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ABSTRACT

The 
omplexity of testing properties of monotone and uni-

modal distributions, when given a

ess only to samples of

the distribution, is investigated. Two kinds of sublinear-

time algorithms|those for testing monotoni
ity and those

that take advantage of monotoni
ity|are provided.

The �rst algorithm tests if a given distribution on [n℄ is

monotone or far away from any monotone distribution in

L

1

-norm; this algorithm uses

~

O(

p

n) samples and is shown

to be nearly optimal. The next algorithm, given a joint

distribution on [n℄� [n℄, tests if it is monotone or is far away

from any monotone distribution in L

1

-norm; this algorithm

uses

~

O(n

3=2

) samples.

The problems of testing if two monotone distributions

are 
lose in L

1

-norm and if two random variables with a

monotone joint distribution are 
lose to being independent

in L

1

-norm are also 
onsidered. Algorithms for these prob-

lems that use only poly(log n) samples are presented. The


loseness and independen
e testing algorithms for monotone

distributions are signi�
antly more eÆ
ient than the 
orre-

sponding algorithms as well as the lower bounds for arbi-

trary distributions.

Some of the above results are also extended to unimodal

distributions.

Categories and Subject Descriptors

F.2 [Theory of Computation℄: Analysis of Algorithms

and Problem Complexity; G.3 [Mathemati
s of Comput-

ing℄: Probability and Statisti
s

�

The �rst author was partially supported by NSF Grant No.

CCR-9912428 and a David and Lu
ile Pa
kard Fellowship

for S
ien
e and Engineering.

y

Part of this work was done while the author was at NEC

Laboratories Ameri
a.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1­58113­852­0/04/0006 ...$5.00.

General Terms

Algorithms, Theory

Keywords

Sublinear algorithms, property testing, distribution testing,

monotone and unimodal distributions

1. INTRODUCTION
Consider the following s
enarios:

(1) Suppose one is studying the outbreak of a 
ertain type

of 
an
er and need to un
over any salient statisti
al proper-

ties of it that might hold. For example, it would be impor-

tant to know if the probability of 
ontra
ting the disease is

monotone de
reasing with the distan
e of one's home from

Chernobyl. On
e this is established, then one might want

further information|su
h as if the distribution is 
lose to

the distribution of asthma. For obvious reasons, it is impor-

tant to noti
e su
h trends using as few samples as possible.

(2) Suppose one is studying the performan
e of individuals

in a standardized test. For example, it would be useful to

know if age of the parti
ipant and s
ore they obtain in the

test are 
orrelated at all. Furthermore, suppose that the

distribution of the ages of the parti
ipants is normal and so

is the distribution of the s
ores. Can one 
on
lude that the

distribution of the s
ores is independent of the distribution

of the ages of the parti
ipants? Again, it is desirable to

assess this using as few samples as possible.

In this paper we fo
us on two spe
i�
 properties of dis-

tributions. The �rst is (de
reasing) monotoni
ity, i.e., for

some partial order on the underlying domain and two el-

ements x � y in the domain, the probability of x in the

distribution is at least as big as the probability of y. The

se
ond is unimodality, whi
h 
hara
terize distributions that

have a single \peak."

There are several reasons to fo
us attention on the mono-

toni
ity and unimodality properties in the 
ontext of distri-

butions. Many 
ommonly studied distributions are either

monotone or unimodal, or 
an be des
ribed as a 
ombina-

tion of a small number of monotone distributions; familiar

examples in
lude Gaussian, Cau
hy, exponential, and Zipf

distributions. Moreover, tails of distributions o

urring in

natural phenomena are often monotone. The importan
e

of su
h distributions motivates the problem of testing if a

distribution is monotone/unimodal (S
enario (1)).



The monotoni
ity property of distributions has been ex-

ploited in statisti
s, for example, in order to qui
kly gen-

erate random variables [5℄. In [1℄, it has been shown that

estimating the entropy of a distribution 
an be performed

using exponentially fewer samples when the distribution is

known to be monotone. This leads us to further investigate

when one 
an exploit monotoni
ity/unimodality in getting

more eÆ
ient algorithms for testing properties of distribu-

tions (S
enario (2)).

1.1 Summary of our results
We �rst fo
us on understanding the 
omplexity of testing

whether a distribution is monotone. Our main result is to

show that the 
omplexity of monotoni
ity testing for a distri-

bution on [n℄ is essentially the same (up to polylogarithmi


fa
tors) as that of testing uniformity, whi
h is known to be

~

�(

p

n). We build on this basi
 algorithm to obtain a sublin-

ear monotoni
ity testing algorithm for higher dimensions|

for instan
e, the monotoni
ity testing algorithm for a distri-

bution on [n℄�[n℄ runs in time

~

O(n

3=2

). In this 
ase, we show

a lower bound of 
(n). We next show that (as is the 
ase

with estimating the entropy) when distributions are known

to be monotone, the tasks of testing if two distributions are


lose, or whether a joint distribution is independent, are

(near-exponentially) easier than the general 
ase.

Monotoni
ity testing. We begin by investigating algorithms

that test if a distribution is monotone. It is tempting to


onstru
t an algorithm for testing monotoni
ity based on

sampling: say, partition the domain into equal or unequal

intervals, estimate the weight of the distribution in these in-

tervals by sampling, and verify that the average weights are

monotone. However, this naive approa
h fails. For instan
e,


onsider the distribution that is uniform on the even labeled

domain points and zero on the odd labeled domain points.

This distribution is far from any monotone distribution, but

a test based purely on testing the monotoni
ity of weights

of various partitions of the domain will be fooled.

The above example points to an intriguing relationship

between the problems of testing monotoni
ity and testing


loseness to uniformity in distributions. On one hand, the

problem of testing monotoni
ity seems to be as hard as uni-

formity testing. We present a redu
tion showing that this

is indeed the 
ase, and thus monotoni
ity testing requires


(

p

n) samples. On the other hand, 
ould testing mono-

toni
ity be a mu
h harder problem? One of our 
ontribu-

tions is to show that, at least in the one-dimensional 
ase,

it 
annot.

In the one-dimensional 
ase, we redu
e the problem of

testing monotoni
ity to the problem of testing uniformity

by showing how to re
ursively break up the domain of the

distribution into a small number of balan
ed intervals (see

Se
tion 3), i.e., intervals for whi
h the 
ollision probability

of the distribution is 
lose to that of the uniform distribu-

tion. Sin
e distributions that have low 
ollision probability

are known to be statisti
ally 
lose to uniform, as long as the

average probability in ea
h of the above intervals is mono-

tone, the whole distribution must be 
lose to monotone. Our

te
hniques impli
itly show that any monotone distribution


an be approximated by a de
omposition into a small (poly-

logarithmi
 in the size of the support) number of balan
ed

intervals. We also show that this 
hara
terization is robust:

it is not possible to de
ompose a distribution that is far from

monotone into a small number of su
h balan
ed intervals.

The biggest diÆ
ulty to over
ome in showing this 
hara
-

terization is that a monotone distribution may be 
lose to

uniform on an interval, but still may not have a small enough


ollision probability, 
ausing the algorithm to further subdi-

vide the interval. A 
ru
ial fa
t that is used to upper bound

the number of balan
ed intervals required to a

urately rep-

resent monotone distributions is that the intervals 
an be

linearly ordered su
h that the average weights of many 
on-

se
utive intervals are substantially de
reasing. We believe

that this 
hara
terization of monotone distributions is inter-

esting in its own right and might have other appli
ations.

1

Extending this approa
h to higher dimensions is tri
ky.

