
Testing Membership in Parenthesis Languages

Mi
hal Parnas

The A
ademi
 College

of Tel-Aviv-Ya�o

Tel-Aviv, Israel

mi
halp�mta.a
.il

Dana Ron

�

Department of EE { Systems

Tel-Aviv University

Ramat Aviv, Israel

danar�eng.tau.a
.il

Ronitt Rubinfeld

NEC Resear
h Institute

Prin
eton, NJ

ronitt�resear
h.nj.ne
.
om

June 16, 2003

Abstra
t

We
ontinue the investigation of properties de�ned by formal languages. This study was

initiated by Alon et. al. [AKNS00℄ who des
ribed an algorithm for testing properties de�ned by

regular languages. Alon et. al. also
onsidered several
ontext free languages, and in parti
ular

Dy
k languages, whi
h
ontain strings of properly balan
ed parentheses. They showed that the

�rst Dy
k language, whi
h
ontains strings over a single type of pairs of parentheses, is testable

in time independent of n, where n is the length of the input string. However, the se
ond Dy
k

language, de�ned over two types of parentheses, requires
(logn) queries.

Here we des
ribe a sublinear-time algorithm for testing all Dy
k languages. Spe
i�
ally, the run-

ning time of our algorithm is

~

O(n

2=3

=�

3

), where � is the given distan
e parameter. Furthermore,

we improve the lower bound for testing Dy
k languages to

~

(n

1=11

) for
onstant �. We also

des
ribe a testing algorithm for the
ontext free language L

rev

= fuu

r

vv

r

: u; v 2 �

�

g, where

� is a �xed alphabet. The running time of our algorithm is

~

O(

p

n=�), whi
h almost mat
hes

the lower bound given by Alon et. al. [AKNS00℄.

1 Introdu
tion

Property testing [RS96, GGR98℄ is a relaxation of the standard notion of a de
ision problem:

property testing algorithms distinguish between inputs that have a
ertain property and those that

are far from having the property. More pre
isely, for any �xed property P, a testing algorithm

for P is given query a

ess to the input and a distan
e parameter �. The algorithm should output

\a

ept" with high probability if the input has the property P, and output \reje
t" if the input

is �-far from having P. By �-far we mean that more than an �{fra
tion of the input should be

modi�ed so that the input obtains the desired property P.

Testing algorithms whose query
omplexity is sublinear and even independent of the input size,

have been designed for testing various algebrai
 and
ombinatorial properties (see [Ron01℄ for a

survey).

�

Supported by the Israel S
ien
e Foundation (grant number 32/00-1).

1

Motivated by the desire to understand in what sense the
omplexity of testing properties of

strings is related to the
omplexity of formal languages, Alon et. al. [AKNS00℄, have shown that

all properties de�ned by regular languages are testable in time that is independent of the input size.

Spe
i�
ally, given a regular language L, they des
ribe an algorithm that tests, using

~

O(1=�) queries,

whether a given string s belongs to L or is �-far from any string in L. This result was later extended

by Newman [New00℄ to properties de�ned by bounded-width bran
hing programs. However, Alon

et. al. [AKNS00℄ showed that the situation
hanges quite dramati
ally for
ontext-free languages.

In parti
ular, they prove that there are
ontext-free languages that are not testable even in time

square root in the input size. The question remains whether
ontext-free languages
an be tested

in sublinear time. In this paper, we give eviden
e for an aÆrmative answer by presenting sublinear

time testers for
ertain important sub
lasses of the
ontext-free languages.

Dy
k Languages. One important sub
lass of the
ontext-free languages is the Dy
k language,

whi
h in
ludes strings of properly balan
ed parentheses. Strings su
h as \(()())" belong to this

lass, whereas strings su
h as \(()" or \) (" do not. If we allow more than one type of parentheses

then \([℄)" is a balan
ed string but \([)℄" is not. Formally, the Dy
k language D

m

ontains all

balan
ed strings that
ontain at most m types of parentheses. Thus for example \(()())" belongs

to D

1

and \([℄)" belongs to D

2

.

Dy
k languages appear in many
ontexts. For example, these languages des
ribe a property that

should be held by
ommands in most
ommonly used programming languages, as well as various

subsets of the symbols/
ommands used in latex. Furthermore, Dy
k languages play an important

role in the theory of
ontext-free languages. As stated by the Chomsky-S
h�otzenberger Theorem,

every
ontext-free language
an be mapped to a restri
ted subset of D

m

[S
h63℄. A
omprehensive

dis
ussion of
ontext free languages and Dy
k languages
an be found in [Har78, Koz97℄.

Thus testing membership in D

m

is a basi
 and important problem. Alon et. al. [AKNS00℄, have

shown that membership in D

1

an be tested in time

~

O(1=�), whereas membership in D

2

annot be

tested in less than a logarithmi
 time in the length n of the string.

Our Results.

� We present an algorithm that tests whether a string s belongs to D

m

. The query
omplexity

and running time of the algorithm are

~

O

�

n

2=3

=�

3

�

, where n is the length of s. The
omplexity

does not depend on m, the number of di�erent types of parentheses.

� We prove a lower bound of
(n

1=11

= log n) on the query
omplexity of any algorithm for testing

D

m

for m > 1.

� We
onsider the
ontext free language L

rev

= fuu

r

vv

r

: u; v 2 �

�

g, where � is any �xed

alphabet and u

r

denotes the string u in reverse order. We show that L

rev

an be tested in

~

O(

p

n=�) time, where n is the length of the string. Our algorithm almost mat
hes the
(

p

n)

lower bound of Alon et. al [AKNS00℄ on the number of queries required for testing L

rev

.

The stru
ture of our testing algorithm for D

m

. Our testing algorithm for D

m

ombines

lo
al
he
ks with global
he
ks. Spe
i�
ally, the �rst part of the test randomly sele
ts
onse
utive

substrings of the given input string, and
he
ks that they do not
onstitute a witness to the string

not belonging to D

m

. The se
ond, more elaborate part of the test, veri�es that non-
onse
utive

pairs of substrings that are supposed to
ontain mat
hing parentheses, in fa
t do. In parti
ular, the

string is partitioned into �xed blo
ks (
onse
utive substrings), and the algorithm
omputes various

statisti
s
on
erning the numbers of opening and
losing parentheses in the di�erent blo
ks. Using

these statisti
s it is possible to determine whi
h pairs of blo
ks should
ontain many mat
hing

2

parentheses in
ase that the string in fa
t belongs to D

m

. The testing algorithm then randomly

sele
ts su
h pairs of blo
ks and veri�es the existen
e of su
h a mat
hing between opening parentheses

in one blo
k and
losing parentheses in the other blo
k.

Organization. In Se
tion 2 we des
ribe the ne
essary preliminaries. Our testing algorithm for

Dy
k Languages is presented in Se
tion 3, and the lower bound in Se
tion 4. The testing algorithm

for L

rev

appears in Se
tion 5.

2 Preliminaries

Let s = s

1

: : : s

n

be a string over an alphabet �

m

= f0; : : : ; 2m� 1g where 2i; 2i+ 1
orrespond to

the i

th

type of opening and
losing parentheses. We will use the following notation for strings and

substrings.

De�nition 1 (Substrings) For a string s = s

1

: : : s

n

and i � j, we let s

i;j

denote the substring

s

i

; s

i+1

; :::; s

j

. If s

0

; s

00

are two strings, then s

0

s

00

denotes the
on
atenation of the two strings.

De�nition 2 (Dy
k Language) The Dy
k language D

m

an be de�ned re
ursively as follows:

1. The empty string belongs to D

m

.

2. If s

0

2 D

m

, � = 2i is an opening parenthesis and � = 2i+1 is a mat
hing
losing parenthesis,

for some 0 � i � m� 1, then �s

0

� 2 D

m

.

3. If s

0

; s

00

2 D

m

, then s

0

s

00

2 D

m

.

It is
lear from the re
ursive de�nition of D

m

that the parentheses in a string s have a nested

stru
ture and are balan
ed. The �rst step of our algorithm will test if the string s is a legal string

when we view it as a string in D

1

, using the test given by [AKNS00℄. Furthermore, the algorithm

will test if
onse
utive substrings of s
an be extended to a legal string in D

m

. The following

de�nitions address these aspe
ts formally.

De�nition 3 (Single-Parentheses Mapping) Given a string s over �

m

, we de�ne a mapping

� whi
h maps s to a string �(s) over �

1

= f0; 1g as follows: Every opening parenthesis is mapped

to 0, and every
losing parentheses is mapped to 1.

The following
laim is immediate from the de�nition of D

1

.

Claim 1 For every string s su
h that �(s) 2 D

1

, there exists a unique perfe
t mat
hing between

opening and
losing parentheses in s, su
h that ea
h opening parenthesis s

j

is mat
hed to a
losing

parenthesis s

k

, and no two mat
hed pairs \
ross". That is, if s

j

1

is mat
hed to s

k

1

, and s

j

2

to s

k

2

where j

1

< k

1

, and j

1

< j

2

< k

2

, then either k

1

< j

2

or k

1

> k

2

. We denote this unique perfe
t

mat
hing by M(s).

Thus for example if s = \([)℄", so that s =2 D

2

but �(s) 2 D

1

, then M(s) = f(s

1

; s

4

); (s

2

; s

3

)g.

