix multiplication, implying the same complexity for exact triangle counting.
[DLP12] present an algorithm for approximate triangle counting in general graphs whose expected
running time is O(n1/3/T 2/3). They also present an O(α2/n)-rounds algorithm for bounded ar-
boricity graphs.

3The actual probability is even smaller and also depends on pairs of triangles that share an edge.
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2 Preliminaries

Counting Duplicates. We make use of interval trees for certain parts of our paper to count
the number of repeating elements in a sorted list, given bounded space per machine. We use the
interval tree implementation given by [GSZ11] to obtain our count duplicates algorithm in the
MPC model. We prove the following theorem in the MPC model regarding our count duplicates
tree implementation. The proofs of the following claims are given in Appendix A.

Theorem 2.1. Given a sorted list of N elements implemented on processors where the space per
processor is S and the total space among all processors is O(N), for each unique element in the
list, we can compute the number of times it repeats in O (logS N) communication rounds.

We also use the following two new MPC primitives in proving our bounds. These primitives
may be of use in other algorithms beyond the scope of our paper.

Lemma 2.2. Given two sets of tuples Q and C (both of which may contain duplicates), for each
tuple q ∈ Q, we return whether q ∈ C in O(|Q ∪ C|) total space and Oδ(1) rounds given machines
with space O(nδ) for any δ > 0.

Lemma 2.3. Given a machine M that has space O(n2δ) for any δ > 0 and contains data of O(nδ)
words, we can generate x copies of M , each holding the same data as M , using O(M ·x) machines
with O(nδ) space each in O(lognδ x) rounds.

3 Overview of Our Techniques

3.1 Exact Triangle Counting

Let G = (V,E) be a graph with n vertices, m edges and arboricity at most α. We tackle the task
of exactly counting the number of triangles in G in Oδ(log log n) rounds using the following ideas.
In each round i, we partition the vertices into low-degree vertices Ai and high-degree vertices,
according to a degree threshold γi, which grows doubly exponentially in the number of rounds. We
then count the number of triangles incident to the set of low degree vertices Ai. Each low-degree
vertex v ∈ Ai sends a list of its neighbors to all its neighbors. Then, any neighbor u of v that detects
a common neighbor w to u and v, adds the triangle (u, v, w) to the list of discovered triangles.

Once all triangles incident to the vertices in Ai are processed, we remove this set from the graph
and continue with the now smaller graph. This removal of the already processed vertices allows
us to handle larger and larger degrees from step to step while using a total space of O(mα). This
behavior also leads to the Oδ(log log n) round complexity, as after this many rounds all vertices are
processed. The key insight in our proof that we maintain O(mα) total space even when we increase
the degree threshold doubly exponentially. Such insight allows us to obtain our improved number
of rounds while maintaining the same total space as the previous folklore algorithm. Finally, we
achieve improved space per machine to O(nδ) for any constant δ > 0 via a number of new MPC
primitives. Our algorithm and its analysis are provided in Section 4. We provide extensions of our
triangle counting algorithm to k-cliques in Section 5.

3.2 Approximate Triangle Counting

Our work reduces approximate triangle counting to exact triangle counting in multiple (randomly
chosen) induced subgraphs of the original graph. In our work, and in contrast to prior approaches
(e.g., [PT12]), the induced sugraphs on different machines might overlap in both vertices and edges.
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This enables us to obtain better concentration bounds compared to prior work, but also brings many
challenges. Surprisingly, our algorithm is very simple (with a more complicated analysis), but is
able to achieve a better lower bound on the number of triangles required to achieve a (1 + ε)-
approximation with high probability.

The high level idea is that each machine Mi samples a subset of vertices Vi by including each
vertex in Vi with probability p̂. Then, each machine computes the induced subgraph G[Vi] and the
number of triangles in that subgraph. The total number of triangles seen across all the machines
is used as an estimator. We repeat in parallel this sampling process O(log n) times and return the
median of the estimates. The main challenge this approach raises is: How do we efficiently collect
overlapping induced subgraphs? (Indeed, approximate triangle counting, even when the number of
triangles is O(1), can be reduced to counting the number of edges in sparse induced subgraphs with
the total size of subgraphs being Õ(m).) We now describe how to handle this task in our case.
Computing induced overlapping subgraphs. It is unclear how to compute the induced sub-
graph on each machine in O(1) rounds without exceeding the total allowed space of Õ(m). This
task becomes easier if the subgraphs are disjoint. For example, such an issue is avoided when the
graph is partitioned across machines as in the algorithm of Pagh and Tsourakakis [PT12] since
there is one copy of each vertex among all the machines. This is not the case for our algorithm.

The trivial strategy of sampling vertices into the machines and querying for all possible edges
between any pair of two vertices takes total space at least

∑M
i=1X

2
i where Xi is the number of

vertices sampled to each machine i. In general, this approach requires much larger than Õ(m)
space. We tackle this challenge by using a globally known hash function h : V × [M] → {0, 1}, to
indicate whether vertex v is sampled in the ith machine. By requiring that the hash function is
known to all machines, we can efficiently compute which edges to send to each machine, i.e., which
edges belong to the subgraph G[Vi]. However, in order for all machines to be able to compute
the hash function, the hash function has to use limited space. Hence, we cannot hope for a fully
independent function, rather we can only use an (S/ log n)-wise independent hash function. Still,
we manage to show that we are able to handle the dependencies introduced by the hash function,
even if we allow as little as O(log n)-independence.

We present our approximate algorithm in Section 6 and give an extension of this algorithm to
any subgraph of size K in Section 6.6.

3.3 Counting k-cliques and 5-subgraphs.

We use similar techniques for both problems of exactly counting the number of k-cliques and of
exactly counting subgraphs up to size 5. See Section 5.1 for details on the former task, and Section 7
for details on the latter. Our final result is the first MPC algorithm for counting any arbitrary
subgraph H of size at most 5 in poly(log n) MPC rounds.

Let H denote the subgraph of interest. We say that a subgraph that can be mapped to a subset
of H of size i is a i-subcopy of H. Our main contribution in this section is a new MPC procedure
that in each round, tries to extend i-subcopies of H to (i + 1)-subcopies of H by increasing the
total space by a factor of at most α. This is possible by ordering the vertices in H such that each
vertex has at most O(α) outgoing neighbors so that in each iteration only α possible extensions
should be considered per each previously discovered subcopy.
Challenges. The major challenge we face here is dealing with finding and storing copies of small
(constant-sized) subgraphs in individual machines. This is a challenge due to the fact that an
entire neighborhood of a vertex v may not fit on one machine (recall that we have no restrictions
on how large the constant δ in O(nδ) machine size can be). Thus, we cannot compute all such small
subgraphs on one machine. However, if not done carefully, computing small subgraphs across many
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machines could potentially result in many rounds of computation (since we potentially have to try
all combinations of vertices in a neighborhood). We solve this issue by formulating a new MPC
procedure (Lemma 2.3) in which we carefully duplicate neighborhoods of vertices across machines.
The detailed analysis of our algorithm is given in Section 7.

4 Exact Triangle Counting in O(mα) Total Space

In this section we describe our algorithm for (exactly) counting the number of triangles in graphs
G = (V,E) of arboricity α and prove Theorem 1.4, restated here, in Section 4.2. We first provide
an overview of our algorithm and its challenges.

Theorem 4.1. Let G = (V,E) be a graph over n vertices, m edges and arboricity α. Count-
Triangles(G) takes Oδ (log log n) rounds, O

(
nδ
)

space per machine for some constant 0 < δ < 1,
and O (mα) total space.

Importantly, unlike previous methods, we do not need to assume knowledge of the arboricity
of the graph α as input into our algorithm. The arboricity only shows up in our space bound as a
property of the graph but we do not need to have knowledge of its value as we run the algorithm.
The folklore algorithm shown in Table 1 requires an assumption of an upper bound on α since in
order to achieve O(log n) rounds, we must count triangles incident to and remove all vertices with
degree less than or equal to 2α in each round. The procedure gets stuck if we remove vertices
with degree c where c < α in each round because there exists an induced subgraph with degree at
least α in a graph with arboricity α. One can estimate the arboricity of the graph using O(log n)
additional rounds or an O(log n) additional factor in space. Our algorithm does not require this
additional step.

In this section, we assume that individual machines have space Θ(nδ) where δ is some constant
0 < δ < 1. Given this setting, there are several challenges associated with this problem.

Challenge 4.2. The entire subgraph neighborhood of a vertex may not fit on a single machine.
This means that all triangles incident to a particular vertex cannot be counted on one machine.
Even if we are considering vertices with degree at most α, it is possible that α > nδ. Thus, we
need to have a way to count triangles efficiently when the neighborhood of a vertex is spread across
multiple machines.

The second challenge is to avoid over-counting.

Challenge 4.3. When counting triangles across different machines, over-counting the triangles
might occur, e.g., if two different machines count the same triangle. We need some way to deal
with duplicate counting of the triangles to obtain the exact count of the triangles.

We deal with the above challenges in our procedures below. We assume in our algorithm that
each vertex can access its neighbors in O(1) rounds of communication; such can be ensured via
standard MPC techniques. Let dQ(v) be the degree of v in the subgraph induced by vertex set Q,
i.e. in G[Q]. Our main algorithm consists of the following Count-Triangles(G) procedure.

Algorithm 1. Count-Triangles(G = (V,E))

1: Let Qi be the set of vertices not yet processed by iteration i. Initially set Q0 ← V .
2: Let T be the current count of triangles. Set T ← 0.
3: for i = 0 to i = dlog3/2(log2(n))e do

9



4: γi ← 2(3/2)i .
5: Let Ai be the list of vertices v ∈ Qi where dQi(v) ≤ γi. Set Qi+1 ← Qi \Ai.
6: parfor v ∈ Ai do
7: Retrieve the list of neighbors of v and denote it by Lv.
8: Send each of v’s neighbors a copy of Lv.
9: end parfor

10: parfor w ∈ Qi do
11: Let Lw =

⋃
v∈(N(w)∩Ai) Lv be the union of neighbor lists received by w.

12: Set T ← T + Find-Triangles(w,Lw). . Algorithm 2
13: end parfor

14: Return T .

Round compression is a technique formulated by [Ona18, CLM+20] that randomly partitions the
vertices in a graph across machines where each machine then stores the induced subgraph induced
by the partition. Then, a problem (e.g. maximum matching) is solved locally in each induced
subgraph in each machine. The solutions in each machine allows one to remove certain vertices,
reducing the degree of the remaining graph. In each round compression step, the maximum degree
of the graph drops by a polynomial factor. This degree reduction then allows for more aggressive
sampling in the next round compression step. This leads to O(log log ∆) round compression steps
until the maximum degree is poly(log n); in this case, the remaining graph can be placed on a single
machine.

Our algorithm, although similar, is simpler than the round compression technique. We do not
require sampling since vertices are assigned to machines by degree, deterministically. The crux of
our argument is showing that allowing for total space in terms of the arboricity α leads to a simpler
and deterministic argument. Furthermore, for this specific problem, we also do not need to place
the induced subgraph on one machine. In the next section, we show an implementation that allows
us to operate in the sublinear space per machine regime. We hope our algorithm and analysis will
lead to other deterministic algorithms for bounded arboricity graphs in sublinear space per machine
and O(log log n) rounds.

