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ABSTRACT

The omplexity of testing properties of monotone and uni-

modal distributions, when given aess only to samples of

the distribution, is investigated. Two kinds of sublinear-

time algorithms|those for testing monotoniity and those

that take advantage of monotoniity|are provided.

The �rst algorithm tests if a given distribution on [n℄ is

monotone or far away from any monotone distribution in

L

1

-norm; this algorithm uses

~

O(

p

n) samples and is shown

to be nearly optimal. The next algorithm, given a joint

distribution on [n℄� [n℄, tests if it is monotone or is far away

from any monotone distribution in L

1

-norm; this algorithm

uses

~

O(n

3=2

) samples.

The problems of testing if two monotone distributions

are lose in L

1

-norm and if two random variables with a

monotone joint distribution are lose to being independent

in L

1

-norm are also onsidered. Algorithms for these prob-

lems that use only poly(log n) samples are presented. The

loseness and independene testing algorithms for monotone

distributions are signi�antly more eÆient than the orre-

sponding algorithms as well as the lower bounds for arbi-

trary distributions.

Some of the above results are also extended to unimodal

distributions.

Categories and Subject Descriptors

F.2 [Theory of Computation℄: Analysis of Algorithms

and Problem Complexity; G.3 [Mathematis of Comput-

ing℄: Probability and Statistis
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1. INTRODUCTION
Consider the following senarios:

(1) Suppose one is studying the outbreak of a ertain type

of aner and need to unover any salient statistial proper-

ties of it that might hold. For example, it would be impor-

tant to know if the probability of ontrating the disease is

monotone dereasing with the distane of one's home from

Chernobyl. One this is established, then one might want

further information|suh as if the distribution is lose to

the distribution of asthma. For obvious reasons, it is impor-

tant to notie suh trends using as few samples as possible.

(2) Suppose one is studying the performane of individuals

in a standardized test. For example, it would be useful to

know if age of the partiipant and sore they obtain in the

test are orrelated at all. Furthermore, suppose that the

distribution of the ages of the partiipants is normal and so

is the distribution of the sores. Can one onlude that the

distribution of the sores is independent of the distribution

of the ages of the partiipants? Again, it is desirable to

assess this using as few samples as possible.

In this paper we fous on two spei� properties of dis-

tributions. The �rst is (dereasing) monotoniity, i.e., for

some partial order on the underlying domain and two el-

ements x � y in the domain, the probability of x in the

distribution is at least as big as the probability of y. The

seond is unimodality, whih haraterize distributions that

have a single \peak."

There are several reasons to fous attention on the mono-

toniity and unimodality properties in the ontext of distri-

butions. Many ommonly studied distributions are either

monotone or unimodal, or an be desribed as a ombina-

tion of a small number of monotone distributions; familiar

examples inlude Gaussian, Cauhy, exponential, and Zipf

distributions. Moreover, tails of distributions ourring in

natural phenomena are often monotone. The importane

of suh distributions motivates the problem of testing if a

distribution is monotone/unimodal (Senario (1)).



The monotoniity property of distributions has been ex-

ploited in statistis, for example, in order to quikly gen-

erate random variables [5℄. In [1℄, it has been shown that

estimating the entropy of a distribution an be performed

using exponentially fewer samples when the distribution is

known to be monotone. This leads us to further investigate

when one an exploit monotoniity/unimodality in getting

more eÆient algorithms for testing properties of distribu-

tions (Senario (2)).

1.1 Summary of our results
We �rst fous on understanding the omplexity of testing

whether a distribution is monotone. Our main result is to

show that the omplexity of monotoniity testing for a distri-

bution on [n℄ is essentially the same (up to polylogarithmi

fators) as that of testing uniformity, whih is known to be

~

�(

p

n). We build on this basi algorithm to obtain a sublin-

ear monotoniity testing algorithm for higher dimensions|

for instane, the monotoniity testing algorithm for a distri-

bution on [n℄�[n℄ runs in time

~

O(n

3=2

). In this ase, we show

a lower bound of 
(n). We next show that (as is the ase

with estimating the entropy) when distributions are known

to be monotone, the tasks of testing if two distributions are

lose, or whether a joint distribution is independent, are

(near-exponentially) easier than the general ase.

Monotoniity testing. We begin by investigating algorithms

that test if a distribution is monotone. It is tempting to

onstrut an algorithm for testing monotoniity based on

sampling: say, partition the domain into equal or unequal

intervals, estimate the weight of the distribution in these in-

tervals by sampling, and verify that the average weights are

monotone. However, this naive approah fails. For instane,

onsider the distribution that is uniform on the even labeled

domain points and zero on the odd labeled domain points.

This distribution is far from any monotone distribution, but

a test based purely on testing the monotoniity of weights

of various partitions of the domain will be fooled.

The above example points to an intriguing relationship

between the problems of testing monotoniity and testing

loseness to uniformity in distributions. On one hand, the

problem of testing monotoniity seems to be as hard as uni-

formity testing. We present a redution showing that this

is indeed the ase, and thus monotoniity testing requires


(

p

n) samples. On the other hand, ould testing mono-

toniity be a muh harder problem? One of our ontribu-

tions is to show that, at least in the one-dimensional ase,

it annot.

In the one-dimensional ase, we redue the problem of

testing monotoniity to the problem of testing uniformity

by showing how to reursively break up the domain of the

distribution into a small number of balaned intervals (see

Setion 3), i.e., intervals for whih the ollision probability

of the distribution is lose to that of the uniform distribu-

tion. Sine distributions that have low ollision probability

are known to be statistially lose to uniform, as long as the

average probability in eah of the above intervals is mono-

tone, the whole distribution must be lose to monotone. Our

tehniques impliitly show that any monotone distribution

an be approximated by a deomposition into a small (poly-

logarithmi in the size of the support) number of balaned

intervals. We also show that this haraterization is robust:

it is not possible to deompose a distribution that is far from

monotone into a small number of suh balaned intervals.

The biggest diÆulty to overome in showing this hara-

terization is that a monotone distribution may be lose to

uniform on an interval, but still may not have a small enough

ollision probability, ausing the algorithm to further subdi-

vide the interval. A ruial fat that is used to upper bound

the number of balaned intervals required to aurately rep-

resent monotone distributions is that the intervals an be

linearly ordered suh that the average weights of many on-

seutive intervals are substantially dereasing. We believe

that this haraterization of monotone distributions is inter-

esting in its own right and might have other appliations.

1

Extending this approah to higher dimensions is triky.

The main reason is that the natural extension of intervals

is to retangles, whih annot be totally ordered aording

to the weights, but only partially ordered. Thus our ruial

fat from the one-dimensional ase does not give us a very

strong bound on the number of retangles in the deomposi-

tion. For those retangles whose ollision probability is not

small enough to guarantee that their onditional distribu-

tion is lose to uniform, we generalize the one-dimensional

arguments in two new ways. First, we modify the reur-

sive deomposition in suh a way that retangles that are

\too far" from the origin are ignored. To argue that the

error made by this trunation step is bounded, we look at

a path deomposition of an appropriate partial order and

upper bound both the maximum hain length and the total

error ontributed by any anti-hain. Seond, rather than re-

ursing, we perform a speialized test on balaned retangles

where the weight of the left half of the retangle is almost

the same as the right half. For suh retangles, we show

that if the given distribution is monotone, then it is lose to

uniform on a large fration of olumns in a balaned ret-

angle. Thus, we would like to test monotoniity of these

retangles by testing uniformity of the olumns. Unfortu-

nately, existing uniformity tests may not pass distributions

that are only guaranteed to be lose to uniform. We over-

ome this barrier by showing how to use the one-dimensional

monotoniity testing algorithm in order to give a speialized

uniformity test. Finally, sine the marginal distribution on

the rows of the balaned retangle is monotone, we invoke

the haraterization from the one-dimensional ase to argue

that the rows an be partitioned into intervals that are lose

to uniform. This indues a partitioning of the balaned ret-

angle into strips of olumns where eah strip is lose to uni-

form. As in the one-dimensional ase, we prove that if suh

a deomposition is possible, then it an be pathed together

into a monotone distribution. This approah yields a mono-

toniity testing algorithm that runs in

~

O(n

3=2

) time. These

ideas an be extended to higher dimensions with a sublin-

ear running time of

~

O(n

d�1=2

); a lower bound of 
(n

d=2

) is

shown.