The main reason is that the natural extension of intervals

is to re
tangles, whi
h 
annot be totally ordered a

ording

to the weights, but only partially ordered. Thus our 
ru
ial

fa
t from the one-dimensional 
ase does not give us a very

strong bound on the number of re
tangles in the de
omposi-

tion. For those re
tangles whose 
ollision probability is not

small enough to guarantee that their 
onditional distribu-

tion is 
lose to uniform, we generalize the one-dimensional

arguments in two new ways. First, we modify the re
ur-

sive de
omposition in su
h a way that re
tangles that are

\too far" from the origin are ignored. To argue that the

error made by this trun
ation step is bounded, we look at

a path de
omposition of an appropriate partial order and

upper bound both the maximum 
hain length and the total

error 
ontributed by any anti-
hain. Se
ond, rather than re-


ursing, we perform a spe
ialized test on balan
ed re
tangles

where the weight of the left half of the re
tangle is almost

the same as the right half. For su
h re
tangles, we show

that if the given distribution is monotone, then it is 
lose to

uniform on a large fra
tion of 
olumns in a balan
ed re
t-

angle. Thus, we would like to test monotoni
ity of these

re
tangles by testing uniformity of the 
olumns. Unfortu-

nately, existing uniformity tests may not pass distributions

that are only guaranteed to be 
lose to uniform. We over-


ome this barrier by showing how to use the one-dimensional

monotoni
ity testing algorithm in order to give a spe
ialized

uniformity test. Finally, sin
e the marginal distribution on

the rows of the balan
ed re
tangle is monotone, we invoke

the 
hara
terization from the one-dimensional 
ase to argue

that the rows 
an be partitioned into intervals that are 
lose

to uniform. This indu
es a partitioning of the balan
ed re
t-

angle into strips of 
olumns where ea
h strip is 
lose to uni-

form. As in the one-dimensional 
ase, we prove that if su
h

a de
omposition is possible, then it 
an be pat
hed together

into a monotone distribution. This approa
h yields a mono-

toni
ity testing algorithm that runs in

~

O(n

3=2

) time. These

ideas 
an be extended to higher dimensions with a sublin-

ear running time of

~

O(n

d�1=2

); a lower bound of 
(n

d=2

) is

shown.

Monotone 
loseness and independen
e. We next 
onsider

the problem of testing whether two monotone distributions

are 
lose in L

1

-norm|that is, to distinguish pairs of distri-

1

We note that there is also an algorithm for partitioning

a monotone distribution into intervals su
h that the 
ondi-

tional distribution is 
lose to uniform in ea
h interval [1℄.

However, the analysis of this algorithm makes strong use of

the fa
t that the distribution is already known to be mono-

tone. Thus, the algorithm that performs the partitioning


an use simpler properties by whi
h to make its de
isions,

and the analysis of the size of the partition is stronger, as

well as signi�
antly simpler.



butions that are identi
al from pairs of distributions that are

far in L

1

-norm. For this problem, we 
onstru
t a test that

uses only poly(log n) samples (Se
tion 6.1). We also 
onsider

the problem of testing whether d random variables with a

monotone joint distribution are 
lose to independent|that

is, to distinguish the 
ase in whi
h the distributions are inde-

pendent from the 
ase in whi
h they are far in L

1

-norm from

any independent distribution. On
e again, we 
onstru
t a

test that uses only poly(d log n) samples (Se
tion 6.2). Here

we make use of the work of [1℄, whi
h allows us to de
om-

pose a known monotone distribution into a small number of

uniform distributions.

Our monotone 
loseness testing algorithm should be 
on-

trasted against the 
(n

2=3

) lower bound for testing 
loseness

for arbitrary distributions [3℄. Similarly, our monotone inde-

penden
e testing algorithm should be viewed in light of an


(n) lower bound for testing independen
e for arbitrary dis-

tributions [2℄. Thus, the 
omplexity of testing these proper-

ties of monotone distributions is near-exponentially smaller

than that of testing the same properties of arbitrary distri-

butions.

Unimodal distributions and other models. By suitably adapt-

ing the algorithms in the monotone 
ase, we obtain algo-

rithms for testing if a given distribution is unimodal and

if two unimodal distributions are 
lose in L

1

-norm (Se
tion

7). The sample 
omplexities and the running times of these

algorithms are almost the same as in the monotone 
ase.

For 
omparison, we also 
onsider the problem of testing

monotoni
ity in the evaluation ora
le model when an ora-


le a

ess to the 
umulative distribution is available to the

algorithm. We obtain an O(log

2

n) algorithm (Se
tion 8).

1.2 Related work
When no assumptions are made on the distributions, stan-

dard statisti
al tests, su
h as the �

2

-test and the straight-

forward use of Cherno� bounds in order to estimate various

properties of the distribution, seem to require a number of

samples that is superlinear in the domain size for the above

tasks. However, there have been several re
ent works that

a
hieve sublinear 
omplexity for testing various properties

of arbitrary distributions in the L

1

-norm. From the work

of [9℄, it 
an be seen that there is an

~

O(

p

n)-time algorithm

to test if a given distribution is 
lose to the uniform distribu-

tion; it is also known that this is almost optimal. This result

was subsequently generalized in [2℄, where an algorithm us-

ing

~

O(

p

n) samples was presented to test if a distribution is


lose to another, where the latter's probability distribution

fun
tion is available as an advi
e to the algorithm.

In [3℄, it is shown that

~

O(n

2=3

) time is suÆ
ient for dis-

tinguishing pairs of distributions that are 
lose in L

1

-norm

from pairs of distributions that are far (this is also shown to

be tight up to polylogarithmi
 fa
tors); in 
ontrast, it is also

shown that one 
an approximate the distan
e in L

2

-norm in

time independent of n. In [2℄, it is shown that for a joint

distribution of two variables over [n℄ � [m℄ (without loss of

generality, assuming n � m),

~

O(n

2=3

m

1=3

) time is suÆ
ient

for distinguishing the 
ase when the two variables are inde-

pendent from the 
ase in whi
h the joint distribution is far

from any independent distribution (this is again shown to

be tight up to polylogarithmi
 fa
tors).

Finally, in [1℄, the number of samples needed to approxi-

mate the entropy is studied and for distributions with suÆ-


iently high entropy, one 
an get a 
-multipli
ative approxi-

mation of the entropy with

~

O(n

1=


2

) samples. In that paper,

an 
(n

1=2


2

) lower bound on the sample size was shown for

approximating the entropy. However, it is also shown that

for monotone distributions, only polylogarithmi
ally many

samples are needed in order to approximate the entropy. In

fa
t, as we have already mentioned, we build on their ideas

in our algorithms for testing 
loseness and independen
e of

distributions that are known to be monotone.

Monotoni
ity, as a property on posets, has been exten-

sively studied in the 
ontext of property testing [7, 4, 10, 6,

8℄. In this setting, the model is the evaluation ora
le model

where the value of fun
tion at any point in the domain 
an

be queried. In 
ontrast, our result 
an be viewed as testing

monotoni
ity property in the generation ora
le model.

2. PRELIMINARIES
We 
onsider dis
rete probability distributions over [n℄.

Let p = hp

1

; : : : ; p

n

i be su
h a distribution where p

i

�

0;

P

n

i=1

p

i

= 1. We assume that all distributions are given

via generation ora
les: for distribution p over [n℄, ea
h in-

vo
ation of the ora
le supplies us with an element in [n℄

distributed a

ording to p and 
hosen independently of all

previous ora
le invo
ations. The parameters of interest are

the number of samples and running time required by the

algorithm. For simpli
ity, we will assume that n is a power

of 2; this is without loss of generality.

We use jp� qj to denote the L

1

-distan
e

2

and kp� qk to

denote the L

2

-distan
e between two distributions. We 
all a

distribution p to be �-
lose in L

1

-norm to a distribution q if

jp� qj � �. In parti
ular, p is �-
lose in L

1

-norm to uniform

if jp� U

n

j � � where U

n

is the uniform distribution on [n℄.

The following fa
t upper bounds the 
ollision probability

when the maximum and minimum probability values are

not too far away from ea
h other [3, 2℄.

Lemma 1 ([3, 2℄). Let p be a distribution on [n℄. If

max

i

p

i

� (1+ �) �min

i

p

i

, then kpk

2

� (1+ �

2

)=n. If kpk

2

�

(1 + �

2

)=n, then jp� U

n

j � �.

We now formally de�ne monotone and unimodal distribu-

tions. Unless otherwise spe
i�ed, for this paper, monotone

means monotone de
reasing.

Definition 2 (Monotone distributions). A distri-

bution p on [n℄ is said to be monotone if p

1

� � � � � p

n

.