4.1 MPC Implementation Details

In order to implement Count-Triangles(G) in the MPC model, we define our
Find-Triangles(w,L) procedure and provide additional details on sending and storing neigh-
bor lists across different machines. We define high-degree vertices to be the set of vertices whose
degree is > γ and low-degree vertices to be ones whose degree is ≤ γ (for some γ defined in our
algorithm). We now define the function Find-Triangles(w,L) used in the above procedure:

Algorithm 2. Find-Triangles(w,Lw)

1: Sort all elements in (Lw∪(N(w)∩Qi)) lexicographically, using the procedure given in Lemma
4.3 of [GSZ11]. Let this sorted list of all elements be S.

2: Let T denote the correcteda number of duplicates in S using Theorem 2.1.
3: Return T .

aSome care must be taken here to avoid over-counting, since a distinct triangle can show up as several counted
duplicates. See Algorithm 3 for details.

Allocating machines for sorting. Since each v ∈ Qi could have multiple neighbors whose

10



degrees are ≤ γ, the total size of all neighbor lists v receives could exceed their allowed space

Θ
(
nδ
)
. Thus, we allocate O

(
γdQi (v)

nδ

)
machines for each vertex v ∈ Qi to store all neighbor lists

that v receives.
The complete analysis for Theorem 4.1 is given in Section 4.2.
We provide two additional extensions of our triangle counting algorithm to counting k-cliques:

Theorem 4.4. Given a graph G = (V,E) with arboricity α, we can count all k-cliques in O(mαk−2)
total space, Oδ(log log n) rounds, on machines with O(n2δ) space for any 0 < δ < 1.

We can prove a stronger result when we have some bound on the arboricity of our input graph.
Namely, if α = O(nδ

′/2) for any δ′ < δ, then we obtain the following result:

Theorem 4.5. Given a graph G = (V,E) with arboricity α where α = O(n
δ′
2 ) for any δ′ < δ, we

can count all k-cliques in O
(
nα2

)
total space and Oδ(log log n) rounds, on machines with O(nδ)

space for any 0 < δ < 1.

The proofs of these theorems are provided in Section 5.

4.2 Detailed Analysis

In this section we give the full details and analysis of algorithm Algorithm 1 given in Section 4, for
exactly counting the number of triangles in the graph.

We first provide a detailed version of Algorithm 2 that also takes into account over counting
due to the fact that each triangle might be counted by several endpoints, and then continue to
prove the main theorem of this section, Theorem 1.4.

4.2.1 Details about finding duplicate elements using Theorem 2.1

Find-Triangles(w,Lw) finds triangles by counting the number of duplicates that occur between
elements in lists. Theorem 2.1 provides a MPC implementation for finding the count of all
occurrences of every element in a sorted list. Provided a sorted list of neighbors of v ∈ Qi
and neighbor lists in Lv, this function counts the number of intersections between a neighbor
list sent to v and the neighbors of v. Every intersection indicates the existence of a triangle.
As given, Find-Triangles(w,Lw) (see v Algorithm 2) returns a 6-approximation of the num-
ber of triangles in any graph. We provide a detailed and somewhat more complicated algorithm
Find-Triangles-Exact(w,Lw) that accounts for over-counting of triangles and returns the exact
number of triangles.

Since Theorem 2.1 returns the total count of each element, we subtract the value returned by
1 to obtain the number of intersections. Finally, each triangle containing one low-degree vertex
will be counted twice, each containing two low-degree vertices will be counted 4 times, and each
containing three low-degree vertices will be counted 6 times. Thus, we need to divide the counts
by 2, 4, and 6, respectively, to obtain the exact count of unique triangles.

Algorithm 3. Find-Triangles-Exact(w,Lw)

1: Set the number of triangles Ti ← 0.
2: Sort all elements in (Lw∪ (N(w)∩Qi)) lexicographically using the procedure given in Lemma

4.3 of [GSZ11]. Let this sorted list of all elements be S.
3: Count the duplicates in S using Theorem 2.1.
4: parfor all v ∈ N(w) do

11



5: Let R be the number of duplicates of v returned by Theorem 2.1.
6: if dQi(v) > γi and dQi(w) > γi then
7: Increment Ti ← Ti + R−1

2 .
8: else if (dQi(v) > γi and dQi(w) ≤ γi) or (dQi(v) ≤ γi and dQi(w) > γi) then
9: Increment Ti ← Ti + R−1

4 .
10: else
11: Increment Ti ← Ti + R−1

6 .

12: end parfor
13: Return Ti.

Substituting Find-Triangles-Exact in Count-Triangles finds the exact count of triangles
in graphs with arboricity α using O(mα) total space.

4.2.2 Proof of Theorem 1.4

First, all proofs below assume we start at a cutoff of γ = 4α. Because we increase the cutoff bound
doubly exponentially, we can reach such a bound in O(log logα) rounds. Thus, in the following
proofs, we ignore all rounds before we get to a round where γ ≥ 4α. Before proving the theorem,
we provide several useful lemmas stating that the number of vertices and edges remaining at the
beginning of each iteration is bounded.

Lemma 4.6. At the beginning of iteration i of Count-Triangles, given γi = 2(3/2)i · (2α) as
stated in Algorithm 1, the number of remaining vertices Ni = |Qi| is at most n

22·((3/2)i−1)
.

Proof. Let Ni be the number of vertices in Qi at the beginning of iteration i. Since the subgraph
induced by Qi must have arboricity bounded by α, we can bound the total degree of Qi,∑

v∈Qi

dQi(v) < 2α|Qi| = 2Niα.

At the end of the iteration, we only keep the vertices in Qi+1 = {v ∈ Qi | dQi(v) > γi}. If we
assume that |Qi+1| > Ni

γi/(2α) , then we obtain a contradiction since this implies that∑
v∈Qi+1

dQi(v) > |Qi+1| · γi > 2Niα >
∑
v∈Qi

dQi(v).

Then, the number of remaining vertices follows directly from the above by induction on i with
base case N1 = n,

Ni ≤
Ni−1

γi/(2α)
=

Ni−1

2(3/2)i−1 ≤
n

i−1∏
j=0

2(3/2)j

=
n

22·((3/2)i−1)
.

We can show a similar statement for the number of edges that remain at the start of the ith

iteration.

Lemma 4.7. At the beginning of iteration i of Count-Triangles, given γi, the number of re-
maining edges mi is at most mi ≤ m

22·((3/2)i−1−1)
.
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Proof. The number of vertices remaining at the beginning of iteration i is given by |Qi|. Thus,
because the arboricity of our graph is α, we can upper bound mi by

mi ≤ |Qi|α.

Then, we can also lower bound the number of edges at the beginning of iteration i− 1 since the
vertices that remain at the beginning of round i are ones which have greater than γi−1 degree,

mi−1 ≥
1

2

∑
v∈Qi−1

dQi−1(v) ≥ 1

2
|Qi|γi−1.

Thus, we conclude that mi ≤ 2αmi−1

γi−1
. By induction on i with base case m0 = m, we obtain,

mi ≤ 2α

(
mi−1

γi−1

)
≤ m∏i−2

j=0 2(3/2)j
=

m

22·((3/2)i−1−1)
.

The above lemmas allows us to bound the total space used by the algorithm.

Lemma 4.8. Count-Triangles(G) uses O(mα) total space when run on a graph G with arboric-
ity α.

Proof. The total space the algorithm requires is the sum of the space necessary for storing the
neighbor lists sent by all vertices with degree ≤ γi and the space necessary for all vertices to store
their own neighbor lists. The total space necessary for each vertex to store its own neighbor list is
O(m).

Now we compute the total space used by the algorithm during iteration i. The number of
vertices in Qi at the beginning of this iteration is at most Ni ≤ n

22·((3/2)
i−1)

by Lemma 4.6. Each

vertex v with dQi(v) ≤ γi, makes dQi(v) copies of its neighbor list (N(v) ∩ Qi) and sends each
neighbor in N(v) ∩ Qi a copy of the list. Thus, the total space required by the messages sent by
v is dQi(v)2 ≤ γ2

i . v sends at most one message of size dQi(v) ≤ γi along each edge (v, w) for
w ∈ N(v) ∩ Qi. Then, by Lemma 4.7 the total space required by all the low-degree vertices in
round i is at most (as at most two messages are sent along each edge):

2mi · γi <
m

22·((3/2)i−1−1)
·
[
2(3/2)i(2α)

]
= 16mα.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Lemma 4.6, the number of vertices remaining in Qi at the beginning
of iteration i is n

22·((3/2)
i−1)

. This means that the procedure runs for O(log log n) iterations be-

fore there will be no vertices. For each of the O(log log n) iterations, Count-Triangles(G) uses
Oδ(1) rounds of communication for the low-degree vertices to send their neighbor lists to their
neighbors. The algorithm then calls Find-Triangles-Exact(w,Lw) on each vertex w ∈ Qi
(in parallel) to find the number of triangles incident to w and vertices in Ai ⊆ Qi. Find-
Triangles-Exact(w,Lw) requires O (lognδ(mα)) = O(1/δ) rounds by Lemma 4.3 of [GSZ11]
and Theorem 2.1. Therefore, the total number of rounds required by Count-Triangles(G) is

O
(

log logn
δ

)
= Oδ(log log n).
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5 Extensions to Exact k-Clique Counting in Graphs with Arboric-
ity α

In this section, we briefly provide two algorithms for exact counting of k-cliques (where k is constant)
in graphs with arboricity α. The first is an extension of our exact triangle counting result given
in Section 4. The second is a query-based algorithm where the neighborbood of a low-degree vertex
is constructed on a single machine via edge queries. In this case, the triangles incident to any given
low-degree vertex can be counted on the same machine.

5.1 Exact k-Clique Counting

Exact k-Clique Counting in O
(
mαk−2

)
Total Space and Oδ(log log n) Rounds We extend

our algorithm given in Section 4 to exactly count k-cliques (where k is constant) in O
(
mαk−2

)
total space and Oδ(log log n) rounds. Given a graph G = (V,E) with arboricity α, the idea behind
the algorithm is the following: let Gi = (Vi ∪ V,Ek ∪ E) be a graph where each vertex v ∈ Vi
corresponds to an i-clique in G. Let K(u) denote the Ki ∈ G represented by u ∈ Vk. An edge
(u, v) exists in Ei iff u ∈ Vi, v ∈ V and K(u) ∪ {v} is an (i+ 1)-clique in G. We construct the Gk
graphs iteratively, starting with G1 = G. Then, given Gi−1, we recursively construct Gi by using
our exact triangle counting algorithm. Once we have Gk−2, we obtain our final count of the number
of k-cliques by running our exact triangle counting algorithm one last time. The total space used is
dominated by running the triangle counting algorithm on Gk−2, which uses O

(
mαk−2

)
total space.

Since we run the triangle counting algorithm O(k) times and k is a constant, the total number of
rounds of communication necessary is Oδ(log log n) rounds. This detailed algorithm is given below.

Below, we describe our O(nαk−1) total space, O(log log n) rounds exact k-clique counting algo-
rithm that can be run on machines with space O(nδ). Calling Count-k-Cliques(G, k, k) for any
given graph G = (V,E) returns the number of k-cliques in G.

Algorithm 4. k-Clique-Counting(G = (V,E), k, k′)

1: if k ≤ 1 then
2: Return (|N |, G)
3: else
4: (x,Gk−1)← Count-k-Cliques(G, k − 1, k′)
5: T ← Enumerate-Triangles(Gk−1). Let T be the set of all enumerated triangles.
6: Initialize sets Vk ← ∅ and Ek ← ∅.
7: parfor t ∈ T do
8: Let K(t) represent the set of vertices in V composing the clique represented by t ∈ T .
9: parfor v ∈ K(t) do

10: Let v′(S) be a vertex v representing a set of vertices S. In other words, K(v) =
K(v′(S)) = S.