Monotone loseness and independene. We next onsider

the problem of testing whether two monotone distributions

are lose in L

1

-norm|that is, to distinguish pairs of distri-

1

We note that there is also an algorithm for partitioning

a monotone distribution into intervals suh that the ondi-

tional distribution is lose to uniform in eah interval [1℄.

However, the analysis of this algorithm makes strong use of

the fat that the distribution is already known to be mono-

tone. Thus, the algorithm that performs the partitioning

an use simpler properties by whih to make its deisions,

and the analysis of the size of the partition is stronger, as

well as signi�antly simpler.



butions that are idential from pairs of distributions that are

far in L

1

-norm. For this problem, we onstrut a test that

uses only poly(log n) samples (Setion 6.1). We also onsider

the problem of testing whether d random variables with a

monotone joint distribution are lose to independent|that

is, to distinguish the ase in whih the distributions are inde-

pendent from the ase in whih they are far in L

1

-norm from

any independent distribution. One again, we onstrut a

test that uses only poly(d log n) samples (Setion 6.2). Here

we make use of the work of [1℄, whih allows us to deom-

pose a known monotone distribution into a small number of

uniform distributions.

Our monotone loseness testing algorithm should be on-

trasted against the 
(n

2=3

) lower bound for testing loseness

for arbitrary distributions [3℄. Similarly, our monotone inde-

pendene testing algorithm should be viewed in light of an


(n) lower bound for testing independene for arbitrary dis-

tributions [2℄. Thus, the omplexity of testing these proper-

ties of monotone distributions is near-exponentially smaller

than that of testing the same properties of arbitrary distri-

butions.

Unimodal distributions and other models. By suitably adapt-

ing the algorithms in the monotone ase, we obtain algo-

rithms for testing if a given distribution is unimodal and

if two unimodal distributions are lose in L

1

-norm (Setion

7). The sample omplexities and the running times of these

algorithms are almost the same as in the monotone ase.

For omparison, we also onsider the problem of testing

monotoniity in the evaluation orale model when an ora-

le aess to the umulative distribution is available to the

algorithm. We obtain an O(log

2

n) algorithm (Setion 8).

1.2 Related work
When no assumptions are made on the distributions, stan-

dard statistial tests, suh as the �

2

-test and the straight-

forward use of Cherno� bounds in order to estimate various

properties of the distribution, seem to require a number of

samples that is superlinear in the domain size for the above

tasks. However, there have been several reent works that

ahieve sublinear omplexity for testing various properties

of arbitrary distributions in the L

1

-norm. From the work

of [9℄, it an be seen that there is an

~

O(

p

n)-time algorithm

to test if a given distribution is lose to the uniform distribu-

tion; it is also known that this is almost optimal. This result

was subsequently generalized in [2℄, where an algorithm us-

ing

~

O(

p

n) samples was presented to test if a distribution is

lose to another, where the latter's probability distribution

funtion is available as an advie to the algorithm.

In [3℄, it is shown that

~

O(n

2=3

) time is suÆient for dis-

tinguishing pairs of distributions that are lose in L

1

-norm

from pairs of distributions that are far (this is also shown to

be tight up to polylogarithmi fators); in ontrast, it is also

shown that one an approximate the distane in L

2

-norm in

time independent of n. In [2℄, it is shown that for a joint

distribution of two variables over [n℄ � [m℄ (without loss of

generality, assuming n � m),

~

O(n

2=3

m

1=3

) time is suÆient

for distinguishing the ase when the two variables are inde-

pendent from the ase in whih the joint distribution is far

from any independent distribution (this is again shown to

be tight up to polylogarithmi fators).

Finally, in [1℄, the number of samples needed to approxi-

mate the entropy is studied and for distributions with suÆ-

iently high entropy, one an get a -multipliative approxi-

mation of the entropy with

~

O(n

1=

2

) samples. In that paper,

an 
(n

1=2

2

) lower bound on the sample size was shown for

approximating the entropy. However, it is also shown that

for monotone distributions, only polylogarithmially many

samples are needed in order to approximate the entropy. In

fat, as we have already mentioned, we build on their ideas

in our algorithms for testing loseness and independene of

distributions that are known to be monotone.

Monotoniity, as a property on posets, has been exten-

sively studied in the ontext of property testing [7, 4, 10, 6,

8℄. In this setting, the model is the evaluation orale model

where the value of funtion at any point in the domain an

be queried. In ontrast, our result an be viewed as testing

monotoniity property in the generation orale model.

2. PRELIMINARIES
We onsider disrete probability distributions over [n℄.

Let p = hp

1

; : : : ; p

n

i be suh a distribution where p

i

�

0;

P

n

i=1

p

i

= 1. We assume that all distributions are given

via generation orales: for distribution p over [n℄, eah in-

voation of the orale supplies us with an element in [n℄

distributed aording to p and hosen independently of all

previous orale invoations. The parameters of interest are

the number of samples and running time required by the

algorithm. For simpliity, we will assume that n is a power

of 2; this is without loss of generality.

We use jp� qj to denote the L

1

-distane

2

and kp� qk to

denote the L

2

-distane between two distributions. We all a

distribution p to be �-lose in L

1

-norm to a distribution q if

jp� qj � �. In partiular, p is �-lose in L

1

-norm to uniform

if jp� U

n

j � � where U

n

is the uniform distribution on [n℄.

The following fat upper bounds the ollision probability

when the maximum and minimum probability values are

not too far away from eah other [3, 2℄.

Lemma 1 ([3, 2℄). Let p be a distribution on [n℄. If

max

i

p

i

� (1+ �) �min

i

p

i

, then kpk

2

� (1+ �

2

)=n. If kpk

2

�

(1 + �

2

)=n, then jp� U

n

j � �.

We now formally de�ne monotone and unimodal distribu-

tions. Unless otherwise spei�ed, for this paper, monotone

means monotone dereasing.

Definition 2 (Monotone distributions). A distri-

bution p on [n℄ is said to be monotone if p

1

� � � � � p

n

.

A distribution p on [n℄ is said to be �-monotone in L

1

-

norm if there is a monotone distribution q on [n℄ suh that

jp� qj � �.

The notions of monotoniity and �-monotoniity naturally

extend to higher dimensions, when a partial order is imposed

on the domain. For instane, in two dimensions, distribution

p on [n℄� [n℄ is monotone if p

i;j

� p

i

0

;j

0

whenever i � i

0

and

j � j

0

.

Definition 3 (Unimodal distributions). A distribu-

tion p on [n℄ is said to be unimodal if there exists an i 2 [n℄

suh that p

1

� � � � � p

i

� p

i+1

� � � � � p

n

. A distribution

p on [n℄ is said to be �-unimodal in L

1

-norm if there is a

unimodal distribution q on [n℄ suh that jp� qj � �.