De�nition 4 (Consisten
y of Substrings) We say that a substring s

0

over �

m

is D

m

-Consistent,

if there exists a string s 2 D

m

su
h that s

0

is a
onse
utive substring of s.

3

Thus for example s

0

= \)[℄)[" is D

2

-
onsistent be
ause s = \((s' ℄ = \(()[℄)[℄" 2 D

2

, while s

0

=

\)[))[" is not D

2

-
onsistent.

The se
ond part of our algorithm �nds disjoint pairs of substrings su
h that there exist opening

parentheses in the �rst substring that should be mat
hed to
losing parentheses in the se
ond

substring. The algorithm veri�es that these pairs of parentheses mat
h in type as required. The

following
on
epts will be needed for this part of the algorithm.

De�nition 5 (Parentheses Numbers) For any substring s

0

of s, de�ne

n

0

(s

0

)

def

= Number of opening parentheses in s

0

;

and

n

1

(s

0

)

def

= Number of
losing parentheses in s

0

:

Fa
t 2 A string s belongs to D

1

if and only if: (1) For every pre�x s

0

of s, n

0

(s

0

) � n

1

(s

0

); (2)

n

0

(s) = n

1

(s).

The above fa
t implies that any string s

0

over �

1

= f0; 1g is D

1

-
onsistent, sin
e for su
h a

string there exist integers k and ` su
h that 0

k

s

0

1

`

2 D

1

. In this
ase we
an view s

0

as having

an ex
ess of k
losing parentheses and ` opening parentheses, assuming k and ` are the smallest

integers su
h that 0

k

s

0

1

`

2 D

1

. The following de�nition extends this notion of ex
ess parentheses

in a substring to any alphabet �

m

.

De�nition 6 (Ex
ess numbers) Let s

0

be a substring over �

m

, and let k and ` be the smallest

integers su
h that 0

k

�(s

0

)1

`

2 D

1

. Then k is
alled the ex
ess number of
losing parentheses in s

0

,

and ` is the ex
ess number of opening parentheses in s

0

. Denote k by e

1

(s

0

) and ` by e

0

(s

0

).

For example if s

0

= \℄[()℄)(", then e

1

(s

0

) = 2 and e

0

(s

0

) = 1. It is possible to
ompute the ex
ess

numbers from the parentheses numbers as follows.

Claim 3 The following two equalities hold for every substring s

0

,

e

1

(s

0

) = max

s

00

pre�x of s

0

(n

1

(s

00

)� n

0

(s

00

)) (1)

e

0

(s

0

) = max

s

00

suÆx of s

0

(n

0

(s

00

)� n

1

(s

00

)) (2)

In both
ases the maximum is also over the empty pre�x (suÆx) s

00

, for whi
h n

1

(s

00

)�n

0

(s

00

) = 0.

3 The Algorithm for Testing D

m

In the following subse
tions we des
ribe several building blo
ks of our algorithm. Re
all that the

algorithm has two main parts. Let s be a string over �

m

. First we test that �(s) 2 D

1

. For

simpli
ity of this introdu
tory dis
ussion, assume that if �(s) passes this test, then �(s) a
tually

belongs to D

1

(and is not only
lose to a string in D

1

). Next we test that
onse
utive substrings of

s are D

m

-
onsistent. In the next stage we estimate the ex
ess numbers for substrings of s. Using

these estimates we �nd pairs of substrings that
ontain a signi�
ant number of mat
hed pairs of

parentheses a

ording to the perfe
t mat
hing M(s) guaranteed by Claim 1, and
he
k that these

pairs mat
h in type.

4

To do the latter, we break the string into n

1=3

substrings ea
h of length n

2=3

, whi
h we refer to as

blo
ks. We de�ne a weighted graph, whose verti
es
orrespond to these blo
ks, and in whi
h there

is an edge between blo
k i and blo
k j > i if and only if the mat
hingM(s) mat
hes between ex
ess

opening parentheses in blo
k i to ex
ess
losing parentheses in blo
k j. The weight of ea
h edge is

simply the number of
orresponding mat
hed pairs of ex
ess parentheses. As we show subsequently,

this weight
an be determined by the values of the ex
ess numbers for every
onse
utive sequen
e of

blo
ks. Hen
e, if we were provided with these exa
t values, we
ould verify, for randomly sele
ted

pairs of blo
ks that are
onne
ted by an edge in the graph, whether their ex
ess parentheses mat
h

as required. Sin
e we do not have these exa
t values, but rather approximate values, we use our

estimates of the ex
ess values to
onstru
t an approximation of the above graph, and to perform

the above veri�
ation of mat
hing ex
ess parentheses.

3.1 Che
king D

m

-Consisten
y

It is well known that it is possible to
he
k in time O(n) using a sta
k whether a string s over

�

m

whose length is n belongs to D

m

. This is done as follows: The symbols of s are read one by

one. If the
urrent symbol read is an opening parenthesis then it is pushed onto the sta
k. If it

is a
losing parenthesis, then the top symbol on the sta
k is popped and
ompared to the
urrent

symbol. The algorithm reje
ts if the symbol popped (whi
h must be an opening parenthesis) does

not mat
h the
urrent symbol. The algorithm also reje
ts if the sta
k is empty when trying to pop

a symbol, that is, there is a missing mat
hing symbol, or if the sta
k is not empty after reading all

symbols. Otherwise the algorithm a

epts. The above algorithm
an be easily modi�ed to
he
k

whether a substring s

0

is D

m

-
onsistent. The only two di�eren
es are: (1) When reading a
losing

parenthesis and �nding that the sta
k is empty, the algorithm does not reje
t but rather
ontinues

with the next symbol. (2) If the algorithm has
ompleted reading the string without �nding a

mismat
hed pair of parentheses, then it a

epts even if the sta
k is not empty. Thus the algorithm

reje
ts only if it �nds a mismat
h in the type of parentheses.

3.2 A Prepro
essing Stage

An important
omponent of our algorithm is a
quiring good estimates of the ex
ess numbers of

di�erent substrings of the given input string s. We start by des
ribing a prepro
essing step based

on whi
h we
an obtain su
h estimates for a �xed set of basi
 substrings of s (of various lengths).

By sampling from su
h a substring s

0

, we obtain estimates of the parentheses numbers n

0

(s

0

) and

n

1

(s

0

). Using these estimates we
an derive estimates for the ex
ess numbers of any given substring

of s.

Let r = log(n

1=3

=Æ), where 0 < Æ < 1 is a parameter that is set subsequently. For ea
h

j 2 f0; 1; : : : ; rg, we
onsider the partition of s into 2

j

onse
utive substrings ea
h of length n=2

j

.

We assume for simpli
ity that n is divisible by 2

r

= n

1=3

=Æ. Thus the total number of substrings is

O(n

1=3

=Æ), where the longest is the whole string s, and the shortest ones are of length Æ � n

2=3

. We

refer to these substrings as the basi
 substrings of s.

For ea
h basi
 substring s

0

of length n=2

j

, we uniformly and independently sele
t a sample of

m

j

symbols from s

0

, where

m

j

=
 �

n

2=3

2

2j

�

log

3

(n=Æ)

Æ

2

;

for some suÆ
iently large
onstant
. Let m

0

j

be the number of opening parentheses in the sample,

andm

1

j

be the number of
losing parentheses in the sample. Our estimates of the number of opening

5

and
losing parentheses in s

0

are respe
tively:

n̂

0

(s

0

) =

m

0

j

m

j

� js

0

j =

m

0

j

m

j

�

n

2

j

and n̂

1

(s

0

) =

m

1

j

m

j

�

n

2

j

:

Lemma 4 With probability at least 1 � o(1), for ea
h of the basi
 substrings s

0

� s, jn̂

0

(s

0

) �

n

0

(s

0

)j � (Æ � n

2=3

)=(24 log(n=Æ)) and jn̂

1

(s

0

) � n

1

(s

0

)j � (Æ � n

2=3

)=(24 log(n=Æ)). The total size of

the sample is O

�

n

2=3

� log

3

(n=Æ)=Æ

2

�

.

Proof: We prove the bound for n̂

0

(s

0

). The bound for n̂

1

(s

0

) dire
tly follows sin
e n

0

(s

0

)+n

1

(s

0

) =

js

0

j = n̂

0

(s

0

)+ n̂

1

(s

0

). By an additive Cherno� bound, for any �xed substring s

0

of length n=2

j

, and

for any given 0 <

j

< 1,

Pr

h

jn̂

0

(s

0

)� n

0

(s

0

)j >

j

�

n

2

j

i

< 2 exp(�2m

j

2

j

): (3)

Setting

j

=

2

j

n

1=3

�

Æ

24 log(n=Æ)

so that

j

�

n

2

j

=

Æ

24 log(n=Æ)

� n

2=3

, for any su
h string the probability

that jn̂

0

(s

0

) � n

0

(s

0

)j >

Æ

24 log(n=Æ)

� n

2=3

is at most 2 exp(�2m

j

2

j

) = 1=poly(n=Æ). Sin
e the total

number of basi
 substrings
onsidered is O(n

1=3

=Æ), all estimates are within the stated error.

