
Fast Approximate PCPs for Multidimensional

Bin-Packing Problems ?

Tuğkan Batu1, Ronitt Rubinfeld1??, and Patrick White1

Department of Computer Science, Cornell University, Ithaca, NY 14850

fbatu,ronitt,whiteg@cs.cornell.edu

Abstract. We consider approximate PCPs for multidimensional bin-packing prob-

lems. In particular, we show how a verifier can be quickly convinced that a set of

multidimensional blocks can be packed into a small number of bins. The running

time of the verifier is bounded by O(T (n)), where T (n) is the time required to

test for heaviness. We give heaviness testers that can test heaviness of an ele-

ment in the domain [1; : : : ; n]

d in time O((log n)

d

). We also also give approxi-

mate PCPs with efficient verifiers for recursive bin packing and multidimensional

routing.

1 Introduction

Consider a scenario in which the optimal solution to a very large combinatorial opti-

mization problem is desired by a powerful corporation. The corporation hires an in-

dependent contractor to actually find the solution. The corporation then would like to

trust that the value of the solution is feasible, but might not care about the structure

of the solution itself. In particular they would like to have a quick and simple test that

checks if the contractor has a good solution by only inspecting a very small portion of

the solution itself. Two hypothetical situations in which this might occur are:

– A major corporation wants to fund an international communications network. Data

exists for a long history of broadcasts made over currently used networks, including

bandwidth, duration, and integrity of all links attempted. The corporation wants to

ensure that the new network is powerful enough to handle one hundred times the

existing load.

– The services of a trucking company are needed by an (e-)mail-order company to

handle all shipping orders, which involves moving large numbers of of boxes be-

tween several locations. The mail-order company wants to ensure that the trucking

company has sufficient resources to handle the orders.

In both cases, large amounts of typical data are presented to the consulting company,

which determines whether or not the load can be handled. The probabilistically checkable-

proof (PCP) techniques (cf. [3, 4, 1]) offer ways of verifying such solutions quickly. In

? This work was partially supported by ONR N00014-97-1-0505, MURI, NSF Career grant

CCR-9624552, and an Alfred P. Sloan Research Award.The third author was supported in part

by an ASSERT grant.
?? Part of this work was done while on sabbatical at IBM Almaden Research Center

these protocols a proof is written down which a verifier can trust by inspecting only

a constant number of bits of the proof. The PCP model offers efficient mechanisms

for verifying any computation performed in NEXP with an efficient verifier. We note

that the verifiers in the PCP results all require
(n) time. Approximate PCPs were in-

troduced in [7] for the case when the input data is very large, and even linear time is

prohibitive for the verifier. Fast approximate PCPs allow a verifier to ensure that the an-

swer to the optimization problem is at least almost correct. Approximate PCPs running

in logarithmic or even constant time have been presented in [7] for several combina-

torial problems. For example, a proof can be written in such a way as to convince a

constant time verifier that there exists a bin-packing which packs a given set of objects

into a small number of bins. Other examples include proofs which show the existence of

a large flow, a large matching, or a large cut in a graph to a verifier that runs in sublinear

time.

Our Results. We consider approximate PCPs for multidimensional bin packing. In par-

ticular, we show how a verifier can be quickly convinced that a set of multidimensional

objects can be packed into a small number of bins. We also consider the related prob-

lems of recursive bin packing and multidimensional routing. Our results generalize the

1-dimensional bin packing results of [7]. The PCPs are more intricate in higher dimen-

sions; for example, the placements and orientations of the blocks within the bin must

be considered more carefully. In the 1-dimensional case, the approximate PCP of [7]

makes use of a property called heaviness of an element in a list, introduced by [6]. Es-

sentially, heaviness is defined so that testing if an element is heavy can be done very

efficiently (logarithmic) in the size of the list and such that all heavy elements in the

list are in monotone increasing order. We generalize this notion to the multidimensional

case and give heaviness tests which determine the heaviness of a point x 2 [1; : : : ; n]

d

in time O((2 logn)

d

). Then, given a heaviness tester which runs in time T (n), we show

how to construct an approximate PCP for binpacking in which the running time of the

verifier is O(T (n)).