2

The ommonly used total variation distane between dis-

tributions is de�ned to be half of the L

1

-distane between

distributions.



Notation. For i; j 2 Z where i � j, we (ab)use the interval

notation [i; j℄ to refer to the set fk 2 Z j i � k � jg. For

a sample set S and i 2 [n℄, o(i; S) denotes the number of

times i ours in S; for I � [n℄, o(I; S)

def

=

P

i2I

o(i; S).

We also use S

I

to denote the samples in S from the interval

I. Given a funtion f de�ned over domain D, for D

0

� D,

we use f(D

0

) to denote

P

x2D

0

f(x). In partiular, given

a distribution p on [n℄ and an interval I in [1; n℄, p(I) will

denote

P

i2I

p

i

. For an interval I = [i; i + 2k � 1℄, we use

I

`

= [i; i + k � 1℄ and I

r

= [i + k; i + 2k � 1℄ to denote

its bisetion. For a retangle K = I � J � [n℄ � [n℄ and

b; b

0

2 f`; rg, we use K

b;b

0

to denote the quadrant I

b

� J

b

0

.

3. BALANCED INTERVALS
A reurring tehnique in our algorithms in this paper is

to redue the omplexity of the problem by partitioning the

domain into subdomains where the onditional distribution

is almost uniform. Weaker variants of this tehnique are

impliit in some of the earlier work mentioned above.

Consider a monotone distribution p on [n℄ and an interval

in [n℄. Intuitively, if the weight of p in the �rst half of an

interval is nearly the same as its weight in the seond half,

then the onditional distribution of p over the interval must

be lose to uniform. The following lemma formalizes this

intuition quantitatively.

Lemma 4. Let I � [n℄ be an interval of length 2k and let

p be a monotone distribution on [n℄. If p(I

`

) � (1+�)�p(I

r

),

then

P

i2I

�

�

�

p

i

�

p(I)

2k

�

�

�

� �p(I):

Proof. We de�ne w

def

= p(I) and Æ

i

def

=

�

�

p

i

�

w

2k

�

�

. Let

j be the largest index in I suh that p

j

� w=2k. First

onsider the ase when j � k. Let A

1

def

=

P

i2I;i�j

Æ

i

; A

2

def

=

P

i2I;j<i�k

Æ

i

; A

3

def

=

P

i2I;k<i�2k

Æ

i

. We want to show that

A

1

+ A

2

+ A

3

� �w. Note that A

1

= A

2

+ A

3

. By the

assumption, we have

A

1

�A

2

+ w=2

�A

3

+ w=2

=

p(I

`

)

p(I

r

)

� 1 + �:

By substituting A

2

+A

3

for A

1

, we get A

3

� (�w)=(4 + 2�).

By Æ

j+1

� Æ

j+2

� � � � � Æ

2k

, A

2

� A

3

. Therefore, we have

A

1

+A

2

+A

3

� �w. The ase j > k is similar.

A weaker, but analogous result an be obtained for a mono-

tone distribution on [n℄

d

.

Lemma 5. Let I

1

; : : : ; I

d

� [n℄ be intervals. Let p be a

monotone distribution on I

1

� � � � � I

d

. If p(I

`

1

� � � � � I

`

d

) �

(1 + �)p(I

r

1

� � � � � I

r

d

) and w = p(I

1

� � � � � I

d

), then

X

j2I

1

�����I

d

�

�

�

�

�

p

j

�

w

Q

i2[d℄

jI

i

j

�

�

�

�

�

� 2�w:

Proof. Let R =

Q

i2[d℄

jI

i

j, namely, the size of the d-

dimensional retangle. Without loss of generality, assume

that for all j 2 I

`

1

� � � � � I

`

d

, p

j

� w=R. The argument is

analogous when for all j 2 I

r

1

�� � ��I

r

d

, p

j

� w=R. (Note that

if there exists a j 2 I

`

1

� � � � � I

`

d

suh that p

j

< w=R, then

monotoniity implies that p

j

0

� w=R for all j

0

2 I

r

1

�� � ��I

r

d

.)

For eah b 2 f`; rg

d

, let A

b

def

= fj 2 I

b

1

1

� � � � � I

b

d

d

j p

j

�

w=Rg, and let W

b

def

=

P

j2A

b

(p

j

�w=R). Finally, let t be the

d-dimensional all-`'s vetor, i.e., t

def

= h`; `; : : : ; `i. Note that

for any b 2 f`; rg

d

, W

b

�W

t

by the monotoniity of f .

Sine p(I

`

1

�� � ��I

`

d

) =W

t

+(w=2

d

) and p(I

r

1

�� � ��I

r

d

) �

w=2

d

, by the assumption in the lemma statement, we know

that

W

t

+ (w=2

d

)

(w=2

d

)

� (1 + �):

Hene, W

t

� (�w)=2

d

. So, we an onlude

X

j2I

1

�����I

d

�

�

�

p

j

�

w

R

�

�

�

= 2

X

b2f`;rg

d

W

b

� 2

d+1

�W

t

� 2�w:

4. MONOTONICITY IN ONE DIMENSION
We onsider the problem of distinguishing monotone de-

reasing distributions from those that are not �-monotone

in L

1

-norm. We give an

~

O(

p

n) algorithm that redues the

problem of testing if a distribution is lose to monotone to

the problem of testing if several distributions are lose to

uniform. Our redution an be viewed as a strutural de-

omposition of a monotone distribution into several uniform

distributions. This redution is robust in the sense that the

resulting testing algorithm will pass monotone distributions

and fail distributions that are not �-monotone. We then

essentially math this upper bound by showing that any

algorithm for this problem requires 
(

p

n) samples, by re-

duing the problem of testing whether a distribution is lose

to uniform to monotoniity testing.

Our algorithm partitions the domain [n℄ into a small (i.e.,

poly(log n)) number of intervals, eah of whih has its weight

distributed roughly evenly over the elements in the interval.

The onditional distribution on suh an interval is lose to

the uniform distribution suh that eah element in the in-

terval has probability lose to the average probability.

One the desired partition is obtained, our algorithm then

determines whether the uniform distributions in eah of the

intervals an be \pathed" together to form a monotone dis-

tribution over the whole domain that is lose to the original

distribution. Sine there are very few intervals, this latter

task an be performed eÆiently via linear programming.

Flat distributions. We de�ne at distributions, whih are

reminisent of histograms.

Definition 6 (Flat distribution). Let ` be an inte-

ger and let I

`

= hI

1

; : : : ; I

`

i be a partition of [n℄. A dis-

tribution q on [n℄ is alled an `-at distribution if it an

be desribed by the pair (w; I

`

); with w = hw

1

; : : : ; w

`

i and

q

i

= w

j

= jI

j

j for i 2 I

j

.

Flat distributions are interesting to us for the following two

reasons. Firstly, atness is a robust property with respet to

monotoniity, that is, a at distribution is �-lose to mono-

tone if and only if it is �-lose to a monotone at distribution.

Lemma 7. An `-at distribution p desribed by (w; I

`

) is

�-monotone if and only if p is �-lose to a monotone at

distribution.

