
, , 1{38 ()

c

Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning Fallible Deterministic Finite Automata

DANA RON danar@cs.huji.ac.il

Computer Science Institute, Hebrew University, Jerusalem 91904, Israel

RONITT RUBINFELD ronitt@cs.cornell.edu

Computer Science Department, Cornell University, Ithaca, NY 14853, U.S.A.

Editor: Sally A. Goldman

Keywords: PAC Learning under the Uniform Distribution, Persistent Errors, Fallible Expert,

Deterministic Finite Automata

1. Introduction

Suppose a scientist is given a comprehensive set of data that has been collected, and

is asked to come up with a simple explanation of it. Such situations might include

trying to explain data collected by a space mission, data from a national survey,

weather pattern information recorded over the last 50 years, or many observations

of a doctor doing medical diagnosis. This task is made more di�cult by the fact

that there may be a large error rate in the data collection process, and if there is

no additional independent source of data, the scientist can not easily determine the

errors. Ideally, since the error rate of the data collection process may be unaccept-

able, the explanation should allow the scientist to correct most of the errors in the

data.

We view this as the problem of learning a concept from a fallible expert. The

expert answers all queries about the concept, but often gives incorrect answers. We

consider an expert that errs on each input with a �xed probability, independently of

whether it errs on the other inputs. We assume though that the expert is persistent,

i.e., if queried more than once on the same input, it will always return the same

answer.

The goal of the learner is to construct a hypothesis algorithm that will not only

concisely hold the correct knowledge of the expert, but will actually surpass the

expert by using the structural properties of the concept in order to correct the

erroneous data.

Speci�cally, we consider the problem in which the true target concept is a De-

terministic Finite Automaton (DFA). Angluin and Laird [3] propose to explore the

e�ect of noise in the case of queries, and speci�cally ask if Angluin's algorithm [2]

for learning DFAs in the error-free case can be modi�ed to handle errors both in

the answers to the queries and in the random examples. We answer this question

by presenting a polynomial time algorithm for learning fallible DFAs under the

uniform distribution on inputs. The algorithm may ask membership queries, and

2 DANA RON AND RONITT RUBINFELD

works in the presence of uniformly and independently distributed errors as long as

the error probability is bounded away from 1/2. The result can be extended to the

following cases. (1) The expert's errors are distributed only k-wise independently

for k =
(1); (2) The expert's error probability depends on the length of the input

string; (3) The target automaton has more than 2 possible outputs.

Our techniques for solving this problem include a method for partitioning strings

into classes, which are intended to correspond to states in the hypothesis automaton.

This partitioning is done according to the strings' behavior on large sets of su�xes.

In particular, strings reaching the same state in the correct automaton will be in

the same class. Using additional properties of the partition, we show how to correct

an arbitrarily large fraction of the expert's errors and thus receive a more re�ned

labeled partition on which we base the construction of our hypothesis automaton.

Parts of our algorithm rely on a version of Angluin's algorithm [2] for learning �nite

automata in the error-free case. This version is presented preceding the description

of our algorithm.

2. Related Results

In the error free case of learning DFAs, Kearns and Valiant [24] use the prediction

preserving reductions of Pitt and Warmuth [28] to show that under cryptographic

assumptions, the problem of predicting the class of DFAs is hard when only given

access to random examples. Angluin [1] shows that (exact) learning using only

membership queries is also hard. She describes a family of automata that cannot

be identi�ed in less than exponential time when the learner can only observe the

behavior of the machine on inputs of the learner's own choosing.

However, as mentioned earlier, Angluin [2] describes an algorithm for learning

DFAs given access both to random examples and to membership queries. Rivest

and Schapire [30], [31], [33] present algorithms for inferring DFAs from input/output

behavior in the absence of a means of resetting the machine to a start state. Freund

et al. [12] present e�cient algorithms for learning typical DFAs from random walks

without membership queries, both when the learner is provided with the means of

resetting the machine and when it is not.

Several results have been obtained for learning in the presence of errors in the

Probably Approximately Correct model introduced by Valiant [38]. These include

results for learning in the presence of malicious and random noise in classi�cation

and attributes [39], [3], [25], [22], [20], [34], [35], [37], [36]. In recent work Kearns [21]

identi�es and formalizes a su�cient condition on learning algorithms in Valiant's

model that permits the immediate derivation of noise-tolerant learning algorithms.

He introduces a new model of learning from statistical queries and shows that

any class e�ciently learnable from statistical queries is also learnable with random

classi�cation noise in the random examples.

There are fewer results when generalizing PAC learning to learning with member-

ship queries. Sakakibara [32] shows that if for each query there is some independent

probability to receive an incorrect answer, and these errors are not persistent then

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 3

queries can be repeated until the con�dence in the correct answer is high enough.

Therefore, existing learning algorithms can be modi�ed and then used in this model

of random noise.

Dean et. al. [11] study Rivest and Schapire's model [30] for learning DFAs when

the learner has no means of resetting the machine and thus can be viewed as a

robot learning an environment. They investigate the case in which the output of

each state may be erroneous with some �xed probability. Since the learner cannot

reset the target machine, this problem is in general a harder problem than the one

studied in this paper, and the authors solve it only under the assumption that the

learner is either given a distinguishing sequence or can generate one e�ciently with

high probability. It is known (and there are very simple examples illustrating it)

that not every automaton has a distinguishing sequence. Moreover, even if the

target automaton is known to have a distinguishing sequence, then there is not

necessarily an e�cient procedure for �nding one such sequence.

1

Thus the solution

described in [11] is not applicable in the general case, even when the learner does

have means of resetting the machine (as our learner does).

Goldman, Kearns, and Schapire [14] consider a model of persistent noise in mem-

bership queries which is very similar to the one used in this paper. They present

algorithms for exactly identifying di�erent circuits under �xed distributions, and

show that their algorithms can be modi�ed to handle large rates of randomly cho-

sen, though persistent, misclassi�cation noise in the queries. Angluin and Slonim

[7] consider a more benign model of incomplete membership queries in which with

some probability the teacher may answer \I don't know". For more work in this

model see [15].

3. Preliminaries

Let A be the deterministic �nite state automaton we would like to learn. As usual,

A is a 5-tuple (Q;�; �; q

0

; F) where Q is a �nite set of n states, � is a �nite alphabet,

� : Q � � ! Q is the transition function, q

0

2 Q is the starting state, and F � Q

is the set of accepting states. The transition function, � , can be extended to be

de�ned on Q� �

�

in the usual manner. The label of a state q is 1 if q 2 F and 0

otherwise. The label given by A to a string u 2 �

�

is de�ned as the label of the

state reached by u, i.e., the label of � (q

0

; u), and is denoted by

�

A(u). Unless stated

otherwise, all strings referred to are over the alphabet �.

Let D

L

be the distribution which is uniform on strings over � of length at most

L. Both L and n

b

, an upper bound on n, the number of states, are given to the

learning algorithm. We assume L =
(log

j�j

n

b

). The algorithm can generate

random strings distributed according to D

L

and may make membership queries.

For every newly queried string u, independently, and with probability �, the expert's

answer, E(u), received for that string di�ers from

�

A(u). Any additional query on

the same string is answered consistently. The error probability, �, is bounded away

from one half, so that � � 1=2�

b

, for some positive quantity,

b

, which is given

to the algorithm.

4 DANA RON AND RONITT RUBINFELD

We now de�ne what an �-good hypothesis is and what a good learning algorithm

is.

De�nition. Given two automata A

1

and A

2

, we say that A

1

is an �-good hypothesis

with respect to A

2

(and distribution D) if Pr

D

[

�

A

1

(u) 6=

�

A

2

(u)] � �. Otherwise A

1

is an �-bad hypothesis.

De�nition. We say that Algorithm A is a good learning algorithm for fallible DFAs

if for every approximation parameter 0 < � � 1, success parameter 0 < � � 1 and

error probability 0 � � � 1=2 �

b

, with probability at least 1 � �, after asking

a number of membership queries which is polynomial in n

b

;

1

b

; j�j; L;

1

�

and

1

�

,

and after performing a polynomial amount of computation, it outputs a hypothesis

automaton A

0

such that A

0

is an �-good hypothesis with respect to A and D

L

.

The following are additional de�nitions which are used in the paper.

De�nition. Let U

1

and U

2

be two sets of strings. Then U

1

�U

2

def

= fu

1

�u

2

ju

1

2

U

1

; u

2

2 U

2

g.

De�nition. We say that two automata A

1

and A

2

agree on a string u, if

�

A

1

(u) =

�

A

2

(u). Otherwise they di�er on u.

De�nition. Let u

1

, u

2

and u

3

be strings.

� The correct label of u

1

is

�

A(u

1

), and the observed label is E(u

1

).

� The correct behavior of u

1

on (the su�x) u

3

is

�

A(u

1

�u

3

) while the observed

behavior is E(u

1

�u

3

).

� We say that u

1

and u

2

truly di�er on (the su�x) u

3

if

�

A(u

1

�u

3

) 6=

�

A(u

2

�u

3

).

Otherwise they truly behave the same on u

3

.

� If E(u

1

�u

3

) 6= E(u

2

�u

3

) we say there is an observed di�erence between u

1

and u

2

on u

3

.

We also need the following. For M > 0, let X

1

; X

2

; :::X

M

be M independent 0=1

random variables were Pr[X

i

= 1] = p

i

, and 0 < p

i

< 1. Let p =

P

i

p

i

=M .

Then we have the following two inequalities. The �rst inequality (additive form) isreferences.

are they ok? usually credited to Hoe�ding [16] and the second inequality (multiplicative form)

is usually credited to Cherno� [10]. The versions below were taken from [6].

references.

are they ok?

Inequality 1 For 0 < � � 1,

Pr[

P

M

i=1

X

i

M

� p > �] < e

�2�

2

M

and

Pr[p�

P

M

i=1

X

i

M

> �] < e

�2�

2

M

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 5

Inequality 2 For 0 < � � 1,

Pr[

P

M

i=1

X

i

M

> (1 + �)p] < e

�

1

3

�

2

pM

and

Pr[

P

M

i=1

X

i

M

< (1 � �)p] < e

�

1

2

�

2

pM

4. Learning automata from an infallible expert

In this section we give a version of Angluin's algorithm for PAC learning determinis-

tic �nite automata, given access to random labeled examples (distributed according

to an arbitrary distribution), and membership queries [2]. We assume all examples

and queried strings are labeled correctly. In this version the learning algorithm is

given an upper bound n

b

on n, the number of states in the target automaton.

We assume the learning algorithm is given access to a source of example strings of

maximumlength L over a known alphabet �. These examples are labeled according

to the unknown target automaton A, i.e., for each example the learner is told if A

accepts (label 1) or rejects (label 0) that string. These examples are distributed

according to a �xed but unknown distribution D. The learner may also ask if

speci�c strings are accepted or rejected by A. The learner is given a bound n

b

on

the number of states n ofA, a con�dence parameter 0 < � � 1 and an approximation

parameter 0 < � � 1. With probability at least 1� � after time polynomial in n

b

,

L, j�j,

1

�

and

1

�

it must output a hypothesis automaton A

0

such that Pr

D

(

�

A

0

(x) 6=

�

A(x)) � �.

By Occam's Razor Cardinality Lemma [8], in order to output such a hypothesis

with probability at least 1 � �, it su�ces to �nd an automaton A

0

with n

0

states

(where n

0

= poly(n

b

)) which agrees with A on a set of sample strings of size at least

1

�

(lnN

DFA

(n

0

; j�j)+ ln

1

�

), where N

DFA

(n

0

; j�j) is the number of automata with n

0

states on an alphabet of size j�j. Since N

DFA

(n

0

; j�j) = 2

poly(n

b

;�)

the sample size

is polynomial in the relevant parameters.