Sin
e there are 2

j

basi
 substrings of length n=2

j

, then the total size of the sample is:

r

X

j=0

2

j

�m

j

=

 � n

2=3

� log

3

(n=Æ)

Æ

2

�

r

X

j=0

1

2

j

= O

n

2=3

� log

3

(n=Æ)

Æ

2

!

We assume from now on that the quality of our estimates n̂

0

(s

0

) and n̂

1

(s

0

) is in fa
t as stated in

the lemma for every basi
 substring s

0

. We refer to this as the su

essful prepro
essing assumption.

Assumption 5 (Su

essful Prepro
essing Assumption) For ea
h of the basi
 substrings s

0

,

jn̂

0

(s

0

)� n

0

(s

0

)j � (Æ � n

2=3

)=(24 log(n=Æ)), and the same bound holds for n̂

1

(s

0

).

3.3 Obtaining Estimates of Ex
ess numbers

We �rst
onsider obtaining estimates for n

0

(s

0

) and n

1

(s

0

) for substrings s

0

of s of the form de�ned

in the next
laim.

Claim 6 Let s

0

= s

k;`

be any substring of s su
h that k = t

1

� (Æ � n

2=3

) + 1 and ` = t

2

� (Æ � n

2=3

),

for 0 � t

1

< t

2

� n

1=3

=Æ. Then s

0

is the
on
atenation of at most 2 log js

0

j+ 1 basi
 substrings.

Proof: Let s

b

be the longest basi
 substring su
h that s

b

� s

0

. Therefore s

0

is of the form

s

0

= s

left

s

b

s

right

. Consider the substring s

right

. It is not hard to verify that if we partition s

right

into basi
 substrings starting from left to right, and ea
h time
hoose the longest possible basi

substring that is
ontained in s

right

, then ea
h su
h basi
 substring will
over at least 1=2 of what

remains of s

right

. Thus the total number of basi
 substrings needed to
over s

right

is at most log js

0

j.

Similarly, the total number of basi
 substrings needed to
over s

left

is at most log js

0

j as well. It

dire
tly follows that s

0

is a
on
atenation of at most 2 log js

0

j+1 basi
 substrings. See Figure 1 for

an illustration of the proof.

Assume that the substring s

0

is the
on
atenation of the basi
 substrings s

1

; :::; s

t

. Then we
an

estimate n

0

(s

0

) by n̂

0

(s

0

) =

P

t

i=1

n̂

0

(s

i

), where n̂

0

(s

i

) is the estimate we got above for the basi

substring s

i

. Similarly, we
an estimate n

1

(s

0

).

6

s’

s1 s2

s

s3

lk

Figure 1: An illustration for Claim 6. The partition of the string s into basi
 substrings is represented by

separating lines with di�erent thi
kness. Spe
i�
ally, the middle, thi
kest line represents the partition of s

into the two basi
 substrings of length n=2, the two less thi
ker lines represent the next partition into four

substrings of length n=4 and so on. Ea
h square
orresponds to a substring of length Æ � n

2=3

, where s is

the
on
atenation of all these substrings (smallest basi
 substrings). The substring s

0

starts at index k and

ends at index `, where both are multiples of Æ � n

2=3

. In the illustration, s2 = s

b

, s1 = s

left

and s3 = s

right

(note that there were two possible
hoi
es for the largest basi
 substring s

b

that is
ontained in s

0

). The

substrings s1 and s2 are further partitioned ea
h into two basi
 substrings, the �rst of length at least half

of s1 (respe
tively, s2).

Corollary 7 Under Assumption 5, for every substring s

0

as in Claim 6, jn̂

0

(s

0

)�n

0

(s

0

)j < Æ �n

2=3

=4

and jn̂

1

(s

0

)� n

1

(s

0

)j < Æ � n

2=3

=4.

We next
onsider how to obtain estimates for the ex
ess number of opening parentheses of a

given substring s

0

= s

k;`

(where k and ` are assumed to be as in Claim 6), and similarly for the

ex
ess number of
losing parentheses. To this end we appeal to Claim 3, and use our estimates for

the total number of opening and
losing parentheses in
ertain pre�xes and suÆxes of s

0

. As we

show below, for the purpose of getting an additive estimate of the ex
ess to within Æ � n

2=3

for any

substring, it is enough to use estimates of n

0

and n

1

for pre�xes and suÆxes of the substring that

are multiples of Æ � n

2=3

. Spe
i�
ally,

Claim 8 Let s

0

= s

k;`

be as in Claim 6, and de�ne two sets

Pre�x = fs

00

js

00

= s

k;`

0

; `

0

= t

0

2

� (Æ � n

2=3

) + 1; t

1

� t

0

2

< t

2

g

SuÆx = fs

00

js

00

= s

k

0

;`

; k

0

= t

0

1

� (Æ � n

2=3

) + 1; t

1

< t

0

1

� t

2

g:

Let

ê

0

(s

0

) = max

s

00

2SuÆx

(n̂

0

(s

00

)� n̂

1

(s

00

)); ê

1

(s

0

) = max

s

00

2Pre�x

(n̂

1

(s

00

)� n̂

0

(s

00

)):

Then, under Assumption 5, jê

0

(s

0

)� e

0

(s

0

)j � Æ � n

2=3

and jê

1

(s

0

)� e

1

(s

0

)j � Æ � n

2=3

:

Proof: We prove the
laim for ê

0

(s

0

). The proof for ê

1

(s

0

) is analogous. Let s

00

= s

b;`

be the

suÆx of s

0

for whi
h the maximum is obtained in Equation (2) of Claim 3. (Re
all that s

b;`

may be the empty string in whi
h
ase b = ` + 1.) Let b

0

be the index
losest to b of the form

b

0

= t

0

1

� (Æ � n

2=3

) + 1, where t

1

< t

0

1

� t

2

. Sin
e by de�nition of b

0

we have jb

0

� bj � Æ � n

2=3

=2,

we know that n

0

(s

b

0

;`

) � n

1

(s

b

0

;`

) � n

0

(s

b;`

) � n

1

(s

b;`

) � Æ � n

2=3

=2. But by de�nition of s

b;`

,

n

0

(s

b;`

)� n

1

(s

b;`

) = e

0

(s

0

), and so

n

0

(s

b

0

;`

)� n

1

(s

b

0

;`

) � e

0

(s

0

)� Æ � n

2=3

=2:

By Corollary 7, jn̂

0

(s

b

0

;`

) � n

0

(s

b

0

;`

)j � Æ � n

2=3

=4, and jn̂

1

(s

b

0

;`

) � n

1

(s

b

0

;`

)j � Æ � n

2=3

=4. Hen
e,

n̂

0

(s

b

0

;`

)� n̂

1

(s

b

0

;`

) � e

0

(s

0

)� Æ � n

2=3

. But by de�nition, ê

0

(s

0

) � n̂

0

(s

b

0

;`

)� n̂

1

(s

b

0

;`

), and the
laim

follows.

7

3.4 The Mat
hing Graph

Before de�ning the mat
hing graph, we extend the notion of the perfe
t mat
hingM(s) guaranteed

by Claim 1, to strings s for whi
h �(s) =2 D

1

. In this
ase we do not obtain a perfe
t mat
hing, but

rather a mat
hing of all the parentheses in the string that are not ex
ess parentheses with respe
t

to the whole string. Spe
i�
ally, by de�nition of the ex
ess numbers, the string ~s = 0

e

1

(s)

�(s)1

e

0

(s)

belongs to D

1

. Thus we let M(s) be the restri
tion of M(~s) to pairs of parentheses that are both in

s. For example, if s = \(℄ ℄ ([)", then M(s) mat
hes between s

1

and s

2

and between s

5

and s

6

.

In all that follows we assume that n

2=3

is an even integer. It is not hard to verify that this

an be done without loss of generality. We partition the given string s into n

1=3

onse
utive and

disjoint substrings, ea
h of length n

2=3

, whi
h we refer to as blo
ks.

De�nition 7 (Neighbor Blo
ks) We say that two blo
ks i and j are neighbors in a string s,

if the mat
hing M(s) mat
hes between ex
ess opening parentheses in blo
k i and ex
ess
losing

parentheses in blo
k j.

De�nition 8 (The Mat
hing Graph of a String) Given a string s, we de�ne a weighted graph

as follows. The verti
es of the graph are the n

1=3

blo
ks of s. Two blo
ks i < j are
onne
ted by an

edge (i; j) if and only if they are neighbor blo
ks (as de�ned above). The weight w(i; j) of the edge

(i; j) is the number of ex
ess opening parentheses in blo
k i that are mat
hed by M(s) to ex
ess

losing parentheses in blo
k j. The resulting graph is
alled the mat
hing graph of s, and is denoted

by G(s). The set of edges of the graph is denoted by E(G(s)).

Block 1 Block 2 Block 3 Block 4 Block 5

1 1 1

2

1

4

[[([([] [([() []] () [[]])])])]] ()

Figure 2: An example of the mat
hing graph of a string in D

2

. The string
onsists of 5 blo
ks outlined by

re
tangles, with 6 symbols in ea
h blo
k. The numbers below the edges are the weights of the edges.