Proof. It is lear that if p is �-lose to a monotone at

distribution, then p is �-monotone. For the onverse, let



q be a monotone distribution suh that jp� qj � �. Let

w = hw

1

; : : : ; w

`

i suh that p

i

= w

j

=jI

j

j if i 2 I

j

. De�ne the

monotone `-at distribution q

0

that is desribed by the pair

(w

0

; I

`

) where w

0

= hw

0

1

; : : : ; w

0

`

i and w

0

j

= q(I

j

); j 2 [`℄. We

now show that q

0

is �-lose to p. By the atness property

and triangle inequality,

�

�

p� q

0

�

�

=

X

j2[`℄

�

�

w

j

�w

0

j

�

�

=

X

j2[`℄

jw

j

� q(I

j

)j

=

X

j2[`℄

�

�

�

�

�

�

X

i2I

j

w

j

jI

j

j

� q

i

�

�

�

�

�

�

�

X

j2[`℄

X

i2I

j

�

�

�

�

w

j

jI

j

j

� q

i

�

�

�

�

=

X

i2[n℄

jp

i

� q

i

j = jp� qj � �:

Seondly, �-monotoniity of `-at distributions an be tested

in time polynomial in `.

Lemma 8. There is an algorithm that outputs PASS if an

`-at distribution desribed by (w; I

`

) is �-lose to a mono-

tone at distribution, and outputs FAIL otherwise. The run-

ning time of this algorithm is poly(`).

Proof. For j 2 [`℄, let k

j

= jI

j

j and let w = hw

1

; : : : ; w

`

i.

First, onsider the following mathematial program with

variables y

i

for i 2 [l℄:

min

P

j2[`℄

jy

j

k

j

� w

j

j s. t.

P

j2[`℄

y

j

k

j

= 1; y

j

� y

j+1

for all j 2 [`� 1℄;

y

`

� 0:

The program above minimizes the distane between the given

distribution and a monotone `-at distribution. We now

transform this into a linear program by introduing a new

variable z

j

to orrespond to jy

j

k

j

� w

j

j and by adding the

onstraints z

j

� y

j

k

j

� w

j

and �z

j

� y

j

k

j

� w

j

, for all

j 2 [`℄. It is easy to see that this transformation preserves

the value of the objetive funtion. The lemma follows by

solving this LP in time poly(`), for example, using [11℄.

The algorithm. The ollision ount of S

I

, the samples in

an interval I, is de�ned to be oll(S

I

)

def

=

P

i2I

�

o(i;S

I

)

2

�

.

The following lemma relates the ollision ount to the L

2

-

norm [3, 2℄:

Lemma 9 ([3, 2℄). Let I be an interval and q be the

onditional distribution of p on I. Then,

�

kqk

2

�

�

2

32jIj

�

�

oll(S

I

)

�

jS

I

j

2

�

�

�

kqk

2

+

�

2

32jIj

�

;

with probability at least 1�O(log

�3

n), provided that jS

I

j =


(�

�4

p

jIj log log n).

Our algorithm will use ollisions in the sample to deter-

mine a partition I

`

of [1; n℄. Sine a low ount of ollisions

in the sample suggests a nearly uniform distribution of the

weight, the use of this statisti will result in a partition

with lose-to-uniform onditional distributions on eah in-

terval. After obtaining a partition [1; n℄, the algorithm will

hek if these lose-to-uniform onditional distributions an

be pathed together into a monotone at distribution.

Now we desribe our algorithm. The inputs are a genera-

tion orale for p and an error parameter �.

Algorithm TestMonotoniity

1. Obtain m

def

= O(�

�4

p

n log n) samples S from p.

Start with the interval I = [1; n℄, and biset I in half

reursively as long as

oll(S

I

) �

(1 + �

2

=32)

jIj

 

jS

I

j

2

!

and jS

I

j �

m

log

3

n

:

Abort the algorithm, and output FAIL if it performed

more than O(�

�1

log

2

n) splits.

2. Let I

`

= hI

1

; : : : ; I

`

i denote the partition of [1; n℄ into

intervals indued by the leaves of the reursion from

the previous step.

3. Obtain an additional sample T of size O(�

�2

log

4

n).

4. Let hist(T; I

`

) denote the `-at distribution desribed

by (w; I

`

) where w

j

= o(I

j

; T )= jT j.

5. Output PASS if hist(T; I

`

) is �=2-lose to a monotone

distribution (by using the algorithm from Lemma 8),

otherwise output FAIL.

Thus, we obtain the following theorem.

Theorem 10. Given aess to a generation orale for p

over [n℄, the algorithm TestMonotoniity outputs PASS

when p is monotone and outputs FAIL when p is not �-

monotone, with probability at least 2=3. The algorithm uses

O(�

�4

p

n log n) samples and runs in time O(�

�4

p

n log

3

n).

Proof. We �rst argue that hist(T; I

`

) is a good ap-

proximation to p, assuming Step (1) sueeds, i.e., when

` = O(�

�1

log

2

n). Consider the partition I

`

obtained from

Step (1). Call an interval I light if o(I; T ) � m= log

3

n;

all it balaned otherwise. By Lemma 9, the L

2

-norm of

the onditional distribution on a balaned interval I is at

most (1 + �

2

=16)=jIj. Hene, by Lemma 1, we an laim

that

P

i2I

jp

i

� p(I)= jIjj � �p(I)=4. The total weight of

the light intervals is less than �=4 by the virtue of being

light and the upper bound on `. Hene, by summing over

all intervals I 2 I

`

, we get jhist(T; I

`

)� pj � �=2.

Suppose p is a monotone distribution. We show that the

algorithm will output PASS with probability at least 2/3.

We �rst show that ` = O(�

�1

log

2

n), i.e., Step (1) will su-

eed. Using Lemma 9 and the union bound over all in-

tervals, Step (1) will obtain a reliable estimate, as given by

Lemma 9, for the ollision probability (i.e., the square of the

L

2

-norm) with probability at least 2=3. Now, �x a level and

onsider the internal nodes in this level of the reursive tree

onstruted in Step (1). For an interval that orresponds

to one of these nodes, the ratio of the maximum probabil-

ity to the minimum probability in the interval is at least

1 + �=8 by Lemma 1 and Lemma 9; by monotoniity of p,

these extrema our at the two ends of the interval. Sine

for eah of these intervals, the maximum probability is at

least n

�2

, there are at most O(log

1+�=8

n) internal nodes

on any level. Therefore, the tree has O(�

�1

log

2

n) internal

nodes. Finally, sine the tree is a omplete binary tree, I

`

ontains O(�

�1

log

2

n) intervals. Consequently, Step (1) will

sueed and as we argued in the beginning of this proof,

jhist(T; I

`

)� pj � �=2. Sine hist(T; I

`

) is `-at and is

�=2-lose to a monotone distribution, by Lemma 7, it is also



�=2-lose to a monotone `-at distribution and so Step (5)

will also sueed and the algorithm will output PASS.

Suppose the algorithm outputs PASS. Then, from Step (5),

there is a monotone (in fat, at) distribution q suh that

jhist(T; I

`

)� qj � �=2. Moreover, sine Step (1) sueeded,

` = O(�

�1

log

2

n). Again, as we argued in the beginning of

this proof, this implies that jhist(T; I

`

)� pj � �=2. By

triangle inequality, jp� qj � �.

We also need to ensure that Step (5) an be implemented

in polylogarithmi time. But, this is possible via Lemma 8

with ` = O(�

�1

log

2

n). Hene, the running time of the

algorithm is dominated by the previous steps.

Lower bound. Next, we show that our upper bound is es-

sentially optimal.