11: Vk ← Vk ∪ v′(K(t) \ v).
12: Ek ← Ek ∪ (v, v′(K(t) \ v)).
13: end parfor
14: end parfor
15: if k = k′ − 2 then
16: Return |T |.
17: else
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18: Return (|Vk|, Gk(V ∪ Vk, E ∪ Ek)).

Algorithm 5. Triangle-Enumeration(G = (V,E))

1: Let the set of enumerated triangles to be T ← ∅.
2: Let Qi be the set of vertices that have not yet been processed by iteration i. Initially set
Q0 ← V .

3: parfor i = 0 to i = dlog3/2(log2(n))e do

4: γi ← 2(3/2)i · 2α.
5: Let Ai be the list of vertices v ∈ Qi where dQi(v) ≤ γi. Set Qi+1 ← Qi \Ai.
6: Use Lemma 5.1 to enumerate the set of triangles incident to Ai. Let this set be Ti.
7: T ← T ∪ Ti.
8: end parfor
9: Return T .

5.2 MPC Implementation

To implement Count-k-Cliques in the MPC model, we must be able to create the graph
G2, . . . , Gk−1 efficiently in our given space and rounds. The crux of this algorithm is the pro-
cedure for enumerating all triangles given a set A of vertices in G where d(v) ≤ γ for all v ∈ A. To
do the triangle enumeration, we prove Lemma 5.1 which can enumerate all such triangles incident
to A in O(mγ) total space, Oδ(1) rounds given machines with space O

(
n2δ
)
.

Lemma 5.1. Given a graph G, a constant integer k ≥ 2, and a subset A ⊆ G of vertices such that
for every v ∈ A, d(v) ≤ γ, we can generate all triangles in G that are incident to vertices in A in
Oδ(1) rounds, O(n2δ) space per machine, and O(mγ) total space.

Proof. Let R be the set of machines holding the edges incident to A. Here too, similarly to the
proof of Lemma 7.4, it will be easier to think of each machine M as a set of nδ parts, so that
each edge, incident to a vertex in A, resides on a single part. We duplicate each such part,
holding some neighbor of A, α times, using Lemma 2.3. (We will actually duplicate machines, but,
again, think of the duplicated machines as a collection of duplicated parts.) By Lemma 2.3, this
takes O(lognδ α) = Oδ(1) rounds. Fix some vertex v ∈ A and assume that u ∈ N(v) resides on
part Pi(v). After the duplication step, there are α copies of each part. We denote these copies
Pi,1(v), . . . , Pi,α(v). All parts Pi,j(v) where j ∈ [α] and v ∈ A then asks for v’s i-th neighbor in
O(1) rounds of communication. Now, each part Pi,j(v) creates O(1) edge queries to check whether
its vertices form a triangle. All of the queries generated by all parts can be answered in parallel
using Lemma 2.2 in Oδ(1) rounds. Then each part that discovered a triangle incident to v adds it
to a list K. Now we sort the list K and remove any duplicated triangles, so that the list only holds
a single copy of every clique incident to some vertex in A. The total round complexity is Oδ(1) due
to the duplications, sorting, and answering the queries. The space per machine is O(n2δ) and the
total memory is O(mα) as each machine was duplicated α times.

Using Lemma 5.1, we can now prove the space usage and round complexity of
Enumerate-Triangles.

Lemma 5.2. Given a graph G = (V,E) with arboricity α, Enumerate-Triangles(G) uses
O(nα2) total space, Oδ(log log n) rounds on machines with O(n2δ) space.
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Proof. By Lemma 4.6, the number of vertices remaining in Qi at the beginning of the i-th itera-
tion of Enumerate-Triangles is at most n

22·((3/2)
i−1)

. By Lemma 5.1, the total space usage of

enumerating all triangles incident to Ai is O(mγi) = O
(
m ·

(
2(3/2)i · 2α

))
. The summation of the

space used for all i is then:

dlog3/2(log2(n))e∑
i=0

(
n

22·((3/2)i−1)

)
·
(

2(3/2)i · 2α2
)

= O(nα2).

The number of rounds required by this algorithm is O(log log n) ·Oδ(1) = Oδ(log log n).

Given the total space usage and number of rounds required by Enumerate-Triangles, we
can now prove the total space usage and number of rounds required by Count-k-Cliques. But
first, we show that for any graph G = (V,E) with arboricity α, all graphs G1, . . . , Gk−1 created by
Count-k-Cliques has arboricity O(α) for constant k.

Lemma 5.3. Given a graph G = (V,E) with arboricity α as input to Enumerate-Triangles,
all graphs G1, . . . , Gk−1 generated by the procedure have arboricity O(α) for constant k.

Proof. We prove this lemma via induction. In the base case, G1 = G and so G1 has arboricity
α. Now we assume that Gi for i ∈ [k − 1] has arboricity O(α) (for constant i) and show that
Gi+1 has O(α) arboricity. Suppose that Gi has arboricity cα for some constant c. We prove via
contradiction that the arboricity of Gi+1 is upper bounded by 3(i + 1)cα. Suppose for the sake
of contradiction that the arboricity of Gi+1 is greater than 3(i + 1)cα. Then, there must exist a
subgraph, Gi+1[V ′] for some vertex set, V ′, of Gi+1 that contains greater than 3(i+ 1)cα|V ′| edges
(by definition of arboricity). We now convert this subgraph Gi+1[V ′] to a subgraph in Gi. Every
vertex in V ′ maps to at most i pairs of vertices in Gi connected by an edge. Every edge in Gi+1[V ′]
maps to at least 1 edge. Thus, the subgraph in Gi that Gi+1[V ′] maps to contains at most 2i|V ′|
vertices and at least 3(i + 1)cα|V ′| edges. This implies, by the definition of arboricity, that the

arboricity of Gi is ≥ 3(i+1)cα|V ′|
2i|V ′| > cα, a contradiction. Hence, the arboricity of Gi+1 is at most

3(i+ 1)cα. And we have proven that the arboricity of Gi+1 is O(α) for constant k. By induction,
all graphs G1, . . . , Gk−1 have arboricity O(α).

Now we prove our final theorem of the space and round complexity of Count-k-Cliques.

Proof of Theorem 4.4. The number of i-cliques in a graph with arboricity α is at most O(mαi−2).
Thus, by Lemma 5.2 and Lemma 5.3, Count-k-Cliques during the i-th call uses O(mαi) total
space, Oδ(log log n) rounds. Thus, Count-k-Cliques uses O(mαk−2) space, Oδ(log log n) rounds
given machines with O(n2δ) space to count k-cliques given that the procedure terminates on the
(k − 2)-th iteration.

5.3 Exact k-Clique Counting in O (nα2) Total Space and Oδ(log log n) Rounds

We can improve on the total space usage if we are given machines where the memory for each
individual machine satisfies α < nδ

′/2 where δ′ < δ. In this case, we obtain an algorithm that
counts the number of k-cliques in G using O(nα2) total space and Oδ(log log n) communication
rounds.

The entire neighborhood of any vertex with degree ≤ nδ/2 can fit on one machine. Suppose
that α < nδ

′/2 where δ′ < δ, then, there will always exist vertices that have degree ≤ nδ/2. Our
algorithm proceeds as follows:
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Algorithm 6. Count-Cliques(G = (V,E))

1: Let Qi be the set of vertices that have not yet been processed by iteration i. Initially set
Q0 ← V .

2: Let C be the current count of cliques. Set C ← 0.
3: for i = 0 to i = dlog3/2(log2(n))e do

4: γi ← 2(3/2)i · 2α.
5: Let Ai be the list of vertices where dQi(v) ≤ min(cnδ/2, γi) for some constant c.
6: Set Qi+1 ← Qi \Ai.
7: parfor v ∈ Ai do
8: Retrieve all neighbors of v. Let this list of v’s neighbors be Lv.
9: Query for all pairs u, v ∈ Lv to determine whether edge (u, v) exist. Retrieve all edges

that exist.
10: Count the number of triangles Tv incident to v, accounting for duplicates.
11: T ← T + Tv.
12: end parfor

5.4 MPC Implementation Details

Accounting for Duplicates We account for duplicates by counting for each iteration i how
many triangles on each machine contains 1, 2 or 3 vertices which have degree ≤ min(cnδ/2, γi)
(again we call these vertices low-degree). We multiply the count of triangles which have t ≥ 2
low-degree vertices by 1

t to correct for over-counting due to multiple low-degree vertices performing
the count on the same triangle. Each machine can retrieve the degrees of vertices in it in Oδ(1)
rounds and such information can be stored on the machine given sufficiently small constant c in
Count-Clique.

Proof of Theorem 4.5. Since we are considering vertices with degree at most min(cnδ/2, γi), by
Lemma 4.8, the total space used by our algorithm during any iteration i is

Ni ·
(

min
(
cnδ/2, γi

))2
< 16nα2.

By Lemma 2.2, we query for whether each of the min
(
cnδ/2, γi

)2
potential edges on each machine

is an edge in G in parallel using O(nα2) total space and Oδ(1) rounds.
If γi < cnδ/2 for all iterations i, then by Theorem 4.1, the number of communication rounds

required by Count-Cliques is Oδ(log log n). If, on the other hand, cnδ/2 < γi, then the number
of vertices remaining in Qi decreases by a factor of cnδ/2 every round. Thus, the number of

rounds required in this case is O
(

2+δ′

δ

)
. Since we assume δ′ and δ are constants, the number of

communication rounds needed by this algorithm is Oδ(log log n).

6 Approximate Triangle Counting in General Graphs

In this section we provide our algorithm for estimating the number of triangles in general graphs
(see Algorithms 7 and 9) and hence prove Theorem 1.1.

Theorem 1.1. Let G = (V,E) be a graph with n vertices, m edges, and let T be the number of
triangles in G. Assuming
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(i) T = Ω̃
(√

m
S

)
, (ii) S = Ω̃

(
max

{√
m
ε , n

2

m

})
,

there exists an MPC algorithm, using M machines, each with local space S, and total space
MS = Õε(m), that outputs a (1± ε)-approximation of T , with high probability, in O(1) rounds.

The rationale behind the lower bound constraints in Theorem 1.1 will become clear when we
discuss the challenges and analysis (formally presented in the following sections).

6.1 Overview of the Algorithm and Challenges

Our approach is to use the collection of machines to repeat the following experiment multiple times
in parallel. Each machine Mi samples a subset of vertices Vi, and then counts the number of
triangles T̂i seen in each induced graph G[Vi]. We then use the sum T̂ of all T̂i’s as an unbiased
estimator (after appropriate scaling) for the number of triangles T in the original graph.

Algorithm 7. Approximate-Triangle-Counting(G=(V,E))

1: R← 0
2: parfor i← 1 . . .M do
3: Let Vi be a random subset of V . See Section 6.2 for details about the sampling
4: if size of G[Vi] exceeds machine space S then
5: Ignore this sample and set T̂i ← 0
6: else
7: Let T̂i be the number of triangles in G[Vi]
8: R← R+ 1

9: end parfor
10: Let T̂ =

∑M
i=1 T̂i

11: return 1
p̂3R

T̂

Moving forwards, for the most part, we will focus on a specific machine Mi containing Vi (a
single experiment). We list the main challenges in the analysis of this algorithm, along with the
sections that describe them.