Note that sin
e we extended the mat
hing M(s) also to strings s su
h that �(s) =2 D

1

, then

the graph G(s) is well de�ned also for su
h strings. By the properties of the mat
hing M(s) whi
h

guarantees that mat
hed pairs do not "
ross", we get:

Claim 9 For every string s, the mat
hing graph G(s) is planar, and therefore jE(G(s))j � 3n

1=3

.

It is possible to determine whi
h blo
ks are neighbors in G(s), and what is the weight of the

edge between them, using the ex
ess numbers e

1

and e

0

as follows. We �rst introdu
e one more

de�nition.

De�nition 9 (Intervals) For a given string s, let I

i;j

denote the substring, whi
h we refer to as

interval, that starts at blo
k i and ends at blo
k j (in
luding both of them). If j < i then I

i;j

is the

empty interval.

8

Note that I

i;i

is just blo
k number i.

Claim 10 Let s be a given string and let i < j be two blo
ks in G(s). De�ne:

x(i; j)

def

= minfe

1

(I

i+1;j

); e

0

(I

i;i

)g � e

1

(I

i+1;j�1

) ; (4)

where if I

i+1;j�1

is empty (that is, j = i+ 1), then e

1

(I

i+1;j�1

) = 0. Then we have the following:

(1) If x(i; j) > 0 then i and j are neighbors in G(s). (2) If i and j are neighbors in G(s) then

w(i; j) = x(i; j).

Proof: We �rst observe that for both parts of the
laim the premise implies that e

0

(I

i;i

) > 0. That

is, the i'th blo
k has ex
ess opening parentheses. We next observe that the sequen
e e

1

(I

i+1;j

) is

monotoni
ally non-de
reasing with j. In parti
ular, e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

).

Item (1): Suppose that x(i; j) > 0. By de�nition of x(i; j) we have that both e

0

(I

i;i

) �

e

1

(I

i+1;j�1

) > 0 and e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

) > 0 (sin
e minfe

0

(I

i;i

); e

1

(I

i+1;j

)g � e

1

(I

i+1;j�1

) =

x(i; j) > 0). The �rst inequality implies that there are ex
ess opening parentheses in blo
k i that

are not mat
hed to
losing parentheses in the interval I

i+1;j�1

. The se
ond inequality implies that

there are ex
ess
losing parentheses in blo
k j that are not mat
hed to opening parentheses in

the interval I

i+1;j�1

. It follows that there must be ex
ess opening parentheses in blo
k i that are

mat
hed to ex
ess
losing parentheses in blo
k j, and so i and j are neighbors in G(s) as
laimed.

Item (2): Suppose that i and j are neighbors in G(s). We �rst observe that all e

1

(I

i+1;j�1

)

ex
ess
losing parentheses in the interval I

i+1;j�1

are mat
hed to ex
ess opening parentheses in

blo
k i, and that there are e

0

(I

i;i

)� e

1

(I

i+1;j�1

) > 0 additional ex
ess opening parentheses in blo
k

i. We
onsider two sub
ases (for an illustration see Figure 3):

If e

0

(I

i;i

) � e

1

(I

i+1;j

), so that x(i; j) = e

0

(I

i;i

)�e

1

(I

i+1;j�1

), then all ex
ess opening parentheses

in blo
k i are mat
hed to
losing parentheses in the interval I

i+1;j

, that is, to
losing parentheses in

blo
ks i+1 to j. By what we have observed above, e

1

(I

i+1;j�1

) of them are mat
hed to parentheses

in blo
ks i + 1 to j � 1, and all the remaining e

0

(I

i;i

) � e

1

(I

i+1;j�1

) = x(i; j) ex
ess opening

parentheses in blo
k i are mat
hed to
losing parentheses in blo
k j. Thus we have veri�ed the

se
ond item in
ase that e

0

(I

i;i

) � e

1

(I

i+1;j

).

If on the other hand e

0

(I

i;i

) > e

1

(I

i+1;j

), so that x(i; j) = e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

), then all

ex
ess
losing parentheses in the interval I

i+1;j

are mat
hed to ex
ess opening parentheses in blo
k

i. Amongst them e

1

(I

i+1;j�1

) are from blo
ks i + 1 to j � 1, and all the remaining e

1

(I

i+1;j

) �

e

1

(I

i+1;j�1

) = x(i; j) are from blo
k j. Thus we have veri�ed the se
ond item in
ase that e

0

(I

i;i

) >

e

1

(I

i+1;j

).

It is not hard to verify that based on the symmetry of the mat
hing, if i and j are neighbors in

the graph G(s) then also w(i; j) = minfe

0

(I

i;j�1

); e

1

(I

j;j

)g � e

0

(I

i+1;j�1

). Re
all that if �(s) 2 D

1

then by Claim 1 the mat
hing M(s) is a perfe
t mat
hing between opening and
losing parentheses

in s. In parti
ular it
ontains all parentheses that are ex
ess parentheses in the n

1=3

blo
ks of s.

We thus obtain:

Corollary 11 Let s be a string su
h that �(s) 2 D

1

. Then,

X

(k;`)2E(G(s)); k<`

w(k; `) =

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

)) :

9

((((((

Block i Block jBlocks i+1 to j-1

))))))))))

Block i Block jBlocks i+1 to j-1

))))(((((((()))

Figure 3: An illustration for Claim 10. The parentheses shown in the �gure (all of the same type for

simpli
ity) are all ex
ess parentheses. Spe
i�
ally, in the top �gure e

0

(I

i;i

) = 6, e

1

(I

i+1;j�1

) = 4 and

e

1

(I

i+1;j

) = 10. In the bottom �gure e

0

(I

i;i

) = 8, e

1

(I

i+1;j�1

) = 4 and e

1

(I

i+1;j

) = 7. In both �gures the 4

ex
ess
losing parentheses in the interval I

i+1;j�1

are all mat
hed to the last 4 ex
ess parentheses in blo
k i.

The top �gure
orresponds to the
ase that e

0

(I

i;i

) � e

1

(I

i+1;j

), so that x(i; j) = e

0

(I

i;i

)� e

1

(I

i+1;j�1

) = 2.

In this
ase the remaining 2 ex
ess opening parentheses from blo
k i are mat
hed to the �rst 2 ex
ess
losing

parentheses in blo
k j (where these are ex
ess parentheses with respe
t to all the interval I

i+1;j

). The bottom

�gure
orresponds to the
ase that e

0

(I

i;i

) > e

1

(I

i+1;j

), so that x(i; j) = e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

) = 3, and

in fa
t all 3 ex
ess
losing parentheses in blo
k j are mat
hed to ex
ess opening parentheses in blo
k i.

We next turn to the
ase in whi
h we only have estimates of the ex
ess numbers. Here we de�ne

a graph based on the estimates we have for the ex
ess numbers. This graph
ontains only relatively

\heavy" edges in order to over
ome approximation errors.

De�nition 10 (The Approximate Mat
hing Graph) Given a string s, we partition it into

blo
ks of size n

2=3

, and de�ne a graph

^

G(s) whose verti
es are the n

1=3

blo
ks of s. A pair of blo
ks

i < j will be
onne
ted by an edge (i; j) if and only if minfê

1

(I

i+1;j

); e

0

(I

i;i

)g�ê

1

(I

i+1;j�1

) � 4Æn

2=3

,

where ê

0

and ê

1

are as de�ned in Claim 8, and if I

i+1;j�1

is empty then ê

1

(I

i+1;j�1

) = 0.

Note that in the de�nition above we use the exa
t value e

0

(I

i;i

), as opposed to the approximate

values ê

1

(I

i+1;j

). This is done be
ause our testing algorithm will have time to
ompute the value

e

0

(I

i;i

) exa
tly for
ertain blo
ks, where as it will only approximate the values ê

1

(I

i+1;j

). The

following lemma is
entral to our algorithm and its analysis.

Lemma 12 Suppose Assumption 5 holds. Then for any given string s, the graph

^

G(s) is a subgraph

of G(s), and every vertex in

^

G(s) has degree at most 1=(2Æ). Furthermore, if �(s) is Æ-
lose to a

string in D

1

, then

^

G(s) \a

ounts for most of the ex
ess" in s. Namely,

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

)) � 19Æn:

Proof: By Claim 8, for every interval I

i;j

of the string s, jê

0

(I

i;j

) � e

0

(I

i;j

)j � Æ � n

2=3

, and

jê

1

(I

i;j

) � e

1

(I

i;j

)j � Æ � n

2=3

. By de�nition of

^

G(s), for every edge (i; j) 2 E(

^

G(s)), we have

minfê

1

(I

i+1;j

); e

0

(I

i;i

)g � ê

1

(I

i+1;j�1

) � 4Æn

2=3

. Therefore

x(i; j) = minfe

1

(I

i+1;j

); e

0

(I

i;i

)g � e

1

(I

i+1;j�1

) � 4Æn

2=3

� 2Æn

2=3

= 2Æn

2=3

:

By Claim 10, this implies that there exists an edge (i; j) 2 E(G(s)), and that this edge has weight

x(i; j) � 2Æn

2=3

. Sin
e this is true for every edge (i; j) 2 E(

^

G(s)), we get that

^

G(s) is a subgraph

of G(s), and every vertex in

^

G(s) has degree at most n

2=3

=(2Æn

2=3

) = 1=(2Æ).