The following is a high level description of how we construct such a (consistent)

hypothesis automaton A

0

. Given a sample generated according to D, we partition

the set of all sample strings and their pre�xes (including the empty string and the

strings themselves) into disjoint classes having two simple properties. The �rst

property we require the partition have is that all strings which belong to the same

class have the same 0=1 label. We then relate each state in A

0

to one such class,

and let the starting state correspond to the class including the empty string, and

the accepting states correspond to classes whose strings are labeled by 1. Since we

ask that A

0

agree with A on all strings in the sample, we would like to de�ne A

0

's

transition function so that all strings in the same class reach the same corresponding

state in A

0

. In order to be able to de�ne a transition function having this property,

6 DANA RON AND RONITT RUBINFELD

the partition should also have an additional consistency property that is de�ned

precisely in Lemma 1 below.

We would like to point out to the reader who is familiar with Angluin's algorithm,

that we remove the third closure requirement on the partition (which guarantees

that the transition function can be fully de�ned), and replace it by adding a special

sink state whose exact usage is described in the proof of Lemma 1. This can be

done since our algorithm is a PAC learning algorithm and not an exact learning

algorithm as Angluin's original algorithm is.

In the next lemma, we formally de�ne the properties of the partition we seek, and

show how to de�ne the hypothesis automaton A

0

based on a given partition having

these properties. We later describe precisely how to construct such a partition. Note

that in particular, a partition in which strings belong to the same class exactly when

they reach the same state in A, has the properties de�ned in the lemma.

Let R = fr

1

; r

2

; : : : ; r

N

g be the set of all pre�xes of a given set of m sample

strings (including the empty string and the sample strings themselves). For � 2 �

let the �-successor of a string r be r��. Then we have the following lemma.

Lemma 1 Let P = fC

0

; C

1

; : : : ; C

k�1

g be a partition of R into k classes having the

following properties:

1. Labeling: All strings in each class are labeled the same by A, i.e., 8i s.t. 0 �

i � k � 1, 8r

1

; r

2

2 C

i

,

�

A(r

1

) =

�

A(r

2

).

2. Consistency: For every class C

i

and for every symbol � 2 �, all �-successors of

the strings in C

i

which are in R belong to the same class, i.e., 8i s.t. 0 � i �

k � 1, 8� 2 �, 8r

1

; r

2

2 C

i

, if r

1

��; r

2

�� 2 R and r

1

�� 2 C

j

, then r

2

�� 2 C

j

.

Then we can de�ne an automaton A

0

with k + 1 states which agrees with A on all

the sample strings.

Proof: We de�ne the following automaton A

0

= (Q

0

;�; �

0

; q

0

0

; F

0

).

� Q

0

= fC

0

; :::; C

k�1

g [fq

sink

g where q

sink

is called the sink state.

� q

0

0

= C

i

such that � (the empty string) 2 C

i

. Without loss of generality � 2 C

0

.

� The transition function �

0

: For every class C

i

and for every symbol �, if there

exists a string r 2 C

i

such that r �� is in R and belongs to the class C

j

, then

�

0

(C

i

; �) = C

j

. Note that in this case �

0

(C

i

; �) is uniquely de�ned due to the

consistency property of the partition. If there is no such string r in C

i

, then

�

0

(C

i

; �) = q

sink

. �

0

(q

sink

; �) = q

sink

for every symbol �. Note that if there is

no class C

i

and symbol � such that �

0

(C

i

; �) = q

sink

, then there is no path in

the underlying graph of A

0

from C

0

to q

sink

, and q

sink

is redundant.

� F

0

= fC

i

j all strings in C

i

are labeled 1g

By this de�nition, given any string in the sample, the state corresponding to the

class the string belongs to is an accepting state i� the string is labeled 1. Hence, in

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 7

order to prove that A

0

agrees with A on all sample strings, we show that for every

string r 2 R, if r 2 C

j

then �

0

(C

0

; r) = C

j

. Note that in particular this means

that no string in the sample reaches the sink state and hence the sink state's sole

purpose is to allow �

0

to be fully de�ned. We prove the above claim by induction

on the length of r. Let C(r) denote the class r belongs to. For j r j= 0 : � 2 C

0

and �

0

(C

0

; �) = C(� � �) = C

0

. Assuming the induction hypothesis is true for all

r such that j r j< l, we prove it for j r j= l. Let r = r

0

� �, � 2 �. Since the set

of strings R is pre�x closed, r

0

2 R. Since j r

0

j< l, by induction if r

0

2 C

i

then

�

0

(C

0

; r

0

) = C

i

. But according to the de�nition of �

0

and the consistency property

of the partition, �

0

(C

i

; �) = C

j

i� the � successors of all strings in C

i

belong to

C

j

, r being one of them. Since the sample strings are a subset of R, we are done.

In order to partition the strings and their pre�xes into classes which ful�ll the

above requirements, we construct what Angluin calls an Observation Table, denoted

by T . The rows of the observation table are labeled by the (pre�x closed) set of

strings R, and the columns are labeled by a su�x-closed set of strings S. Initially

S includes only the empty string �, and in the course of the construction we add

additional strings. For r 2 R, s 2 S, the value of the entry in the table related to

row r and column s, T (r; s), is

�

A(r �s). Let row(r) be the row in the table labeled

by r. Then, at each stage of the construction , we can de�ne a partition of R into

classes in the following manner: two pre�x strings r

i

; r

j

2 R belong to the same

class i� row(r

i

) = row(r

j

).

By this de�nition and since � 2 S, all strings which belong to the same class

have the same label, and hence such a partition has the labeling property required

in Lemma 1. The consistency requirement on the partition translates into the

following consistency requirement on the table. For every r

i

and r

j

in R, and for

every � 2 �, if row(r

i

) = row(r

j

) and both r

i

�� and r

j

�� are in R, then row(r

i

��)

must equal row(r

j

��). If the table T is consistent then so is the partition de�ned

according to T . Thus, as mentioned above, we start by initializing S to be f�g and

�lling in this �rst column. Iteratively, and until the table is consistent, we do the

following. If there exist r

i

and r

j

in R and � 2 � such that row(r

i

) = row(r

j

), both

r

i

�� and r

j

�� are in R, and there exists a su�x s in S such that T (r

i

��; s) 6= T (r

j

��; s),

then we add � � s to S and query on all new entries. The pseudo-code for this

procedure appears in Procedure Partition-Sample (Figure 1).

Two issues we have not discussed yet are the size of A

0

and the running time of

the algorithm. As mentioned in the beginning of this section, we need a bound on

the size of A

0

so that we can apply Occam's Razor Cardinality Lemma. Clearly,

the number of classes in a partition induced by T in any iteration of the algorithm

is at most n. Otherwise there would be two strings r

i

and r

j

in R which reach the

same state in A, but for which there exists a string s such that

�

A(r

i

�s) 6=

�

A(r

j

�s).

Therefore the number of states in A

0

is at most n+1 � n

b

+1. But this also means

that the size of S is less than n, since each su�x added to S re�nes the partition.

Thus the algorithm is polynomial in the relevant parameters, as required.

2

8 DANA RON AND RONITT RUBINFELD

Procedure Partition-Sample()

Initialization:

let m =

1

�

(lnN

DFA

(n

b

+ 1; j�j) + ln

1

�

)

let R = fr

1

; r

2

; : : : ; r

N

g be the set of all pre�xes of m randomly generated

sample strings

S f�g

query all strings in R to �ll in the �rst column (labeled by �) in T

while table is not consistent:

8r

i

; r

j

2 R s.t. 8s 2 S T (r

i

; s) = T (r

j

; s)

if 9� 2 � s.t. [r

i

��; r

j

�� 2 R and 9s 2 S, s.t. T (r

i

��; s) 6= T (r

j

��; s)] then do

S S [f��sg

query all strings in R�f��sg to �ll in new column (labeled by ��s) in T

f else table is consistent g

Figure 1. Procedure Partition-Sample (Error-free Case)

Let us summarize this section. We started with the following trivial observation.

Given a bound n

b

on the number of states of the target automaton, the number

of automata with that size is 2

poly(n

b

;j�j)

, and hence we may apply Occam's Razor

Cardinality Lemma. We then show that if we can partition a given set of sample

strings and all their pre�xes into k disjoint classes which have the properties de�ned

in Lemma 2, then we can de�ne an automaton with k + 1 states that agrees with

the target automaton on all the strings in the sample. We conclude by describing

how to e�ciently construct such a partition with at most k = n

b

classes.

5. Overview of the Learning Algorithm

We start with a short overview of the learning algorithm described in Section 6.

The �nal goal of the algorithm is to reach a partition (of a large set of sample strings

and their pre�xes) which has similar properties to those de�ned in Lemma 1. Based

on this partition we construct our hypothesis automaton. The partition achieved

is consistent (as de�ned in Lemma 1), but it has a slightly modi�ed version of the

labeling property (de�ned in the same lemma). Namely, we relate a 0=1 label with

each class, and show that the true label of most strings is the same as the label of

their class.

Consequently, the hypothesis automaton constructed based on this partition agrees

with the target automaton A on all but a small fraction (no more than �=2) of

the sample strings. The number of classes in the partition and hence the num-

ber of states in the hypothesis is bounded by � lnm where � is a polynomial in

n

b

;

1

b

; j�j; L;

1

�

and ln

1

�

, and m is the size of the sample. We then (in Section 7)

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 9

use an Occam's Razor-like claim to prove that the hypothesis automaton is an �-

good hypothesis with respect to A. In Subsection 6.2.1 and in Section 8 we describe

two example runs of the algorithm.

We present the algorithm stage by stage, and show that each stage can be com-

pleted successfully with high probability. The stages of the algorithm are as follows.

1. We compute an estimate of the expert's error probability, � (Subsection 6.1).

2. We generate a set of sample strings according to D

L

, and partition all sample

strings and their pre�xes into disjoint classes, according to their (and some addi-

tional strings') observed behavior on a large set of su�xes of length logarithmic

in n

b

(Subsection 6.2). With high probability this initial partition is consistent,

and the number of classes in the partition is at most n. A re�nement of these

classes will correspond to the states in the hypothesis automaton.

3. We further re�ne the initial partition, and label the classes of the resulting

(�nal) partition. We show that the �nal partition is consistent and that with

high probabilty the correct label of most sample strings is the same as the label

of the class they belong to. We determine the labels of the classes in the �nal

partition using the following property of the initial partition. In the initial

partition, strings which are in the same class truly behave the same on most

su�xes among those they were tested on in the previous stage.

6. The Learning Algorithm

In the previous section we stated that the �nal goal of our algorithm is to reach

a partition of a given set of sample strings and their pre�xes which has similar

properties to those de�ned in Lemma 1, and based on this partition construct our

hypothesis automaton. We shall now be more precise with respect to the properties

of the partition and the constructed automaton.

As before let R = fr

1

; r

2

; : : : ; r

N

g be the set of all pre�xes of m given sample

strings (including the empty string and the sample strings themselves).

Lemma 2 Let P = fC

0

; C

1

; : : : ; C

k�1

g be a partition of R into k classes each labeled

0 or 1 having the following properties:

1. Labeling: All but at most �=2 of the sample strings have the same label according

to A as the label of their class.

2. Consistency: For every class C

i

and for every symbol � 2 �, all �-successors of

the strings in C

i

which are in R belong to the same class.

Then we can de�ne an automaton A

0

with k + 1 states which agrees with A on all

but at most �=2 of the sample strings.