In [9], multidimensional monotonicity testers are given which pass functions f that

are monotone and fail functions f if no way of changing the value of f at at most � frac-

tion of the inputs will turn f into a monotone function. The query complexity of their

tester is ~

O(d

2

n

2

r) where f is a function from [n]

d to [r]. Our multidimensional heavi-

ness tester can also be used to construct a multidimensional monotonicity tester which

runs in time O(T (n)). However, more recently Dodis et. al. [5] have given monotonic-

ity testers that greatly improve on our running times for dimension greater than 2, and

are as efficient as ours for dimension 2. This gives hope that more efficient heaviness

testers in higher dimensions can also be found.

2 Preliminaries

Notation. We use the notation x 2
R

S to indicate x is chosen uniformly and at random

from the set S. The notation [n] indicates the interval [1; : : : ; n].

We define a partial ordering relation � over integer lattices such that if x and y are

d-tuples then x � y if and only if x
i

� y

i

for all i 2 f1; : : : ; dg. Consider a function

f : D

d

! R, where Dd is a d-dimensional lattice. If x; y 2 Dd are such that x � y

then if f(x) � f(y) we say that x and y are in monotone order. We say f is monotone

if for all x; y 2 Dd such that x � y, x and y are in monotone order.

Approximate PCP. The approximate PCP model is introduced in [7]. The verifier has

access to a written proof, � , which it can query in order to determine whether the

theorem it is proving is close to correct. More specifically, if on input x, the prover

claims f(x) = y, then the verifier wants to know if y is close to f(x).

Definition 1. [7] Let �(�; �) be a distance function. A function f is said to have a

t(�; n)-approximate probabilistically checkable proof system with distance function �

if there is a randomized verifier V with oracle access to the words of a proof � such

that for all inputs �, and x of size n, the following holds. Let y be the contents of the

output tape, then:

1. If �(y; f(x)) = 0, there is a proof, � , such that V� outputs pass with probability

at least 3/4 (over the internal coin tosses of V);

2. If �(y; f(x)) > �, for all proofs � 0, V�
0

outputs fail with probability at least 3/4

(over the internal coin tosses of V); and

3. V runs in O(t(�; n)) time.

The probabilistically checkable proof protocol can be repeated O(lg 1=�) times to get

confidence � 1 � �. We occasionally describe the verifier’s protocol as an interaction

with a prover. In this interpretation, it is assumed that the prover is bound by a function

which is fixed before the protocol begins. It is known that this model is equivalent to

the PCP model [8]. The verifier is a RAM machine which can read a word in one step.

We refer to PCP using the distance function �(y; f(x)) = maxf0; 1� f(x)=ygas

an approximate lower bound PCP : if f(x) � y then � causes V� to pass; if f(x) <

(1� �)y then no proof � 0 convinces V�
0

with high probability. This distance function

applied to our bin-packing protocol will show that if a prover claims to be able to pack

all of the n input objects, the verifier can trust that at least (1 � �)n of the objects can

be packed.

It also follows from considerations in [7] that the protocols we give can be em-

ployed to prove the existence of suboptimal solutions. In particular, if the prover knows

a solution of value v, it can prove the existence of a solution of value at least (1� �)v.

Since v is not necessarily the optimal solution, these protocols can be used to trust the

computation of approximation algorithms to the NP-complete problems we treat. This

is a useful observation since the prover may not have computational powers outside

of deterministic polynomial time, but might employ very good heuristics. In addition,

since the prover is much more powerful than V it may use its computational abilities to

get surprisingly good, yet not necessarily optimal, solutions.

Heaviness Testing. Our methods all rely on the ability to define an appropriate heavi-

ness property of a function f . In the multidimensional case, heaviness is defined so that

testing if a domain element is heavy can be done very efficiently in the size of the do-

main, and such that all heavy elements in the domain which are comparable according

to � are in monotone order.

We give a simple motivating example of a heaviness test for d = 1 from [6]. This

one-dimensional problem can be viewed as the problem of testing whether a list L =

(f(1); f(2); : : : ; f(n)) is mostly sorted. Here we assume that the list contains distinct

elements (a similar test covers the nondistinct case). Consider the following for testing

whether such a list L is mostly sorted: pick a point x 2 L uniformly and at random.