On the other hand, for every edge (i; j) 2 E(G(s)) su
h that w(i; j) = x(i; j) � 6Æn

2=3

, we have

that

minfê

1

(I

i+1;j

); e

0

(I

i;i

)g � ê

1

(I

i+1;j�1

) � x(i; j) � 2Æn

2=3

� 4Æn

2=3

10

and so (i; j) is an edge in

^

G(s) as well. Sin
eG(s) is planar, the total weight of edges (i; j) 2 E(G(s))

su
h that w(i; j) < 6Æn

2=3

, is at most 3n

1=3

� 6Æn

2=3

= 18Æn. Hen
e,

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

0

�

X

(k;`)2E(G(s)); k<`

x(k; `)

1

A

� 18Æn: (5)

If �(s) is Æ-
lose to D

1

, then M(s) mat
hes all parentheses in s but at most 2Æn parentheses. To

verify this, assume in
ontradi
tion that more than 2Æn parentheses are left unmat
hed by M(s).

In other words, that e

0

(s)+ e

1

(s) > 2Æn. But in su
h a
ase it is ne
essary to modify more than Æn

symbols in s so as to obtain a string ~s su
h that e

0

(~s) = e

1

(~s) = 0 (so that �(~s) 2 D

1

). This would

ontradi
t the fa
t that �(s) is Æ-
lose to a string in D

1

. By de�nition of G(s) this implies that

X

(k;`)2E(G(s)); k<`

w(k; `) �

1

2

0

�

0

�

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

))

1

A

� 2Æn

1

A

: (6)

Combining Equations (5) and (6) together with Claim 10, we obtain

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

))� 19Æn

and the proof of Lemma 12 is
ompleted.

3.5 Mat
hing Between Neighbors

We de�ne mat
hing substrings as follows.

De�nition 11 (Mat
hing substrings) Let s

0

be a substring of opening parentheses and let s

00

be

a substring of
losing parentheses. We say that s

0

and s

00

mat
h if s

0

s

00

2 D

m

.

Given a string s, it is possible to determine for any two neighbor blo
ks i < j in G(s), whi
h

pairs of ex
ess parentheses within these blo
ks should mat
h. Let E

0

(i) denote the (non-
onse
utive)

substring of ex
ess opening parentheses in blo
k i, and let E

1

(j) denote the substring of ex
ess

losing parentheses in blo
k j. By de�nition, jE

0

(i)j = e

0

(I

i;i

) and jE

1

(j)j = e

1

(I

j;j

).

We �rst �nd E

0

(i) and E

1

(j). This is done by a slight modi�
ation to the D

m

-
onsisten
y

pro
edure (see Subse
tion 3.1). Namely, when reading blo
k i, the substring E

0

(i)
onsists of those

opening parentheses that are left on the sta
k when the pro
edure terminates. On the other hand,

the substring E

1

(j)
onsists of those
losing parentheses, that when read, the sta
k is found to be

empty.

Re
all that by Claim 10, for every two blo
ks i < j that are neighbors in G(s), there are

w(i; j) = x(i; j) ex
ess opening parentheses in blo
k i that are mat
hed to ex
ess
losing parentheses

in blo
k j, where x(i; j) is as de�ned in Claim 10, Equation (4). Note that there are e

1

(I

i+1;j�1

)

ex
ess opening parentheses in blo
k i that are mat
hed to ex
ess
losing parentheses in the interval

I

i+1;j�1

. Similarly, there are e

0

(I

i+1;j�1

)
losing parentheses in blo
k j that are mat
hed to opening

parentheses in I

i+1;j�1

. Observe that either all e

0

(I

i;i

) ex
ess opening parentheses in blo
k i get

mat
hed to ex
ess
losing parentheses in blo
ks i+1; � � � ; j, or all e

1

(I

j;j

) ex
ess
losing parentheses

in blo
k j get mat
hed to opening parentheses in blo
ks i; � � � ; j � 1. This leads to the following

exa
t mat
hing pro
edure, with two
ases: The �rst
orresponds to the situation when all of the

11

ex
ess
losing parenthesis in blo
k j are mat
hed to parentheses in the interval I

i;j�1

. In parti
ular

this implies that those parentheses in blo
k j that are mat
hed to parentheses in blo
k i
onstitute

a suÆx of the ex
ess substring E

1

(j). The se
ond
ase
orresponds to the situation when all of the

ex
ess opening parentheses in blo
k i are mat
hed to parentheses in the interval I

i+1;j

, and so a

pre�x of E

0

(i) is mat
hed to a substring of E

1

(j).

In what follows, for a (
onse
utive) substring s

0

of E

0

(i), we denote by F

i

(s

0

) and L

i

(s

0

) the

positions in E

0

(i) of the �rst and last symbols of s

0

, respe
tively. Similarly, for a substring s

00

of

E

1

(j), we denote by F

j

(s

00

) and L

j

(s

00

) the positions of the �rst and last symbols of s

00

in E

1

(j)

respe
tively.

Exa
t Parentheses Mat
hing Pro
edure(i; j)

1. If e

1

(I

i+1;j

) < e

0

(I

i;i

): Let s

00

be the suÆx of E

1

(j) of length x(i; j), and let s

0

be the substring

of E

0

(i) su
h that L

i

(s

0

) = e

0

(I

i;i

)� e

1

(I

i+1;j�1

), where js

0

j = js

00

j.

2. If e

1

(I

i+1;j

) � e

0

(I

i;i

): Let s

0

be the pre�x of E

0

(i) of length x(i; j), and let s

00

be the substring

of E

1

(j) su
h that F

j

(s

00

) = e

0

(I

i+1;j�1

) + 1, where js

00

j = js

0

j.

3. If s

0

and s

00

mat
h, then return su

ess, otherwise return fail.

It may be veri�ed that L

i

(s

0

) = e

0

(I

i;i

) � e

1

(I

i+1;j�1

) and F

j

(s

00

) = e

0

(I

i+1;j�1

) + 1, no matter

whi
h step of the pro
edure is applied. Hen
e, the two
ases
an a
tually be merged into one, but

the above formulation will be helpful in understanding a variant of this pro
edure that is presented

subsequently.

An Example. Consider for example the string from Figure 2, and the neighboring blo
ks i = 1

and j = 4. Then E

0

(1) = \[[([([", that is, the blo
k
onsists only of ex
ess parentheses, and

E

1

(4) = \℄) ℄)". Thus, e

0

(I

1;1

) = 6. The other relevant values are: x(1; 4) = 2, e

1

(I

2;4

) = 3,

and e

1

(I

2;3

) = 1. Hen
e s

00

is the suÆx of length 2 of E

1

(4), that is, s

00

= \℄)". We also get that

L

i

(s

0

) = 6 � 1 = 5, and so s

0

is the substring of E

0

(1) of length 2 that ends at position 5, that is

s

0

= \([". The substrings s

0

and s

00

mat
h of
ourse sin
e s

0

s

00

2 D

2

.

Sin
e we only have estimates ê

1

(I

i+1;j�1

) and ê

0

(I

i+1;j�1

) of the ex
ess numbers in the interval

I

i+1;j�1

, then we apply the following partial mat
hing pro
edure to any pair of neighbor blo
ks

i < j in

^

G(s). The pro
edure is basi
ally the same as the exa
t mat
hing pro
edure, but it sear
hes

for a possibly smaller mat
h in a larger range (where the size of the mat
h and the range are

determined by the quality of the approximation we have). Thus we de�ne

x̂(i; j)

def

= minfê

1

(I

i+1;j

); e

0

(I

i;i

)g � ê

1

(I

i+1;j�1

)� 2Æn

2=3

;

and look for mat
hing substrings of length x̂(i; j). Furthermore, we only allow mat
hes of lo
ations

that have an even number of symbols between them. If s 2 D

m

and blo
ks i and j are neighbors in

G(s), then the existing mat
hing between ex
ess opening parentheses in blo
k i and ex
ess
losing

parentheses in blo
k j, should in fa
t obey this
onstraint.

Partial Parentheses Mat
hing Pro
edure(i; j)

1. If ê

1

(I

i+1;j

) < e

0

(I

i;i

) � Æn

2=3

: Let ŝ

00

be the suÆx of E

1

(j) of length x̂(i; j). Sear
h for a

mat
hing substring ŝ

0

of E

0

(i) su
h that L

i

(ŝ

0

) is in the range

�

e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)� 3Æn

2=3

; e

0

(I

i;i

)� ê

1

(I

i+1;j�1

) + Æn

2=3

�

(7)

12

and su
h that L

i

(ŝ

0

) has opposite parity from the parity of F

j

(ŝ

00

). If x̂(i; j) � 0 then ŝ

00

is

the empty string, and a mat
hing exists trivially.

2. If ê

1

(I

i+1;j

) � e

0

(I

i;i

) + Æn

2=3

: Let ŝ

0

be the pre�x of E

0

(i) of length x̂(i; j). Sear
h for a

mat
hing substring ŝ

00

of E

1

(j) su
h that F

j

(ŝ

00

) is in the range

(ê

0

(I

i+1;j�1

) + 1� Æn

2=3

; ê

0

(I

i+1;j�1

) + 1 + 3Æn

2=3

) (8)

where again, F

j

(ŝ

00

) should have opposite parity from that of L

i

(ŝ

0

).