A distribution p on [n℄ is said to be �-monotone in L

1

-

norm if there is a monotone distribution q on [n℄ su
h that

jp� qj � �.

The notions of monotoni
ity and �-monotoni
ity naturally

extend to higher dimensions, when a partial order is imposed

on the domain. For instan
e, in two dimensions, distribution

p on [n℄� [n℄ is monotone if p

i;j

� p

i

0

;j

0

whenever i � i

0

and

j � j

0

.

Definition 3 (Unimodal distributions). A distribu-

tion p on [n℄ is said to be unimodal if there exists an i 2 [n℄

su
h that p

1

� � � � � p

i

� p

i+1

� � � � � p

n

. A distribution

p on [n℄ is said to be �-unimodal in L

1

-norm if there is a

unimodal distribution q on [n℄ su
h that jp� qj � �.

2

The 
ommonly used total variation distan
e between dis-

tributions is de�ned to be half of the L

1

-distan
e between

distributions.



Notation. For i; j 2 Z where i � j, we (ab)use the interval

notation [i; j℄ to refer to the set fk 2 Z j i � k � jg. For

a sample set S and i 2 [n℄, o

(i; S) denotes the number of

times i o

urs in S; for I � [n℄, o

(I; S)

def

=

P

i2I

o

(i; S).

We also use S

I

to denote the samples in S from the interval

I. Given a fun
tion f de�ned over domain D, for D

0

� D,

we use f(D

0

) to denote

P

x2D

0

f(x). In parti
ular, given

a distribution p on [n℄ and an interval I in [1; n℄, p(I) will

denote

P

i2I

p

i

. For an interval I = [i; i + 2k � 1℄, we use

I

`

= [i; i + k � 1℄ and I

r

= [i + k; i + 2k � 1℄ to denote

its bise
tion. For a re
tangle K = I � J � [n℄ � [n℄ and

b; b

0

2 f`; rg, we use K

b;b

0

to denote the quadrant I

b

� J

b

0

.

3. BALANCED INTERVALS
A re
urring te
hnique in our algorithms in this paper is

to redu
e the 
omplexity of the problem by partitioning the

domain into subdomains where the 
onditional distribution

is almost uniform. Weaker variants of this te
hnique are

impli
it in some of the earlier work mentioned above.

Consider a monotone distribution p on [n℄ and an interval

in [n℄. Intuitively, if the weight of p in the �rst half of an

interval is nearly the same as its weight in the se
ond half,

then the 
onditional distribution of p over the interval must

be 
lose to uniform. The following lemma formalizes this

intuition quantitatively.

Lemma 4. Let I � [n℄ be an interval of length 2k and let

p be a monotone distribution on [n℄. If p(I

`

) � (1+�)�p(I

r

),

then

P

i2I

�

�

�

p

i

�

p(I)

2k

�

�

�

� �p(I):

Proof. We de�ne w

def

= p(I) and Æ

i

def

=

�

�

p

i

�

w

2k

�

�

. Let

j be the largest index in I su
h that p

j

� w=2k. First


onsider the 
ase when j � k. Let A

1

def

=

P

i2I;i�j

Æ

i

; A

2

def

=

P

i2I;j<i�k

Æ

i

; A

3

def

=

P

i2I;k<i�2k

Æ

i

. We want to show that

A

1

+ A

2

+ A

3

� �w. Note that A

1

= A

2

+ A

3

. By the

assumption, we have

A

1

�A

2

+ w=2

�A

3

+ w=2

=

p(I

`

)

p(I

r

)

� 1 + �:

By substituting A

2

+A

3

for A

1

, we get A

3

� (�w)=(4 + 2�).

By Æ

j+1

� Æ

j+2

� � � � � Æ

2k

, A

2

� A

3

. Therefore, we have

A

1

+A

2

+A

3

� �w. The 
ase j > k is similar.

A weaker, but analogous result 
an be obtained for a mono-

tone distribution on [n℄

d

.

Lemma 5. Let I

1

; : : : ; I

d

� [n℄ be intervals. Let p be a

monotone distribution on I

1

� � � � � I

d

. If p(I

`

1

� � � � � I

`

d

) �

(1 + �)p(I

r

1

� � � � � I

r

d

) and w = p(I

1

� � � � � I

d

), then

X

j2I

1

�����I

d

�

�

�

�

�

p

j

�

w

Q

i2[d℄

jI

i

j

�

�

�

�

�

� 2�w:

Proof. Let R =

Q

i2[d℄

jI

i

j, namely, the size of the d-

dimensional re
tangle. Without loss of generality, assume

that for all j 2 I

`

1

� � � � � I

`

d

, p

j

� w=R. The argument is

analogous when for all j 2 I

r

1

�� � ��I

r

d

, p

j

� w=R. (Note that

if there exists a j 2 I

`

1

� � � � � I

`

d

su
h that p

j

< w=R, then

monotoni
ity implies that p

j

0

� w=R for all j

0

2 I

r

1

�� � ��I

r

d

.)

For ea
h b 2 f`; rg

d

, let A

b

def

= fj 2 I

b

1

1

� � � � � I

b

d

d

j p

j

�

w=Rg, and let W

b

def

=

P

j2A

b

(p

j

�w=R). Finally, let t be the

d-dimensional all-`'s ve
tor, i.e., t

def

= h`; `; : : : ; `i. Note that

for any b 2 f`; rg

d

, W

b

�W

t

by the monotoni
ity of f .

Sin
e p(I

`

1

�� � ��I

`

d

) =W

t

+(w=2

d

) and p(I

r

1

�� � ��I

r

d

) �

w=2

d

, by the assumption in the lemma statement, we know

that

W

t

+ (w=2

d

)

(w=2

d

)

� (1 + �):

Hen
e, W

t

� (�w)=2

d

. So, we 
an 
on
lude

X

j2I

1

�����I

d

�

�

�

p

j

�

w

R

�

�

�

= 2

X

b2f`;rg

d

W

b

� 2

d+1

�W

t

� 2�w:

4. MONOTONICITY IN ONE DIMENSION
We 
onsider the problem of distinguishing monotone de-


reasing distributions from those that are not �-monotone

in L

1

-norm. We give an

~

O(

p

n) algorithm that redu
es the

problem of testing if a distribution is 
lose to monotone to

the problem of testing if several distributions are 
lose to

uniform. Our redu
tion 
an be viewed as a stru
tural de-


omposition of a monotone distribution into several uniform

distributions. This redu
tion is robust in the sense that the

resulting testing algorithm will pass monotone distributions

and fail distributions that are not �-monotone. We then

essentially mat
h this upper bound by showing that any

algorithm for this problem requires 
(

p

n) samples, by re-

du
ing the problem of testing whether a distribution is 
lose

to uniform to monotoni
ity testing.

Our algorithm partitions the domain [n℄ into a small (i.e.,

poly(log n)) number of intervals, ea
h of whi
h has its weight

distributed roughly evenly over the elements in the interval.

The 
onditional distribution on su
h an interval is 
lose to

the uniform distribution su
h that ea
h element in the in-

terval has probability 
lose to the average probability.

On
e the desired partition is obtained, our algorithm then

determines whether the uniform distributions in ea
h of the

intervals 
an be \pat
hed" together to form a monotone dis-

tribution over the whole domain that is 
lose to the original

distribution. Sin
e there are very few intervals, this latter

task 
an be performed eÆ
iently via linear programming.

Flat distributions. We de�ne 
at distributions, whi
h are

reminis
ent of histograms.

Definition 6 (Flat distribution). Let ` be an inte-

ger and let I

`

= hI

1

; : : : ; I

`

i be a partition of [n℄. A dis-

tribution q on [n℄ is 
alled an `-
at distribution if it 
an

be des
ribed by the pair (w; I

`

); with w = hw

1

; : : : ; w

`

i and

q

i

= w

j

= jI

j

j for i 2 I

j

.

Flat distributions are interesting to us for the following two

reasons. Firstly, 
atness is a robust property with respe
t to

monotoni
ity, that is, a 
at distribution is �-
lose to mono-

tone if and only if it is �-
lose to a monotone 
at distribution.