Perform a binary search on L for the value x. If the search finds x then we call x heavy.

It is simple to see that if two points x and y are heavy according to this definition,

then they are in correct sorted order (since they are each comparable to their common

ancestor in the search tree). The definition of a heaviness property is generalized in this

paper. We can call a property a heaviness property if it implies that points with that

property are in monotone order.

Definition 2. Given a domain D = [1; : : : ; n]

d, a function f : D ! R and a property

H , we say that H is a heaviness property if

1. 8x < y H(x) ^H(y) implies f(x) � f(y)

2. In a monotone list all points have property H

If a point has a heaviness property H then we say that point is heavy. There may be

many properties which can be tested of points of a domain which are valid heaviness

properties. A challenge of designing heaviness tests is to find properties which can

be tested efficiently. A heaviness test is a probabilistic procedure which decides the

heaviness property with high probability. If a point is not heavy, it should fail this test

with high probability, and if a function is perfectly monotone, then every point should

pass. Yet it is possible that a function is not monotone, but a tested point is actually

heavy. In this case the test may either pass or fail.

Definition 3. Let D
�

= [1; : : : ; n]

d be a domain, and let f : D ! R be a function on

D. Let S(�; �) be a randomized decision procedure on D. Given security parameter �,

we will say S is a heaviness test for x if

1. If for all x � y, f(x) � f(y) then S(x; �) = Pass

2. If x is not heavy then Pr(S(x; �) = Fail) > 1� �

The heaviness tests we consider enforce, among other properties, local multidimen-

sional monotonicity of certain functions computed by the prover. It turns out that mul-

tidimensional heaviness testing is more involved that the one dimensional version con-

sidered in earlier works, and raises a number of interesting questions.

Our results on testing bin-packing solutions are valid for any heaviness property,

and require only a constant number of applications of a heaviness test. We give sample

heaviness properties and their corresponding tests in Section 4, yet it is an open question

whether heaviness properties with more efficient heaviness tests exist. Such tests would

immediately improve the efficiency of our approximate PCP verifier for bin-packing.

Permutation Enforcement. Suppose the values of a function f are given for inputs in [n]

in the form of a list y
1

; : : : ; y

n

. Suppose further that the prover would like to convince

the verifier that the y
i

’s are distinct, or at least that there are (1 � �)n distinct y
i

’s. In

[7], the following method is suggested: The prover writes array A of length n. A(j)

should contain i when f(i) = j (its preimage according to f). We say that i is honest if

A(f(i)) = i. Note that the number of honest elements in [n] lower bounds the number

of distinct elements in y

1

; : : : ; y

n

(even if A is written incorrectly). Thus, sampling

O(1=�) elements and determining that all are honest suffices to ensure that there are at

least (1� �)n distinct y
i

’s in O(1=�) time. We refer to A as the permutation enforcer.

3 Multidimensional Bin-Packing

We consider the d-dimensional bin-packing problem. We assume the objects to be

packed are d-dimensional rectangular prisms, which we will hereafter refer to as blocks.

The blocks are given as d-tuples (in Nd) of their dimensions. Similarly, the bin size is

given as a d-tuple, with entries corresponding to the integer width of the bin in each

dimension. When we say a block with dimensions w = (w

1

; : : : ; w

d

) 2 N

d is located

at position x = (x

1

; : : : ; x

d

), we mean that all the locations y such that x � y � x+w

are occupied by this block. The problem of multidimensional bin-packing is to try to

find a packing of n blocks which uses the least number of bins of given dimension

D = (N

1

; : : : ; N

d

).

It turns out to be convenient to cast our problem as a maximization problem. We

define the d-dimensional bin-packing problem as follows: given n blocks, the dimen-

sions of a bin, and an integer k, find a packing that packs the largest fraction of the

blocks into k bins. It follows that if 1� � fraction of the blocks can be packed in k bins,

then at most k + �n bins are sufficient to pack all of the blocks, by placing each of the

remaining blocks in separate bins.