3. If jê

1

(I

i+1;j

) � e

0

(I

i;i

)j � Æn

2=3

: Sear
h for a mat
hing as des
ribed in Step 1 above. If a

mat
hing is not found, sear
h for a mat
hing as des
ribed in Step 2 above.

4. If a mat
hing was found, then return su

ess, otherwise return fail.

To implement either step in the above pro
edure, we run a linear time string mat
hing algo-

rithm [KMP77℄.

Lemma 13 Assume that Assumption 5 holds. Then we have the following:

1. If s 2 D

m

, then for every two neighbor blo
ks i < j in

^

G(s), the partial mat
hing pro
edure

des
ribed above su

eeds in �nding a mat
hing.

2. Let s be any given string and
onsider any three blo
ks i < j

1

< j

2

su
h that j

1

and j

2

are

both neighbors of i in

^

G(s). Suppose that the partial mat
hing pro
edure su

eeds in �nding

a mat
hing between substrings ŝ

0

and

^

t

0

of E

0

(i) and substrings ŝ

00

of E

1

(j

1

) and

^

t

00

of E

1

(j

2

),

respe
tively. Then, under Assumption 5, ŝ

0

and

^

t

0

overlap by at most 6Æn

2=3

. An analogous

statement holds for triples i

1

< i

2

< j su
h that i

1

and i

2

are both neighbors of j in

^

G(s).

Proof:

Part 1: By Lemma 12,

^

G(s) is a subgraph of G(s). In other words, every two blo
ks i < j that are

neighbors in

^

G(s), are also neighbors in G(s). If s 2 D

m

, then this implies that the exa
t mat
hing

pro
edure would su

eed in �nding a mat
h between substrings s

0

of E

0

(i) and s

00

of E

1

(j) in either

Step 1 or Step 2 of the pro
edure.

We
onsider the �rst
ase, and show that in this
ase the partial mat
hing pro
edure
an

�nd a mat
h between ŝ

0

and ŝ

00

in Step 1 (the se
ond
ase is handled analogously). In this
ase,

e

1

(I

i+1;j

) < e

0

(I

i;i

), and there is a mat
hing between the suÆx s

00

of E

1

(j) that has length x(i; j),

and the substring s

0

of E

0

(i) of the same length that ends in position L

i

(s

0

) = e

0

(I

i;i

)�e

1

(I

i+1;j�1

).

By Claim 8,
onditioned on Assumption 5, we know that for every k; `, jê

1

(I

k;`

) � e

1

(I

k;`

)j �

Æn

2=3

. It follows that ê

1

(I

i+1;j

) < e

0

(I

i;i

) + Æn

2=3

and that

x(i; j) � 4Æn

2=3

� x̂(i; j) � x(i; j): (9)

Therefore, either ê

1

(I

i+1;j

) < e

0

(I

i;i

) � Æn

2=3

, or jê

1

(I

i+1;j

) � e

0

(I

i;i

)j � Æn

2=3

, and in either
ase,

the pro
edure tries to �nd a mat
h as de�ned in Step 1.

Sin
e x̂(i; j) � x(i; j), the substring ŝ

00

de�ned in Step 1 is a suÆx of s

00

. Sin
e we know

that s

0

mat
hes s

00

in this
ase, then there is a pre�x ŝ

0

of s

0

that mat
hes ŝ

00

, and we just have

to show that the partial mat
hing pro
edure
an �nd it. Let ê

1

(I

i+1;j

) = e

1

(I

i+1;j

) + y, and

ê

1

(I

i+1;j�1

) = e

1

(I

i+1;j�1

) + z where �Æn

2=3

� y; z � Æn

2=3

. Hen
e,

jŝ

0

j = x̂(i; j) = x(i; j) + y � z � 2Æn

2=3

= js

0

j+ y � z � 2Æn

2=3

13

and so

L

i

(ŝ

0

) = L

i

(s

0

)� (y � z � 2Æn

2=3

) = e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)� (y � 2Æn

2=3

):

The mat
hing substring that the partial mat
hing algorithm sear
hes for is allowed to end at a

position in the range (e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)�3Æn

2=3

; e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)+Æn

2=3

), whi
h
ontains

L

i

(ŝ

0

). This ensures that a mat
hing is found.

Part 2: Let i < j

1

< j

2

be a given triple as de�ned in the lemma. We �rst show that regardless of

whether �(s) 2 D

1

or not, given the exa
t values of e

0

(I

i+1;j

1

�1

), e

1

(I

i+1;j

1

�1

), e

0

(I

i+1;j

2

�1

), and

e

1

(I

i+1;j

2

�1

), the mat
hing de�ned by the exa
t mat
hing pro
edure would not
ause any overlaps.

This fa
t will be used to bound the overlap
aused by the partial mat
hing pro
edure.

Let s

0

and t

0

be substrings of E

0

(i) that the exa
t mat
hing pro
edure tries to mat
h to substrings

s

00

of E

1

(j

1

) and t

00

of E

1

(j

2

) respe
tively. We next show the following inequalities:

1. L

i

(t

0

) < F

i

(s

0

), that is, the exa
t mat
hing algorithm would not
ause any overlap: By

de�nition of the exa
t mat
hing pro
edure, (no matter whi
h step is applied), L

i

(t

0

) =

e

0

(I

i;i

)� e

1

(I

i+1;j

2

�1

), L

i

(s

0

) = e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

), and js

00

j = js

0

j = x(i; j

1

). Thus,

F

i

(s

0

) = e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

)� x(i; j

1

) + 1

= e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

)� (minfe

1

(I

i+1;j

1

); e

0

(I

i;i

)g � e

1

(I

i+1;j

1

�1

)) + 1

= e

0

(I

i;i

)�minfe

1

(I

i+1;j

1

); e

0

(I

i;i

)g+ 1

� e

0

(I

i;i

)� e

1

(I

i+1;j

1

) + 1 (10)

Sin
e j

1

� j

2

� 1 and e

1

(I

i+1;j

) is monotoni
ally non-de
reasing with j, we have that

e

1

(I

i+1;j

2

�1

) � e

1

(I

i+1;j

1

), and so L

i

(t

0

) < F

i

(s

0

) as desired.

2. As observed in Part 1 of this proof, x̂(i; j) � x(i; j) and so jŝ

00

j � js

00

j.

3. L

i

(ŝ

0

) � L

i

(s

0

) � 4Æn

2=3

: We �rst observe that by Lemma 12, x(i; j

2

) =

minfe

1

(I

i+1;j

2

); e

0

(I

i;i

)g � e

1

(I

i+1;j

2

�1

) � 6Æn

2=3

. Sin
e j

1

� j

2

� 1 and e

1

(i + 1; j) is

monotoni
ally non-de
reasing with j, ne
essarily e

1

(I

i+1;j

1

) � e

0

(I

i;i

) � 6Æn

2=3

. Therefore,

ê

1

(I

i+1;j

1

) � e

0

(I

i;i

) � 5Æn

2=3

, and so the partial mat
hing pro
edures would apply Step 1.

Thus, the substring ŝ

0

may end in the worst
ase in position

e

0

(I

i;i

)� ê

1

(I

i+1;j

1

�1

)� 3Æn

2=3

� e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

)� 4Æn

2=3

= L

i

(s

0

)� 4Æn

2=3

:

4. F

i

(ŝ

0

) � F

i

(s

0

)� 4Æn

2=3

: Using the previous inequalities we get,

F

i

(ŝ

0

) = L

i

(ŝ

0

)� x̂(i; j)

� L

i

(s

0

)� 4Æn

2=3

� x̂(i; j)

= (F

i

(s

0

) + x(i; j)) � 4Æn

2=3

� x̂(i; j)

� F

i

(s

0

)� 4Æn

2=3

(11)

5. L

i

(

^

t

0

) � L

i

(t

0

) + 2Æn

2=3

: As noted previously, by de�nition of the exa
t mat
hing pro
edure,

L

i

(t

0

) = e

0

(I

i;i

) � e

1

(I

i+1;j

2

�1

) + 1. If the mat
h between

^

t

0

and

^

t

00

is found in Step 1 of the

partial mat
hing pro
edure, then

L

i

(

^

t

0

) � e

0

(I

i;i

)� ê

1

(I

i+1;j

2

�1

) + Æn

2=3

� e

0

(I

i;i

)� e

1

(I

i+1;j

2

�1

) + 2Æn

2=3

= L

i

(t

0

) + 2Æn

2=3

:

If the mat
h is found in Step 2, then

L

i

(

^

t

0

) = x̂(i; j) � e

0

(I

i;i

)� ê

1

(I

i+1;j

2

�1

)� 2Æn

2=3

< L

i

(t

0

):

14

As a result we get

F

i

(ŝ

0

) � F

i

(s

0

)� 4Æn

2=3

> L

i

(t

0

)� 4Æn

2=3

� L

i

(

^

t

0

)� 6Æn

2=3

:

and therefore the overlap is at most 6Æn

2=3

. We have thus proved the
laim for triples i < j

1

< j

2

.

The analogous
laim for triples i

1

< i

2

< j is proved similarly.

3.6 Putting it all together

Algorithm 1 Test if s 2 D

m

1. Let Æ =

�

200

.

2. D

1

-test: Test that �(s) 2 D

1

with distan
e parameter Æ and
on�den
e 9=10. If this test

reje
ts, then output reje
t.