Lemma 7. An `-
at distribution p des
ribed by (w; I

`

) is

�-monotone if and only if p is �-
lose to a monotone 
at

distribution.

Proof. It is 
lear that if p is �-
lose to a monotone 
at

distribution, then p is �-monotone. For the 
onverse, let



q be a monotone distribution su
h that jp� qj � �. Let

w = hw

1

; : : : ; w

`

i su
h that p

i

= w

j

=jI

j

j if i 2 I

j

. De�ne the

monotone `-
at distribution q

0

that is des
ribed by the pair

(w

0

; I

`

) where w

0

= hw

0

1

; : : : ; w

0

`

i and w

0

j

= q(I

j

); j 2 [`℄. We

now show that q

0

is �-
lose to p. By the 
atness property

and triangle inequality,

�

�

p� q

0

�

�

=

X

j2[`℄

�

�

w

j

�w

0

j

�

�

=

X

j2[`℄

jw

j

� q(I

j

)j

=

X

j2[`℄

�

�

�

�

�

�

X

i2I

j

w

j

jI

j

j

� q

i

�

�

�

�

�

�

�

X

j2[`℄

X

i2I

j

�

�

�

�

w

j

jI

j

j

� q

i

�

�

�

�

=

X

i2[n℄

jp

i

� q

i

j = jp� qj � �:

Se
ondly, �-monotoni
ity of `-
at distributions 
an be tested

in time polynomial in `.

Lemma 8. There is an algorithm that outputs PASS if an

`-
at distribution des
ribed by (w; I

`

) is �-
lose to a mono-

tone 
at distribution, and outputs FAIL otherwise. The run-

ning time of this algorithm is poly(`).

Proof. For j 2 [`℄, let k

j

= jI

j

j and let w = hw

1

; : : : ; w

`

i.

First, 
onsider the following mathemati
al program with

variables y

i

for i 2 [l℄:

min

P

j2[`℄

jy

j

k

j

� w

j

j s. t.

P

j2[`℄

y

j

k

j

= 1; y

j

� y

j+1

for all j 2 [`� 1℄;

y

`

� 0:

The program above minimizes the distan
e between the given

distribution and a monotone `-
at distribution. We now

transform this into a linear program by introdu
ing a new

variable z

j

to 
orrespond to jy

j

k

j

� w

j

j and by adding the


onstraints z

j

� y

j

k

j

� w

j

and �z

j

� y

j

k

j

� w

j

, for all

j 2 [`℄. It is easy to see that this transformation preserves

the value of the obje
tive fun
tion. The lemma follows by

solving this LP in time poly(`), for example, using [11℄.

The algorithm. The 
ollision 
ount of S

I

, the samples in

an interval I, is de�ned to be 
oll(S

I

)

def

=

P

i2I

�

o

(i;S

I

)

2

�

.

The following lemma relates the 
ollision 
ount to the L

2

-

norm [3, 2℄:

Lemma 9 ([3, 2℄). Let I be an interval and q be the


onditional distribution of p on I. Then,

�

kqk

2

�

�

2

32jIj

�

�


oll(S

I

)

�

jS

I

j

2

�

�

�

kqk

2

+

�

2

32jIj

�

;

with probability at least 1�O(log

�3

n), provided that jS

I

j =


(�

�4

p

jIj log log n).

Our algorithm will use 
ollisions in the sample to deter-

mine a partition I

`

of [1; n℄. Sin
e a low 
ount of 
ollisions

in the sample suggests a nearly uniform distribution of the

weight, the use of this statisti
 will result in a partition

with 
lose-to-uniform 
onditional distributions on ea
h in-

terval. After obtaining a partition [1; n℄, the algorithm will


he
k if these 
lose-to-uniform 
onditional distributions 
an

be pat
hed together into a monotone 
at distribution.

Now we des
ribe our algorithm. The inputs are a genera-

tion ora
le for p and an error parameter �.

Algorithm TestMonotoni
ity

1. Obtain m

def

= O(�

�4

p

n log n) samples S from p.

Start with the interval I = [1; n℄, and bise
t I in half

re
ursively as long as


oll(S

I

) �

(1 + �

2

=32)

jIj

 

jS

I

j

2

!

and jS

I

j �

m

log

3

n

:

Abort the algorithm, and output FAIL if it performed

more than O(�

�1

log

2

n) splits.

2. Let I

`

= hI

1

; : : : ; I

`

i denote the partition of [1; n℄ into

intervals indu
ed by the leaves of the re
ursion from

the previous step.

3. Obtain an additional sample T of size O(�

�2

log

4

n).

4. Let hist(T; I

`

) denote the `-
at distribution des
ribed

by (w; I

`

) where w

j

= o

(I

j

; T )= jT j.

5. Output PASS if hist(T; I

`

) is �=2-
lose to a monotone

distribution (by using the algorithm from Lemma 8),

otherwise output FAIL.

Thus, we obtain the following theorem.

Theorem 10. Given a

ess to a generation ora
le for p

over [n℄, the algorithm TestMonotoni
ity outputs PASS

when p is monotone and outputs FAIL when p is not �-

monotone, with probability at least 2=3. The algorithm uses

O(�

�4

p

n log n) samples and runs in time O(�

�4

p

n log

3

n).

Proof. We �rst argue that hist(T; I

`

) is a good ap-

proximation to p, assuming Step (1) su

eeds, i.e., when

` = O(�

�1

log

2

n). Consider the partition I

`

obtained from

Step (1). Call an interval I light if o

(I; T ) � m= log

3

n;


all it balan
ed otherwise. By Lemma 9, the L

2

-norm of

the 
onditional distribution on a balan
ed interval I is at

most (1 + �

2

=16)=jIj. Hen
e, by Lemma 1, we 
an 
laim

that

P

i2I

jp

i

� p(I)= jIjj � �p(I)=4. The total weight of

the light intervals is less than �=4 by the virtue of being

light and the upper bound on `. Hen
e, by summing over

all intervals I 2 I

`

, we get jhist(T; I

`

)� pj � �=2.

Suppose p is a monotone distribution. We show that the

algorithm will output PASS with probability at least 2/3.

We �rst show that ` = O(�

�1

log

2

n), i.e., Step (1) will su
-


eed. Using Lemma 9 and the union bound over all in-

tervals, Step (1) will obtain a reliable estimate, as given by

Lemma 9, for the 
ollision probability (i.e., the square of the

L

2

-norm) with probability at least 2=3. Now, �x a level and


onsider the internal nodes in this level of the re
ursive tree


onstru
ted in Step (1). For an interval that 
orresponds

to one of these nodes, the ratio of the maximum probabil-

ity to the minimum probability in the interval is at least

1 + �=8 by Lemma 1 and Lemma 9; by monotoni
ity of p,

these extrema o

ur at the two ends of the interval. Sin
e

for ea
h of these intervals, the maximum probability is at

least n

�2

, there are at most O(log

1+�=8

n) internal nodes

on any level. Therefore, the tree has O(�

�1

log

2

n) internal

nodes. Finally, sin
e the tree is a 
omplete binary tree, I

`


ontains O(�

�1

log

2

n) intervals. Consequently, Step (1) will

su

eed and as we argued in the beginning of this proof,

jhist(T; I

`

)� pj � �=2. Sin
e hist(T; I

`

) is `-
at and is

�=2-
lose to a monotone distribution, by Lemma 7, it is also



�=2-
lose to a monotone `-
at distribution and so Step (5)

will also su

eed and the algorithm will output PASS.

Suppose the algorithm outputs PASS. Then, from Step (5),

there is a monotone (in fa
t, 
at) distribution q su
h that

jhist(T; I

`

)� qj � �=2. Moreover, sin
e Step (1) su

eeded,

` = O(�

�1

log

2

n). Again, as we argued in the beginning of

this proof, this implies that jhist(T; I

`

)� pj � �=2. By

triangle inequality, jp� qj � �.

We also need to ensure that Step (5) 
an be implemented

in polylogarithmi
 time. But, this is possible via Lemma 8

with ` = O(�

�1

log

2

n). Hen
e, the running time of the

algorithm is dominated by the previous steps.