Theorem 11. Let A be an algorithm that, given gener-

ation orale aess to an arbitrary distribution p over [n℄,

has the following behavior: if p is monotone, then A out-

puts PASS and if p is not �-monotone in L

1

-norm, then A

outputs FAIL. Furthermore the error probability of A is at

most 1/3. Then A requires 
(

p

n) samples.

Proof. We redue the problem of testing if a given dis-

tribution is lose to uniform to testing if the distribution is

lose to monotone. Given a generation orale, distinguishing

uniform distributions from distributions that are not even �-

lose to uniform in L

1

-norm is known to require 
(

p

n) sam-

ples [2℄. The desired lower bound for testing monotoniity

will follow.

For simpliity, we assume p is a distribution on [2n℄. Sup-

pose there is an algorithm A to test if a given distribu-

tion is �-monotone for � < 1=16. We use this algorithm

as a blak-box to onstrut a new algorithm B that tests

if a given distribution is (�

0

+ �)-lose to uniform, where

�

0

= 4�=(1=2 � �) < 1. De�ne a new generation orale p

R

that on invoation, invokes p and outputs i if p outputs

2n� i. The algorithm B uses both p and p

R

in the following

manner: it runs A on both p and p

R

and outputs PASS if

and only if A outputs PASS on both p and p

R

.

Clearly, if p is uniform on [2n℄, both p and p

R

are mono-

tone and A outputs PASS on both oasions. Conversely,

suppose A outputs PASS for both p and p

R

; then p and

p

R

must be �-monotone. In this ase, we show that p is

(�

0

+ �)-lose to uniform. Let f be a monotone distribution

on [2n℄ suh that jp� fj � � and g

R

be a monotone distribu-

tion on [2n℄ suh that

�

�

p

R

� g

R

�

�

� �. By our onstrution

of p

R

, the funtion g de�ned by g

i

= g

R

2n�i

is monotone

non-dereasing and jp� gj =

�

�

p

R

� g

R

�

�

� �. We onlude

the proof by showing that f is �

0

-lose to uniform, whih by

the triangle inequality will show that p is (�

0

+ �)-lose to

uniform.

Let F = f([1; n℄) =

P

n

i=i

f

i

, F

0

= 1�F = f([n+1; 2n℄) =

P

2n

i=n+1

f

i

, and G = g([1; n℄) =

P

n

i=1

g

i

. Sine f is mono-

tone non-inreasing and g is monotone non-dereasing, we

have G � 1=2 � F . On the other hand, by the triangle

inequality, jf � gj � jf � pj+ jp� gj � 2� and in partiular,

jF �Gj � 2�. Combining all of these, 1=2 � F � G + 2� �

1=2 + 2� and onsequently, F

0

� 1=2� 2� . We have

0 � F � F

0

= 2F � 1 � 2

�

1

2

+ 2�

�

� 1

= 4� �

4�

1=2� 2�

F

0

= �

0

F

0

:

Also, sine f is a distribution,

P

2n

i=1

f

i

= 1. By appealing to

Lemma 4, we see that

P

2n

i=1

jf

i

� 1=(2n)j � �

0

, that is, f is

�

0

-lose to uniform.

5. MONOTONICITY IN HIGHER DIMEN

SIONS
In this setion we present an

~

O(n

3=2

) algorithm for testing

monotoniity in two dimensions. These ideas an be used

to give

~

O(n

d�1=2

)-time algorithms for testing monotoniity

in d dimensions. We also show a lower bound of 
(n

d=2

) for

testing monotoniity in d dimensions.

As we indiated in the Introdution, testing monotoni-

ity in higher dimensions is trikier than the one-dimensional

ase beause of the partial ordering on the domain. Simi-

lar to the one-dimensional ase, we would like to reursively

subdivide the domain until we an test for loseness to uni-

formity of eah subdivision. In order to upper bound the

running time and the error probability of the algorithm, we

would need a bound on the number of subdivisions, as in the

one-dimensional ase. However, the partial ordering on the

domain hinders the argument that bounds the number of

subdivisions. To handle this problem, we make the follow-

ing observations: (i) the quadrants that are \too far" from

the origin an be disarded sine they annot ontribute sig-

ni�ant mass to a monotone distribution; (ii) if onseutive

quadrants have similar weights, they an be further deom-

posed into almost-uniform partitions in one step.

Let the domain of the distribution be [n℄ � [n℄. We will

think of the algorithm as partitioning the two dimensional

spae into four equal quadrants and reursing on eah of

the quadrants. In other words, the algorithm builds a quad-

tree T with the following semantis. The nodes in T will

orrespond to retangles inside [n℄� [n℄; the root of T orre-

sponds to [n℄� [n℄. For an internal node v that orresponds

to a retangle K = I � J , the four hildren of v, labeled

v

`;`

; v

`;r

; v

r;`

; v

r;r

orrespond to the four quadrants of K.

Clearly, the depth of this tree is at most log n.

For a given level of the tree, the row (resp. olumn) dis-

tane of a quadrant is the number of quadrants to the left

(resp. bottom) of it to the origin. For a given level, the

distane of a quadrant from the origin is the maximum of

its row and olumn distanes. We will derive a tree from

T where eah quadrant orresponds to a leaf in T an be

further split, though not neessarily as quadrants. The size

of this new tree will be essentially that of T and so we will

deal with T for the rest of the disussion.

Let a be a suitably large onstant and let b and  be

onstants suh that b > 2 + 1 and  > a + 2. Let Æ =

O(�= log

a

n). Let S be a sample of size O(n

3=2

�poly(log n; �

�1

))

andW be a global variable in the algorithm that keeps trak

of the number of samples ignored. We now desribe how the

algorithm reursively onstruts the tree starting at the ur-

rent node v, whih orresponds to a retangle K = I�J . If

a node is delared as a leaf, then we do not reurse on the

node further.

Algorithm TestMonotoniity2D

1. If o(K;S)=jSj � 1= log

b

n, then v is a leaf.

2. If oll(S

K

) � (1 + �

2

=32)

�

jS

K

j

2

�

=jKj, then v is a leaf.

3. If the quadrant K is more than log



n away from the

origin, then v is a leaf. UpdateW  W + jo(K;S)j.



4. IfK is not already designated as a leaf, then do the fol-

lowing two steps for eah of the following ordered pairs:

hK

`;`

; K

`;r

i, hK

`;`

; K

r;`

i, hK

r;`

; K

r;r

i, hK

`;r

; K

r;r

i. We

will illustrate the steps for hK

`;`

; K

`;r

i.

(4a) If (1+�)o(K

`;`

; S) < o(K

`;r

; S), then output

FAIL.

(4b) If o(K

`;`

; S) � (1 + Æ)o(K

`;r

; S) then selet

1=Æ many i's where probability of i is propor-

tional to p(fig � J

r

). For eah i, output FAIL

if the distribution along the i-th olumn fig � J

is not (�=32)-lose to monotone or p(fig � J

`

) >

(1 + �=32)p(fig � J

r

). Partition I

`

� J into on-

tiguous olumns applying Step (1) in algorithm

TestMonotoniity on domain I

`

and mark eah

set of olumns as a leaf.

5. Reurse on the hildren that were not leaves in the

previous step.

6. Output FAIL if W > �jSj=8.

7. Output FAIL if the partition of the domain indued by

the leaves of the reursion is not �=2-lose to a mono-

tone distribution (This ondition an be heked by a

linear program formulation as in the one-dimensional

algorithm), otherwise output PASS.