Proof: A

0

is de�ned as in Lemma 1, only its accepting states correspond to classes

labeled 1. The sample strings on which A and A

0

di�er are exactly those whose label

10 DANA RON AND RONITT RUBINFELD

according to A di�ers from the label of their class, and their fraction is bounded

by �=2.

Before we embark upon a detailed description of how we reach a partition having

the properties de�ned in Lemma 2, we add the following de�nitions. The �rst is

based on terms de�ned in Section 3.

De�nition. Let u

1

and u

2

be strings and let V be a set of (su�x) strings. The true

di�erence rate of u

1

and u

2

on U is the fraction of strings in V on which u

1

and u

2

truly di�er. Their observed di�erence rate is the fraction of strings on which there

is an observed di�erence.

If � is the learning success parameter then �

0

def

= �=5. At each stage in the

algorithmwe bound the probability our algorithm has erred in that stage by �

0

. Our

total error probability is bounded by �. Our errors have two independent sources:

errors caused by our interaction with a fallible (as opposed to infallible) expert,

and errors due to our generation of a random sample. Most of our probabilistic

claims concern the �rst source, and it is self-evident which (two) claims deal with

the latter. In the various stages of the algorithm we refer to several parameters,

namely m, l

1

, and l

2

. Their values are set below.Changes

in Pars (will

recheck)

m =

2

14

j�j

2

n

8

b

�

4

6

b

�ln

3

2

14

j�j

2

n

8

b

L

2

�

4

6

b

�

; (1)

l

1

=

�

1

ln j�j

�ln

�

2

7

n

4

b

�

2

4

b

�ln

10(n

2

b

+ 1)

�

��

and (2)

l

2

=

�

1

ln j�j

�ln

�

2

7

n

6

b

�

2

4

b

�ln

20m

2

L

2

j�j

2

�

��

: (3)

6.1. Estimating the expert's error-probability

In this section we compute an estimate of the expert's error probability. Since the

learning algorithm is only given an upper bound, 1=2�

b

, on the error rate of the

expert, �, it needs to compute a more exact approximation of �. This approximation

is used in later stages of the algorithm.

The basic idea is the following. If two strings reach the same state in A, then any

observed di�erence in their behavior on any set of su�xes is due only to erroneous

answers given by the expert. If two strings reach di�erent states then the observed

di�erence in their behavior is due to the expert's errors and any di�erences in their

correct behavior on those su�xes. We show that for every pair of strings, and

for any set of su�xes V , if both strings reach the same state then their expected

observed di�erence rate on V is a simple function of the expert's error probability,

namely 2�(1 � �), and if they reach di�erent states, it is bounded below by this

function. Since there are at most n

b

states, given more than n

b

strings, at least

two must reach the same state.

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 11

Using the fact that the errors are independently distributed, we estimate the ex-

pert's error probability by looking at the minimumobserved di�erence rate between

all pairs of strings (among those chosen) on a large set of su�xes. We assume that

the pair of strings which gives the minimal value reach the same state, and calcu-

late the error probability that would generate such an observed di�erence rate. The

above is described precisely in Procedure Estimate-Error appearing in Figure 2.

Procedure Estimate-Error()

let W = fw

1

; :::;w

n

b

+1

g be any (arbitrary) set of n

b

+ 1 strings

let V

1

be all strings of length l

1

over �

query the expert on all strings in W �V

1

for each pair w

i

6= w

j

in W , compute their observed di�erence rate on V

1

:

let �

ij

P

v2V

1

(E(w

i

�v) � E(w

j

�v))=jV

1

j

let � = min

i;j

�

ij

if � > 1=2 then halt and output error

let ~� be the solution to � = 2~�(1� ~�) such that ~� � 1=2

Figure 2. Procedure Estimate-Error

In the following lemma we claim that with high probability � is a good estimate

of 2�(1� �) and ~� is a good estimate of �.

Lemma 3 Let � =

q

1

2

j�j

�l

1

ln 2(n

b

+ 1)

2

=�

0

. Then

1. Pr[j�� 2�(1� �)j > �] < �

0

.

2. If j�� 2�(1� �)j � � then j~� � �j � �=(2

b

).

In order to prove Lemma 3 we need the following two observations.

Observation 1 For any given pair of di�erent strings u

1

and u

2

, and for any given

(su�x) string v:

1. If

�

A(u

1

�v) =

�

A(u

2

�v), then Pr[E(u

1

�v) 6= E(u

1

�v)] = 2�(1� �).

2. If

�

A(u

1

�v) 6=

�

A(u

2

�v), then Pr[E(u

1

�v) 6= E(u

1

�v)] = (1 � �)

2

+ �

2

.

Hence, if V is any given set of (su�x) strings, and the fraction of strings in V on

which u

1

and u

2

truly di�er is �, then their expected observed di�erence rate on V

is

(1� �)�[2�(1 � �)] + � �[(1� �)

2

+ �

2

] (4)

= 2�(1� �) + �(1 � 2�)

2

: (5)

12 DANA RON AND RONITT RUBINFELD

Observation 2 If u

1

and u

2

are two di�erent strings, and V is a set of (su�x)

strings all of the same length, then for every two su�xes v

i

; v

j

2 V , for k and

l 2 f1; 2g, u

k

�v

i

6= u

l

�v

j

unless both k = l and v

i

= v

j

. Based on the above and

the independence of the noise, for any v

i

2 V , the event that E(u

1

�v

i

) 6= E(u

2

�v

i

)

is independent of the event that E(u

1

�v

j

) 6= E(u

2

�v

j

), for all j 6= i.

Proof of Lemma 3: 1st Claim: According to Observation 1, for any pair of

(di�erent) strings w

i

and w

j

in W , if w

i

and w

j

reach the same state in A, then for

every string v in V

1

, the probability that E(w

i

�v) di�ers from E(w

j

�v) is 2�(1� �).

Thus, according to Inequality 1 and Observation 2

Pr[�

ij

� 2�(1� �) > �] < e

�2�

2

jV

1

j

(6)

= e

�j�j

�l

1

ln

2(n

b

+1)

2

�

0

jV

1

j

(7)

=

�

0

2(n

b

+ 1)

2

: (8)

Similarly

Pr[2�(1� �)��

ij

> �] <

�

0

2(n

b

+ 1)

2

: (9)

If w

i

; w

j

reach di�erent states, then for each su�x string v in V the probability

that a di�erence is observed between w

i

and w

j

on v is at least 2�(1 � �). Thus

Pr[2�(1� �) ��

ij

> �] < �

0

=2(n

b

+ 1)

2

.

We now bound separately the probability that � is an overestimate of 2�(1� �),

and the probability that it is an underestimate of 2�(1��). What is the probability

that � > 2�(1 � �) + �? Because � was set to be the minimum value of all �

ij

s,

this event occurs only if for all i; j, �

ij

> 2�(1 � �) + �. Since (n

b

+ 1) � n + 1,

there are at least two strings w

k

and w

l

that reach the same state in A and hence

Pr[�� 2�(1� �) > �] � Pr[�

kl

� 2�(1� �) > �] (10)

<

�

0

2(n

b

+ 1)

2

<

�

0

2

: (11)

In order to underestimate 2�(1 � �), it su�ces that for one pair of strings the

observed di�erence rate is too small. Since there are less than (n

b

+ 1)

2

such pairs,

Pr[2�(1� �)�� > �] = Pr[9i; j s.t. 2�(1� �) ��

ij

> �] (12)

< (n

b

+ 1)

2

�

�

0

2(n

b

+ 1)

2

=

�

0

2

; (13)

and we have proved the �rst claim.

2nd Claim: Assume in contradiction that j~���j > �=(2

b

). If ~� > �+�=(2

b

) then

since ~� was de�ned to be at most 1=2 and 2~�(1� ~�) is an increasing function in the

range between 0 and 1=2,

� = 2~�(1� ~�) (14)

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 13

> 2(� +

�

2

b

)(1� � �

�

2

b

) (15)

= 2�(1� �) + (1� 2�)

�

b

�

�

2

2

2

b

: (16)

Since � � 1=2�

b

we get that

� > 2�(1� �) + 2��

�

2

2

2

b

: (17)

It is easily veri�ed by substituting the value of l

1

in the de�nition of � that � < 2

2

b

and thus � > 2�(1� �) + � contradicting the assumption in the statement of the

lemma.

If ~� < � � �=(2

b

) then

� = 2~�(1� ~�) (18)

< 2(� �

�

2

b

)(1� � +

�

2

b

) (19)

= 2�(1� �)� (1� 2�)

�

b

�

�

2

2

2

b

(20)

� 2�(1� �)� 2��

�

2

2

2

b

(21)

< 2�(1� �)� �; (22)

which again contradicts the assumption.

In the following stages of our exposition we assume that in fact � estimates

2�(1� �) within an additive factor of �, and that ~� estimates � within an additive

factor of �=(2

b

). The probability that this is not true is taken into account in the

�nal analysis.

6.2. Initial partitioning by subsequent behavior

In the second stage of the algorithm, described in this subsection, we make our �rst

step towards reaching a partition which has the properties de�ned in Lemma 2.

By the end of this stage we are able to de�ne (with high probability) an initial

consistent partition P

int

of a set of sample strings and their pre�xes into at most n

classes. Each class might include strings which reach di�erent states in the target

automatonA, but strings which reach the same state are not separated into di�erent

classes. We show that P

int

has an additional property which is used in the next

stage of the algorithm when the partition is further re�ned.

In the partitioning algorithm for the error-free case (described in Section 4), the

set of sample strings and their pre�xes, R, is �rst partitioned according to the labels

of the strings (their behavior on the empty su�x). If all strings have the same label

then we have a consistent partition composed of a single class. Otherwise, starting

14 DANA RON AND RONITT RUBINFELD

from a partition composed of two classes (a `1' class and a `0' class), we try and

reach consistency by further re�ning the partition. Whenever an inconsistency is

detected, i.e., there are two strings r

i

and r

j

in R which belong to the same class,

but there exists a symbol � such that r

i

�� and r

j

�� di�er on some su�x s and hence

belong to di�erent classes, then we have evidence that r

i

and r

j

should belong to

di�erent classes. By adding the su�x ��s to S and querying all strings in R�f��sg

to �ll in the new column in the Observation Table T , we automatically re�ne the

partition.

As noted in Section 4, the di�erence in behavior between r

i

and r

j

on � �s is

evidence that the two strings reach di�erent states in A, and thus in this process

we never separate strings which reach the same state into di�erent classes (though

strings which reach di�erent states might belong to the same class). In the presence

of errors however, a di�erence in the observed behavior between two strings on a

speci�c su�x, and in particular on the empty su�x (their observed labels), does not

necessarily mean that they reach di�erent states. Hence we must �nd a di�erent

procedure to di�erentiate between strings that reach di�erent states, and then show

how to use this procedure in our quest for a consistent partition.

In the previous section we observed (Observation 1), that for any pair of strings

and for any set of su�xes V , if both strings reach the same state in A then their

expected observed di�erence rate on V is 2�(1��), and if they reach di�erent states,

it is bounded below by this value. The larger the true di�erence rate between the

strings on the set of su�xes is, the larger the expected observed di�erence is. Thus,

since we have a good estimate, �, of 2�(1 � �), if the set of su�xes, V , is large

enough, then with high probability we are able to di�erentiate between strings

which reach states in A whose true di�erence rate on V is substantial. This idea

is applied in the most basic building block of our algorithm, described in Function

Strings-Test (Figure 6). This function is given as input two strings, and it returns

di�erent if there is a substantial observed di�erence rate between the two strings

on a prede�ned set of equal length strings V

2

, and similar otherwise.