3. Partition the string s into n

1=3

substrings of length n

2=3

ea
h, whi
h we refer to as \blo
ks".

4. D

m

-
onsisten
y test: Sele
t 100=� blo
ks uniformly, and
he
k that they are D

m

-
onsistent.

If any of the blo
ks sele
ted is not D

m

-
onsistent then output reje
t.

5. Perform the prepro
essing step on the basi
 substrings of s (de�ned based on the above setting

of Æ).

6. Mat
hing test: Uniformly sele
t 100=� blo
ks and for ea
h �nd its neighboring blo
ks in

^

G(s). For ea
h sele
ted blo
k, and for ea
h of its neighbors,
he
k that their ex
ess parentheses

mat
h
orre
tly by invoking the partial mat
hing pro
edure. If the partial mat
hing pro
edure

fails for any of the sele
ted blo
ks then output reje
t. Otherwise output a

ept.

Theorem 1 If s 2 D

m

then the above testing algorithm a

epts with probability at least 2=3, and

if s is �-far from D

m

then the above test reje
ts with probability at least 2=3.

The query
omplexity and running time of the algorithm are O

�

n

2=3

� log

3

(n=�)=�

3

�

.

Proof: Consider �rst the easier
ase in whi
h s 2 D

m

. TheD

1

-test (Step 2) passes with probability

at least 9=10, and the D

m

-
onsisten
y test (Step 4) always passes. By Lemma 12, if Assumption 5

holds, then

^

G(s) is a subgraph of G(s). By Lemma 13 (using Assumption 5 on
e again), for

every two neighboring blo
ks i and j, the mat
hing of ex
ess parentheses must su

eed. Sin
e by

Lemma 4, Assumption 5 holds with high probability, this part of the theorem follows.

We now turn to the se
ond part of the theorem. We shall show that
onditioned on Assumption 5

holding, if s is a

epted with probability greater than 1=6, then it is �-
lose to some string in D

m

.

This implies that
onditioned on Assumption 5 holding, if s is �-far from D

m

then it is reje
ted

with probability at least 5=6. Sin
e Assumption 5 holds with probability at least 5=6, this implies

that if s is �-far from D

m

then it is reje
ted with probability at least 2=3, as required. Thus from

now on we assume that Assumption 5 holds.

If s is a

epted with probability greater than 1=6 then ne
essarily it must pass ea
h part of the

test with probability greater than 1=6. This implies that:

1. �(s) is Æ-
lose to a string in D

1

: otherwise, it would be reje
ted in Step 2 of the algorithm

with probability at least 9=10;

15

2. All but at most an

�

4

-fra
tion of the blo
ks of s are D

m

-
onsistent: otherwise, an in
onsistent

blo
k would be sele
ted in Step 4 with probability greater than 5=6,
ausing the algorithm to

reje
t in this step with probability greater than 5=6;

3. The fra
tion of blo
ks i that have a neighbor j in

^

G(s) for whi
h the partial mat
hing pro
e-

dure would fail if exe
uted on i and j is at most �=4: otherwise, one of these blo
ks would be

sele
ted in Step 6 with probability greater than 5=6,
ausing the algorithm to reje
t in this

step with probability greater than 5=6;

4. Combining the �rst item above (�(s) is Æ-
lose to a string in D

1

) with Assumption 5, we

know by Lemma 12, that

^

G(s) is a planar graph, and furthermore,

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

))� 19Æn;

where x(k; `) is as de�ned in Claim 10, Equation (4).

To show that s is �-
lose to a string in D

m

, we show how to modify s in at most �n positions

so that it be
omes a string in D

m

. In parti
ular we show the existen
e of a nested non-
rossing

mat
hing between opening and
losing parentheses in the modi�ed string, su
h that every mat
hed

pair mat
h in type.

Making all blo
ks D

m

onsistent. First we
onsider all blo
ks that are not D

m

-
onsistent,

and turn them into
onsistent blo
ks without modifying their ex
ess parentheses. As stated in

the dis
ussion following Fa
t 2, for every blo
k s

0

, the string �(s

0

) is D

1

-
onsistent. Hen
e this

modi�
ation
an be done simply by
onsidering the mat
hing indu
ed on the non-ex
ess parentheses,

and modifying at most 1=2 of the non-ex
ess parentheses in the blo
k. Sin
e the fra
tion of

in
onsistent blo
ks is at most an �=4-fra
tion of the blo
ks of s, the total number of symbols

modi�ed is at most

�

8

n.

Adjusting mat
hed ex
ess parentheses. Next we need to \�x" the ex
ess parentheses. Con-

sider the graph

^

G(s), and for every two blo
ks i < j that are neighbors in

^

G(s),
onsider (as a

mental experiment) the result of running the partial mat
hing algorithm on their ex
ess parenthe-

ses substrings E

0

(i) and E

1

(j) as des
ribed in Subse
tion 3.5. Suppose that we su

eed and �nd

a mat
hing between substring s

0

of E

0

(i) and substring s

00

of E

1

(j). Then we shall \
ommit" to

the two mat
hed substrings with the ex
eption of the last 6Æn

2=3

symbols of s

0

and the �rst 6Æn

2=3

symbols of s

00

. In \
ommitting" we mean that these symbols will not be modi�ed, and that the

mat
hing between the respe
tive symbols in s

0

and s

00

will be maintained in all future modi�
ations.

Note that by Lemma 13, ea
h ex
ess opening parenthesis is mat
hed in this way to at most one

ex
ess
losing parenthesis in one of the neighbors of blo
k i.

If the mat
hing algorithm does not su

eed then we modify a substring s

0

of E

0

(i) so that it

mat
hes a designated substring s

00

of E

1

(j), with the ex
eption of 6Æn

2=3

onse
utive symbols, and

we
ommit to the two mat
hed substrings. More pre
isely, if e

1

(I

i;i

) < e

0

(I

i;i

) (so that ê

1

(I

i;i

) <

e

0

(I

i;i

)+Æn

2=3

), then we let � be the suÆx of E

1

(j) of length x̂(i; j)�6Æn

2=3

, where x̂(i; j) is as de�ned

in the partial mat
hing pro
edure. We then modify the substring of E

0

(i) of length x̂(i; j)� 6Æn

2=3

that ends at position e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)� 6Æn

2=3

so that it mat
hes � . If e

1

(I

i;i

) � e

0

(I

i;i

) then

we modify the pre�x of length x̂(i; j)� 6Æn

2=3

of E

0

(i) so that it mat
hes the substring � of length

x̂(i; j) � 6Æn

2=3

of E

0

(i) that starts at position F

j

(�) = ê

0

(I

i+1;j�1

) + 1 + 6Æn

2=3

. It is not hard to

verify that in this manner we do not introdu
e any errors into the mat
hing.

16

Sin
e the fra
tion of blo
ks that have at least one neighbor on whi
h the partial mat
hing

pro
edure fails is at most

�

4

, the total number of symbols modi�ed in this stage is at most

�

4

n. Note

that sin
e

^

G(s) is planar, the mat
hing de�ned so far is nested as required.

Adjusting non-mat
hed ex
ess parentheses. At this stage the string s is
omposed of three

types of
onse
utive substrings: (1) substrings inside the blo
ks that are strings in D

m

themselves;

(2) ex
ess parentheses in one blo
k that are mat
hed to ex
ess parentheses in another blo
k, to

whi
h we
ommitted; (3) ex
ess parentheses that are not mat
hed.

We now show how to
hange s into a string in D

m

, but �rst let us bound the total number

of parentheses of type (3), whi
h must still be modi�ed. The total number of ex
ess parentheses

is

P

n

1=3

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

)). Let us think of ea
h edge (i; j) in

^

G(s) as \having to a

ount for"

x(i; j) pairs of ex
ess parentheses. By Lemma 12, the total number of ex
ess parentheses that

are not a

ounted to by the edges of

^

G(s) is at most 2 � 19Æn. In addition, by de�nition of the

approximate mat
hing pro
edure, the length of the mat
hed substring
orresponding to the edge

is x̂(i; j) � x(i; j) � 4Æn

2=3

(see Equation 9). By our
ommitting strategy, for every edge (i; j)

in

^

G(s), the number of pairs of symbols among the mat
hed x̂(i; j) pairs that we did not
ommit

to is 6Æn

2=3

. Thus the total number of un
ommitted ex
ess parentheses pairs per edge is at most

10Æn

2=3

. Sin
e

^

G(s) is planar, the total number of un
ommitted pairs is at most 30Æn. Hen
e there

are at most 60Æn ex
ess parentheses that are a

ounted for by the edges of

^

G(s), but un
ommitted

for. If we add the 36Æn parentheses that are not a

ounted for we get a total of at most 96Æn

parentheses of type (3). We now show how to modify these at most 96Æn parentheses, so that we

get a string in D

m

. Sin
e Æ =

�

200

we modify in this step at most

�

2

n symbols.

Let t be the string obtained from s by removing all
onse
utive substrings of type (1). Note

that by removing su
h substrings that are always even in length, we do not
hange the parity of the

length of substrings between two mat
hed ex
ess substrings of type (2). We show how to modify t

in a re
ursive way. Let t

0

and t

00

be two mat
hed substrings su
h that between them there is only a

substring � of parentheses of type (3), where � may be empty. Thus, t is of the form t = �

0

t

0

�t

00

�

00

.