Running time. Note that the total number of nodes in

this tree is O(log

2+1

n), whih follows from the fat that

at any �xed level of the tree, there are at most log

2

n inter-

nal nodes (from Step (3)). Thus, the sample omplexity is

dominated by the one-dimensional monotoniity testing in

Step (4b) for poly(log n) olumns eah with weight at least

O(1=(n log

b

n)). This entails

~

O(n

3=2

=�

4

) samples.

Also, it is easy to see that an LP-based algorithm an be

designed to hek if a given two-dimensional at distribution

is �=2-lose to a two-dimensional monotone at distribution

in Step (7). Sine the number of nodes in T is log

2+1

n, the

running time of this step will be overwhelmed by the other

steps.

Proof overview. First note that the algorithm determines

the retangles not to be divided any further in Steps (1){

(4): suh retangles either have small weight (Step (1)), have

almost uniform onditional distribution (Step (2)), are far

from the origin (Step (3)), or an be further deomposed

into almost-uniform partitions in one step (Step (4)). We

show (Lemma 14) that the leaves designated by Step (3)

have a negligible fration of the total weight in a monotone

distribution. We show that all these steps together ensure a

small tree size and that the total weight of the leaves ignored

by Steps (1) and (3) is negligible. Note that one annot use

the weight threshold from Step (1) both to upper bound the

number of leaves and to simultaneously show that their total

weight is negligible.

When a retangle K is divided, we would like to main-

tain that the weights of the onseutive quadrants in K are

separated by a multipliative fator, of at least 1 + Æ, in

order to ensure a tree of polylogarithmi size at the end.

Hene, when the weights of two onseutive quadrants, say,

hK

`;`

; K

`;r

i in K are within (1+Æ), these two quadrants are

not reursively divided any further. In a monotone distribu-

tion we would expet that the individual olumns in these

two quadrants are roughly uniform. Step (4b) ensures suh

quadrants an be partitioned into O(log

2

n) subdivisions,

eah of whih is lose to uniform, using Lemma 13.

At the end of Step (7), we an derive a two-dimensional

at distribution, de�ned similar to the one-dimensional ase,

that is lose to p. The leaves that are determined by Step (2)

orrespond to at quadrants with the total mass indued

by the sample. The onditional distribution is �=4-lose to

uniform for these retangles. For the leaves that are deter-

mined by Step (4b), we split the retangles one more level

into groups of ontiguous olumns (or rows, depending on

the orientation of the retangle) to obtain (�=4)-uniform par-

titions. The total weight of all the other leaves is negligible.

First, we show that for a monotone distribution, we an

assume that Step (4b) will not FAIL. We show that for a

monotone distribution, if the two halves have roughly the

same weight, then the onditional distributions on olumns

are lose to uniform.

Lemma 12. Let �; � < 1=8. Let distribution p over inter-

val I be �-monotone. Furthermore, let p(I

`

) � (1+�)p(I

r

).

Then, p is (4�+ 2�)-lose to uniform.

Proof. Let f be a monotone distribution suh that jp� fj �

�. Sine p(I

`

) � p(I

r

) � 2�=3 and jp� fj � �, f(I

`

) �

f(I

r

) + �+ 2�=3. Thus, we get

f(I

`

)

f(I

r

)

� 1 +

�+ 2�=3

f(I

r

)

� 1 +

�+ 2�=3

1���2�=3

2

� 1 + 3� + 2�:

Hene, by Lemma 4, f is (3�+ 2�)-lose to uniform. So, by

the triangle inequality, p is (4�+ 2�)-lose to uniform.

The next lemma shows that in monotone distributions, for

those retangles onsidered by Step (4b), most of the weight

in the retangle is distributed on olumns with roughly uni-

form onditional distribution.

Lemma 13. Let I�J � [n℄� [n℄ and let p be a monotone

distribution suh that p(I�J

`

) � (1+Æ)p(I�J

r

). Then, for

any � > 0, Pr

i2I

�

p(fig � J

`

) � (1 + �Æ) � p(fig � J

r

)

�

�

1=�; where i is hosen with probability p(fig�J

r

)=p(I�J

r

).

Proof. Let W = p(I � J

`

);W

0

= p(I � J

r

). We know

that W

0

� W � (1 + Æ)W

0

. Let w

i

= p(fig � J

`

) and

w

0

i

= p(fig � J

r

). We know that w

0

i

� w

i

for every i 2 I.

Let B be the set of i's suh that w

i

� (1 + Æ

0

)w

0

i

, for Æ

0

to be hosen later. Then, from the de�nition of B and our

assumptions, we have that

X

i2B

(1 + Æ

0

)w

0

i

+

X

i=2B

w

0

i

�

X

i2B

w

i

+

X

i=2B

w

i

=W � (1 + Æ)W

0

:

From this, it follows that

P

i2B

w

0

i

=W

0

� Æ=Æ

0

. Setting

Æ

0

= �Æ, we see that if i is piked proportional to w

0

i

, the

probability that it is in B is at most 1=�.

We now bound the error introdued beause of ignoring

nodes that are too far away from the origin in Step (3).

Lemma 14. For a monotone distribution p, the total er-

ror arued at any level of T beause of Step (3) is at most

O(�

�1

log

a�+1

n).



Proof. Consider a graph whose nodes are the internal

nodes of the tree at level `. In this graph, there is an edge

between two nodes if the retangles K

1

and K

2

orrespond-

ing to these nodes have an ordering relationship between

them (aording to the de�nition of monotoniity in two di-

mensions) and K

1

is one of the losest retangles to K

2

on

this level (i.e., either K

1

and K

2

are touhing eah other

or none of the retangles of the same size in between them

survived until this level).

First, we laim that the maximum length of a path in this

graph is O(Æ

�1

log n), where reall that Æ = O(�= log

a

n).

Consider a path of length t. One in every three edges on

this path have to be between two sibling nodes in the tree,

beause four nodes on this path of three edges an belong to

at most three parents. Note that for eah edge between two

siblings along the path, the weight of the quadrants drops

by at least a fator of 1 + Æ. This follows from the fat that

these nodes are internal nodes and Step (4b) ould not be

applied to them. Hene, t is O(Æ

�1

log n) = O(�

�1

log

a+1

n).

Seondly, onsider any set R of inomparable nodes, all at

distane at least log



n in this graph. Let v be a node in R.

Interpreting v in the partial order, without loss of generality,

let the \x-oordinate" of v be at least log



n. Let w

1

; : : : ; w

k

be the set of nodes at level ` of a omplete quad-tree with

the same y-oordinate as v and a smaller x-oordinate than

v, where k � log



n. We know by monotoniity that p(w

1

) �

� � � � p(w

k

) � p(v). Thus, p(v) as a fration of

P

k

i=1

p(w

i

)

is at most log

�

n. We ount ignoring v as an error and

harge this quantity to w

k

. Now, we look at the harges

eah node gets. We laim that eah node an get harged

at most twie in level `|one along x-diretion and another

along y-diretion. This follows sine R was hosen to be a

set of inomparable nodes. Thus, as a fration, the total

weight of the nodes in S is at most 2 log

�

n.

Now, the total error aused by Step (3) is upper bounded

by the produt of the maximum path length and the maxi-

mum weight of inomparable nodes. By the above two ob-

servations, this is at most O(�

�1

log

a�+1

n).

Thus, we obtain:

Theorem 15. Given aess to samples from a distribu-

tion p over [n℄ � [n℄, the algorithm TestMonotoniity2D

outputs PASS when p is monotone and outputs FAIL when

p is not �-monotone, with probability at least 2=3. Moreover,

the algorithm runs in time O(n

3=2

� poly(log n; �

�1

)).