As a consequence, given a set of strings U , we can de�ne an undirected graphBegin

change to

graphs

(practically

till analysis)

G(U), called a similarity graph. The nodes of G(U) are the strings in U , and

there is an edge between every pair of nodes (strings) for which Function Strings-

Test returns similar. We show that G(U) has the following properties (with high

probability):

1. Strings in U that reach the same state in A are in the same connected component

in G(U).

2. For each connected component � in G(U), the fraction of strings v in V

2

for

which there exist two strings u and u

0

which belong to � but for which

�

A(u�v) 6=

�

A(u

0

�v), is small.

We refer to the these properties as the �rst and the second properties of similarity

graphs. Given a similarity graph G(U) having these properties, and a new string

u =2 U , we can add u to the graph by putting an edge between u and all strings

u

0

2 U such that Strings-Test(u; u

0

) = similar. We show that with high probability

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 15

the resulting graph G(U[fug) has both properties of similarity graphs. We next

discuss the type of Observation Table constructed in this stage, and describe how

similarity graphs are used in its construction.

In the error-free case, the algorithm (Procedure Partition-Sample) constructs a

data structure in the form of an Observation Table T . In this stage we construct

(in Procedure Partition-Erroneous-Sample-1 { Figure 3) a similar table structure

T

1

. As in the error-free case, the rows of the table are labeled by the pre�x closed

set R of all sample strings and their pre�xes, and the columns are labeled by a

su�x closed set of strings S. Initially S includes only the empty string �, and in

the course of the construction we add additional strings. The di�erence between

T and T

1

is that the entrees of T are 0=1 valued, where for r 2 R and s 2 S,

T (r; s) =

�

A(r�s), while the entrees in T

1

are names of connected components in the

current similarity graph G(R�S). The entry T (r; s) is the name of the connected

component which r�s belongs to in G(R�S), denoted by �

G(R�S)

(r�s). Equivalently

to the error-free case, if row(r) is the row in T

1

labeled by r, then, at each stage

of the construction, we can de�ne a partition P of R into classes in the following

manner: two strings r

1

; r

2

2 R belong to the same class in P i� row(r

1

) = row(r

2

).

T

1

and the corresponding partition P are consistent, i� , for every r

1

and r

2

in R,

and for every � 2 �, if row(r

1

) = row(r

2

) and both r

1

�� and r

2

�� are in R, then

row(r

1

��) equals row(r

2

��).

Thus, in order to achieve a consistent partition, we begin by calling Procedure

Intialize-Graph (Figure 4) which constructs the graph G(R). This procedure simply

starts with a similarity graph G(fr

1

g) consisting of a single node r

1

2 R, and adds

all other strings in R to the graph by calling Procedure Update-Graph (Figure 5)

on each new string. For every r 2 R we let T

1

(r; �) = �

G(R)

(r). At this stage we

have a similarity graph which is de�ned on R, but it shall be extended to be de�ned

on the growing superset of R, namely R�S.

Iteratively, and until the table is consistent, we do the following. If there exist two

strings r

i

and r

j

in R and a symbol � 2 � such that row(r

i

) = row(r

j

), both r

i

��

and r

j

�� are in R, and there exists a su�x s in S such that T (r

i

��; s) 6= T (r

j

��; s),

then we add ��s to S and �ll in the new column in T

1

by determining the connected

component in the similarity graph of every string in R�f� �sg. If a string u in

R�f� �sg was in R�S before � �s was added to S, then its connected component

is known. Otherwise, we add u to the graph and simply put an edge between u

and every other node u

0

in the graph such that Strings-Test(u; u

0

) = similar. This

is done by calling Procedure Update-Graph on u. If u adds a new (single node)

connected component to the graph, or if it is added to a single existing connected

component, then we just �ll in the new entry with the name of this component.

If it causes several di�erent connected components in the graph to be merged into

one connected component, then we need to update T

1

, so that all appearances of

the old components are changed into the new one.

If strings that reach the same state in A always belong to the same connected

component, then the number of times components are merged is at most n, and

the total number of columns in T

1

is at most n

2

. If at any stage the number of

16 DANA RON AND RONITT RUBINFELD

classes in the partition de�ned according to T

1

is larger than n

b

, or the number of

columns in T

1

exceeds n

2

b

, then we know we have erred and we halt. Assuming that

Function Strings-Test always returns similar when called on pairs of strings that

reach the same state in A, strings that reach the same state in A always belong to

the same connected component, and the similarity graphs de�ned by the algorithm

always have the �rst property of similarity graphs. However, pairs of strings for

which Strings-Test returns di�erent since the observed di�erence rates between the

two strings on the set of su�xes V

2

is substantial, might also belong to the same

connected component due to merging of components. Nonetheless, we show that

these mergings of components do not greatly a�ect the second property of similarity

graphs.

Procedure Partition-Erroneous-Sample-1()

Initialization:

let R = fr

1

; r

2

; : : : ; r

N

g be the set of all pre�xes of m sample strings

generated according to D

L

S f�g

call Initialize-Graph() to construct G(R)

�ll in the �rst column of T

1

according to G(R):

for every r 2 R, T

1

(r; �) �

G(R)

(r)

if the number of connected components in G(R) is larger than n

b

then

halt and output error.

while table is not consistent:

8r

i

; r

j

2 R s.t. 8s 2 S T (r

i

; s) = T (r

j

; s)

if 9� 2 � s.t. [r

i

��; r

j

�� 2 R and 9s 2 S, s.t. T (r

i

��; s) 6= T (r

j

��; s)] then do

S S [f��sg

for every r 2 R

call Update-Graph(r���s) and let G be the current similarity graph

if any connected components were merged then

update respective entries in T

1

T

1

(r; ��s) �

G

(r���s)

if the number of classes in the partition de�ned according to T

1

is larger than n

b

; or if jSj > n

2

b

then

halt and output error

f else table is consistent g

Figure 3. Procedure Partition-Erroneous-Sample-1 (Initial Partition)

For ease of the analysis, we de�nerevised def.

�

max

def

= (1� 2�)

�2

"

r

2j�j

�l

2

(2n

2

b

ln j�j+ ln

4N

2

�

0

) + 2�

#

; (23)

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 17

Procedure Initialize-Graph()

initialize the similarity graph to be the single node graph G(fr

1

g)

U fr

1

g (U is the set of strings the similarity graph is de�ned on)

for i = 2 to N do

call Update-Graph(r

i

) to add r

i

to similarity graph

U U [fr

i

g

Figure 4. Function Initialize-Graph

Procedure Update-Graph(u)

if u =2 U then do

sim(u) fu

0

j u

0

2 U; Strings-Test(u,u

0

) = similar g

add u to similarity graph and

put an edge between u and every u

0

2 sim(u)

U U [fug

f else u is already in the similarity graph g

Figure 5. Procedure Update-Graph

Function Strings-Test(u

1

; u

2

)

let V

2

be the set of all strings of length l

2

(over �)

let �

1

q

1

2

j�j

�l

2

(2n

2

b

ln j�j+ ln

4N

2

�

0

) + �

query the expert on all strings (not previously queried) in

fu

1

g�V

2

and fu

2

g�V

2

let �

u

1

;u

2

P

v2V

2

[E(u

1

�v) � E(u

2

�v)]=jV

2

j

if �

u

1

;u

2

> �+ �

1

then return di�erent

else return similar

Figure 6. Function Strings-Test

18 DANA RON AND RONITT RUBINFELD

where � is de�ned in Lemma 3.

Lemma 4 Procedure Partition-Erroneous-Sample-1 always terminates, and with

probability at least 1 � �

0

, the partition P

int

de�ned according to T

1

upon termi-

nation, has the following properties:

1. P

int

is consistent (as de�ned in Lemma 2).

2. Strings that reach the same state in A belong to the same class in P

int

;

3. For each class C in P

int

, the fraction of su�xes v in V

2

on which there exist

any two strings in C that truly di�er on v is at most n ��

max

(where �

max

is

de�ned in Equation 23).

We start by proving a simple claim regarding the correctness of Strings-Test. Let

us �rst de�ne what we mean when we say that the function is correct.

We say that Strings-Test is correct with respect to a pair of strings u

1

and u

2

it is

called on if the following holds:

1. If u

1

and u

2

reach the same state in A, then Strings-Test(u

1

; u

2

) returns similar;

2. If u

1

and u

2

reach di�erent states in A and the fraction of su�xes in V

2

on which

they truly di�er is larger than �

max

then Strings-Test(u

1

; u

2

) returns di�erent;

Otherwise it is incorrect. If u

1

and u

2

reach di�erent states in A and the fraction of

su�xes in V

2

on which they truly di�er is at most �

max

then the function is correct

both if it returns similar and if it returns di�erent.new calcula-

tions only

Lemma 5 For any given pair of strings u

1

and u

2

, the probability Strings-Test is

correct with respect to u

1

and u

2

is at least 1� �

0

=(4N

2

j�j

2n

2

b

).

Proof: If u

1

and u

2

reach the same state in A, then as observed in Observation 1,

for every string v in V

2

, the probability that E(u

1

�v) di�ers from E(u

2

�v), is 2�(1��).

Recall that � is the estimate of 2�(1 � �), and according to our assumption � �

2�(1� �) � �. Thus based on Inequality 1 and Observation 2

Pr[Strings-Test(u

1

; u

2

) = di�erent]

= Pr[�

u

1

;u

2

> �+ �

1

] (24)

� Pr[�

u

1

;u

2

� 2�(1� �) > �

1

� �] (25)

< e

�2(�

1

��)

2

jV

2

j

(26)

= �

0

=(4N

2

j�j

2n

2

b

); (27)

and hence with probability at least 1��

0

=(4N

2

j�j

2n

2

b

), Strings-Test(u

1

; u

2

) returns

similar;

If u

1

and u

2

reach di�erent states in A and the fraction of su�xes on which

they truly di�er in V

2

is greater than �

max

, then according to Observation 1, the

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 19

expected observed di�erence rate between u

1

and u

2

on V

2

is greater than 2�(1�

�) + �

max

(1� 2�)

2

. Therefore

Pr[Strings-Test(u

1

; u

2

) = similar]

= Pr[�

u

1

;u

2

� �+ �

1

] (28)

� Pr[E(�

u

1

;u

2

)��

u

1

;u

2

> �

max

(1� 2�)

2

� �

1

� �] (29)

< �

0

=(4N

2

j�j

2n

2

b

); (30)

and hence with probability at least 1� �

0

=(4N

2

j�j

2n

2

b

), Strings-Test(u

1

; u

2

) returns

di�erent.

Proof of Lemma 4: Procedure Partition-Erroneous-Sample-1 terminates either

when the table is consistent, or when the number of classes in the partition de�ned

by T

1

is larger than n

b

, or when the number of su�xes in S is larger than n

2

b

. Since

each time inconsistency is detected we add a new su�x to S, if the procedure does

not terminate due to the �rst reason mentioned above, it must terminate due to

the third reason, and hence it always terminates.

In order to prove that with probability at least 1 � �

0

, P

int

has the properties

de�ned in the lemma, we show that if Function Strings-Test is correct with respect

to every pair of strings it is called on, then P

int

must have these properties. We change in

analysiswould have liked to bound the probability that Strings-Test is correct with respect

to every pair of strings it is called on, simply by the number of pairs of strings it is

called on, times the bound given in Lemma 5 on the probability it errs on one pair.