We give an approximate lower bound PCP protocol for the maximization version of

the d-dimensional bin-packing problem in which the verifier runs in O((1=�)T (N; d))

time where T (N; d) is the running time for a heaviness tester onD = [N

1

]�� � �� [N

d

]

and we take N = max

i

N

i

. In all of these protocols, we assume that the block and bin

dimensions fit in a word.

In this protocol, we assume that the prover is trying to convince the verifier that

all the blocks can be packed in k bins. We address the more general version of this

problem in the full version of this paper. In doing so we use the approximate lower

bound protocol for set size from [7].

We require that the prover provides an encoding of a feasible packing of the input

blocks in a previously agreed format. This format is such that if all the input blocks can

be packed in the bins used by the prover, the verifier accepts. If less than 1�� fraction of

the input blocks can be simultaneously packed, the verifier rejects the proof with some

constant probability. In the intermediate case, the verifier either accepts or rejects.

3.1 A First Representation of a Packing

We represent a bin as a d-dimensional grid with the appropriate length in each dimen-

sion. The prover will label the packed blocks with unique integers and then label the

grid elements with the label of the block occupying it in the packing. In Figure 1, we

illustrate one such encoding. The key to this encoding is that we can give requirements

by which the prover can define a monotone function on the grid using these labels only

if he knows a feasible packing. To show such a reduction exists, we first define a relation

on blocks.

1

1

1

1

1

1

11

4 4 4 4 4 4

2

2

2

2

3 3 3

3 3 3

3 3 3

1 2 3 4 5 6 7

1

 2

3

 4

 5

6

7

Fig. 1. A 2D Encoding

1

1

1

1

1

1

11 2

2

2

2

3

3

3

3

4 4 4 4

1 2 3 4 5

1

 2

3

 4

5

 6

3 3

Fig. 2. Compressed Grid Encoding

Definition 4. For a block b, the highest corner of b, denoted h(b), is the corner with the

largest coordinates in the bin it is packed with respect to the � relation. Similarly, the

lowest corner of b, denoted l(b), is the corner with the smallest coordinates.

In our figure, l(1) = (1; 1) and h(1) = (2; 4). We can order blocks by only considering

the relative placement of these two corners.

Definition 5. Let b
1

and b

2

be two blocks packed in the same bin. Block b
1

precedes

block b
2

in a packing if l(b1) � h

(b

2

).

Note that for a pair of blocks in dimension higher than 1 it may be the case that neither

of the two blocks precedes the other. This fact along with the following observation

makes this definition interesting: For two blocks, b
1

and b

2

, such that b
1

precedes b
2

,

b

1

and b

2

overlap if and only if b
2

precedes b
1

. Surely if b
1

precedes b
2

and this pair

overlaps it must be the case that l(b2) � h

(b

1

). It follows that the precedence relation

on blocks is a reflexive-antisymmetric ordering precisely when the packing of blocks is

feasible. Given such an ordering, it is easy to construct a monotone function.

Lemma 1. Given a feasible packing of a bin with blocks, we can label the blocks with

distinct integers such that when we assign each grid element in the d-dimensional grid

(of the bin) with the label of the block occupying it, we get a monotone function on this

grid.

Proof. Without loss of generality, assume that the bin is filled up completely. We know

that by inserting extra “whitespace” blocks we can fill up the bin. It can be shown that

the bin can be packed in such a way that 4n whitespace blocks are sufficient. The rela-

tion from Definition 5 gives a relation on the blocks that is reflexive and antisymmetric.

Therefore we can label the blocks according to this relation such that a block gets a la-

bel larger than those of all its predecessors. This labeling gives us a monotone function

on the grid.

Now we can describe the proof that the prover will write down. The proof will

consist of three parts: the first one is a table which will have an entry for each block

containing the label assigned to the block; a pointer to the bin where the object was

assigned and the locations of the two (lowest and highest) corners of the block in this

bin. The second part is a permutation enforcer on the blocks and the labels of the blocks.

Finally, the third part consists of a d-dimensional grid of size
Q

[N

j

] for each bin used

that numbers each grid element with the label of the block occupying it.

3.2 Testing Multidimensional Bin-Packing Using Heaviness

The heaviness test we have defined can be used to test that the prover’s labeling agrees

with a monotone function. By using Observation 1, we will be able to show if all the

defining corners of a pair of blocks are heavy then they cannot overlap.