Lower bound. Next, we show that our upper bound is es-

sentially optimal.

Theorem 11. Let A be an algorithm that, given gener-

ation ora
le a

ess to an arbitrary distribution p over [n℄,

has the following behavior: if p is monotone, then A out-

puts PASS and if p is not �-monotone in L

1

-norm, then A

outputs FAIL. Furthermore the error probability of A is at

most 1/3. Then A requires 
(

p

n) samples.

Proof. We redu
e the problem of testing if a given dis-

tribution is 
lose to uniform to testing if the distribution is


lose to monotone. Given a generation ora
le, distinguishing

uniform distributions from distributions that are not even �-


lose to uniform in L

1

-norm is known to require 
(

p

n) sam-

ples [2℄. The desired lower bound for testing monotoni
ity

will follow.

For simpli
ity, we assume p is a distribution on [2n℄. Sup-

pose there is an algorithm A to test if a given distribu-

tion is �-monotone for � < 1=16. We use this algorithm

as a bla
k-box to 
onstru
t a new algorithm B that tests

if a given distribution is (�

0

+ �)-
lose to uniform, where

�

0

= 4�=(1=2 � �) < 1. De�ne a new generation ora
le p

R

that on invo
ation, invokes p and outputs i if p outputs

2n� i. The algorithm B uses both p and p

R

in the following

manner: it runs A on both p and p

R

and outputs PASS if

and only if A outputs PASS on both p and p

R

.

Clearly, if p is uniform on [2n℄, both p and p

R

are mono-

tone and A outputs PASS on both o

asions. Conversely,

suppose A outputs PASS for both p and p

R

; then p and

p

R

must be �-monotone. In this 
ase, we show that p is

(�

0

+ �)-
lose to uniform. Let f be a monotone distribution

on [2n℄ su
h that jp� fj � � and g

R

be a monotone distribu-

tion on [2n℄ su
h that

�

�

p

R

� g

R

�

�

� �. By our 
onstru
tion

of p

R

, the fun
tion g de�ned by g

i

= g

R

2n�i

is monotone

non-de
reasing and jp� gj =

�

�

p

R

� g

R

�

�

� �. We 
on
lude

the proof by showing that f is �

0

-
lose to uniform, whi
h by

the triangle inequality will show that p is (�

0

+ �)-
lose to

uniform.

Let F = f([1; n℄) =

P

n

i=i

f

i

, F

0

= 1�F = f([n+1; 2n℄) =

P

2n

i=n+1

f

i

, and G = g([1; n℄) =

P

n

i=1

g

i

. Sin
e f is mono-

tone non-in
reasing and g is monotone non-de
reasing, we

have G � 1=2 � F . On the other hand, by the triangle

inequality, jf � gj � jf � pj+ jp� gj � 2� and in parti
ular,

jF �Gj � 2�. Combining all of these, 1=2 � F � G + 2� �

1=2 + 2� and 
onsequently, F

0

� 1=2� 2� . We have

0 � F � F

0

= 2F � 1 � 2

�

1

2

+ 2�

�

� 1

= 4� �

4�

1=2� 2�

F

0

= �

0

F

0

:

Also, sin
e f is a distribution,

P

2n

i=1

f

i

= 1. By appealing to

Lemma 4, we see that

P

2n

i=1

jf

i

� 1=(2n)j � �

0

, that is, f is

�

0

-
lose to uniform.

5. MONOTONICITY IN HIGHER DIMEN­

SIONS
In this se
tion we present an

~

O(n

3=2

) algorithm for testing

monotoni
ity in two dimensions. These ideas 
an be used

to give

~

O(n

d�1=2

)-time algorithms for testing monotoni
ity

in d dimensions. We also show a lower bound of 
(n

d=2

) for

testing monotoni
ity in d dimensions.

As we indi
ated in the Introdu
tion, testing monotoni
-

ity in higher dimensions is tri
kier than the one-dimensional


ase be
ause of the partial ordering on the domain. Simi-

lar to the one-dimensional 
ase, we would like to re
ursively

subdivide the domain until we 
an test for 
loseness to uni-

formity of ea
h subdivision. In order to upper bound the

running time and the error probability of the algorithm, we

would need a bound on the number of subdivisions, as in the

one-dimensional 
ase. However, the partial ordering on the

domain hinders the argument that bounds the number of

subdivisions. To handle this problem, we make the follow-

ing observations: (i) the quadrants that are \too far" from

the origin 
an be dis
arded sin
e they 
annot 
ontribute sig-

ni�
ant mass to a monotone distribution; (ii) if 
onse
utive

quadrants have similar weights, they 
an be further de
om-

posed into almost-uniform partitions in one step.

Let the domain of the distribution be [n℄ � [n℄. We will

think of the algorithm as partitioning the two dimensional

spa
e into four equal quadrants and re
ursing on ea
h of

the quadrants. In other words, the algorithm builds a quad-

tree T with the following semanti
s. The nodes in T will


orrespond to re
tangles inside [n℄� [n℄; the root of T 
orre-

sponds to [n℄� [n℄. For an internal node v that 
orresponds

to a re
tangle K = I � J , the four 
hildren of v, labeled

v

`;`

; v

`;r

; v

r;`

; v

r;r


orrespond to the four quadrants of K.

Clearly, the depth of this tree is at most log n.

For a given level of the tree, the row (resp. 
olumn) dis-

tan
e of a quadrant is the number of quadrants to the left

(resp. bottom) of it to the origin. For a given level, the

distan
e of a quadrant from the origin is the maximum of

its row and 
olumn distan
es. We will derive a tree from

T where ea
h quadrant 
orresponds to a leaf in T 
an be

further split, though not ne
essarily as quadrants. The size

of this new tree will be essentially that of T and so we will

deal with T for the rest of the dis
ussion.

Let a be a suitably large 
onstant and let b and 
 be


onstants su
h that b > 2
 + 1 and 
 > a + 2. Let Æ =

O(�= log

a

n). Let S be a sample of size O(n

3=2

�poly(log n; �

�1

))

andW be a global variable in the algorithm that keeps tra
k

of the number of samples ignored. We now des
ribe how the

algorithm re
ursively 
onstru
ts the tree starting at the 
ur-

rent node v, whi
h 
orresponds to a re
tangle K = I�J . If

a node is de
lared as a leaf, then we do not re
urse on the

node further.

Algorithm TestMonotoni
ity2D

1. If o

(K;S)=jSj � 1= log

b

n, then v is a leaf.

2. If 
oll(S

K

) � (1 + �

2

=32)

�

jS

K

j

2

�

=jKj, then v is a leaf.

3. If the quadrant K is more than log




n away from the

origin, then v is a leaf. UpdateW  W + jo

(K;S)j.



4. IfK is not already designated as a leaf, then do the fol-

lowing two steps for ea
h of the following ordered pairs:

hK

`;`

; K

`;r

i, hK

`;`

; K

r;`

i, hK

r;`

; K

r;r

i, hK

`;r

; K

r;r

i. We

will illustrate the steps for hK

`;`

; K

`;r

i.

(4a) If (1+�)o

(K

`;`

; S) < o

(K

`;r

; S), then output

FAIL.

(4b) If o

(K

`;`

; S) � (1 + Æ)o

(K

`;r

; S) then sele
t

1=Æ many i's where probability of i is propor-

tional to p(fig � J

r

). For ea
h i, output FAIL

if the distribution along the i-th 
olumn fig � J

is not (�=32)-
lose to monotone or p(fig � J

`

) >

(1 + �=32)p(fig � J

r

). Partition I

`

� J into 
on-

tiguous 
olumns applying Step (1) in algorithm

TestMonotoni
ity on domain I

`

and mark ea
h

set of 
olumns as a leaf.

5. Re
urse on the 
hildren that were not leaves in the

previous step.

6. Output FAIL if W > �jSj=8.

7. Output FAIL if the partition of the domain indu
ed by

the leaves of the re
ursion is not �=2-
lose to a mono-

tone distribution (This 
ondition 
an be 
he
ked by a

linear program formulation as in the one-dimensional

algorithm), otherwise output PASS.