1. Section 6.2: The induced subgraph G[Vi] fits into the memory S of Mi (thus allowing us to
count the number of triangles in G[Vi] in one round).

2. Section 6.3: We can efficiently (in one round) collect all the edges in the induced subgraph
G[Vi]. This involves presenting an MPC protocol such that the number of messages sent and
received by any machine is at most the space per machine S.

3. Section 6.4 With high constant probability, the number of messages sent and received by
each machine Mi is at most S.

4. Section 6.5: With high constant probability (of at least 0.9), the sum of triangles across all
machines, T̂ , is close to its expected value. Then, repeating the algorithm polylogarithmic
number of times with only a polylogarithmic increase in total space, and by using the median
trick, allows us to get a high probability bound. The specifics are discussed in Section 6.5.1.

In each of the following sections, we first present a high level overview of the challenges that we
need to solve and then follow these high-level descriptions with detailed proofs.
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6.2 Challenge (1): Ensuring That G[Vi] Fits on a Single Machine

Ensuring that edges fit on a machine: Our algorithm constructs Vi by including each v ∈ V
with probability p̂, which implies that the expected number of edges in G[Vi] is p̂2m. Since we
have to ensure that each induced subgraph G[Vi] fits on a single machine, we obtain the constraint
p̂2m = O(S). Concretely, we achieve this by defining:

p̂
def
=

1

10
·
√

S

mk
, (1)

where the parameter k = O(log n) will be exactly determined later (See Section 6.3).

Ensuring that vertices fit on a machine: In certain regimes of values of n and m, the expected
number of vertices ending up in an induced subgraph – p̂n, may exceed the space limit S. Avoiding
this scenario introduces an additional constraint p̂n = O(S) ⇐⇒ S = Ω(kn2/m).

Getting a high probability guarantee: As discussed above, the value of p̂ = Θ̃ε(
√
S/m) is

chosen specifically so that the expected number of edges in the induced subgraphs G[Vi] is p̂2m ≤
Θ(S), thus using all the available space (asymptotically). In order to guarantee that this bound
holds with high probability (see Section 6.4.1), we require additional constraints on the space per
machine S = Ω̃ε(

√
m). We remark that this lower bound S = Ω̃ε(

√
m) is essentially saying that

M = Õε(
√
m), i.e. the space per machine is much larger than the number of machines. This is a

realistic assumption as in practice we can have machines with 1011 words of local random access
memory, however, it is unlikely that we also have as many machines in our cluster.

Lower Bound on space per machine: Combining the above two constraints, we get:

S > max

{
15

√
mk

ε
,
100kn2

m

}
=⇒ S = Ω̃ε

(
max

{√
m,

n2

m

})
(2)

Note that Eq. (2) always allows linear space per machine, as long as m = Ω(n). The following
sections, Sections 6.4.1 and 6.4.2 present a detailed analysis, showing that the number of vertices
and edges in each subgraph is at most S with high probability. In this high-level overview of
the challenges, we defer a detailed analysis of these bounds to the later sections (Sections 6.4.1
and 6.4.2) since the formal proof of these bounds also require a discussion of Section 6.3.

6.3 Challenge (2): Using k-wise Independence to Compute the Induced Sub-
graph G[Vi] in MPC

For each sub-sampled set of vertices Vi, we need to compute G[Vi], i.e. we need to send all the edges
in the induced subgraph G[Vi] to the machine Mi. Let Qu denote the set of all machines containing
u. Each edge (u,w) then needs to be sent to all machines that contain both u and w, Qu ∩ Qw.
Naively, one could try to send the sets Qu and Qw to the edge e = (u,w), for all e ∈ E. However, this
strategy could result in Qv being replicated d(v) times. Since the expected size of Qv is |Qv| = p̂M
the total expected memory usage of this strategy would be

∑
v∈V |Qv|·d(v) = Θ̃ε (m · p̂M) = ω̃ε(m),

since p̂ = Θ̃(1/
√
M). This defies our goal of optimal total memory.

Instead, we address this challenge by using globally known hash functions to sample the vertices
on each machine. That is, we let h : V × [M] → {0, 1} (formally presented in Definition 6.1) be
a hash function known globally to all the machines. Then we can compute the induced subgraphs
G[Vi] as follows.
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Algorithm 8. Compute-Induced-Subgraphs

1: Qv ← {i ∈ [M] | h(v, i) = 1} .
2: Qw ← {i ∈ [M] | h(w, i) = 1} .
3: parfor i ∈ Qv ∩Qw do
4: Send e to machine Mi, containing Vi.
5: end parfor

Definition 6.1. The hash function h(v, i) indicates whether vertex v is sampled in Vi or not.
Specifically, h : V × [M] → {0, 1} such that P[h(v, i) = 1] = p̂ for all v ∈ V and i ∈ [M]. Recall

that M is the number of machines, and p̂ = 1
10 ·

√
S
mk is the sampling probability set in Eq. (1).

Using limited independence. Ideally, we would want a perfect hash function, which would
allow us to sample the Vi’s i.i.d. from the uniform distribution on V . However, since the hash
function needs to be known globally, it must fit into each of the machines. This implies that we
cannot use a fully independent perfect hash function. Rather, we can use one that has a high level
of independence. Specifically, given that the space per machine is S, we can have a globally known
hash function h that is k-wise independent4 for any k < Θ(S/ log n). In fact, we can get away
with as little as (6 log n)-wise independence (i.e., k = 6 log n). Recalling Eq. (1), this also fixes the
sampling probability to be p̂ =

√
S/600m log n.

6.3.1 Showing Concentration for the Triangle Count

In the subsequent proofs, we will use the following assumptions from within Theorem 1.1 (note
that we added specific constants).

T ≥ 10

√
mk

S
S ≥ max

{
15

√
mk

ε
,
100kn2

m

}
M =

2000mk

ε2S
(3)

Note that we set the number of machines to a specific value, instead of lower bounding it. This
is acceptable, because we can just ignore some of the machines.

Algorithm 7 outputs an estimate on the number of triangles in G (Line 11). It is not hard to
show that in expectation this output equals T even with limited independence as discussed above.
The main challenge is to show that this output also concentrates well around its expectation.
Specifically, we show the following claim.

Lemma 6.2. Ignore Line 4 of Algorithm 7. Let T̂ be as defined on Line 10 and M = 20
ε2p̂2

be as

defined in Eq. (3), and assume that T ≥ 1/p̂. Then, the following hold:

(A) E
[
T̂
]

= p̂3 ·R · T , and

(B) P
[
|T̂ − E

[
T̂
]
| > εE

[
T̂
]]
< 1

10 .

We will prove Property (B) of the claim by applying Chebyshev’s inequality, for which we need

to compute Var
[
T̂
]
. Let ∆(G) be the set of all triangles in G. For a triangle t ∈ ∆(G), let T̂i,t = 1

4A k-wise independent hash function is one where the hashes of any k distinct keys are guaranteed to be inde-
pendent random variables (see [WC81]).
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if t ∈ V [Gi], and T̂i,t = 0 otherwise. Hence, T̂i =
∑

t∈∆(G) T̂i,t. We begin by deriving E
[
T̂
]

and

then proceed to showing that Var
[
T̂
]

=
∑R

i=1 Var
[
T̂i

]
. After that we upper-bound Var

[
T̂i

]
and

conclude the proof by applying Chebyshev’s inequality.

Deriving E
[
T̂
]
. Let t be a triangle in G. Let T̂t be a random variable denoting the total

number of times t appears in G[Vi], for all i = 1 . . . R. Given that P [u ∈ Vi] = p̂, we have that

P [t ∈ G[Vi]] = p̂3. Therefore, E
[
T̂t

]
= R · p̂3.

Since T̂ =
∑

t∈∆(G) T̂t, we have

E
[
T̂
]

=
∑

t∈∆(G)

E
[
T̂t

]
= p̂3 ·R · T. (4)

This proves Property (A) of this claim.

Decoupling Var
[
T̂
]
. To compute variance, one considers the second moment of a given random

variable. So, to compute Var
[
T̂
]
, we will consider products T̂i,t1 · T̂j,t2 . Each of those products

depend on at most 6 vertices. Now, given that we used a 6-wise independent function (see Sec-

tion 6.3) to sample vertices in each Vi, one could expect that Var
[
T̂i

]
and Var

[
T̂j

]
for i 6= j behave

like they are independent, i.e., one could expect that it holds Var
[
T̂
]

=
∑R

i=1 Var
[
T̂i

]
. As we show

next, it is indeed the case. We have

Var
[
T̂
]

= E
[
T̂ 2
]
− E

[
T̂
]2

= E

 R∑
i=1

∑
t∈∆(G)

T̂i,t

2−
 R∑
i=1

∑
t∈∆(G)

E
[
T̂i,t

]2

(5)

Consider now T̂i,t1 and T̂j,t2 for i 6= j and some t1, t2 ∈ ∆(G) not necessarily distinct. In the first

summand of (5), we will have E
[
2T̂i,t1 · T̂j,t2

]
. The vertices constituting t1 and t2 are 6 distinct

copies of some (not necessarily all distinct) vertices of V . Since they are chosen by applying a

6-wise independent function, we have E
[
2T̂i,t1 · T̂j,t2

]
= 2E

[
T̂i,t1

]
· E
[
T̂j,t2

]
.

On the other hand, the second summand of (5) also contains 2E
[
T̂i,t1

]
·E
[
T̂j,t2

]
, which follows by

direct expansion of the sum. Therefore, all the terms E
[
2T̂i,t1 · T̂j,t2

]
in Var

[
T̂
]

for i 6= j cancel

each other. So, we can also write Var
[
T̂
]

as

Var
[
T̂
]

=
R∑
i=1

E

 ∑
t∈∆(G)

T̂i,t

2− R∑
i=1

 ∑
t∈∆(G)

E
[
T̂i,t

]2

=

R∑
i=1

Var
[
T̂i

]
. (6)

Therefore, to upper-bound Var
[
T̂
]

it suffices to upper-bound Var
[
T̂i

]
.
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Upper-bounding Var
[
T̂i

]
. We have

Var
[
T̂i

]
= E

 ∑
t∈∆(G)

T̂i,t

2−
 ∑
t∈∆(G)

E
[
T̂i,t

]2

≤ E

 ∑
t∈∆(G)

T̂i,t

2
= E

 ∑
t∈∆(G)

T̂ 2
i,t

+ E

 ∑
t1,t2∈∆(G);t1 6=t2

T̂i,t1 · T̂i,t2

 . (7)

Since each T̂i,t is a 0/1 random variables, T̂ 2
i,t = T̂i,t. Let t1 6= t2 be two triangles in ∆(G). Let k be

the number of distinct vertices they are consisted of, which implies 4 ≤ k ≤ 6. Then, observe that

E
[
T̂i,t1 · T̂i,t2

]
= p̂k ≤ p̂4. We now have all ingredients to upper-bound Var

[
T̂i

]
. From (7) and our

discussion it follows
Var

[
T̂i

]
≤ T p̂3 + T 2p̂4 ≤ 2T 2p̂4, (8)

where we used our assumption that T ≥ 1/p̂.

Finalizing the proof. From (6) and (8) we have

Var
[
T̂
]
≤ 2RT 2p̂4.