Protocol. We will define “good” blocks such that all “good” blocks can be packed

together feasibly. Our notion of “good” should have the properties that (1) a good block

is actually packed inside a bin, and it is not overlapping any other “good” block; and

(2) we can efficiently test a block for being good. Then, the verifier will use sampling

to ensure that at least 1� � fraction of the blocks are “good” in the protocol.

Definition 6. The block i with dimensions w = (w

1

; : : : ; w

d

) is good with respect to

an encoding of a packing if it has the following properties:

– Two corners defining the block in the proof have positive coordinates with values

inside the bin, i.e., 1 � l

(i)

; h

(i)

� N .

– The distance between these corners exactly fits the dimensions of the block, i.e.,

w = h

(i)

� l

(i)

+ 1.

– The grid elements at l(i) and h(i) are heavy.

– The block is assigned a unique label among the good blocks, i.e., it is honest with

respect to the permutation enforcer.

Given this definition, we can prove that two good blocks cannot overlap.

Lemma 2. If two blocks overlap in a packing, then both of the blocks cannot be good

with respect to this packing.

Proof. Note that when two blocks overlap, according to Definition 5, they must both

precede each other. Without loss of generality, b
1

precedes b
2

. Since these blocks over-

lap, the lowest corner of b
2

, l(b2), is smaller than the highest corner of b
1

, h(b1) (l(b2) �

h

(b

1

)). We know, by definition of a heaviness tester, that two comparable heavy points

on the grid do not violate monotonicity. But, since both defining corners of a good block

must have the same label, either l(b1) and h(b2), or l(b2) and h(b1) violates monotonicity.

Corollary 1. There is a feasible packing of all the good blocks in an encoding using k

bins.

The verifier’s protocol can be given as follows: The verifier chooses a block randomly

from the input, and using the encoding described above, confirms that the block is good.

Testing a block for being good involves O(d) comparisons for the first two conditions

in the definition, O(1) time for checking the unique labeling using the permutation

enforcer, and 2 heaviness tests for the third condition. The verifier repeats this O(1=�)

times to ensure at least (1� �) fraction of the blocks are good.

Theorem 1. There is an O((1=�)T (N; d))-approximate lower bound PCP for the d-

dimensional bin packing problem where T (N; d) is the running time for a heaviness

tester on D = [N

1

]� � � � � [N

d

].

3.3 A Compressed Representation of a Packing

The previous protocol requires the prover to write down a proof whose size depends on

the dimensions of the bins to be filled, since the values N
i

were based on the actual size

of the bins given. We show here how the prover may write a proof which depends only

on the number, n, of objects to be packed. In the protocol from the previous section the

verifier calls the heaviness tester only on grid elements which correspond to the lowest

or the highest corners of the blocks. We use this observation for a compressed proof.

The prover constructs a set of distinguished coordinate values S
k

for each dimen-

sion k = 1; : : : ; d. Each set is initially empty. The prover considers each block i

and does the following: for the lower corner, l(i) = (c

1

; : : : ; c

d

), and higher corner,

h

(i)

= (e

1

; : : : ; e

d

), of block i, the prover computes S
i

 S

i

[fc

i

g [fe

i

g. Af-

ter all the blocks are processed, jS
i

j � 2n. The compressed grid will be a sublattice

of D with each dimension restricted to these distinguished coordinates, that is the set

fhx

1

; : : : ; x

d

ijx

i

2 S

i

g. This grid will contain in particular all the corners of all the

blocks and the size of this proof will be at most O((2n)

d

). Note that although in the

previous test we have added “whitespace” blocks to generate our monotone number-

ing, those blocks themselves were never tested, hence they do not affect the number

of distinguished coordinates. The fact that this new compressed encoding is still eas-

ily testable does not trivially follow from the previous section. In particular, we must

additionally verify that the prover’s compression is valid.

The proof consists of four parts. First the prover implicitly defines the proof from

the previous section, which we refer to as the original grid. The prover then writes down

a table containing the compressed grid. In each axis, the prover labels the coordinates

[1; : : : ; 2n] and provides a lookup-table (of length 2n) for each axis which maps com-

pressed grid coordinates to original grid coordinates. Finally the prover writes down

the list of objects with pointers to the compressed grid, and a permutation enforcer as

before. In Figure 2 , we give the compressed encoding of the packing from Figure 1.