However, since the pairs of strings Strings-Test is called on are not all chosen prior

to receiving any of the experts labels, but rather are chosen dynamically, where

the choice of a new pair depends on previous answers given by the expert, we may

not use this simple bound. Instead, we need to consider all possible pairs of strings

Strings-Test may be called on, given our choice of R. Let

�

S be the set of all strings

over � of length at most n

2

b

. Since the size of S does not exceed n

2

b

, and since every

su�x added to S is at most one symbol longer than the longest su�x already in

S, all strings in S have length at most n

2

b

. Hence, S is always a subset of

�

S. Let

D(R)

def

= fR�

�

Sg � fR�

�

Sg. Then the set of pairs of strings which Strings-Test is

called on is always a subset of D(R). Since the size of D(R) is at most (N�2�j�j

n

2

b

)

2

,

and by applying Lemma 5, the probability that Strings-Test is correct on all pairs

in D(R), (which are all possible pairs it may be called on given R), is at least 1��

0

. end

of prob anal,

but back to

graphs

From now on we assume that Strings-Test is correct with respect to all pairs of

strings it is called on. We refer to this assumption in the next steps of this proof

as the correctness assumption. Based on the correctness assumption we now prove

that P

int

has all three properties de�ned in the lemma.

2nd Property: Based on the correctness assumption, and the construction of the

similarity graphs, strings which reach the same state always belong to the same

connected component. Since two strings r

i

and r

j

in R belong to di�erent classes

in P

int

only if for some su�x s in S, r

i

�s and r

j

�s belong to di�erent components

20 DANA RON AND RONITT RUBINFELD

(and thus reach di�erent states), then the following must also be true. At any stage

in the procedure, strings in R that reach the same state, belong to the same class

(in the partition de�ne according to T

1

at that stage). Thus, in particular, P

int

has

the second property de�ned in the lemma.

1st Property: In order to prove that P

int

is consistent we must show that under the

correctness assumption, Procedure Partition-Erroneous-Sample-1 does not termi-

nate with an error message, which means that it must terminate \naturally" when

T

1

, and hence P

int

, are consistent. We have just shown in the previous paragraph

that the number of classes in the partition de�ned in any stage of the procedure,

is at most n, which is bounded by n

b

. Hence the procedure does not halt due to

the number of classes being larger than n

b

. It remains to show that the number of

su�xes added to S is no larger than n

2

b

.

Each time connected components are merged, the number of components de-

creases by at least 1. Since the number of components at any stage can be no

larger than n, components are merged at most n � 1 times. (If all strings belong

to the same component then we necessarily have a consistent partition). Every

time a su�x is added and no components are merged, then the partition is re�ned,

and the number of classes grows by at least 1. Hence, between every two merges

of components we can add at most n � 1 su�xes to S, and the total number of

su�xes in S is bounded by n

2

b

.

3rd Property: We prove that this property holds after every call to Update-

Graph, and for each set of strings that belong to the same connected component at

that stage. Since strings in R which belong to the same class belong to the same

connected component, the claim follows.

For each connected component � we de�ne the following undirected graph G

�

A

.

The nodes in G

�

A

are states in A reached by strings belonging to �. We put an

edge between two states q and q

0

i� there is an edge in � between some pair of

strings u and u

0

such that u reaches q in A and u

0

reaches q

0

. Since � is a connected

component, G

�

A

must be connected as well.

Given one such graph G

�

A

, we look at any arbitrary spanning tree of the graph.

For each edge (q

1

; q

2

) in the tree, let D(q

1

; q

2

) be the subset of strings in V

2

on which

q

1

and q

2

truly di�er. Under the correctness assumption, jD(q

1

; q

2

)j � �

max

�jV

2

j.

Let u and u

0

be two strings in � which reach q and q

0

, respectively. Let q =

q

1

; q

2

; : : : ; q

l

= q

0

, be a path in the tree between q and q

0

. Then all the su�xes

in V

2

on which u and u

0

truly di�er belong to the

S

l�1

i=1

D(q

i

; q

i+1

). Hence, all the

su�xes v in V

2

such that there exist any two strings in � that truly di�er on v must

belong to the union of D(q

i

; q

j

) over all edges (q

i

; q

j

) in the spanning tree of G

�

A

.

Since the number of nodes in G

�

A

is at most n, so are the number of edges in any

spanning tree of the graph, and the claim follows.

We assume from now until the �nal analysis that P

int

has the properties de�ned

in Lemma 4.

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 21

6.2.1. Two Examples

In this subsection we begin to describe two example runs of our algorithm. We

complete this description in Section 8 after we present the next and �nal stage of

the algorithm.

q 0 q 1

0/1

0/1

Figure 7. First example target automaton. q

1

is the single accepting state.

In the �rst example, the target automaton is a two state automaton over the

alphabet f0; 1g, which accepts all strings of odd length (and rejects all strings of

even length). It is depicted in Figure 7. We now describe what happens in the

initial partitioning. For every pair of strings r

i

and r

j

in R such that r

i

reaches q

0

and r

j

reaches q

1

, r

i

and r

j

di�er on all strings in V

2

. Hence, with high probability,

all strings in R that reach q

0

initially are in the same connected component in

G(R), and all strings that reach q

1

are in a di�erent connected component. After

�lling in the �rst column in T

1

labeled by �, we already have a consistent partition

into two classes C

0

and C

1

, where all strings in C

0

reach q

0

and all strings in C

1

reach q

1

. Since the classes in this partition exactly correspond to the states of

the target automaton, there exists a labeling of the classes that has the labeling

property de�ned in Lemma 2. However, in the next section we �rst further re�ne

the partition before labeling the classes.

In the second example, the target automaton is a �ve state automaton over the

alphabet f0; 1g, which accepts all strings of length 2 modulo 3 which end either

with the symbols 00 or with the symbols 11 (and rejects all other strings). It is

depicted in Figure 8.

Assume that the length of l

2

is 0 modulo 3 (the other two cases are very similar).

Then for every pair of strings r

i

and r

j

in R such that r

i

reaches one of q

0

, q

1

or q

2

and r

j

reaches either q

3

or q

4

, r

i

and r

j

truly di�er on exactly half of the

strings in V

2

(all those that end either with a 00 or with a 11). For every pair of

strings r

i

and r

j

such that r

i

reaches one of q

0

, q

1

or q

2

, and r

j

reaches a di�erent

state among these three states, r

i

and r

j

truly behave the same on all strings in V

2

.

The same is true for every pair of strings that reach either q

3

or q

4

. Hence, with

high probability, all strings in R that reach one of q

0

, q

1

or q

2

are initially in one

connected component in G(R), and all strings that reach q

3

or q

4

are in a di�erent

connected component. After �lling in the �rst column in T

1

labeled by � with the

22 DANA RON AND RONITT RUBINFELD

q 0

q 1

q 2

q 3

q 4

0/1

0/1

0
0

0
1

1

1

Figure 8. Second example target automaton. q

3

is the single accepting state.

names of these two components, we shall observe the following inconsistency. If r

i

is a string that reaches q

0

, and r

j

is a string that reaches either q

1

or q

2

, and if for

� = 0=1, both r

i

��, and r

j

�� are in R, then r

i

�� and r

j

�� are in di�erent connected

components (since r

i

�� reaches either q

1

or q

2

, and r

j

�� reaches either q

3

or q

4

).

After resolving this inconsistency by adding � to S, the table is consistent, and we

have three classes. Let us denote these classes by C

0

, C

1=2

and C

3=4

, where strings

in C

0

reach q

0

, strings in C

1=2

reach either q

1

or q

2

, and strings in C

3=4

reach either

q

3

or q

4

. It is clear that there is no labeling of these classes that has the labeling

property de�ned in Lemma 2, unless there are either very few strings in R that

reach q

3

, or very few that reach q

4

. In the next section we show how this partition

is further re�ned, and how the new classes are labeled.

6.3. Final partitioning by correction

We reach this stage with an initial partition P

int

that has with high probability the

properties de�ned in Lemma 4. In this section we continue re�ning P

int

. We then

label the classes in the �nal partition, P

fnl

, so that with high probability the labeled

partition has the labeling property de�ned in Lemma 2. Namely, for most sample

strings, the label of their class is their correct label. We give an upper bound on the

number of classes in P

fnl

, so that in Section 7 we can use an Occam's Razor type

of argument in order to prove that with high probability the hypothesis automaton

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 23

de�ned based on P

fnl

is an �-good hypothesis. The resulting automaton might be

much larger than the minimal equivalent automaton and so we apply an algorithm

for minimizing DFAs [18], [27], [17], and �nd the smallest equivalent automaton.

The �nal partition is de�ned in the following simple manner. For any given string

r 2 R, let r = r

p

�r

s

where jr

s

j = l

2

. Let the pre�x class of r, denoted by C

p

(r) be

the class r

p

belongs to in P

int

. Then

P

fnl

def

= f fr j C

p

(r) = C; r

s

= sg j C 2 P

int

; jsj = l

2

g

[ffrg j jrj < l

2

g : (31)

P

fnl

is a re�nement of P

int

since all strings that have the same pre�x class and the

same su�x (of length l

2

) must belong to the same class in the initial partition. For

each class C 2 P

int

, and for every string s of length l

2

, let (C; s) denote the class

in P

fnl

which consists of all strings in R whose pre�x class is C, and whose su�x

of length l

2

is s. There are at most n

b

�j�j

l

2

classes of this kind, and at most j�j

l

2

singleton classes each consisting of a single string of length less than l

2

. The size of

the �nal partition is hence at most (n

b

+1)j�j

l

2

, and thus grows only logarithmically

with the sample size m. We later show that since the initial partition is consistent,

so is this �nal partition.

The classes in P

fnl

are labeled by calling Procedure Label-Classes (Figure 9). For

each class (C; s) the procedure labels the class by the majority observed label of

the strings in C�fsg. If all strings in C truly behave the same on the su�x s, and

if C is of substantial size, then with high probability the majority observed label is

the true label of all strings in the class (C; s) (which is equivalent to fC�fsgg\R).

In this case we say that (C; s) is a good class. Based on the assumption that P

int

has the third property de�ned in Lemma 4, we show that the fraction of sample

strings whose correct label di�ers from the label of their class, is small, and hence

P

fnl

has the labeling property de�ned in Lemma 2. The singleton classes are all

labeled by a default value 0, since we do not have a reliable way of determining

their correct labels. This is an arbitrary choice and any other labeling of these

classes would not alter our analysis. In particular, there are some special cases

where a di�erent labeling would give a better bound on the number of states in the

hypothesis automaton. We return to this issue at the end of this subsection.

The initial partition thus serves two purposes. It is used as a basis for the �nal

partition, and it is used to compute the correct labels of most sample strings.

Lemma 6 1. With probability at least 1�2�

0

, The fraction of sample strings whose

correct label di�ers from the label computed for their class by Procedure Label-

Classes is at most �=2.

2. P

fnl

is always consistent, and jP

fnl

j � (n

b

+ 1)j�j

l

2

.

Our main e�orts are directed towards proving the �rst claim of Lemma 6. In

order to do this we need to bound the fraction of sample strings for which the label

computed by Label-Classes for their class is incorrect with non-negligible probabil-

ity.

24 DANA RON AND RONITT RUBINFELD

Procedure Label-Classes()

for each class (C; s) 2 P

fnl

let the label of (C; s) be maj(E(r�s) j r 2 C).

for each class fr

i

g 2 P

fnl

(where jr

i

j < l

2

)

let the label of fr

i

g be 0.

Figure 9. Procedure Label-Classes

We �rst formally de�ne the notions of good and bad classes mentioned previously.

De�nition. We say that a class (C; s) 2 P

fnl

is good if all strings in C truly behave

the same on s. Otherwise it is bad.