So, from Chebyshev’s inequality and (4) we derive

P
[
|T̂ − E

[
T̂
]
| > εE

[
T̂
]]

<
Var

[
T̂
]

ε2E
[
T̂
]2

≤ 2RT 2p̂4

ε2p̂6R2T 2

=
2

ε2p̂2R
.

Hence, for R ≥ 20
ε2p̂2

we get the desired bound.

6.4 Challenge (3): Showing that, with high constant probability, the size of the
sent/received messages is bounded.

We need to show that the number of edges sent and received by any machine Mi is at most S
with high constant probability. To this end, we partition the vertex set V into Vlight and Vheavy
by picking a threshold degree τ for the vertices. Following this, we define light edges as ones that
have both end-points in Vlight, and conversely, any edge with at least one end-point in Vheavy is
designated as heavy. In order for the protocol to suceed, the following must hold:

(A) The number of light edges concentrates (see Section 6.4.1).

(B) The number of heavy edges concentrates (see Section 6.4.2).
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(C) The number of sent messages is at most S (see Section 6.4.3).

The first two items ensure that each machine Mi receives at most S messages, and the last item
ensures that each machine sends at most S messages. Given the above, we proceed to address the
last challenge.

6.4.1 Bounding the Number of Light Edges Received by a Machine

We will now bound the probability that any of the induced subgraphs does not fit on a machine.
To that end, we set a degree threshold τ = k

p̂ , and define the set of light vertices Vlight to be the
ones with degree less than τ . All other vertices are heavy, and we let them comprise the set Vheavy.

Fix a machine Mi. We prove that, with probability at least 9/10, the number of edges in G[Vi]
is upper bounded by S.

We start with analyzing the contribution of the light vertices to the induced subgraphs. We
first consider the simpler case of bounding the number of edges in G[Vi] that have both end-points
in Vlight. We refer to such edges as light edges and denote them by Elight. For every edge e ∈ Elight,
we define a random variable Z

(i)
e as follows.

Z(i)
e =

{
1 if e ∈ G[Vi],

0 otherwise.

We let Z(i) be the sum over all random variables Zie, Z
i =

∑
e∈Elight Z

i
e, and we let m` denote

the total number of edges with light endpoints in the original graph G, i.e., m` = |Elight|.
We prove the following lemma.

Lemma 6.3. With probability at least 9/10, for every i ∈ [M], G[Vi] contains at most 1
4S light

edges.

Proof. Fix a machine Mi, and let Z = Zi be as defined in the previous paragraph.

E[Z] = E

 ∑
e∈Elight

Ze

 = m`p̂
2 ≤ m · S

100mk
=

S

100k
≤ S

100
.

As Ze are {0, 1} random variables, we also have E [Z] = E

[ ∑
e∈Elight

Z2
e

]
. Now we upper-bound the
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variance.

Var [Z] = E

 ∑
e∈Elight

Ze

2− E

 ∑
e∈Elight

Ze

2

≤
∑

e∈Elight

E[Z2
e ] +

∑
e1,e2∈Elight

e1 6=e2

2 · E [Ze1Ze2 ]

−
∑

e1,e2∈Elight
e1 6=e2

2 · E[Ze1 ]E[Ze2 ]

= m` · p̂2 +
∑

e1,e2∈Elight
e1 6=e2

2 · E [Ze1Ze2 ]

−
∑

e1,e2∈Elight
e1 6=e2

2 · E[Ze1 ]E[Ze2 ]

≤ m` · p̂2 +
∑

e1 and e2 intersect

2 · E [Ze1Ze2 ]

≤ m` · p̂2 +

 ∑
v∈Vlight

d(v)2

 · p̂3

≤ m` · p̂2 +

 ∑
v∈Vlight

d(v)

 · k
p̂
· p̂3

≤ 3m` · p̂2 · k ≤ 3m · S

100mk
· k < S

30

We can now use Chebyshev’s inequality to conclude that

P
[
|Z(i) − E[Z(i)]| > S/

√
3
]
≤

Var
[
Z(i)

]
S2/3

=⇒ P
[
Z(i) > 3S/4

]
≤ 3

30S
=

1

10S

Finally, we can use union bound over allM machines to upper bound the probability that, any
of the Z(i) values exceeds 3S/4 (using the the constraints descrbed in Eq. (3) to simplify).

M
10S

=
2000mk

ε2S
· 1

10S
≤ 200mk

ε2
· 1

(15
√
mk/ε)2

=
200mk

ε2S2
,

Therefore, with probability at least 9/10, none of the induced subgraphs G[Vi] will contain more
than 3S/4 light edges.

6.4.2 Bounding the Number of Heavy Edges Received by a Machine

Next, we turn our attention to the edges that have at least one endpoint in Vheavy (we call such
edges heavy). We will show that for each v ∈ Vheavy ∩ Vi, the number of edges contributed by v
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concentrates around its expectation.5 In this section, we will use 2mh to denote the total degree
of all the heavy vertices i.e. 2mh =

∑
v∈Vheavy d(v).

Let Z
(v)
w be the {0, 1} indicator random variable for w ∈ Vi conditioned on the event that

v ∈ Vi ∩ Vheavy. We use this conditioning on v being present, because, in its absence, the number
of edges contributed by v, can be zero with probability (1− p̂), i.e. this naive estimator would not
concentrate around its expectation.

Let Z(v) be the sum of all Z
(v)
w for w ∈ N(v). For a particular v, the Z

(v)
w variables are k-wise

independent, which allows us to use the following lemma to bound Z(v). In what follows, we will
omit the super-script (v) for the sake of convenience.

Lemma 6.4. If Z1, Z2, · · · , Zn are k-wise independent {0, 1} random variables with E[Zi] = p and
k ≤ np, then for Z =

∑
i Zi we have

P [Z > 3np] ≤ 2−k.

Proof. To prove the claim, we will re-write P[
∑
Zi > 3np], as the probability that the number of

size k subsets of {Z1, Z2, · · · , Zn} that are all equal to 1 is larger than
(

3np
k

)
.

P [Z > 3np]

= P
[
|{T : T ⊆ [n], |T | = k, and Zi = 1 ∀i ∈ T}| >

(
3np

k

)]
≤ E [|{T : T ⊆ [n], |T | = k, and Zi = 1 ∀i ∈ T}|](

3np
k

)
=

(
n
k

)
· pk(

3np
k

) ≤ ( n

3np− k
· p
)k
≤
(
np

2np

)k
= 2−k

where to obtain 3np− k ≥ 2np we used our assumption that k ≤ np.

Since v is heavy, there are at least τ variables in the sum Z(v) =
∑

w∈N(v) Z
(v)
w . Additionally,

we know that E[Z
(v)
w ] = p̂ and k ≤ τ p̂. Thus, we obtain the following corollary from Lemma 6.4:

Corollary 6.5. For any vertex v ∈ Vheavy ∩ Vi, we get P
[
Z(v) > 3d(v) · p̂

]
< 2−k, or explicitly

P [N(v) ∩ Vi > 3d(v)p̂ | v ∈ Vi and d(v) > τ ] < 2−k =
1

n6

Corollary 6.6. With high probability 1− 1
n5 , we ensure that for all v ∈ Vheavy, Z(v) ≤ 3 · E

[
Z(v)

]
The important point is that the sum of Z(v) (over all v ∈ Vi) is an upper bound on mh – the

number of heavy edges in G[Vi]. In order to bound this sum, we define random variables Wv for
each v ∈ Vheavy as follows:

Wv =

{
d(v)
n if v ∈ Vi

0 otherwise

We also define W to be the sum of all Wv, thus implying µ = E[W ] =
∑

v∈Vheavy
p̂ · d(v)

n ≤
2p̂mh
n .

5Intuitively, this is because v has high degree, and therefore the number of its sampled neighbors (|N(v) ∩ Vi|)
will concentrate.
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Theorem 6.7. (Theorem 5 from [SSS95]) If W is the sum of k-wise independent random variables,
each of which takes values in the interval [0, 1], and δ ≥ 1, then:

k < bδµe−1/3c =⇒ P [|W − µ| > δµ] ≤ ebk/2c

Corollary 6.8. P
[
W > 4p̂mk

n

]
≤ e−bk/2c

Proof. We can use the fact the random variables Wv are k-wise independent to apply Theorem 6.7.
First, we ensure that k < bδµe−1/3c, that we achieve by setting δ = mk

mh
.

Recall that mh is the number of heavy edges (ones with at least one heavy end-point), and m
is the total number of edges in the original graph G.

δ =
mk

mh
=⇒ δµe−1/3 =

mk · 2p̂mh

mh · n
· e−1/3 >

p̂mk

n
=⇒ δµe−1/3 > k

In the last step, we used the fact that S > 100kn2/m from Eq. (3), to imply that p̂m/n > 1.
Therefore, we can now apply Theorem 6.7 to conclude:

P [|W − µ| > δµ] ≤ e−bk/2c

=⇒ P
[
W > µ+

2p̂mk

n

]
≤ e−bk/2c

=⇒ P
[
W >

4p̂mk

n

]
≤ e−bk/2c

In the second step, we used the fact that µ = E[W ] =
∑

v∈Vheavy
p̂ · d(v)

n ≤
2mp̂
n .

Now we are finally ready to upper bound the number of heavy edges in G[Vi]. With high
probability (using Corollary 6.5), the following holds:

# (heavy edges in G[Vi]) ≤
∑

v∈Vheavy

P [v ∈ Vi] · (3d(v)p̂)

≤
∑

v∈Vheavy

Wv · n · (3p̂) = 3np̂ ·W

≤ 12p̂2mk =
12S

100
<
S

8

Theorem 6.9 (Heavy edges). With high probability, the number of edges in G[Vi] that have some
endpoint with degree larger than τ is at most S/8.

Combining this result with Theorem 6.9, we conclude the following:

Theorem 6.10. With probability at least 9/10, the maximum number of edges in any of the G[Vi]s
(where i ∈ [R]) does not exceed S, and hence Algorithm 7 does not terminate on Line 4.

6.4.3 Upper-Bounding the Number of Messages Sent by any Machine

Recalling Algorithm 8, we note that the number of messages received by the machine containing
Vi, is equal to the number of edges in G[Vi]. Therefore, the last section essentially proved that the
number of messages (edges) received by a particular machine is upper-bounded by S. Conversely,
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in this section, we will justify that the number of messages sent by any machine is O(S). Since the
number of edges stored in a machine is ≤ S, it suffices to to show that for each edge e, Algorithm 8
sends only O(1) messages (each message is a copy of the edge e).

Let Z
(e)
i be the {0, 1} indicator random variable for e ∈ G[Vi], and let Z(e) be the sum of Z

(e)
i for

all i ∈ [M]. Here, Z(e) represents the number of messages that are created by edge e. Additionally
we make r = SM/m = Oε(log n) copies of each edge e, and ensure that all replicates reside on the
same machine. We distribute the Z(e) messages evenly amongst the replicates, so that each replica
is only responsible for Z(e)/r messages.

Since all replicates are on the same machine, this last step is purely conceptual, but it will
simplify our arguemnt, by allowing us to charge the outgoing messages to each replicate (as opposed
to each edge). Our goal will be show that each replicate is responsible for only O(1) messages, which
is the same as showing that w.h.p. Z(e)/r = O(1).

Clearly µ = E[Z(e)] = p̂2 · M = SM
100mk . This allows us to apply Lemma 6.4 with δ = 100e1/3mk2

SM

P
[
Z(e) > δµ

]
≤ e−bk/2c =

1

n3
=⇒ P

[
Z(e)

r
>
e1/3k

r

]
≤ 1

n3

Using the assumption (from Eq. (3)) that M > 2000mk/S =⇒ r > 2000k, we see that with high
probability, the number of messages sent by any replicate is bounded above by e1/3/2000 ≤ 1. So,
the number of messages sent from any machine is bounded by S with high probability.