Protocol. By making the prover write only a portion of the proof from the first protocol,

we provide more opportunities for the prover to cheat. For example, even if the prover

uses the correct set of hyperplanes for the compression, he may reorder them in the

compressed grid to hide overlapping blocks. The conversion tables we introduced to

our proof will allow the verifier to detect such cheating.

The definition of a good block is extended to incorporate the lookup tables. In a

valid proof, the lookup tables would each define a monotone function on [2n]. We will

check that the entries in the lookup tables which are used in locating a particular block

are heavy in their respective lookup tables. Additionally we test a that a block is good

with respect to Definition 6 in the compressed grid1. A block which passes both phases

is a good block.

Our new protocol is then exactly as before. The verifier selects O(1=�) blocks and

tests that each is good and if so concludes that at least(1� �) fraction of the blocks are

good.

1 Except when we test the size of the block, for which we refer to the original coordinates via

the lookup table.

Correctness. Any two good objects do not overlap in the compressed grid, by applying

Lemma 2. Furthermore, since the labels of good objects in the lookup table are heavy, it

follows that two good objects do not overlap in the original grid either. Certainly, since

the corresponding values in the lookup table form a monotone sequence, the prover

could not have re-ordered the columns during compression to untangle an overlap of

blocks. It also follows from the earlier protocol that good blocks are the right size and

are uniquely presented.

Theorem 2. There is an O((1=�)T (n; d))-approximate lower bound PCP for the d-

dimensional bin packing problem with proof size O((2n)

d

), where T (n; d) is the run-

ning time for a heaviness tester on D = [n]

d.

3.4 Further Applications

Multidimensional Routing A graph G with edge-capacity constraints is given along

with a set of desired messages which are to be routed between vertex pairs. Each mes-

sage has a bandwidth requirement and a duration. If P knows how to route f of these

messages, he can convince V that a routing of� (1� �)f exists. We sketch the method:

The prover presents the solution as a 2D bin packing proof, with one bin for each edge:

one dimension corresponds to the bandwidth, the other to the duration. The portion of

a message routed along a particular bin is a 2D block. To verify that a routing is legal,

V selects a message at random and the prover provides the route used as a list of edges.

The verifier checks that sufficient bandwidth is allocated and that durations are consis-

tent along all edges of the route and that the message (block) is “good” with respect

to the packings of blocks in each of the edges (bins). If we assume that the maximum

length of any routing provided by the prover is length k, this yields a protocol with

running time O((k=�) � log

2

(n)), where n is the maximum number of calls ever routed

over an edge. To achieve this running time we employ the heaviness tester in Section 4.

Higher dimensional analogues of this problem can be verified by an extension of these

methods.

Recursive Bin Packing At the simplest level the recursive bin packing problem takes

as input a set of objects, a list of container sizes (of unlimited quantity), and a set of

bins. Instead of placing the objects directly in the bins, an object must first be fit into

a container (along with other objects) and the containers then packed in the bin. The

goal is to minimize the total number of bins required for the packing. We can solve

this problem by applying an extension of our multidimensional bin-packing tester. In

particular, we define an object as good if it passes the goodness test (with respect to

its container) given in Section 2 and furthermore if the container it is in passes the

same goodness test (with respect to the bin). After O(1=�) tests we can conclude that

most objects are good and hence that (1 � �) fraction of the objects can be feasibly

packed. For a k-level instance of recursive bin packing, therefore, the prover will write

k compressed proofs and O(k=�) goodness tests will be needed.

3.5 Can Monotonicity Testing Help?

Given the conceptual similarities between heaviness testing and monotonicity testing,

it may seem that a monotonicity test could be used to easily implement our multidi-

mensional bin packing protocol. The obvious approach, though, does not seem to work.

The complications arise because we are embedding n objects in a (2n)

d sized domain.