Running time. Note that the total number of nodes in

this tree is O(log

2
+1

n), whi
h follows from the fa
t that

at any �xed level of the tree, there are at most log

2


n inter-

nal nodes (from Step (3)). Thus, the sample 
omplexity is

dominated by the one-dimensional monotoni
ity testing in

Step (4b) for poly(log n) 
olumns ea
h with weight at least

O(1=(n log

b

n)). This entails

~

O(n

3=2

=�

4

) samples.

Also, it is easy to see that an LP-based algorithm 
an be

designed to 
he
k if a given two-dimensional 
at distribution

is �=2-
lose to a two-dimensional monotone 
at distribution

in Step (7). Sin
e the number of nodes in T is log

2
+1

n, the

running time of this step will be overwhelmed by the other

steps.

Proof overview. First note that the algorithm determines

the re
tangles not to be divided any further in Steps (1){

(4): su
h re
tangles either have small weight (Step (1)), have

almost uniform 
onditional distribution (Step (2)), are far

from the origin (Step (3)), or 
an be further de
omposed

into almost-uniform partitions in one step (Step (4)). We

show (Lemma 14) that the leaves designated by Step (3)

have a negligible fra
tion of the total weight in a monotone

distribution. We show that all these steps together ensure a

small tree size and that the total weight of the leaves ignored

by Steps (1) and (3) is negligible. Note that one 
annot use

the weight threshold from Step (1) both to upper bound the

number of leaves and to simultaneously show that their total

weight is negligible.

When a re
tangle K is divided, we would like to main-

tain that the weights of the 
onse
utive quadrants in K are

separated by a multipli
ative fa
tor, of at least 1 + Æ, in

order to ensure a tree of polylogarithmi
 size at the end.

Hen
e, when the weights of two 
onse
utive quadrants, say,

hK

`;`

; K

`;r

i in K are within (1+Æ), these two quadrants are

not re
ursively divided any further. In a monotone distribu-

tion we would expe
t that the individual 
olumns in these

two quadrants are roughly uniform. Step (4b) ensures su
h

quadrants 
an be partitioned into O(log

2

n) subdivisions,

ea
h of whi
h is 
lose to uniform, using Lemma 13.

At the end of Step (7), we 
an derive a two-dimensional


at distribution, de�ned similar to the one-dimensional 
ase,

that is 
lose to p. The leaves that are determined by Step (2)


orrespond to 
at quadrants with the total mass indu
ed

by the sample. The 
onditional distribution is �=4-
lose to

uniform for these re
tangles. For the leaves that are deter-

mined by Step (4b), we split the re
tangles one more level

into groups of 
ontiguous 
olumns (or rows, depending on

the orientation of the re
tangle) to obtain (�=4)-uniform par-

titions. The total weight of all the other leaves is negligible.

First, we show that for a monotone distribution, we 
an

assume that Step (4b) will not FAIL. We show that for a

monotone distribution, if the two halves have roughly the

same weight, then the 
onditional distributions on 
olumns

are 
lose to uniform.

Lemma 12. Let �; � < 1=8. Let distribution p over inter-

val I be �-monotone. Furthermore, let p(I

`

) � (1+�)p(I

r

).

Then, p is (4�+ 2�)-
lose to uniform.

Proof. Let f be a monotone distribution su
h that jp� fj �

�. Sin
e p(I

`

) � p(I

r

) � 2�=3 and jp� fj � �, f(I

`

) �

f(I

r

) + �+ 2�=3. Thus, we get

f(I

`

)

f(I

r

)

� 1 +

�+ 2�=3

f(I

r

)

� 1 +

�+ 2�=3

1���2�=3

2

� 1 + 3� + 2�:

Hen
e, by Lemma 4, f is (3�+ 2�)-
lose to uniform. So, by

the triangle inequality, p is (4�+ 2�)-
lose to uniform.

The next lemma shows that in monotone distributions, for

those re
tangles 
onsidered by Step (4b), most of the weight

in the re
tangle is distributed on 
olumns with roughly uni-

form 
onditional distribution.

Lemma 13. Let I�J � [n℄� [n℄ and let p be a monotone

distribution su
h that p(I�J

`

) � (1+Æ)p(I�J

r

). Then, for

any � > 0, Pr

i2I

�

p(fig � J

`

) � (1 + �Æ) � p(fig � J

r

)

�

�

1=�; where i is 
hosen with probability p(fig�J

r

)=p(I�J

r

).

Proof. Let W = p(I � J

`

);W

0

= p(I � J

r

). We know

that W

0

� W � (1 + Æ)W

0

. Let w

i

= p(fig � J

`

) and

w

0

i

= p(fig � J

r

). We know that w

0

i

� w

i

for every i 2 I.

Let B be the set of i's su
h that w

i

� (1 + Æ

0

)w

0

i

, for Æ

0

to be 
hosen later. Then, from the de�nition of B and our

assumptions, we have that

X

i2B

(1 + Æ

0

)w

0

i

+

X

i=2B

w

0

i

�

X

i2B

w

i

+

X

i=2B

w

i

=W � (1 + Æ)W

0

:

From this, it follows that

P

i2B

w

0

i

=W

0

� Æ=Æ

0

. Setting

Æ

0

= �Æ, we see that if i is pi
ked proportional to w

0

i

, the

probability that it is in B is at most 1=�.

We now bound the error introdu
ed be
ause of ignoring

nodes that are too far away from the origin in Step (3).

Lemma 14. For a monotone distribution p, the total er-

ror a

rued at any level of T be
ause of Step (3) is at most

O(�

�1

log

a�
+1

n).



Proof. Consider a graph whose nodes are the internal

nodes of the tree at level `. In this graph, there is an edge

between two nodes if the re
tangles K

1

and K

2


orrespond-

ing to these nodes have an ordering relationship between

them (a

ording to the de�nition of monotoni
ity in two di-

mensions) and K

1

is one of the 
losest re
tangles to K

2

on

this level (i.e., either K

1

and K

2

are tou
hing ea
h other

or none of the re
tangles of the same size in between them

survived until this level).

First, we 
laim that the maximum length of a path in this

graph is O(Æ

�1

log n), where re
all that Æ = O(�= log

a

n).

Consider a path of length t. One in every three edges on

this path have to be between two sibling nodes in the tree,

be
ause four nodes on this path of three edges 
an belong to

at most three parents. Note that for ea
h edge between two

siblings along the path, the weight of the quadrants drops

by at least a fa
tor of 1 + Æ. This follows from the fa
t that

these nodes are internal nodes and Step (4b) 
ould not be

applied to them. Hen
e, t is O(Æ

�1

log n) = O(�

�1

log

a+1

n).

Se
ondly, 
onsider any set R of in
omparable nodes, all at

distan
e at least log




n in this graph. Let v be a node in R.

Interpreting v in the partial order, without loss of generality,

let the \x-
oordinate" of v be at least log




n. Let w

1

; : : : ; w

k

be the set of nodes at level ` of a 
omplete quad-tree with

the same y-
oordinate as v and a smaller x-
oordinate than

v, where k � log




n. We know by monotoni
ity that p(w

1

) �

� � � � p(w

k

) � p(v). Thus, p(v) as a fra
tion of

P

k

i=1

p(w

i

)

is at most log

�


n. We 
ount ignoring v as an error and


harge this quantity to w

k

. Now, we look at the 
harges

ea
h node gets. We 
laim that ea
h node 
an get 
harged

at most twi
e in level `|on
e along x-dire
tion and another

along y-dire
tion. This follows sin
e R was 
hosen to be a

set of in
omparable nodes. Thus, as a fra
tion, the total

weight of the nodes in S is at most 2 log

�


n.

Now, the total error 
aused by Step (3) is upper bounded

by the produ
t of the maximum path length and the maxi-

mum weight of in
omparable nodes. By the above two ob-

servations, this is at most O(�

�1

log

a�
+1

n).

Thus, we obtain:

Theorem 15. Given a

ess to samples from a distribu-

tion p over [n℄ � [n℄, the algorithm TestMonotoni
ity2D

outputs PASS when p is monotone and outputs FAIL when

p is not �-monotone, with probability at least 2=3. Moreover,

the algorithm runs in time O(n

3=2

� poly(log n; �

�1

)).