Proof. First of all, by piking sample set S large enough,

we an guarantee that the error probability for any of the

operations (suh as ounting/omparing the number of o-

urrenes, estimating ollision probabilities, or performing

one-dimensional monotoniity test, et.) at eah node in T

is at most log

�d

n for some onstant d > b > 2 + 1. Sine

the number of nodes in T is only log

2+1

n, this will permit

us to apply a union bound over all nodes in T to guarantee

that no \bad event" happens.

Seond, we also assume that the sampling error in esti-

mating various parameters (suh as number of ourrenes

of sample in a given quadrant, seleting i's in Step (4a),

ounting W , et.) is �

0

for some �

0

� �.

Note that the total error due to the nodes ignored in

Step (1) is at most the number of nodes in the tree mul-

tiplied by O(1= log

b

n), whih is O(log

�b+2+1

n), and so is

negligible when b > 2+ 1.

Suppose p is a monotone distribution. We show that the

algorithm will output PASS with high probability. Sine

we assumed that the sampling is good enough, Step (4a)

will never output FAIL for a monotone distribution. Com-

ing to Step (4b), by our hoie of parameters, at least 1 �

1=
(log

a

n) fration (by weight) of i's will be suh that w

0

i

�

w

i

� (1 + �=64)w

0

i

where w

i

= p(fig � J

`

); w

0

i

= p(fig � J

r

)

by Lemma 13. So, Step (4b) is not likely output FAIL.

By Lemma 14, Step (6) will also not output FAIL. Finally,

we show that the at distribution obtained from the par-

tition is �=2-monotone so that Step (7) does not output

FAIL. The error due to Step (3) is the height of the tree

multiplied by O(�

�1

log

a�+1

n) (from Lemma 14), whih is

O(�

�1

log

a�+2

n), and is negligible when  > a + 2. The

balaned retangles from Step (4b) are divided into parti-

tions eah of whih is �=4-lose to uniform. The leaves des-

ignated by Step (2) also orrespond to (�=4)-uniform ret-

angles. Hene, we see that the two-dimensional at distri-

bution is indeed �=2-lose to p.

Suppose the algorithm outputs PASS. Sine the sampling

in Step (4b) is not likely to FAIL, it follows that the distri-

butions restrited to i's are atually �=32-lose to monotone

and have the weights of the two halves within (1 + �=16)

for at least 1 � 1=
(log

a

n) fration (by weight) of the i's.

Hene, by Lemma 12, for those i's the distribution is �=4-

lose to uniform. If we replae olumns for the rest of i's

by uniform distributions, the total error resulting from this

modi�ation will be at most �=4. The total weight of the

parts of the domain designated as leaves by steps (1) and (3)

is at most O(log

�b+2+1

n) + jW j=jSj � �=4. Hene, the

two-dimensional at distribution implied by the tree T is

�=2-lose to p. Finally, from the last step, there is a two-

dimensional monotone at distribution q that is �=2-lose to

the two-dimensional at distribution implied by the tree T

and the solution to the linear program onstruted using T .

By the triangle inequality, p and q are �-lose.

Lower bound. By generalizing the lower argument in one-

dimension from Setion 4, we show that a lower bound on

the sample omplexity of testing monotoniity in higher di-

mensions. We redue testing uniformity of a distribution to

testing monotoniity of a distribution over tuples.

Theorem 16. Let A be an algorithm that, given gener-

ation orale aess to an arbitrary distribution p over [n℄

d

,

has the following behavior: if p is monotone, then A out-

puts PASS and if p is not �-monotone in L

1

-norm, then A

outputs FAIL. Furthermore the error probability of A is at

most 1/3. Then A requires 
(n

d=2

) samples.

6. CLOSENESS AND INDEPENDENCE
In this setion we present eÆient algorithms to test if two

monotone distributions over [n℄ are lose in L

1

-norm and if

a monotone joint distribution is lose in L

1

-norm to being

independent. Our algorithms run in time O(poly(log n)),

thereby going beyond the lower bounds for these problems

in the general ase [3, 2℄ by a near-exponential fator.

The main idea behind the algorithms is the observation

underlying Lemma 4: if a monotone distribution p over [n℄

is balaned, i.e., p([n=2℄) and p([n℄n[n=2℄) are lose, then the

distribution must be lose to uniform. We require an eÆ-

ient proedure that, given a monotone distribution, parti-



tions the domain into a small number of intervals that are

balaned. The next theorem from [1℄ omes to our resue.

Theorem 17 ([1℄). Let p be a monotone distribution

on [n℄ given via a generation orale. There is a proe-

dure Partition(p; �; w) that outputs a (k+1)-partition I =

hI

1

; : : : ; I

k

; Ji of [n℄ suh that I

j

's are intervals, J � [n℄,

and with probability at least 1 � o(1), the following hold:

(1) k = O(�

�1

log(n) log log n); (2) p(J) = o(wk); (3) for

j 2 [k℄, p(I

j

) > w and p(I

r

j

) � p(I

`

j

) � (1 + �) � p(I

r

j

). The

proedure uses O(�

�3

w

�1

log n) samples from p.

Notie that we ould not have used Theorem 17 for testing

monotoniity: Partition requires samples from a monotone

distribution and the guarantee that it gives on the partition

is weaker than the one we need for testing monotoniity.

6.1 Closeness of monotone distributions
In this setion we present an algorithm to test if two mono-

tone distributions are lose. We use the algorithm in The-

orem 17 to obtain a partition I

`+1

= hI

1

; : : : ; I

`

; Ji of [n℄.

We then hek if p and q are lose in eah of the intervals I

j

and if q(J) is small. Here is a desription of the algorithm.

Algorithm TestMonotoneCloseness

1. Let hI

1

; : : : ; I

k

; Ji = Partition(p; �; log

�2

n).

2. Obtain m

def

= O(�

�3

log

3

n) samples S

p

and S

q

from p

and q respetively.

3. Output FAIL if o(I

`

j

; S

q

) > (1 + 2�) � o(I

r

j

; S

q

) or

if jo(I

j

; S

p

)� o(I

j

; S

q

)j � � � o(I

j

; S

p

) for any

j 2 [k℄, or if o(J; S

q

) > �

�1

m log log n= log n.

First, we show a simple onsequene of Lemma 4:

Lemma 18. Let p; q be monotone distributions on [n℄ and

I � [n℄ be an interval suh that p(I

`

) � (1 + �) � p(I

r

) and

q(I

`

) � (1+�

0

)�q(I

r

): Then,

P

i2I

jp

i

� q

i

j � �p(I)+�

0

q(I)+

jp(I)� q(I)j :

Proof. Let w

1

= p(I) and w

2

= q(I). Then, by the

triangle inequality,

X

i2I

jp

i

� q

i

j =

X

i2I

�

�

�

�

p

i

+

w

1

� w

1

+ w

2

� w

2

jIj

� q

i

�

�

�

�

�

X

i2I

�

�

�

�

p

i

�

w

1

jIj

�

�

�

�

+

X

i2I

�

�

�

�

w

2

jIj

� q

i

�

�

�

�

+

X

i2I

jw

1

� w

2

j

jIj

� �w

1

+ �

0

w

2

+ jw

1

� w

2

j :

We now obtain

Theorem 19. Given generation orale aess to mono-

tone distributions p and q over [n℄, the algorithm Test-

MonotoneCloseness outputs PASS when p = q and out-

puts FAIL when jp� qj � 9�, with probability at least 2=3.

Moreover, the algorithm runs in time O(�

�3

log

3

n).