If a monotonicity tester can determine that the domain of our compressed proof is has

(1��

0

) of its points in a monotone subset, we can only conclude that at least n��0�(2n)d

boxes are “good”, by distributing the bad points among the corners of the remaining

boxes. Thus monotonicity testing on this domain seems to need an error parameter of

O(�=(n

d

)). If the running time of the monotonicity tester is linear in � then this ap-

proach requires at least O((2n)

d�1

) time.

4 Heaviness Tests

We give two heaviness tests for functions on a domain isomorphic to an integer lattice.

The domains are given as D = [1; : : : ; n]

d. The range can be any partial order, but here

we use R, reals. Both tests which follow determine that a point is heavy inO((2 logn)

d

)

time, yielding efficient bin packing tests for small values of d. In particular, the exam-

ples applications of bin packing which we have cited typically have dimension less than

3. For complete proofs, please consult the full version of the paper [2].

4.1 The First Algorithm

We extend the protocol of [6] to multidimensional arrays. On input x our test compares

x to several random elements y selected from a set of carefully chosen neighborhoods

around x. It is tested that x is in order with a large fraction of points in each of these

neighborhoods. From this we can conclude that any two comparable heavy points a

and b can be ordered by a mutually comparable point c such that a < c < b and

f(a) < f(c) < f(b). The test is shown in Figure 4.

Proof of Correctness We consider a set of log

d

n carefully chosen neighborhoods

around a point x. We say that x is heavy if for a large fraction of points y in each of

these neighborhoods, f(x) and f(y) are monotonically ordered. We are able to show

from this that for any two heavy points x and y, two of these regions can be found

whose intersection contains a point z with the property that x < z < y and f(x) <

f(z) < f(y). Hence this defines a valid heaviness property. The efficiency of the test

is bound by the fraction of points in each neighborhood which must be tested, which is

given to us by Chernoff bounds. It follows that

Theorem 3. Algorithm Heavy-Test is a heaviness tester performing

O(log(1=�)(2 log(n))

d

) queries.

4.2 The Second Algorithm

This algorithm is based on a recursive definition of heaviness. Namely a point x is heavy

in dimension d if a certain set of projections of x onto hyperplanes are each heavy in

dimension d�1. We are able to use the heaviness of these projection points to conclude

that d-dimensional heavy points are appropriately ordered.

Given a dimension d hypercube,C , consider a subdividing operation � which maps

C into 2

d congruent subcubes. This operation passes through the center d hyperplanes

parallel to each of the axes of the hypercube. This is a basic function in our algorithm.

For notational convenience, we extend � to � which acts on sets of cubes such that

�(fx

1

; : : : ; x

n

g) = f�(x

1

); : : : ; �(x

n

)g. It is now possible to compose � with itself.

We also define a function ^

�(x;C) = S) x 2 S 2 �(C). This function is also a

notational convenience which identifies the subcube a point lies in after such a division.

Now consider any two distinct points in the hypercube, x and y. We wish to apply

� to the cube repeatedly until x and y are no longer in the same cube. To quantify

this we define a new function % : C

2

! Z such that %(x; y) = r)

^

�

r

(x;C) =

^

�

r

(y; C) and ^

�

r+1

(x;C) 6=

^

�

r+1

(y; C). That is, the r + 1st composition of � on C

separates x from y.

Definition 7. A point x is heavy in a domain D = [n]

d if the 2d perpendicular projec-

tions of x onto each cube in the series ^

�(x;D); : : : ;

^

�

logn

(x;D) of shrinking cubes are

all heavy in dimension d� 1. The domainsD0 for these recurive tests are the respective

faces of the cubes. When d = 1 we use the test of [6].

We can now give the heaviness test for a point. Let C be a d-dimensional integer hyper-

cube with side length n. Let x be some point inC. Construct the sequence fs
1

; : : : ; s

k

g =

f

^

�

1

(x;C); : : : ;

^

�

k

(x;C)g where k = dlog(n)e. Note that s
k

= x. At each cube s
k

per-

form the following test: (1) Compute the 2d perpendicular projections fp
1

; : : : ; p

2d

g of

x onto the 2d faces of s
k

. (2) Verify that f is consistent with a monotone function on

each of the 2d pairs (x; p

k

). (3) If d > 1 recursively test that each of the points p
i

is

heavy over the reduced domain of its corresponding face on s

k

. If d = 1, we use the

heaviness test of [6]. This test is shown in Figure 3.