Proof. First of all, by pi
king sample set S large enough,

we 
an guarantee that the error probability for any of the

operations (su
h as 
ounting/
omparing the number of o
-


urren
es, estimating 
ollision probabilities, or performing

one-dimensional monotoni
ity test, et
.) at ea
h node in T

is at most log

�d

n for some 
onstant d > b > 2
 + 1. Sin
e

the number of nodes in T is only log

2
+1

n, this will permit

us to apply a union bound over all nodes in T to guarantee

that no \bad event" happens.

Se
ond, we also assume that the sampling error in esti-

mating various parameters (su
h as number of o

urren
es

of sample in a given quadrant, sele
ting i's in Step (4a),


ounting W , et
.) is �

0

for some �

0

� �.

Note that the total error due to the nodes ignored in

Step (1) is at most the number of nodes in the tree mul-

tiplied by O(1= log

b

n), whi
h is O(log

�b+2
+1

n), and so is

negligible when b > 2
+ 1.

Suppose p is a monotone distribution. We show that the

algorithm will output PASS with high probability. Sin
e

we assumed that the sampling is good enough, Step (4a)

will never output FAIL for a monotone distribution. Com-

ing to Step (4b), by our 
hoi
e of parameters, at least 1 �

1=
(log

a

n) fra
tion (by weight) of i's will be su
h that w

0

i

�

w

i

� (1 + �=64)w

0

i

where w

i

= p(fig � J

`

); w

0

i

= p(fig � J

r

)

by Lemma 13. So, Step (4b) is not likely output FAIL.

By Lemma 14, Step (6) will also not output FAIL. Finally,

we show that the 
at distribution obtained from the par-

tition is �=2-monotone so that Step (7) does not output

FAIL. The error due to Step (3) is the height of the tree

multiplied by O(�

�1

log

a�
+1

n) (from Lemma 14), whi
h is

O(�

�1

log

a�
+2

n), and is negligible when 
 > a + 2. The

balan
ed re
tangles from Step (4b) are divided into parti-

tions ea
h of whi
h is �=4-
lose to uniform. The leaves des-

ignated by Step (2) also 
orrespond to (�=4)-uniform re
t-

angles. Hen
e, we see that the two-dimensional 
at distri-

bution is indeed �=2-
lose to p.

Suppose the algorithm outputs PASS. Sin
e the sampling

in Step (4b) is not likely to FAIL, it follows that the distri-

butions restri
ted to i's are a
tually �=32-
lose to monotone

and have the weights of the two halves within (1 + �=16)

for at least 1 � 1=
(log

a

n) fra
tion (by weight) of the i's.

Hen
e, by Lemma 12, for those i's the distribution is �=4-


lose to uniform. If we repla
e 
olumns for the rest of i's

by uniform distributions, the total error resulting from this

modi�
ation will be at most �=4. The total weight of the

parts of the domain designated as leaves by steps (1) and (3)

is at most O(log

�b+2
+1

n) + jW j=jSj � �=4. Hen
e, the

two-dimensional 
at distribution implied by the tree T is

�=2-
lose to p. Finally, from the last step, there is a two-

dimensional monotone 
at distribution q that is �=2-
lose to

the two-dimensional 
at distribution implied by the tree T

and the solution to the linear program 
onstru
ted using T .

By the triangle inequality, p and q are �-
lose.

Lower bound. By generalizing the lower argument in one-

dimension from Se
tion 4, we show that a lower bound on

the sample 
omplexity of testing monotoni
ity in higher di-

mensions. We redu
e testing uniformity of a distribution to

testing monotoni
ity of a distribution over tuples.

Theorem 16. Let A be an algorithm that, given gener-

ation ora
le a

ess to an arbitrary distribution p over [n℄

d

,

has the following behavior: if p is monotone, then A out-

puts PASS and if p is not �-monotone in L

1

-norm, then A

outputs FAIL. Furthermore the error probability of A is at

most 1/3. Then A requires 
(n

d=2

) samples.

6. CLOSENESS AND INDEPENDENCE
In this se
tion we present eÆ
ient algorithms to test if two

monotone distributions over [n℄ are 
lose in L

1

-norm and if

a monotone joint distribution is 
lose in L

1

-norm to being

independent. Our algorithms run in time O(poly(log n)),

thereby going beyond the lower bounds for these problems

in the general 
ase [3, 2℄ by a near-exponential fa
tor.

The main idea behind the algorithms is the observation

underlying Lemma 4: if a monotone distribution p over [n℄

is balan
ed, i.e., p([n=2℄) and p([n℄n[n=2℄) are 
lose, then the

distribution must be 
lose to uniform. We require an eÆ-


ient pro
edure that, given a monotone distribution, parti-



tions the domain into a small number of intervals that are

balan
ed. The next theorem from [1℄ 
omes to our res
ue.

Theorem 17 ([1℄). Let p be a monotone distribution

on [n℄ given via a generation ora
le. There is a pro
e-

dure Partition(p; �; w) that outputs a (k+1)-partition I =

hI

1

; : : : ; I

k

; Ji of [n℄ su
h that I

j

's are intervals, J � [n℄,

and with probability at least 1 � o(1), the following hold:

(1) k = O(�

�1

log(n) log log n); (2) p(J) = o(wk); (3) for

j 2 [k℄, p(I

j

) > w and p(I

r

j

) � p(I

`

j

) � (1 + �) � p(I

r

j

). The

pro
edure uses O(�

�3

w

�1

log n) samples from p.

Noti
e that we 
ould not have used Theorem 17 for testing

monotoni
ity: Partition requires samples from a monotone

distribution and the guarantee that it gives on the partition

is weaker than the one we need for testing monotoni
ity.

6.1 Closeness of monotone distributions
In this se
tion we present an algorithm to test if two mono-

tone distributions are 
lose. We use the algorithm in The-

orem 17 to obtain a partition I

`+1

= hI

1

; : : : ; I

`

; Ji of [n℄.

We then 
he
k if p and q are 
lose in ea
h of the intervals I

j

and if q(J) is small. Here is a des
ription of the algorithm.

Algorithm TestMonotoneCloseness

1. Let hI

1

; : : : ; I

k

; Ji = Partition(p; �; log

�2

n).

2. Obtain m

def

= O(�

�3

log

3

n) samples S

p

and S

q

from p

and q respe
tively.

3. Output FAIL if o

(I

`

j

; S

q

) > (1 + 2�) � o

(I

r

j

; S

q

) or

if jo

(I

j

; S

p

)� o

(I

j

; S

q

)j � � � o

(I

j

; S

p

) for any

j 2 [k℄, or if o

(J; S

q

) > �

�1

m log log n= log n.

First, we show a simple 
onsequen
e of Lemma 4:

Lemma 18. Let p; q be monotone distributions on [n℄ and

I � [n℄ be an interval su
h that p(I

`

) � (1 + �) � p(I

r

) and

q(I

`

) � (1+�

0

)�q(I

r

): Then,

P

i2I

jp

i

� q

i

j � �p(I)+�

0

q(I)+

jp(I)� q(I)j :

Proof. Let w

1

= p(I) and w

2

= q(I). Then, by the

triangle inequality,

X

i2I

jp

i

� q

i

j =

X

i2I

�

�

�

�

p

i

+

w

1

� w

1

+ w

2

� w

2

jIj

� q

i

�

�

�

�

�

X

i2I

�

�

�

�

p

i

�

w

1

jIj

�

�

�

�

+

X

i2I

�

�

�

�

w

2

jIj

� q

i

�

�

�

�

+

X

i2I

jw

1

� w

2

j

jIj

� �w

1

+ �

0

w

2

+ jw

1

� w

2

j :

We now obtain

Theorem 19. Given generation ora
le a

ess to mono-

tone distributions p and q over [n℄, the algorithm Test-

MonotoneCloseness outputs PASS when p = q and out-

puts FAIL when jp� qj � 9�, with probability at least 2=3.

Moreover, the algorithm runs in time O(�

�3

log

3

n).