6.5 Challenge (4): T̂ is close to its expected value

In this section, we provide merely a brief discussion of this challenge for intuition, and we fully
analyze the approximation guarantees of our algorithm in Section 6.3.1. That analysis also makes
clear the source of our advertised lower-bound on T for which an estimated count concentrates well.
Lower Bound on Number of Triangles. In order to output any approximation (note that we
are ignoring all factors of ε and O(poly log n) here) to the triangle count, we must see Ω(1) triangles
amongst all of the induced subgraphs on all the machines. The expected number of triangles in
a specific induced G[Vi] is p̂3T , and therefore, the expected number of triangles overall is p̂3TM
which must be Ω(1) for some setting of T . Since we set p̂ such that p̂2m = Θ(S), this gives that
p̂2 = O(S/m) which implies p̂2 · M = p̂2 · (m/S) = Θ(1). This then immmediately implies that to
show that p̂3T is Ω(1), we need only show that p̂ · T is Ω(1). Specifically, we show in Lemma 6.2
that when T > 1/p̂, we can obtain a (1 ± ε)-approximation. To get some intuition for this lower
bound on T , note that, in the linear memory regime, when S = Θ(n), this translates to T >

√
davg,

where davg is the average degree of G.

T >
1

p̂
= Θ̃

(√
m

S

)
for S=Θ̃(n)

===========⇒ T > Θ̃
(√

davg

)
.

6.5.1 Getting the High Probability Bound

By building on Lemma 6.2 and Algorithm 7, we design Algorithm 9 that outputs an approximate
triangle counting with high probability, as opposed with only constant success probability. It is
important to note that in the below algorithm, all O(log n) independent iterations (Line 3) are done
in parallel, simultaneously, not sequentially.

27



Algorithm 9. Approximate Triangle Counting

1: function Approx-Triangles-Main(G = (V,E))
2: Let I ← 100 · log n.
3: parfor i← 1 . . . I do . Perform all I iterations in parallel simultaneously in O(1) rounds.
4: Let Yi be the output of Algorithm 7 invoked on G. We assume that each invocation of

Algorithm 7 uses fresh randomness compared to previous runs.
5: end parfor
6: Let Y be the list of all Yi, for i = 1 . . . I.
7: Sort Y in non-decreasing order.
8: return the median of Y

We have the following guarantee for Algorithm 9.

Theorem 6.11. Let Y be the output of Algorithm 9. Then, with high probability it holds

|Y − T | ≤ εT.

In the proof of this theorem we use the following concentration bound.

Theorem 6.12 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking values

in [0, 1]. Let X
def
=
∑k

i=1Xi and µ
def
= E [X]. Then, or any δ ∈ [0, 1] it holds P [X ≤ (1− δ)µ] ≤

exp
(
−δ2µ/2

)
.

Proof of Theorem 6.11. The proof of this theorem is essentially the so-called “Median trick”. We
provide full proof here for completeness.

Let Yi be as defined on Line 4 of Algorithm 9. By Theorem 6.10, with probability at most 1/10
Algorithm 7 terminates due to creating too big subgraphs. If we ignore Line 4 of Algorithm 7, then
by Property (A) of Lemma 6.2 we have E [Yi] = T . Yi significantly deviates from its expectation if
Algorithm 7 terminates on Line 4 or if the estimate Yi is simply off. Define a 0/1 variable Zi which
equals 1 iff |Yi − T | ≤ εT . By union bound on Property (B) of Lemma 6.2 and Theorem 6.10, we
have P [Zi = 1] ≥ 1− 1/10− 1/10 = 4/5. Also, following Line 4 of Algorithm 9 we have that all Zi
are independent.

Let Z =
∑I

i=1 Zi. We have that E [Z] ≥ 4
5I, implying that in expectation at least 4/5 fraction

on Z-variables are 1. We now bound the probability that at least 2/5 of these variables equal 0, i.e,
at most 3/5 of them equal 1. Since Z-variables are independent, for this we can use Theorem 6.12,
obtaining

P
[
Z ≤ 3

5
I

]
≤ P

[
Z ≤

(
1− 1

5

)
E [Z]

]
≤ exp (−E [Z] /50).

Given that I = 100 · log n (see Line 2 of Algorithm 9), we derive that P
[
Z ≤ 3

5I
]
< n−1. This now

implies that with probability at least n−1 the output of Algorithm 9 is some Yj such that Zj = 1.
This completes the analysis.

6.6 Showing Concentration for the K-Subgraph Count

Using similar analysis to the previous section, in this section, we show the expectation and concen-
tration bound of our subgraph counting algorithm for any subgraphs consisting of K nodes where
K is constant. Let this subgraph be H.

Lemma 6.13. Let B̂ be the count of subgraph H (with K vertices) in G[Vi] and M = 20
ε2p̂K−1 be

as defined in Eq. (3), and assume that B ≥ 1/p̂. Then, the following hold:
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(A) E
[
B̂
]

= p̂K ·R ·B, and

(B) P
[
|B̂ − E

[
B̂
]
| > εE

[
B̂
]]
< 1

10 .

Proof. We first prove Item A. The probability that a particular K-vertex occurrence h of H appears
in machine Mi is P [h ∈ G[Vi]] = p̂K . There are B number of occurrences of H in G. Thus, the

expected number of occurrences of H in machine Mi is E
[
B̂Mi

]
= p̂K · B. Since there are R

machines (which did not exceed the memory limit), the expected number of occurrences of H in

all R machines is E
[
B̂
]

=
∑

i≤R E
[
B̂Mi

]
= p̂KRB.

We now prove Item B. Let H(G) be the set of occurrences of H in G. Let B̂i,h be a random

variable where B̂i,h = 1 if h, a particular occurrence of H in G, is in machine i; otherwise, B̂i,h = 0.
Then,

Var
[
B̂
]

= E
[
B̂2
]
− E

[
B̂
]2

(9)

= E

 R∑
i=1

∑
h∈H(G)

B̂i,h

2−
 R∑
i=1

∑
h∈H(G)

E
[
B̂i,h

]2

. (10)

First, consider random variables B̂i,h1 and B̂j,h2 ; for each i 6= j ∈ [R] and each h1, h2 ∈ H(G),

there exists a term in the first summand of Section 6.6 containing E
[
2B̂i,h1B̂j,h2

]
. The vertices

constituting h1 and h2 are 2K distinct copies of some not necessarily distinct copies of vertices

in V . Suppose we use a 2k-wise independent hash function, then we have E
[
2B̂i,h1 · B̂j,h2

]
=

2E
[
B̂i,h1

]
· E
[
B̂j,h2

]
. We see that this term also shows up in the second summand of Section 6.6.

Hence, the terms cancel for each i 6= j and we can simplify Section 6.6 to the following.

Var
[
B̂
]

=
R∑
i=1

E

 ∑
h∈H(G)

B̂i,h

2− R∑
i=1

 ∑
h∈H(G)

E
[
B̂i,h

]2

=
R∑
i=1

Var
[
B̂i

]
. (11)

Now, what remains is to upper bound Var
[
B̂i

]
. Using the same approach as in the previous

section with the observation that any two distince occurrences h1 and h2 must contain K + 1 ≤
k ≤ 2K distinct vertices. This means that E

[
B̂i,h1 · B̂i,h2

]
= p̂k ≤ p̂K+1. Then, we can bound

Var
[
B̂i

]
≤ 2B2p̂K+1 (12)

(assuming B ≥ 1/p̂).

Then, from Section 6.6 and Section 6.6, we get the bound on the variance to be Var
[
B̂
]
≤

2RB2p̂K+1.
By Chebyshev’s inequality and Item A, we compute

P
[
|B̂ − E

[
B̂
]
| > εE

[
B̂
]]
<

Var
[
B̂
]

ε2E
[
B̂
]2 ≤

2B2p̂K+1

ε2p̂2KR2B2
=

2

ε2p̂K−1R2
. (13)

When setting R ≥ 20
ε2p̂K−1 , we obtain Item B.
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Using Lemma 6.13, we can obtain the following theorem about counting occurrences of any
subgraph H with K vertices.

Theorem 6.14. Let G = (V,E) be a graph over n vertices, m edges, and let B be the number of
occurrrences of subgraph H with K vertices in G. Assuming

(i) B = Ω̃
((

m
S

)K/2−1
)

, (ii) S = Ω̃
(

max
{√

m
ε , n

2

m

})
,

there exists an MPC algorithm, using M machines, each with local space S, and total space
MS = Õε(m), that outputs a (1± ε)-approximation of B, with high probability, in O(1) rounds.

Corollary 6.15. Let G = (V,E) be an input graph and B be the number of occurrences of subgraph

H with K vertices in G. If B ≥ d
K/2−1
avg , then there exists an MPC algorithm that in O(1) rounds

with high probability outputs a (1 + ε)-approximation of B. This algorithm uses a total space of
Õ(m) and space Θ̃(n) per machine. davg is the average degree of the vertices in the graph.

7 Counting subgraphs of size at most 5 in bounded arboricity
graphs

In this section, we present a procedure that for every subgraph H such that |H| ≤ 5, counts the
exact number of occurrences of H in G in O(

√
log n) rounds and O(mα3) total memory, where as

before, α is an upper bound on the arboricity of G 6. The procedure is based on a recent paper
by Bera, Pashanasangi and Seshadhri [BPS20] (henceforth BPS) which presented an O(mα3) time
and space algorithm for the same task in the sequential model. We will start by a short description
of the BPS result, and then continue to explain how to implement it in the MPC model.

7.1 The BPS algorithm

BPS generalize the ideas of Chiba and Nisheziki [CN85] for counting constant-size-cliques and 4-
cycles in the classical sequential model to counting all subgraphs of up to 5 nodes in O(n +mα3)
time. Let H be the subgraph in question. The main idea of BPS is as follows. The algorithm

starts by computing a degeneracy ordering of G, which is an acyclic orientation of G, denoted
−→
G ,

where each vertex has at most O(α) outgoing neighbors. The idea is then to consider all acyclic

orientations of H (up to isomorphisms), and for each such acyclic orientation
−→
H , count the number

of occurrences of
−→
H in

−→
G , as described next. The algorithm computes what is referred to as a

largest directed rooted tree subgraph (DRTS) of
−→
H , denoted

−→
T . That is, the DRTS

−→
T is a largest

(in number of vertices) tree that is contained in
−→
H such that all of the edges are directed away from

the root of
−→
T . Given a DRTS

−→
T , proceed by looking for all copies of

−→
T in

−→
G . Once a copy of

−→
T

is found, it needs to be verified whether it can be extended to a copy of
−→
H in

−→
G . This verification

is based on the observation that for any directed subgraph
−→
H on at most 5 vertices, and for every

largest directed rooted tree
−→
T of

−→
H , the complement of

−→
T in

−→
H is a collection of rooted paths

and stars7. Therefore, all potential completions of a copy of
−→
T to

−→
H in

−→
G can be computed and

hashed in time O(m · poly(α)). See figure below for an illustration of a possible
−→
H and its DRTS

−→
T (adapted from [BPS20]). Hence, whenever a copy of

−→
T is discovered in

−→
G , it can be verified in

6Strictly speaking, we will have α ≤ 5α(G) but as this does not affect the asymptotic bounds, it is easier to just
relate to it as the exact arboricity.