Theorem 4. If x and y are heavy and x < y then f(x) < f(y)

Proof. (by induction on d). Let r = %(x; y). Let S =

^

�

r

(x;C). Let s
x

=

^

�

r+1

(x;C)

and s

y

=

^

�

r+1

(y; C). There is at least one plane perpendicular to a coordinate axes

passing through the center of S which separates x and y. This plane also defines a face

of s
x

and of s
y

, which we denote as f
x

and f

y

respectively. By induction we know

the projections of x and y onto these faces are heavy. Since y dominates x in every

coordinate, we know that p
x

< p

y

. Inductively we can conclude from the heaviness

of the projection points that f(p
x

) < f(p

y

) . Since we have previously tested that

f(x) < f(p

x

) and f(p
y

) < f(y) we conclude f(x) < f(y).

Running time analysis If we let H
d

(n) be the number of queries made by our algo-

rithm in testing that a point of the function f : Z

d

n

! S is heavy, then we can show

Lemma 3. For all d > 1, for sufficiently large n, H
d

(n) � (d� 1) log

d

(n) log(1=�)

Proof. By induction. For the case d = 1 we employ the spot checker algorithm from

[6], which performs log(1=�) log(n) queries to determine that a point is heavy.

RecursiveTest(f,�,�,D,d)

if d = 1

�

0

 �=(d! log

d

n)

return SpotCheckTest(f; �; �0

)

else

for i = 1 : : : log n

� =

^

�

i

(x;C)

fp

1

; : : : ; p

d

g = projections

of x onto �

for k = 1 : : : d

C the face of ^

�

i

(x;D)

containing p

k

HeavyTest(f; �; �;D; d)

end

end

end

return PASS

Fig. 3. Algorithm RecursiveTest

Heavy-Test(f,x,�,�)

for k

1

 0 : : : log x

1

,

.

.

.

k

d

 0 : : : log x

d

do

repeat t = O(2

d

log(1=�)) times

choose h

i

2

R

[1; 2

k

i

] 1 � i � d

h (h

1

; : : : ; h

d

)

if (f(x) < f(x� h)) return FAIL

for k

d

 0 : : : log(n � x

1

),

.

.

.

k

d

 0 : : : log(n� x

d

) do

repeat t times

choose h

i

2

R

[1; 2

k

i

] 1 � i � n

h (h

1

; : : : ; h

d

)

if (f(x) > f(x+ h)) return FAIL

return PASS

Fig. 4. Algorithm Heavy-Test

Theorem 5. AlgorithmRecursiveTest is a heaviness tester performingO((d log(d)+

d log log(n) + log(1=�))(d� 1) log

d

(n)) queries.

Proof. The confidence parameter �0 = �=(d! log

d

(n)) which appears in Figure 3 arises
because the probability of error accumulates at each recursive call. Now apply Lemma 3.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hard-

ness of approximation problems, J. of the ACM, 45(3):501–555, 1998.

2. T. Batu,R. Rubinfeld,P. White. Fast approximate PCPs for multidimensional bin-packing

problems. http://simon.cs.cornell.edu/home/ronitt/PAP/bin.ps

3. L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover

interactive protocols, Computational Complexity, pp. 3–40, 1991.

4. L. Babai, L. Fortnow, C. Lund, and M. Szegedy. Checking computations in polylogarith-

mic time. Proc. 31st Foundations of Computer Science, pp. 16–25, 1990.

5. Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron and A. Samorodnitsky

Improved Testing Algorithms for Monotonicity. RANDOM ‘99.

6. F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-checkers. Proc.

30th Symposium on Theory of Computing, pp. 259–268, 1998.

7. F. Ergün, R. Kumar, R. Rubinfeld. Fast PCPs for approximations. Proc. 31st Symposium

on Theory of Computing, 1999.

8. L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols.

Theoretical Computer Science, 134(2):545-557, 1994.

9. O. Goldreich,S. Goldwasser, E. Lehman, D. Ron. Testing Monotonicity Proc. 39th Sym-

posium on Foundations of Computer Science, 1998.