We know (Lemma 4) that with high probability, for every class C in P

int

, the

fraction of su�xes s for which (C; s) is bad, is small. We would like to prove

that with high probability the sample chosen is such that most sample strings of

length at least l

2

belong to good classes in P

fnl

. To do so we prove that with high

probability no string of length l

2

is a su�x of too large a fraction of the sample

strings. Assuming this is the case, then in particular all strings s for which there

exists a class C 2 P

int

, such that (C; s) is bad can not be su�xes of too large a

fraction of the sample strings, and only this small fraction of the sample strings

belong to bad classes.

Lemma 7 With probability at least 1� �

0

, there is no string of length l

2

which is a

su�x of more than a fraction of 2�j�j

�l

2

of the sample strings.

Proof: Since the sample strings are uniformly distributed, for every given su�x

of length l

2

, the expected fraction of sample strings having that su�x is j�j

�l

2

.

Applying Inequality 2, we get that for every given su�x of length l

2

, the probability

that there are more than 2m�j�j

�l

2

strings with that su�x (i.e., twice the expected

number) is less than e

�

1

3

j�j

�l

2

m

. The probability this occurs for any su�x of length

l

2

is less than j�j

l

2

e

�

1

3

j�j

�l

2

m

, which is less than �

0

since m > 3j�j

l

2

ln(j�j

l

2

=�

0

).

There are two more types of classes in the �nal partition for which we cannot

claim Label-Classes is reliable in their labeling (even though they are good) and

which we deal with in the proof of Lemma 6: the singleton classes and the classes

(C; s) for which jCj is small. In order to prove that with high probability Procedure

Label-Classes correctly labels all classes (C; s) which are good and for which jCj is

not too small, we need the following simple claim.

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 25

Lemma 8 Let B be any set of strings which have the same correct label ` 2 f0; 1g,

and let 0 < �

00

< 1. If jBj �

1

2

�2

b

(ln 1=�

00

), then with probability at least 1 � �

00

,

the majority observed label of the strings in B is `.

Proof: Since the expected value of the observed majority label is 1� �,

Pr[majority observed label is wrong] < e

�2(

1

2

��)

2

jBj

� e

�2

2

b

jBj

� �

00

:

We are now ready to prove Lemma 6.

Proof of Lemma 6:

1st Claim: As mentioned previously, there are three kinds of sample strings for

which the label of their class in P

fnl

might di�er from their correct label:

1. Strings shorter than l

2

.

2. Strings which belong to bad classes.

3. Strings which belong to good class (C; s) but for which the majority value of

the observed labels in C�fsg is incorrect.

There are at most j�j

l

2

� (�=8) �m of the �rst kind.

We next turn to the second kind of mislabeled strings. Based on our assumption

that P

int

has the third property de�ned in Lemma 4, we know that for each class

C 2 P

int

, the fraction of strings s 2 V

2

, such that (C; s) 2 P

fnl

is bad, is at most

n��

max

(where �

max

is de�ned in Equation 23). There are at most n classes in P

int

,

and hence the fraction of strings s in V

2

such that there exists any class C 2 P

int

for which (C; s) is bad is at most n

2

��

max

. Applying Lemma 7, we get that with

probability at least 1 � �

0

the fraction of mislabeled sample strings of the second

kind is at most

2n

2

��

max

= 2n

2

(1� 2�)

�2

"

r

2j�j

�l

2

(2n

2

b

ln j�j+ ln

4N

2

�

0

) + 2�

#

: (32)

Bounding (1 � 2�) from below by 2

b

, and substituting the values of l

2

and � in

Equation 32 we get that

2n

2

��

max

� n

2

b

�2

b

=2

�

"

s

�

2

4

b

2

6

n

6

b

ln

20m

2

L

2

j�j

2

�

�(2n

2

b

ln j�j+ ln

4m

2

L

2

�

0

)

+ 2

v

u

u

t

�

2

4

b

2

8

n

4

b

ln

10(n

2

b

+1)

�

� ln 2(n

b

+ 1)

2

=�

0

3

5

<

�

8

(33)

26 DANA RON AND RONITT RUBINFELD

It remains to bound the fraction of mislabeled sample strings of the third kind.

We show that with probability at least 1� �

0

there are less than (�=4)m mislabeled

sample strings of this kind. It follows that with probability at least 1 � 2�

0

, the

fraction of mislabeled sample strings of any one of the three types mentioned above

is at most �=2.

Let (C; s) be a good class, and let jCj � �

2

, where

�

2

def

=

1

2

�2

b

(n

b

ln 2 + ln

j�j

l

2

�

0

): (34)

Based on Lemma 8, the probability that the majority observed label of the strings

in C �fsg is not their correct (common) label, is less than �

0

=(2

n

b

j�j

l

2

). For a

given class C 2 P

int

, the number of (nonempty) classes (C; s) is at most j�j

l

2

. The

initial partition into classes (which induces a partition into pre�x classes) is not

chosen independently from the expert's (correct and incorrect) labels of the strings

in R�V

2

, but is rather de�ned based on the knowledge of these labels. Hence, we

must consider all possible pre�x classes of strings in R. We assume that the initial

partition has the properties de�ned in Lemma 4, and speci�cally that it has the

second property de�ned in the lemma, namely that all strings that reach the same

state in A belong to the same class in the initial partition. Since there are at most

2

n

b

subsets of the states in A, and for each such subset there is a set of strings in

R that reach the states in that subset, there are at most 2

n

b

possible pre�x classes.

Therefore, the probability that for all possible pre�x classes C of size at least �

2

,

and for all possible su�xes s such that (C; s) is a good class, the majority observed

label of the strings in C�fsg is the correct label, is at least 1� �

0

.

Therefore, with probability at least 1 � �

0

, all mislabeled strings of this (third)

kind are strings which belong to classes (C; s) such that jCj < �

2

. For each such C,

the number of sample strings which belong to (C; s) for any s, is at most �

2

j�j

l

2

.

There are less than n

b

such classes, and hence the number of mislabeled strings of

this kind is less than

n

b

�

2

j�j

l

2

�

1

2

n

b

�2

b

�

n

b

ln 2 + ln(

2

7

n

6

b

j�j

�

2

4

b

�

0

� ln

20m

2

L

2

j�j

2

�

�

�

2

7

n

6

b

j�j

�

2

4

b

� ln

20m

2

L

2

j�j

2

�

(35)

<

2

6

n

8

b

j�j

�

2

6

b

�

�

ln

2

9

n

6

b

�

2

4

b

�

0

+ ln ln

20m

2

L

2

j�j

�

�

� ln

20m

2

L

2

j�j

�

(36)

< �=4m (37)

2nd Claim: The bound on the size of P

fnl

follows directly from its de�nition. It

remains to show that it is a consistent partition. Let (C; s) be any class in P

fnl

where s = s

1

: : : s

l

2

, let � be a symbol in �, and let r

1

= r

1p

�s and r

2

= r

2p

�s be

two strings which belong to (C; s) such that both r

1

�� and r

2

�� are in R. Since r

1

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 27

and r

2

both have the same su�x of length l

2

, so do r

1

�� and r

2

��. Since r

1

and r

2

have the same pre�x class C in P

int

(i.e., r

1p

and r

2p

belong to the same class in

P

int

), and P

int

in consistent, r

1

�� and r

2

�� must belong to the same pre�x class as

well (since r

1p

�s

1

and r

2p

�s

1

must belong to the same class). It follows that r

1

��

and r

2

�� belong to the same class in P

fnl

.

In Lemma 6 we give an upper bound on the number of classes in the partition

which is considerably larger than the number of states in the target automaton. As

mentioned previously, we can try and minimize the automaton de�ned based on this

partition. If all classes (C; s) are good and all classes (including the singletons) are

correctly labeled, and if we do not need to add the sink class, then this minimization

results in an automaton of size at most n. Though we do not have a general way

to avoid errors resulting from the existence of bad classes or of small pre�x classes,

we can sometimes avoid errors when labeling the singleton classes.

As we have mentioned in our discussion of Procedure Label-Classes (prior to the

analysis above), our choice of labeling by 0 all singleton classes, is arbitrary, and

any other labeling will do. We next describe a case in which a di�erent labeling is

more advantageous.

Assume that P

fnl

consists only of good classes (C; s) for which jCj � �

2

. In

particular, this may be the case when P

int

exactly corresponds to the target au-

tomaton in the sense that no two strings which belong to the same class in the

initial partition reach di�erent states, and for each state there exists a string that

reaches it. If the target automaton is such that: (1) there is non-negligible prob-

ability of passing each state in a random walk of length L; (2) every two states

either di�er on a non-negligible fraction of strings of length l

2

, or reach such a pair

of states (that di�er on a non-negligible fraction of strings of length l

2

) on a walk

corresponding to some string s; then with high probability P

fnl

has the properties

mentioned above. The �rst example described in Subsection 6.2.1 is of this type.

Suppose that when labeling the classes (C; s) we notice that for a class C

0

2 P

int

,

all classes (C; s) which include strings that belong to C

0

are labeled the same.

Then we label all singleton classes which include strings that reach C

0

with the

same label. If the initial partition in fact corresponds to the target automaton,

then this labeling is correct with high probability. We would also like to note that

in the preliminary version of this paper [29] we added an additional stage to the

algorithm (between the initial and �nal partitioning) which treated this special case

in a di�erent manner.

7. Putting it all together

We have shown how to achieve with high probability a labeled partition of a given

set of sample strings and their pre�xes that is consistent and for which the fraction

of sample strings whose label according to A di�ers from the label of their class is

at most �=2. We have also shown that the number of classes in this partitioning is

at most � lnm where � is a polynomial in n

b

,

1

b

, j�j, L,

1

�

and ln

1

�

. Hence, we can

28 DANA RON AND RONITT RUBINFELD

apply Lemma 2 and construct a hypothesis automaton with � lnm states which

agrees with A on all but �=2 of the sample strings. Adding up the probabilities

our algorithm errs in each of its stages and using the following Occam's Razor-like

lemma, we prove that with probability at least 1� �, our hypothesis automaton is

an �-good hypothesis with respect to A and D

L

.

Lemma 9 Let � be a polynomial in n

b

;

1

b

; j�j; L;

1

�

; and ln

1

�

0

; and let

�

0

= max(2j�j� log

2

�; ln

1

�

0

). Given m �

64�

0

�

2

(ln

64�

0

�

2

)

3

strings chosen according to

D

L

, if an automaton of size at most � lnm disagrees with A on no more than �=2

of the sample strings, then the probability that it is an �-bad hypothesis with respect

to A is at most �

0

.

Proof: Let A

0

be an automaton of size at most � lnm which is an �-bad hypothesis

with respect to A. Given a random sample of size m labeled according to A, the

expected number of strings on which A

0

disagrees with A is at least �m. According

to Inequality 1, the probability that A

0

disagrees with A on no more than

�

2

m of

the m random strings, is at most e

�2(�=2)

2

m

. Since the number of automata which

are �-bad hypotheses with respect to A is at most

N

DFA

(� lnm; j�j)� 1 < 2

2j�j� lnm log

2

(� lnm)

< 2

�

0

(lnm)

2

;

the probability we found such an automaton which disagrees with A on no more

than

�

2

of the sample strings is at most 2

�

0

(lnm)

2

e

�

1

2

�

2

m

. But for m �

64�

0

�

2

(ln

64�

0

�

2

)

3

m

(lnm)

2

�

64�

0

�

2

(ln

64�

0

�

2

)

3

(ln

64�

0

�

2

+ 3 ln ln

64�

0

�

2

)

2

(38)

�

64�

0

�

2

(ln

64�

0

�

2

)

3

16(ln

64�

0

�

2

)

2

>

4�

0

�

2

:

Thus

�

0

(lnm)

2

<

1

4

�

2

m: (39)

And so

2

�

0

(lnm)

2

e

�

1

2

�

2

m

< e

�

1

4

�

2

m

< e

�16�

0

< �

0

: (40)

It is easily veri�ed that the algorithm we have described is polynomial in n

b

,

1

b

,

j�j, L,

1

�

and ln

1

�

. Consequently we have proven our main theorem:

Theorem 1 The learning algorithm described in this paper is a good learning al-

gorithm for fallible DFAs

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 29

8. Examples Revisited

We now return to the example runs presented in Subsection 6.2.1 and see how the

algorithm completes these runs.