7This does not hold for subgraphs H that are stars, but stars can be dealt with differently.
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O(1/δ) rounds whether this copy can be extended to
−→
H . Since all copies of

−→
T can be enumerated

in O(mα3) time, the overall algorithm takes O(mα3) time.

Figure 1: From left to right: A subgraph H; a possible directed copy of H; the DRTS in green, and
its complement with respect to H in red. Based on a figure from BPS [BPS20].

7.2 Implementation in the MPC model

Notation 7.1 (Outgoing neighbors and out-degree). Let
−→
G = (V,

−→
E ) be a directed graph. For

a vertex v ∈ V , We denote by N+(v) its set of outgoing neighbors, and by d+(v) = |N+(v)| its
outgoing degree or out-degree.

Definition 7.2 (Degeneracy and degeneracy ordering.). A degeneracy ordering of a graph G, is
an ordering obtained by repeatedly removing a minimum degree vertex and all the edges incident to
this vertex. A vertex u precedes a vertex v in this ordering, u ≺ v, if u was removed before v. The
degeneracy of a graph G is then the maximum outgoing degree over all vertices in a degeneracy
ordering of G.

Theorem 7.3 (Thm 2 in [GLM19].). Given a graph G with arboricity α, it outputs, with high

probability, an orientation of G,
−→
G , where each vertex in

−→
G has out-degree at most O(α). The

algorithm performs O(
√

log n · log log n) rounds, uses Õ(nδ) space per machine, for an arbitrary
constant δ ∈ (0, 1), and the total memory is O(max{m,n1+δ}).

The following is a key lemma.

Lemma 7.4. Let
−→
G be a directed graph over m edges such that each vertex has out-degree at most

α. Let
−→
T be a directed rooted tree of size t ≥ 2. We can list all copies of

−→
T in G in O(1/δ) rounds,

O(n2δ) space per machine, and O(m · αt−2) total memory.

Proof. Let a1, . . . , at denote the vertices of
−→
T , where a1 is the root, and ai is the ith vertex with

respect to the BFS ordering of
−→
T . Let

−→
T i denote

−→
T [{a0, . . . , ai}].

We prove the claim by induction on t. For t = 2, all edges in G are copies of
−→
T , so the claim

holds trivially.
Assume that the claim holds for i, and we now prove it for i+ 1. By the assumption, in O(1/δ)

rounds and O(mαi−2) total memory, all copies of
−→
T i can be listed. We will show that we can use

these copies to find all copies of
−→
T i+1 in O(1/δ) rounds and O(mαi−1) memory. Recall that we

have machines with O(n2δ) memory. We will divide the copies among the machines, so that each

machine only holds O(nδ) copies. Let M be some machine containing copies τ1, . . . , τnδ of
−→
T i. It

will be easier to think of M as a collection of nδ constant memory parts, each holding a single copy

of
−→
T i. Consider a specific copy τ of

−→
T i and let Pτ denote the part storing that copy. Let ap denote

the vertex in
−→
T that is the parent of ai+1, and let u denote the vertex in τ that is mapped to ap. We

would like to create all tuples (τ, w), where w ∈ N+(u) \ τ and w can be mapped to ai+1. In order
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to achieve this we duplicate Pτ for α times, to get copies Pτ,1, . . . , Pτ,α. Each part P(τ,i) then asks u

for its ith neighbor w, and then checks if τ can be extended to
−→
T t1+1 using w. If (τ, w) is a copy of

−→
T i+1, then the part creates the tuple (τ, w). All the the duplications above can be done in parallel

to all copies of
−→
T residing on a single machine, so that in total each machine is duplicated α time.

Since each machine has O(nδ) information, and O(n2δ) space, by Lemma 2.3, this process takes
O(lognδ α) = O(1/δ) rounds. Furthermore, as each machine is duplicated α times, the amount of
total memory increases by a factor of α.

Hence, at the end of the process, all copies of
−→
T are generated, the round complexity is O(1/δ),

and the total memory is O(mαt−2).

For a directed graph
−→
G , we consider the following lists of key-value pairs, as described in Lemma

15 in [BPS20].

• HM1 : ((u, v), 1) for all (u, v) ∈ E(
−→
G).

• HM2 : (S, `) ∀S ⊆ V (
−→
G) such that 1 ≤ |S| ≤ 4 and ` is the number of vertices u such that

S ⊆ N+(u).

• HM3 :
(
(S1, S2, `)

)
∀S1, S2 ⊆ V (

−→
G), where 1 ≤ |S1 ∪ S2| ≤ 3, and ` is the number of edges

e = (u, v) ∈ E(
−→
G) such that S1 ⊆ N+(u) and S2 ⊆ N+(v).

Lemma 7.5. Let
−→
G be a directed graph with m edges, such that for every v ∈ V (

−→
G), d+(v) ≤ α.

The lists HM1,HM2 and HM3 can be computed in O(1/δ) rounds and O(mα3) total memory.

Proof. In order to create HM1, each vertex u simply adds for each v ∈ N+(u) the pair ((u, v), 1)
to the list. Clearly this can be done in O(1) rounds, and O(m) total memory.

We now consider HM2. Let s = |S| denote the size of the requested set. Fix s, and let
−→
T be a

DRT which consists of a root and s outgoing neighbors. By Lemma 7.4, we can generate all copies

of
−→
T in O(1/δ) rounds, and O(m ·αs−2) = O(m ·α2) total memory. From each copy (v, u1, . . . , us)

of
−→
T , we create a tuple ({u1, . . . , us}, 1) and add it to a temporary list HM′2. Finally, we use

Theorem 2.1 to sort this list and aggregate the counts of each set S = {u1, . . . , us}, so that for
every S we create the tuple (S, `) and add it to HM2, where ` is the number of occurrences of the
tuple (S, 1) in HM′2. By Theorem 2.1, this process takes O(lognδ m · α2) = O(1/δ) rounds.
HM3 is constructed similarly. Fix some s1 and s2 such that 1 ≤ s1 + s2 ≤ 3, and consider the

corresponding DRT
−→
T . That is,

−→
T is a DRT with a vertex u with s1 outgoing neighbors, where

one of the neighbors has s2 additional outgoing neighbors. This is a DRT over |S1|+ |S2|+ 1 ≤ 4
vertices, so by Lemma 7.4, we can generate all copies in O(1/δ) rounds, and O(m·α2) total memory.
From the list of all copies we can generate HM3, similarly to as described for HM2, in O(1/δ)
rounds.

Theorem 7.6. Let G = (V,E) be a graph with n = |V | and m = |E|. There is an algorithm for
counting the number of occurrences of any given subgraph H over k ≤ 5 vertices in G with high
probability, with round complexity O(

√
log n+1/δ), O(n2δ) memory per machine, and O(mα3) total

memory.

Proof. If H is a k-star, then the number of occurrence of H in G is simply
∑

v∈V
(d(v)
k

)
where(d(v)

k

)
= 0 for k > d(v), which can be computed in O(1) rounds. Hence, we assume that H is not a

star.
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The first step in the algorithm of BPS is to direct the graph G according to the degeneracy
ordering (see Definition 7.2). We achieve this using the algorithm of [GLM19] described in Theo-
rem 7.3. Note that the algorithm of [GLM19] returns an approximate degeneracy ordering, but as
the degeneracy of a graph is at most twice the arboricity, it holds that each vertex has out-degree
O(α).

Given the ordering of
−→
G , the algorithm continues by considering all orientations

−→
H of H (up

to isomorphisms). For each
−→
H it computes the maximal rooted directed tree, DRT, of

−→
H , denoted

−→
T . As H is of constant size, this can be computed in O(1) rounds on a single machine.

The next step is to find all copies of
−→
T in

−→
G . By Lemma 7.4, this can be implemented in

O(1/δ) rounds, O(n2δ) space per machine, and O(mα2) total memory.

Now, for each copy of
−→
T in

−→
G it needs to be verified if the copy can be completed to a copy of

−→
H

in
−→
G . By Lemma 16 in [BPS20], this can be computed in if given query access to HM1,HM2 and

HM3, as defined in Section 7.2. That is, it can be determined if a copy τ of
−→
T using O(|H|2) = O(1)

queries to the lists HM1, HM2 and HM3. By Lemma 7.5, these lists can be generated in O(1/δ)
rounds, and O(mα2) total memory. For i ∈ [1..3], let Qi denote the set of all queries to list HMi.
By [GSZ11], all queries Qi to HMi can be answered in time O(1/δ).

Finally, by Lemma 16 in [BPS20], each v can use the answers to its queries to compute the

number of copies of
−→
H it can be extended to. Therefore, by summing over all vertices and over

all possible orientations of H, and taking into account isomorphisms, we can compute the number

of occurrences of H in
−→
G . The total round complexity is dominated by computing the approx-

imate arboricity orientation of G and the sorting operations. Therefore the round complexity is
O(
√

log n log log n+1/δ). The space per machine is O(n2δ), and the total memory over all machines
is O(mα3).

8 Experiments

We performed experiments using our algorithms given in Sections 4 and 6. Our code [exp20]
simulates the algorithms described in these sections as well as the MPC procedures we use as
subroutines. In the implementation of the algorithm of Section 6, our algorithm achieves a better
approximation on all tested graphs than the best-known previous algorithm. In the implementation
of the exact algorithm of Section 4, our algorithm achieves fewer number of MPC rounds than the
baseline algorithm. Given that the focus of this paper is on our theoretical contributions, we include
these experiments only as a proof-of-concept below. All real-world graphs on which we performed
our experiments can be found in the Stanford Large Network Dataset Collection (SNAP) [LK14].
We leave as interesting future directions implementing and testing our algorithms in massively
parallel software framworks, such as Apache Hadoop and others, on much larger graphs.

We performed experiments using our algorithms given in Sections 4 and 6. Our code [exp20]
simulates the algorithms described in these sections as well as the MPC procedures we use as sub-
routines. In the implementation of the algorithm of Section 6 we output the approximation factor
we achieve using our algorithm versus the amount of space per machine. In the implementation of
the exact algorithm of Section 4 we output the number of MPC rounds necessary to execute the
algorithm versus the arboricity bound we pass into it. Given that the focus of this paper is on
our theoretical contributions, we include these experiments only as a proof-of-concept. We leave as
interesting future directions implementing and testing our algorithms in massively parallel software
framworks, such as Apache Hadoop and others, on much larger graphs.

All real-world graphs on which we performed our experiments can be found in the Stanford
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Large Network Dataset Collection (SNAP) [LK14].
We test our algorithms against datasets described in Table 2.

File Number of Vertices (n) Number of Edges (m) Number of Triangles (T )

email-Eu-core 1005 25571 105461

ego-Facebook 4039 88234 1612010

feather-lastfm-social 7624 27806 40433

ca-GrQc 5242 14496 48260

musae-twitch (DE) 9498 153138 603088

ca-HepTh 9877 25998 28339

oregon1 010519 11051 22724 17677

ca-HepPh 12008 118521 3358499

email-Enron 36692 183831 727044

Table 2: All datasets can be found in the Stanford Large Network Dataset (SNAP) Collec-
tion [LK14]. This table shows the number of vertices, edges, and exact number of triangles in
each of these graphs.