Proof. Suppose p = q. By Theorem 17, for eah I

j

,

p(I

`

j

) � (1 + �) � p(I

r

j

) with probability 1 � o(1). Moreover,

sine q(J) = o(�

�1

log log n= log n), with probability 1�o(1),

S

q

will ontain less than �

�1

m log log n= log n samples from

J . Therefore, Step (3) is not likely to output FAIL.

Suppose the algorithm outputs PASS. Then, for eah in-

terval I

j

we know that q(I

`

j

) � (1+4�)�q(I

r

j

), and moreover,

jp(I

j

)� q(I

j

)j � 3� � p(I

j

). Now, using Lemma 18, and the

fats that p(J) = o(1) and q(J) = o(1), and summing over

all I

1

; : : : I

k

, we an see that jp� qj � 9�.

6.2 Independence of monotone joint distribu
tions

In this setion we onsider monotone distributions on [n℄

d

,

and the independene of the random variables de�ned by

eah omponent of the samples from these distributions.

Our goal is to distinguish monotone independent distribu-

tions from monotone distributions that are far from any in-

dependent distribution.

An easy but useful observation is that the marginal dis-

tributions of a monotone joint distribution are also mono-

tone distributions. Based on this observation, we will use

Theorem 17 to partition the domains of the marginal dis-

tribution into intervals. By Lemma 4, we know that the

marginal distributions will be lose to uniform on these in-

tervals. Therefore, when the random variables de�ned by

the joint distribution are independent, the onditional dis-

tributions on the \retangles" formed by the ross produt

of the partitions will be lose to uniform. Lemma 5 provides

a means to hek this ondition.

For a retangle, let the midpoint be the point that bisets

the retangle along eah oordinate. Then we refer to the top

ube (bottom ube) as the set of points in the retangle that

are smaller (larger) than the midpoint in eah oordinate.

Monotoniity ensures that eah probability value in the top

ube is greater than eah of those in the bottom ube. The

algorithm is:

Algorithm TestMonotoneIndependene

1. For eah i 2 [d℄, apply Partition to the marginal

distribution along the i-th dimension with �

i

= �=(32d)

and w = d

�1

log

�2

n to obtain a partition of [n℄ into

I

(i)

= hI

(i)

1

; : : : ; I

(i)

k

i

; J

i

i.

2. For eah d-dimensional retangle I

(1)

i

1

�I

(2)

i

2

�� � ��I

(d)

i

d

,

output FAIL if the number of samples from the top

ube is more than (1 + �=8) times that of the bottom

ube.

3. Chek that the distribution on the retangles is �=4-

lose to the produt of the marginal distributions on

the retangles.

Theorem 20. Given generation orale aess to mono-

tone joint distribution p on d-tuples, the algorithm Test-

MonotoneIndependene outputs PASS if p indues d in-

dependent random variables and outputs FAIL if p has L

1

-

distane at least � to any set of d independent variables,

with probability at least 2=3. Moreover, the algorithm uses

O(log

(2d=3)+1

n) samples and runs in time O(log

d

n).

Proof. Suppose the joint distribution is independent.

Then, for any d-dimensional retangle that we hek, the

weight of the top ube is at most (1 + �=16) times that of

the bottom ube, beause in eah marginal distribution, the

top half of the interval has weight at most (1+�=(32d)) times

that of the bottom half, and (1 + �=(32d))

d

� (1 + �=16).



Hene, after aounting for the sampling errors, all the ret-

angles in Step (2) will pass with high probability. The algo-

rithm outputs PASS.

Now onsider a distribution p that the algorithm outputs

PASS. We know by Lemma 5 that the onditional distribu-

tion on eah retangle has L

1

-distane at most �=4 to the

uniform distribution. Let Æ be the L

1

-distane of p to the

produt of its marginal distributions. The total ontribution

of all the retangles to Æ will be at most �=2. Sine, the total

weight of the ignored parts of the domain, where at least one

oordinate belongs to the orresponding J

i

, is negligible, we

an laim that Æ � �. Therefore, p has L

1

-distane at most

� to a set of d independent variables on this domain.

The error probability is sum of the probabilities that The-

orem 17 does not hold for any invoation of Partition.

Therefore, the error probability is less than 1=3. The sam-

ple omplexity of d invoations of the proedure Partition

is O(d

5

�

�3

log

3

n). Step (3) an be aomplished by the al-

gorithm to test if two distributions are lose [3℄, whih will

entail O(log

(2d=3)+1

n) samples.

7. UNIMODAL DISTRIBUTIONS
In this setion we extend our results to unimodal distri-

butions. We will only indiate the appropriate modi�a-

tions/extensions needed for the unimodal ase.

Testing unimodality. The outline of our algorithm for test-

ing unimodality is be similar to our algorithm for testing

monotoniity. After partitioning the domain [n℄ into poly-

logarithmi number of intervals, eah of whih has lose-

to-uniform onditional distribution, the algorithm heks

whether these intervals an be \pathed" together to form a

unimodal distribution. We will again use unimodal at dis-

tributions as a tool. The analogs of Lemma 7 and Lemma

8 hold for the unimodal at distributions. The only addi-

tional step in the proof of the latter is that sine the max-

imum probability an our in any one of the ` intervals, `

separate linear programs will be set up for eah hoie of

the peak of the unimodal distribution. Thus, as before, we

obtain an

~

O(

p

n) algorithm for unimodality testing.

Testing loseness. The following is a unimodal analog of

Lemma 4. It says that for a �ne-enough partition, unimodal-

ity on balaned intervals implies lose to uniformity.

Lemma 21. Let I be a interval, and let p be a unimodal

distribution on [n℄. Let ` = d1=�e, and I

1

; : : : ; I

`

be a par-

tition of I into equal-length subintervals. If, for all j 2 [`℄,

p(I)

(1+�)`

� p(I

j

) �

(1+�)p(I)

`

; then

P

i2I

�

�

�

p

i

�

p(I)

jIj

�

�

�

� �p(I):

We all an interval I to be (1 + �)-smooth with respet

to sample S if, for the `-partition fI

1

; : : : ; I

`

g of I where

` = d1=�e,

jS

I

j

(1+�)`

� jS

I

j

j �

(1+�)jS

I

j

`

for all j. The al-

gorithm for testing loseness is similar to the monotone

ase, where we will use Theorem 17 to obtain a partition

I

k+1

= hI

1

; : : : ; I

k

; Ji of [n℄, where eah I

j

is (1+�)-smooth.

8. THE CUMULATIVE ORACLE MODEL
It is instrutive to ompare the omplexity of various tasks

hanges under di�erent assumption on how the distributions

are aessed. For example, suppose the only aess to the

distribution p is through a umulative evaluation orale P

suh that P

i

=

P

i

j=1

p

j

, and that the algorithm an aess

any P

i

in one step. We show that in this model, monotoni-

ity testing an be done in a simpler and more eÆiently.

Note that from suh an orale, one an generate an ele-

ment i with probability p

i

in logarithmi time: generate a

random r 2 [0; 1℄ and output i suh that P

i

� r by perform-

ing a binary searh on P. We adapt the sorting spot-heker

of [7℄ to obtain a sublinear algorithm for monotoniity in

the umulative orale model.

Theorem 22. Given aess to a umulative orale for

distribution p over [n℄, there is an algorithm that outputs

PASS if p is monotone and outputs FAIL if p is not 2�-

monotone in L

1

-norm, with probability at least 2=3. The

algorithm runs in time O((1=�)(log n+ log(1=�)) log n).
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