We start with the �rst example. Remember that following the initial partitioning

we have two classes - C

0

includes the strings in R that reach the state q

0

and C

1

includes the strings that reach q

1

. For each class C

i

(i 2 f0; 1g), all strings in the

classes (C

i

; s) (jsj = l

2

) in P

fnl

, and in general, all strings in the sets C

i

�fsg have

the same correct label since they belong to the same class in P

int

. Assuming that

both C

0

and C

1

are larger than �

2

,

3

all these classes are labeled correctly.

If all singleton classes are labeled 0, then the automaton based on this partition

(depicted in Figure 10) has the following form. It consists of a complete binary

tree of depth l

2

� 1 whose states are all rejecting states, and whose root, � is the

starting state of the automaton. All transition from the leaves of this tree are to

the states (C

0

; s) which are all rejecting states. All transition from this layer are to

the layer of states (C

1

; s), which are all accepting states, and which traverse back

to the �rst layer. The minimized automaton is depicted in Figure 11.

Note that if we use the modi�ed version of Label-Classes as described in the end

of Subsection 6.3 for labeling the singleton classes, then we can label these classes

correctly as well. The (minimized) hypothesis automaton which is based on P

fnl

is equivalent to the target automaton.

Also note that in this example (when the modi�ed version is not used), the

following modi�cation can be employed as well. Since all strings of a given length

reach the same state, and since the �rst l

2

states do not belong to the strongly

connected component of the underlying graph, and hence only the short strings

(which we already \gave up" on their correct labeling) reach them, we can remove

the �rst l

2

states from the hypothesis. The new starting state is chosen so that the

longer strings reach the states corresponding to their class in the �nal partition,

and are therefore labeled the same by the modi�ed hypothesis as by the original

hypothesis. The modi�ed hypothesis is then equivalent to the target automaton.

We now return to the second example. Remember that in this example, strings

that reach the same class in P

int

do not necessarily have the same correct label.

Speci�cally, part of the strings in the class C

3=4

reach an accepting state (q

3

) in

the target automaton, and part of the strings reach a rejecting state (q

4

). Note

though, that all strings in this class that end either with a 00 or with a 11 reach q

4

,

while all other strings reach q

3

. Based on our assumption that the length of l

2

is

0 modulo 3 (the other two cases are very similar), the pre�x class of all strings in

C

3=4

is C

3=4

. For every s, jsj = l

2

of the form s

0

00 or s

0

11, all strings in C

3=4

�fsg

have the same correct label 1, and for every s of the form s

0

01 or s

0

10, all strings

in C

3=4

�fsg have the same correct label 0. Assuming jC

3=4

j is larger than �

2

, all

these classes are labeled correctly. Similarly, if both C

0

and C

1=2

are larger than

�

2

, then all classes (C

0

; s) (C

1=2

; s), and (for every s) are labeled correctly by 0.

If all singleton classes are labeled 0, then the automaton based on this partition

will have the form depicted in Figure 12. Its minimized version is depicted in

30 DANA RON AND RONITT RUBINFELD

(C0 ,s) (C1 ,s)

l 2 - 1

.

.

.

0/1

0/1

0/1

0/1

0

1

_

_

. . .
1

λ

1
1

1
0

0

0

0

Figure 10. Hypothesis automaton for the �rst example.

l2 q l2+10 qq q
1 -1l2

q
0/1

0/1

. . . 0/10/1

Figure 11. Hypothesis automaton for the �rst example (minimized version).

Figure 13. In this case the modi�cation of Label-Classes mentioned in the �rst

example cannot help label the singleton classes correctly. However, equivalently

to the �rst example, we can remove the states that do not belong to the strongly

connected component and choose the new starting state accordingly.

9. Extensions and Further Research

As mentioned in the Introduction, our result can be extended to the following cases:

1. The expert's errors are not completely independent but rather are distributed

only k-wise independently for k = O(1).

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 31

l 2 - 1

(C0 ,s)

(C3/4,s’’00)

(C3/4

(C3/4,s’’01)

(C3/4 ,s’’10)

1
_

0

1

.

.

.

0

0

1

1

0/1

0/1

0

1

,s’’11)

0/1

0/1

0/1

0/1

(C1/2,s’0)

(C1/2,s’1)

0
_

. . .
1

0

0

0

1

1

λ

Figure 12. Hypothesis automaton for second example.

2. The expert's error probability is dependent on the length of the input string.

3. The target automaton has more than two possible outputs.

We �rst describe in short the changes that should be made to the algorithm in

each of the cases above and then discuss briey some other possible extensions and

further research directions.

9.1. k-wise Independence of the Expert's Error Probability

In this case, the algorithm need not be altered, only the size of the sample and the

sizes l

1

and l

2

of the length of the su�xes on which the sample strings behavior is

tested need to be changed. This is due to the fact that we cannot use Inequality 1

when bounding the error probability in di�erent stages of the algorithm, since

Inequality 1 is only valid under the assumption that the random variables are

independent. Instead, we can use the following inequality that is derived from

the high moment inequality of which Tchebychev's inequality is a special case. Let

X

1

; X

2

; ::::X

M

be M k-wise independent 0=1 random variables where Pr[X

i

= 1] =

p

i

, and 0 < p

i

< 1. Let p =

P

i

p

i

=M .

32 DANA RON AND RONITT RUBINFELD

q 0 q 1
q l2-1

q l2

q l2

q l2+2

q l2+3

q l2+4

0/1

0/1

0
0

0
1

1

10/1 0/1
. . .

+1

Figure 13. Hypothesis automaton for second example (minimized version).

Inequality 3 For 0 < � � 1:

Pr[j

P

M

i=1

X

i

M

� pj > �] <

k

k

M

k

2

��

k

If all p

i

's are equal then we can get a slightly better bound in which the above

expression is multiplied by p

k

2

.

In order that our claims regarding the upper bounds on the error probabilities in

all the stages of the algorithm remain true, we must enlarge the size of our sample,

m, and the size of the sets V

1

and V

2

on which we test the behavior of the sample

strings. It can be shown that the size of these sets remains polynomial in the

relevant parameters of the problem, and that the size of the hypothesis automaton

grows like m

�

for � < 1. Therefore the learning algorithm remains a good learning

algorithm for fallible DFAs.

9.2. The Expert's Error Probability is Dependent on the Length of the

Input Strings

In this case we assume that for every length l � 0, the expert errs with probability

�

l

� 1=2�

b

on strings of length l. We use the same technique presented in Sec-

tion 6.1, for estimating each �

l

, only now we compute the corresponding estimate,

�(l), of 2�

l

(1� �

l

), for every l

1

� l � L + l

2

4

. This is done by picking a set W

l

of

n

b

+1 strings all of the same length l� l

1

and letting �(l) be the outcome of Func-

tion Estimate-Error (Figure 2) when executed on the set W

l

(and, as before, on the

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 33

set of all su�xes of length l

1

). When bounding the error probability of the revised

algorithm, we must take into account that we want that with high probability all

estimates �(l) be approximately correct.

The fact that the error probability might di�er for di�erent string lengths must

be taken into account in the following places:

1. The statements in Observation 1 should now be: For any given pair of di�erent

strings u

1

and u

2

, and for any given (su�x) string v:

(A) If

�

A(u

1

�v) =

�

A(u

2

�v), then

Pr[E(u

1

�v) 6= E(u

1

�v)] = (1� �

ju

i

j+jvj

)�

ju

j

j+jvj

+ (1� �

ju

j

j+jvj

)�

ju

i

j+jvj

:

(B) If

�

A(u

1

�v) 6=

�

A(u

2

�v), then

Pr[E(u

1

�v) 6= E(u

1

�v)] = (1� �

ju

i

j+jvj

)(1 � �

ju

j

j+jvj

) + �

ju

i

j+jvj

�

ju

j

j+jvj

:

Hence, if V is a set of (su�x) strings, all of length l, and the fraction of strings

in V on which u

1

and u

2

truly di�er is q, then their expected observed di�erence

rate on V is

�

ju

1

j+l

+ �

ju

2

j+l

� 2�

ju

1

j+l

�

jt

j

j+l

+ q(1� 2�

ju

1

j+l

)(1� 2�

ju

2

j+l

):

In the special case where ju

1

j = ju

2

j = l

0

we of course get the same result as in

the original version of Lemma 1, where � is exchanged by �

l

0

+l

.

Thus there is still a gap between the expected value of the observed di�erence

in behavior in the case where two strings reach the same state and in the case

they do not reach the same state. When exploiting this gap in the process

of the initial partitioning (speci�cally in Function Strings-Test appearing in

Figure 6), we must take into account that the expected value of the observed

di�erence rate between two strings depends on their lengths, and use the correct

expression.

2. In general, as mentioned in speci�c cases above, the value of almost all param-

eters (the size of the sample m, the lengths, l

1

and l

2

, of the su�x strings on

which we test the sample strings, the value of �

1

in Function Strings-Test, etc.)

must be revised so that the total error probability of the algorithm is bounded

by �.

9.3. Multiple Outputs

Assume that the target automaton has more than two possible outputs, and let

the output alphabet be denoted by �. Assume also that the error process is such

that for every (newly) queried string u, independently, and with probability �, the

expert's answer, E(u), received for that string, is chosen uniformly from ��fE(u)g.

We claim that if we slightly modify some of the parameters of our algorithm, then

it remains a good learning algorithm in this case.

34 DANA RON AND RONITT RUBINFELD

There are several places in the algorithm and its analysis where the fact that

j�j > 2 has to be taken into account: in Observation 1 which implies slight changes

in Procedure Estimate Error , Lemma 3 and Lemma 5; and in Lemma 8.

It is very easy to verify that Lemma 8 remains correct. Actually, for j�j > 2,

it su�ces that Procedure Label Classes label the classes according to their most

common observed label. For a given set of strings which have the same correct

label, the probability that the most common observed label is incorrect decreases

very rapidly when j�j increases.

Observation 1 is generalized as follows:

Observation 3 For any given pair of di�erent strings u

1

and u

2

, and for any given

(su�x) string v:

1. If

�

A(u

1

�v) =

�

A(u

2

�v), then Pr[E(u

1

�v) 6= E(u

1

�v)] = 2�(1��)+�

2

(1�1=(j�j�1)).

2. If

�

A(u

1

�v) 6=

�

A(u

2

�v), then Pr[E(u

1

�v) 6= E(u

1

�v)] = (1 � �)

2

+ 2�(1� �)(1 �

1=(j�j � 1)) + �

2

(1� (j�j � 2)=(j�j � 1)).

It is not hard to verify that if V is any given set of (su�x) strings, and the fraction

of strings in V on which u

1

and u

2

truly di�er is �, then their expected observed

di�erence rate on V is

2�(1� �) + �

2

(1� 1=(j�j � 1) + � �	(�; j�j); (41)

where 	(�; j�j) is at least (1� 2�)

2

(for j�j � 2), which was the gap we had when

j�j = 2. Given this observation, we can slightly modify Procedure Estimate-Error

in order to compute a good estimate, �, of 2�(1��)+�

2

(1�1=(j�j�1), and extract

from it a good estimate of �. Based on the gap mentioned above, and using these

estimates, we can apply Function Strings-Test, as in the case of j�j = 2, in order

to di�erentiate between strings that reach states in A whose true di�erence rate

on V is substantial. In the analysis of the correctness of Strings-Test , described in

Lemma 5, we need only take into account the change in the de�nition of �.