Results for Section 4. The first set of experiments were performed using our new exact triangle
count algorithm provided in Section 4. The results are shown in Fig. 2. Our experiments were
performed on five datasets: oregon1 010519, email-Enron, ca-HepTh, ca-GrQc, email-Eu-core. We
compare against the baseline algorithm (labeled “-base” in the figures) of removing (and counting)
the vertices with degree at most the degeneracy of each graph during each round. We measure the
number of rounds our algorithm takes against the amount of space per machine (indicated by the
different colors of the bars) and our initial setting of our degree bound. Recall that since the degree
bound of our algorithm for removal of vertices grows doubly exponentially, we can set our initial
degree bound to be smaller than the degeneracy of the graph. Note that for the baseline algorithm,
we cannot do this since the degree bound remains the same (and hence, a smaller degree bound
than the degeneracy will cause the algorithm to terminate at some point with vertices still left in
the graph with degree greater than the bound). Our initial degree bound settings are shown on
the x-axes while the y-axes shows the number of rounds. The machine space bounds are in terms
of the number of nodes of the graph that can fit in each machine. These numbers are shown in the
legend indicating the colors of the bars. Due to its usefulness in the baseline algorithm, we consider
the degeneracy of the graphs instead of the arboricity. But as we noted previously, the degeneracy
of the graph is at most within a constant factor of 2 of the arboricity of the graph.

We see in Fig. 2 that our algorithms result in less (or the same number of) rounds than the
baseline algorithm for all cases given the same space and degree bound except the 2225 case for
the email-Enron dataset. This confirms our theoretical analysis of the asymptotic number of rounds
of our algorithm, taking Oδ(log log n) compared to the Oδ(log n) rounds we expect the baseline
algorithm to take. The anomaly with the single 2225 case might be due to the larger constant
factor (derived from MPC sort and find duplicate) of having to sort more items per round in our
case compared to the baseline case. We also see that due to the doubly exponential nature of our
algorithm, we are able to also count triangles using much lower initial degree bounds than the
degeneracy of the graph. Even for such degree bounds, the number of rounds necessary is still
often (much) less than the number of rounds necessary for the baseline algorithm. This provides
the advantage of being able to use our algorithm for real-world graphs without first needing to
determine their degeneracy value.
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(a) oregon1 010519. Degeneracy is 17.
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(b) email-Enron. Degeneracy is 43.
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(c) ca-HepTh. Degeneracy is 31.
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(d) ca-GrQc. Degeneracy is 43.
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(e) email-Eu-core. Degeneracy is 34.

Figure 2: This set of graphs shows the results of our experiments using our exact counting algorithm
described in Section 4. We test on five datasets labeled under each plot. In each of these graphs,
we compare against the number of rounds required by the MPC algorithm that removes, in each
round, only vertices with degree at most the degeneracy of the graph α. Each color represents a
different space per machine, which is represented in terms of the number of nodes that can fit in
each machine. The colors (green, red, yellow) labeled with “-base” represent our baseline algorithm
results.
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File δ Partition Approximation Our Approximation

ego-Facebook 0.5 0.62 1.31

feather-lastfm-social 0.5 5.41 1.08

ca-GrQc 0.5 4.53 1.64

ca-HepPh 0.5 0.66 1.22

ego-Facebook 0.75 0.75 0.97

ca-GrQc 0.75 5.82 0.82

ca-HepPh 0.75 5.90 0.86

musae-twitch (DE) 0.75 0.74 0.95

oregon1 010519 0.75 0.60 0.71

Table 3: The approximation factors obtained when running our algorithm given in Section 6 against
our implementation of the partition algorithm given in Algorithm 1 and Algorithm 2 of [PT12].
We perform the algorithms on machines of size 2mδ · log n. The approximation factor is calculated
by C/T where C is the triangle count returned by either algorithm and T is the actual count of
the triangles in the graph.

Results for Section 6. The results of experiments for our approximation algorithm described in
Section 6 are given in Table 3. We further compare our approximations against our implementation
of the partition algorithm given in Algorithms 1 and 2 of [PT12]. In the implementation of our
algorithm, due to the (sequential) time constraints of simulating our algorithms, we do not use a
k-wise independent hash function, as such functions require too much time to compute. Hence,
for our experiments, we use standard pseudorandom functions given in programming packages
(specifically numpy in Python3). For each of the experiments the space per machine is 2mδ · log n,
where δ is specified in Table 3. The same space per machine is used for both algorithms. The
total space used for both algorithms is 2m · logm. For the implementation of our algorithm, we

set the probability of sampling to be 1
5 ·
√

S
M ·k where we set k = max(2, b6.5 · log nc). We chose

to test these algorithms on these specific δ values because δ = 0.5, 0.7 represent Õ(n) and õ(m),
respectively. Because the theoretical guarantees of our algorithm relies on some specific contraints
on T and S, we wanted to see how our algorithm performs on real-world networks. We use the
median-of-means trick for the concentration for both algorithms.

As Table 3 shows, compared to the partition algorithm, our algorithm obtains a better approx-
imation ratio for all datasets and for all machine spaces. This follows from our theoretical analysis
as we ensure (1 + ε)-approximations on the number of triangles in each graph using Õ(n) space
and with a quadratically smaller constraint on the number of actual triangles in the graph than all
other previous work. Thus, we show that practically, on real-world graphs, our algorithm obtains
better approximations on the number of triangles given smaller space per machine.

9 Open Questions

There are many interesting open questions that result from our study; among these open questions
include improving the bounds presented in our algorithm: the round complexity and total space
usage in our exact algorithms and the space per machine in our approximation algorithms. In
addition to these questions, we also discussion two additional open questions with a larger research
scope.
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Small subgraph counting counting for a broader class of small subgraphs Two recent
works of [Bre19, BPS21] extend the result of [BPS20] to a broader set of small subgraphs in the
sequential model. However, their results depend crucially on a DAG tree decomposition which is
non-trivial to implement in the MPC model. Furthermore, even given this DAG tree decomposition,
their approach requires iterating through the tree from the leaf level by level up the tree. Such a
procedure when implemented in the MPC model requires number of rounds that is O(depth) where
depth is the depth of the tree. The depth may not be poly(log n). In order to obtain efficient MPC
implementation of these new algorithms, we must find novel solutions to the above two challenges.

Counting in the AMPC model A new (stronger) model of MPC, called the adaptive MPC
model, was recently introduced by [BDE+21]. The AMPC model allows access to a shared dis-
tributed hash table at the end of every round; additionally, the algorithms are allowed adaptive
access to this hash table. Such a model has shown to be very practical and have led to improve-
ments in the number of rounds over previous MPC algorithms. Such a model seems to be quite
relevant to our work since one of the main challenges in our approximation algorithms is to find the
set of edges to give to each machine. (Such a challenge may no longer exist given a shared-memory
distributed hash table.) We leave as an interesting open question to obtain better, more round
efficient approximate triangle counting algorithms in the AMPC model.

Triangle Counting in O(1) Rounds in Sparse Graphs For sparse graphs where m = Õ(n),
our approximation algorithm requires Ω̃(n) space per machine which means that (almost) the entire
graph can fit on one machine. This naturally leads to an interesting open question for whether we
can obtain an approximate or exact triangle counting algorithm in O(1) rounds in sparse graphs
while using sublinear space per machine (nδ space for any constant δ > 0).
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Ronitt Rubinfeld. Improved massively parallel computation algorithms for mis, match-
ing, and vertex cover. arXiv:1802.08237, 2018.

[GKMS19] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted
matchings via unweighted augmentations. In Peter Robinson and Faith Ellen, editors,
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 491–500. ACM,
2019.

[GKU19] Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for mas-
sively parallel computation from distributed lower bounds. In David Zuckerman, edi-
tor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 1650–1663. IEEE Computer
Society, 2019.

41



[GLM19] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel algo-
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A Preliminaries

A.1 Proof of Theorem 2.1

Using the construction of the interval tree defined in [GSZ11] that has branching factor d =M/2
we perform the following to count the number of times each element repeats in our sorted list of
N elements. To initialize the tree, each leaf of the tree contains exactly one of the elements in the
sorted list of elements where leaf vi contains element xi of the list. Let the height of the tree be L,
the leaves of the tree be at level L− 1 and the root be at level 0. Then, the rest of the algorithm
proceeds in two phases:

1. Bottom-up phase: For each level ` = L− 1 up to 0:

(a) For each node v on level `:

i. If v is a leaf, it sends its value xi to its parent p(v).

ii. If v is a vertex in level L− 2, let (xi, xi+1, . . . , xi+j) where j < d be values obtained
from its leaf children from left to right. Let c(xi) be the count of element xi among
the values obtained from the children of v. The counts are computed locally on the
machine storing v. Then, v sends xi, c(xi), xi+j , c(xi+j) to its parent p(v).

iii. If v is a non-leaf node on level ` < L − 2, let xa, c(a), xb, c(b), . . . be the values
of elements obtained from its children and their counts. v updates the counts of
all elements received. For example, if xa = xb, v updates c(a) and c(b) to be
c(a) + c(b). Let xleft be the first element received from v’s leftmost leaf and xright
be the second element received from v’s rightmost leaf. Then, send these elements
and their updated counts, xleft, c(xleft), xright, and c(xright), to its parent p(v).

2. Top-down phase: For each level ` = 0 down to ` = L− 1:

(a) For each node v at level `:

i. If v is the root, then it computed and stored in its memory new repeating counts
for the values it received from its children: xa, c(xa), xb, c(xb), . . . . It sends the
new counts and values to its respective child that sent it the value originally (e.g.
xleft, c(xleft) to vleft). Intuitively, this updates the child’s count of values with
values that are not in its subtree.

ii. If v is not the root and is a non-leaf node, it receives the values from its parents for
its leftmost and rightmost child counts. Given the set of values it stored from its
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children it updates the counts with counts of values received from its parents. This
allows for the counts to reflect values not in its subtree. Then, it sends the updated
counts to its children.

iii. If v is a leaf, it receives values xi, c(xi) from its parent. c(xi) is then the number of
times xi occurs in the sorted list.

The above procedure uses O(d) space per processor and O(L) rounds of communication. Since
L = O(logd(N)) and d = M/2, the number of rounds of communication that is necessary is
O (logMN).

A.2 Proof of Lemma 2.2

We first create the following tuples in parallel to represent tuples in Q and C, respectively. For
each tuple q ∈ Q, we create the tuple (q, 1). For each tuple c ∈ C, we create the tuple (c, 0). Let F
denote the set of tuples (c, 0) and (q, 1). First, we sort the tuples in F lexicographically (where 0
comes before 1) [GSZ11]. Then, we use the predecessor primitive given in (e.g. [GSZ11, ASS+18],
Appendix A of [BDE+19]) to determine the queries q ∈ Q that are in C. Given the sorted F , we
use the predecessor algorithm of [BDE+19] to determine for each (q, 1) tuple, the first tuple that
appears before it that has value 0. Suppose this tuple is (c, 0). Then, if q = c, then the queried
tuple q is in C. For all tuples q ∈ Q, we can then return in parallel whether q ∈ C also. Both the
sorting and the predecessor queries take O(|Q ∪ C|) total space and Oδ(1) rounds.

A.3 Proof of Lemma 2.3

Let M be some machine with nδ information and O(n2δ) space. We create the x duplicates by
repeatedly duplicating each machine M i

j to nδ machines M i+1
nδ·j , . . . ,M

i+1
nδ·j+nδ−1

, starting with M0
0 =

M . Therefore, after ` = lognδ x rounds this process terminates, and the required duplicates is the
set of machines M `

1 to M `
x.
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