Proof. Suppose p = q. By Theorem 17, for ea
h I

j

,

p(I

`

j

) � (1 + �) � p(I

r

j

) with probability 1 � o(1). Moreover,

sin
e q(J) = o(�

�1

log log n= log n), with probability 1�o(1),

S

q

will 
ontain less than �

�1

m log log n= log n samples from

J . Therefore, Step (3) is not likely to output FAIL.

Suppose the algorithm outputs PASS. Then, for ea
h in-

terval I

j

we know that q(I

`

j

) � (1+4�)�q(I

r

j

), and moreover,

jp(I

j

)� q(I

j

)j � 3� � p(I

j

). Now, using Lemma 18, and the

fa
ts that p(J) = o(1) and q(J) = o(1), and summing over

all I

1

; : : : I

k

, we 
an see that jp� qj � 9�.

6.2 Independence of monotone joint distribu­
tions

In this se
tion we 
onsider monotone distributions on [n℄

d

,

and the independen
e of the random variables de�ned by

ea
h 
omponent of the samples from these distributions.

Our goal is to distinguish monotone independent distribu-

tions from monotone distributions that are far from any in-

dependent distribution.

An easy but useful observation is that the marginal dis-

tributions of a monotone joint distribution are also mono-

tone distributions. Based on this observation, we will use

Theorem 17 to partition the domains of the marginal dis-

tribution into intervals. By Lemma 4, we know that the

marginal distributions will be 
lose to uniform on these in-

tervals. Therefore, when the random variables de�ned by

the joint distribution are independent, the 
onditional dis-

tributions on the \re
tangles" formed by the 
ross produ
t

of the partitions will be 
lose to uniform. Lemma 5 provides

a means to 
he
k this 
ondition.

For a re
tangle, let the midpoint be the point that bise
ts

the re
tangle along ea
h 
oordinate. Then we refer to the top


ube (bottom 
ube) as the set of points in the re
tangle that

are smaller (larger) than the midpoint in ea
h 
oordinate.

Monotoni
ity ensures that ea
h probability value in the top


ube is greater than ea
h of those in the bottom 
ube. The

algorithm is:

Algorithm TestMonotoneIndependen
e

1. For ea
h i 2 [d℄, apply Partition to the marginal

distribution along the i-th dimension with �

i

= �=(32d)

and w = d

�1

log

�2

n to obtain a partition of [n℄ into

I

(i)

= hI

(i)

1

; : : : ; I

(i)

k

i

; J

i

i.

2. For ea
h d-dimensional re
tangle I

(1)

i

1

�I

(2)

i

2

�� � ��I

(d)

i

d

,

output FAIL if the number of samples from the top


ube is more than (1 + �=8) times that of the bottom


ube.

3. Che
k that the distribution on the re
tangles is �=4-


lose to the produ
t of the marginal distributions on

the re
tangles.

Theorem 20. Given generation ora
le a

ess to mono-

tone joint distribution p on d-tuples, the algorithm Test-

MonotoneIndependen
e outputs PASS if p indu
es d in-

dependent random variables and outputs FAIL if p has L

1

-

distan
e at least � to any set of d independent variables,

with probability at least 2=3. Moreover, the algorithm uses

O(log

(2d=3)+1

n) samples and runs in time O(log

d

n).

Proof. Suppose the joint distribution is independent.

Then, for any d-dimensional re
tangle that we 
he
k, the

weight of the top 
ube is at most (1 + �=16) times that of

the bottom 
ube, be
ause in ea
h marginal distribution, the

top half of the interval has weight at most (1+�=(32d)) times

that of the bottom half, and (1 + �=(32d))

d

� (1 + �=16).



Hen
e, after a

ounting for the sampling errors, all the re
t-

angles in Step (2) will pass with high probability. The algo-

rithm outputs PASS.

Now 
onsider a distribution p that the algorithm outputs

PASS. We know by Lemma 5 that the 
onditional distribu-

tion on ea
h re
tangle has L

1

-distan
e at most �=4 to the

uniform distribution. Let Æ be the L

1

-distan
e of p to the

produ
t of its marginal distributions. The total 
ontribution

of all the re
tangles to Æ will be at most �=2. Sin
e, the total

weight of the ignored parts of the domain, where at least one


oordinate belongs to the 
orresponding J

i

, is negligible, we


an 
laim that Æ � �. Therefore, p has L

1

-distan
e at most

� to a set of d independent variables on this domain.

The error probability is sum of the probabilities that The-

orem 17 does not hold for any invo
ation of Partition.

Therefore, the error probability is less than 1=3. The sam-

ple 
omplexity of d invo
ations of the pro
edure Partition

is O(d

5

�

�3

log

3

n). Step (3) 
an be a

omplished by the al-

gorithm to test if two distributions are 
lose [3℄, whi
h will

entail O(log

(2d=3)+1

n) samples.

7. UNIMODAL DISTRIBUTIONS
In this se
tion we extend our results to unimodal distri-

butions. We will only indi
ate the appropriate modi�
a-

tions/extensions needed for the unimodal 
ase.

Testing unimodality. The outline of our algorithm for test-

ing unimodality is be similar to our algorithm for testing

monotoni
ity. After partitioning the domain [n℄ into poly-

logarithmi
 number of intervals, ea
h of whi
h has 
lose-

to-uniform 
onditional distribution, the algorithm 
he
ks

whether these intervals 
an be \pat
hed" together to form a

unimodal distribution. We will again use unimodal 
at dis-

tributions as a tool. The analogs of Lemma 7 and Lemma

8 hold for the unimodal 
at distributions. The only addi-

tional step in the proof of the latter is that sin
e the max-

imum probability 
an o

ur in any one of the ` intervals, `

separate linear programs will be set up for ea
h 
hoi
e of

the peak of the unimodal distribution. Thus, as before, we

obtain an

~

O(

p

n) algorithm for unimodality testing.

Testing 
loseness. The following is a unimodal analog of

Lemma 4. It says that for a �ne-enough partition, unimodal-

ity on balan
ed intervals implies 
lose to uniformity.

Lemma 21. Let I be a interval, and let p be a unimodal

distribution on [n℄. Let ` = d1=�e, and I

1

; : : : ; I

`

be a par-

tition of I into equal-length subintervals. If, for all j 2 [`℄,

p(I)

(1+�)`

� p(I

j

) �

(1+�)p(I)

`

; then

P

i2I

�

�

�

p

i

�

p(I)

jIj

�

�

�

� �p(I):

We 
all an interval I to be (1 + �)-smooth with respe
t

to sample S if, for the `-partition fI

1

; : : : ; I

`

g of I where

` = d1=�e,

jS

I

j

(1+�)`

� jS

I

j

j �

(1+�)jS

I

j

`

for all j. The al-

gorithm for testing 
loseness is similar to the monotone


ase, where we will use Theorem 17 to obtain a partition

I

k+1

= hI

1

; : : : ; I

k

; Ji of [n℄, where ea
h I

j

is (1+�)-smooth.

8. THE CUMULATIVE ORACLE MODEL
It is instru
tive to 
ompare the 
omplexity of various tasks


hanges under di�erent assumption on how the distributions

are a

essed. For example, suppose the only a

ess to the

distribution p is through a 
umulative evaluation ora
le P

su
h that P

i

=

P

i

j=1

p

j

, and that the algorithm 
an a

ess

any P

i

in one step. We show that in this model, monotoni
-

ity testing 
an be done in a simpler and more eÆ
iently.

Note that from su
h an ora
le, one 
an generate an ele-

ment i with probability p

i

in logarithmi
 time: generate a

random r 2 [0; 1℄ and output i su
h that P

i

� r by perform-

ing a binary sear
h on P. We adapt the sorting spot-
he
ker

of [7℄ to obtain a sublinear algorithm for monotoni
ity in

the 
umulative ora
le model.

Theorem 22. Given a

ess to a 
umulative ora
le for

distribution p over [n℄, there is an algorithm that outputs

PASS if p is monotone and outputs FAIL if p is not 2�-

monotone in L

1

-norm, with probability at least 2=3. The

algorithm runs in time O((1=�)(log n+ log(1=�)) log n).
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