9.4. Additional Extensions

Our main assumption in this work is that the error probability of the expert is

�xed. As mentioned in the previous subsection, we can deal with the special case

in which the error probability is dependent on the length of the input string. The

general problem (in which for every string u the expert has a (possibly di�erent)

error probability �(u)) seems hard. It might be argued that the natural problem in

this case is to learn the corresponding probabilistic concept [23]. What we would

like to know is if there are other (reasonable) special cases for which our algorithm

can be adapted. For example, can the problem be solved if the error probability of

the expert depends on the state reached by the input string?

Another generalization of our algorithm is to modify it to work under additional

distributions other than the uniform distribution. It is unreasonable to expect to

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 35

�nd an algorithm that works under any input distribution. For example assume

that all the weight of the distribution is on one string, or even that it is equally

divided among n strings each reaching a di�erent state. However, it may be possible

that our algorithm can be modi�ed to work for other \natural" distributions.

5

One additional point is the question of the practicality of the algorithm. Though

the algorithm is polynomial in the relevant parameters of the problem, there is

still much to be desired in terms of the exponents in this polynomial. We feel

that a more careful (though perhaps more complicated) analysis might yield better

bounds. We would like to point out that we were able to improve these bounds

with respect to the ones presented in the preliminary version of this paper [29].

9.5. Further Research

An interesting direction for further research is to try and modify additional PAC

learning algorithms that use membership queries to the case in which the queries

might be answered erroneously. Such algorithms exist for learning monotone DNF

[38], read-once Boolean functions [5], Horn Clauses [4], among others.

A more general direction that can be pursued is to study the possible relationship

between learning from fallible experts and the area of self-correcting [9], [26]. A

simple observation is that any family of functions that has both a known learning

algorithm (with or without membership queries), and a self corrector, has a learning

algorithm with membership queries that works when queries might be answered

erroneously. The idea is that the self corrector serves as a correcting \�lter" between

the expert and the learner. The learner both ignores the expert's labels on the

sample strings, and does not address any queries directly to the expert. Instead, it

always queries the corrector.

A simple example of an application of the above observation is a learning al-

gorithm (using membership queries) for noisy parity functions. This algorithm is

composed of an algorithm for learning parity functions [13], [19] by solving a sys-

tem of linear equations over the �eld of integers modulo 2, and a self-correcting

algorithm [9], [26] for the same family of functions. We do not know of any other

self-correcting algorithm that has been directly applied to a related learning prob-

lem, but the possibility exists that techniques used in one �eld may be useful in the

other.

Acknowledgments

Wewould like to thank Naftali Tishby, Oded Goldreich, Mike Luby, Michael Kearns,

Nati Linial and Joan Feigenbaum for comments and helpful discussions. We would

also like to thank the referees of this paper for their careful reading and very helpful

comments.

36 DANA RON AND RONITT RUBINFELD

Notes

1. [11] actually mention that the adversary argument in [1] showing that DFAs cannot be learned

using membership queries only can be modi�ed so that the target DFAs all have distinguishing

sequences. This implies that even in the error-free case one cannot hope to �nd a distinguishing

sequence in polynomial time by exploration only. This still leaves open the following question.

Perhaps it is possible to de�ne and e�ciently �nd a weaker version of a distinguishing sequence

which su�ces in the case that the learner does have access to randomly labeled examples in

addition to membership queries, and is allowed to be only approximately correct with respect

to the input distribution.

2. Note that the �nal partition can be viewed as a partition into e�ective equivalence classes in

the following sense: two strings r

i

and r

j

belong to the same e�ective equivalence class if we

do not �nd evidence in the sample (and in the answers to our queries) that they di�er on any

su�x. Since we do not know of any string s such that

�

A(r

i

s) 6=

�

A(r

j

s), we assume that they

reach the same state in A.

3. If they are not, this is because the sample is not typical. The probability such an event occurs

is taken into account in Lemma 9.

4. The values of l

1

and l

2

must be changed accordingly but their usage is the same as in the

original version of the algorithm

5. Note that if the input distribution is \almost uniform" in the sense that it has the prop-

erty that the probability of every string is within a polynomial multiplicative factor, p, of its

uniform probability, then the only modi�cation needed in order for any uniform distribution

learning algorithm to succeed under this distribution is to run it with a smaller approximation

parameter, �=p.

References

1. D. Angluin. (1981). A note on the number of queries needed to identify regular

languages. Information and Control, 51 , 76{87.

2. D. Angluin. (1987). Learning regular sets from queries and counterexamples. Infor-

mation and Computation, 75 87{106.

3. D. Angluin and P. Laird. (1988). Learning from noisy examples.Machine Learning,

2 , 343{370.

4. D. Angluin, M. Frazier and L. Pitt. (1992). Learning conjunctions of Horn Clauses.

Machine Learning, 9 , 147{164.

5. D. Angluin, L. Hellerstein and M. Karpinski. (1993). Learning read-once formulas

with queries. Journal of the Association for Computing Machinery, 48 , 185{210.

6. N. Alon and J. H. Spencer. (1991). The Probabilistic Method. Wiley Interscience.

7. D. Angluin and D. Slonim. (1994). Randomly fallible teachers: Learning monotone

DNF with an incomplete membership oracle. Machine Learning, 14 , 7{26.

8. A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam's Razor. (1987).

Information Processing Letters, 27 , 377{380.

9. M. Blum, M. Luby, and R. Rubinfeld. (1993). Self-Testing/Correcting with ap-

plications to numerical problems. Journal of Computer and System Sciences, 47 ,

549{595.

10. H. Cherno�. (1952). A measure of asymptotic e�ciency for tests of a hypothesis

based on the sum of observations. Annals of the Mathematical Statistics, 23 , 493{

507.

11. T. Dean, D. Angluin, K. Basye, S. Engelson, L. Kaelbling, E. Kokkevis, and O.

Maron. (1992). Inferring �nite automata with stochastic output functions and an

application to map learning. Proceedings of the 10th National Conference on Arti-

�cial Intelligence (pp. 208{214).

LEARNING FALLIBLE DETERMINISTIC FINITE AUTOMATA 37

12. Y. Freund,M. J. Kearns, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. (1993).

E�cient learning of typical �nite automata from random walks. Proceedings of the

25th Annual ACM Symposium on Theory of Computing (pp. 315{324). San-Diego,

CA: The Association for Computing Machinery.

13. Paul Fischer and Hans Ulrich Simon. (1992) On learning ring-sum-expansions.

SIAM Journal on Computing, 21 , 181{192.

14. S. A. Goldman, M. J. Kearns, and R. E. Schapire. (1993). Exact identi�cation of

read-once formulas using �xed points of ampli�cation functions. SIAM Journal on

Computing, 22 , 705{726.

15. S. A. Goldman and H. D. Mathias. (1992). Learning k-term DNF formulas with an

incomplete membership oracle. Proceedings of the 5th Annual ACM Workshop on

Computational Learning Theory (pp. 85{92). Pittsburgh, PA: The Association for

Computing Machinery.

16. W. Hoe�ding. (1963). Probability inequalities for sums of bounded random vari-

ables. Journal of the American Statistical Association, 58 , 13{30.

17. J. E. Hopcroft. (1971). An n logn algorithm for minimizing the states in a �nite

automaton.The Theory of Machines and Computations , 189{196. Academic Press,

New-York.

18. D. A. Hu�man. (1954). The synthesis of sequential switching circuits. J. Franklin

Institute, 257 , 161{190, 275{303.

19. D. Helmbold, R. Sloan, and M. K. Warmuth. (1992). Learning integer lattices.

SIAM Journal on Computing, 21 , 240{266.

20. M. Kearns. (1990). The Computational Complexity of Machine Learning. MIT

Press.

21. M. Kearns. (1993). E�cient noise-tolerant learning from statistical queries.Proceed-

ings of the 25th Annual ACM Symposium on Theory of Computing (pp. 392{401).

San-Diego: The Association for Computing Machinery.

22. M. Kearns and M. Li. (1993). Learning in the presence of malicious errors. Siam

Journal on Computing, 22 , 807{837.

23. M. Kearns and R. Schapire. (1990) E�cient distribution-free learning of proba-

bilistic concepts. Proceedings of the 31st Annual Symposium on Foundations of

Computer Science (pp. 382{391). To appear in JCSS.

24. M. Kearns and L. Valiant. (1994). Cryptographic limitations on learning boolean

formulaeand �nite automata.Journal of the Association for Computing Machinery,

41 , 67{95.

25. P. Laird. (1988). Learning From Good Data and Bad. Kluwer Academic Publishers.

26. R. Lipton. (1991). New directions in testing. Distributed Computing and Cryp-

tography, DIMACS Series in Discrete Math and Theoretical Computer Science,

American Mathematical Society, 2 , 191{202.

27. E. F. Moore. (1956). Gedanken experiments on sequential machines. Automata

Studies, 129{153. Princeton Univ. Press, Princeton, N.J.

28. L. Pitt andM.Warmuth. (1990) Prediction-preserving reducibility.Journal of Com-

puter and System Sciences, 41 , 430{467.

29. D. Ron and R. Rubinfeld. (1993).Learning fallible �nite state automata.Proceedings

of the 6th Annual ACM Workshop on Computational Learning Theory, (pp. 218{

227). Santa-Cruz, CA: The Association for Computing Machinery.

30. R. Rivest and R. Schapire. (1987). Diversity-based inference of �nite automata.

Proceedings of the 28th IEEE Symposium on Foundations of Computer Science,

(pp. 78{87). To appear in JACM.

31. R. Rivest and R. Schapire. (1993). Inference of �nite automata using homing se-

quences. Information and Computation, 103 , 299{347.

32. Y. Sakakibara. (1991). On learning from queries and counterexamples in the pres-

ence of noise. Information Processing Letters, 37 , 279{284.

33. R. E. Schapire. (1991). The Design and Analysis of E�cient Learning Algorithms.

MIT Press.

38 DANA RON AND RONITT RUBINFELD

34. R. H. Sloan. (1988). Types of noise in data for concept learning. Proceedings of the

1988 Workshop on Computational Learning Theory (pp. 91{96). Santa-Cruz, CA:

The Association for Computing Machinery.

35. R. H. Sloan. (1989).Computational Learning Theory: New Models and Algorithms.

Doctoral dissertation, Department of Computer Science, Massachusetts Institute of

Technology, Cambridge, MA. Issued as MIT/LCS/TR-448.

36. Y. Sakakibaraand Rani Siromoney. (1992). A noise model on learning sets of strings.

Proceedings of the 5th Annual Workshop on Computational Learning Theory (pp.

295{302). Pittsburgh, PA: The Association for Computing Machinery.

37. G. Shackelford and D. Volper. (1988). Learning k-DNF with noise in the attributes.

Proceedings of the 1988 Workshop on Computational Learning Theory (pp. 97{103).

Santa-Cruz, CA: The Association for Computing Machinery.

38. L. G. Valiant. (1984). A theory of the learnable.Communications of the ACM, 27 ,

1134{1142.

39. L. G. Valiant. (1985) Learning disjunctions of conjunctions. Proceedings of the 9th

International Joint Conference on Arti�cial Intelligence (pp. 560{566). Los Ange-

les, CA: Morgan Kaufmann.