Note that j� j must be even, sin
e the position of the last symbol of t

0

has opposite parity than that

of the position of the last symbol of t

00

. Therefore, we modify � so that it is a string in D

m

and

ontinue re
ursively with the string �

0

�

00

. This string is even in length sin
e jtj and j� j are even

and jt

0

j = jt

00

j. Also as noted above by removing
onse
utive substrings that are even in length, we

do not
hange the parity of the length of substrings between two mat
hed ex
ess substrings of type

(2).

Finally we turn to the query
omplexity and running time of the algorithm. Testing that �(s) 2

D

1

with distan
e parameter �

0

= Æ takes time O (log(1=�

0

)=�

0

) [AKNS00℄, whi
h is O (log(1=�)=�).

Testing that O(1=�) blo
ks are D

m

-
onsistent takes time O

�

n

2=3

=�

�

. The prepro
essing step takes

time linear in the sample size, whi
h by Lemma 4 is O

�

n

2=3

� log

3

(n=�)=�

3

�

. Finally, by Lemma 12

the degree of every vertex (blo
k) in

^

G(s) is at most 1=(2Æ) = O(1=�). Therefore the last step takes

time O

�

n

2=3

=�

2

�

. The total running time and query
omplexity is hen
e O

�

n

2=3

� log

3

(n=�)=�

3

�

.

4 A Lower Bound for D

2

In this se
tion we prove a lower bound of
(n

1=11

= log n) on the query
omplexity of any algorithm

for testing D

2

, and hen
e for testing all Dy
k languages. We �rst provide su
h a bound for the

language PAR

2

whi
h is de�ned below and is a variant of D

2

, and then dis
uss how a very similar

argument
an be applied to obtain the same lower bound for D

2

.

17

De�nition 12 (Parenthesis Languages) The parenthesis language PAR

m

over strings in �

m

[

�

0

, where �

0

is any alphabet that has no interse
tion with �

m

,
an be de�ned re
ursively as follows:

1. Any string s 2 (�

0

)

�

belongs to PAR

m

.

2. If s

0

2 PAR

m

, � = 2i is an opening parenthesis and � = 2i + 1 is a mat
hing
losing

parenthesis, for some 0 � i � m� 1, then �s

0

� 2 PAR

m

.

3. If s

0

; s

00

2 PAR

m

, then s

0

s

00

2 PAR

m

.

We will prove the following theorem.

Theorem 2 Any algorithm for testing PAR

2

with distan
e parameter � � 2

�6

and su

ess proba-

bility of at least 2=3, requires �n

1=11

= log n queries, where � = e

�7

.

The high-level stru
ture of our proof is similar to other lower-bound proofs for testing (see for

example [GR02, PR02, BR02℄ whi
h
an be tra
ed ba
k to [Yao77℄). In order to prove the theorem

we de�ne two distributions,
alled POS

n

and NEG

n

, on strings over �

2

[f`a'g (that is, there are

two types of parentheses and one extra non-parenthesis symbol). Sin
e we have only two types of

parentheses, it will be
onvenient to let �

2

= f(;); [; ℄g. The support of the �rst distribution, POS

n

,

ontains only strings in PAR

2

, while with extremely high probability, a string sele
ted a

ording

to the se
ond distribution, NEG

n

, is 2

�6

-far from PAR

2

. Roughly speaking, what we show is

that an algorithm that asks less than �n

1=11

= log n queries
annot distinguish with suÆ
iently high

probability between a string sele
ted a

ording to the �rst distribution (whi
h should be a

epted)

and a string sele
ted a

ording to the se
ond distribution (whi
h should almost always be reje
ted).

4.1 The Two Distributions

In what follows we assume for simpli
ity that the length n of the strings, is divisible by 32. In both

distributions the support of the distributions is only on strings s su
h that �

1

(s) 2 PAR

1

, where

we extend the mapping �

1

(�) de�ned in De�nition 3, so that it maps every `a' to `a'. Furthermore,

the strings have a relatively simple stru
ture: there are always n=4 opening parentheses among

the �rst n=2 symbols (the left half of the string), and n=4
losing parentheses among the last n=2

symbols (the right half of the string). All other symbols are `a's. The strings di�er only in the

a
tual positions of the parentheses in the string and in their type:

De�nition 13 (Parenthesis Types) We say that an opening parenthesis is of type 0 if it is `(',

and is of type 1 if it is `['. Similarly, we say that a
losing parenthesis is of type 0 if it is `)', and

it is of type 1 if it is `℄'. Thus, `(' and ')', and similarly `[' and '℄', are said to have the same type.

4.1.1 The First Distribution, POS

n

.

This distribution is simply uniform over all strings in PAR

2

that have n=4 opening parentheses

among the �rst n=2 positions, and n=4
losing parentheses (of
orresponding types) among the last

n=2 positions. To be pre
ise, a string s is generated in the following manner:

1. Uniformly sele
t a subset L � f1; : : : ; n=2g su
h that jLj = n=4. These will be the positions

in s of the opening parentheses.

2. Uniformly sele
t a subset R � fn=2 + 1; : : : ; ng su
h that jRj = n=4. These will be the

positions in s of the
losing parentheses.

18

3. Uniformly sele
t a binary string x 2 f0; 1g

n=4

. The string x will be used to determine the

type of parentheses.

4. Let j

1

; j

2

; : : : ; j

n=4

be the elements of L where n=2 � j

1

> j

2

> � � � > j

n=4

� 1. Then, for

every 1 � i � n=4, if x

i

= 0 then s

j

i

=`(', and if x

i

= 1 then s

j

i

=`['.

5. Similarly,
onsider a sorted order of the indi
es in R, only here the order is reversed so that

n=2+ 1 � k

1

< k

2

< � � � < k

n=4

� n. Then, for every 1 � i � n=4, if x

i

= 0 then s

k

i

=`)', and

if x

i

= 1 then s

k

i

=`℄'.

6. For every i =2 L [R, let s

i

=`a'.

Thus, ea
h string in the support of POS

n

has probability

�

n=2

n=4

�

�2

� 2

�n=4

.

4.1.2 The Se
ond Distribution, NEG

n

.

This distribution is similar to POS

n

(and in parti
ular its support
ontains the support of POS

n

),

with the ex
eption that not all pairs of parentheses (j

i

; k

i

) as de�ned above have the same type.

In parti
ular, the generating pro
edure is the same as that of POS

n

des
ribed above, with the

ex
eption of Steps 3 and 5 that are modi�ed below.

1,2. As des
ribed for POS

n

.

3. Uniformly sele
t a binary string x 2 f0; 1g

n=4

, and a binary string y 2 f0; 1g

n=8

.

4. As des
ribed for POS

n

.

5. Consider a sorted order of the indi
es in R so that k

1

< k

2

< � � � < k

n=4

. Then, for every i

su
h that 1 � i � n=16 or n=4�n=16+1 � i � n=4, if x

i

= 0 then s

k

i

=`)', and if x

i

= 1 then

s

k

i

=`℄'. For every n=16 + 1 � i � n=4� n=16, if y

i�n=16

= 0 then s

k

i

=`)', and if y

i�n=16

= 1

then s

k

i

=`℄'.

That is, as opposed to POS

n

, here the string x determines only the type of the �rst n=16

and the last n=16 parentheses on the right side of the string, while the string y determines

the type of the remaining n=8 middle parentheses.

6. As des
ribed for POS

n

.

Thus, ea
h string in the support of NEG

n

has probability

�

n=2

n=4

�

�2

� 2

�3n=8

.

range
significant
range

significant

matching parentheses

)]..([.. ([..])..

n/16 n/8 n/16 n/16 n/8

[(.. ..)]

 n/16

Figure 4: An illustration of strings in the two distributions. The horizontal line represents a string. The

entral verti
al line represents the middle of the string { to the left of it there are only opening parentheses

and to the right only
losing parentheses. The other dashed verti
al lines represent the borders of the regions

in whi
h reside the �rst and last n=16 parentheses and the middle n=8 parentheses in ea
h side. The middle

n=8 pairs must mat
h in POS

n

and do not ne
essarily mat
h in NEG

n

.

19

4.1.3 Properties of the Distributions

The following de�nitions will be
entral to our analysis.

De�nition 14 (Parenthesis Index) Let s be a string in the support of NEG

n

(whi
h in parti
-

ular
ontains the support of POS

n

), and let 1 � j � n=2 be a position su
h that s

j

is an opening

parenthesis. The parenthesis index of j in s is the number of opening parentheses s

j

0

su
h that

j � j

0

� n=2. We denote the parenthesis index of j in s by �

s

(j).

Analogously, for a position n=2+1 � k � n su
h that s

k

is a
losing parenthesis, the parenthesis

index of k in s is the number of
losing parentheses s

k

0

su
h that n=2 + 1 � k

0

� k.

De�nition 15 (Signi�
ant Index, Signi�
ant Range) We say that a parenthesis index 1 �

� � n=4 is signi�
ant if n=16 + 1 � � � n=4� n=16. Otherwise, it its non-signi�
ant. We shall
all

the range of indi
es between n=16 + 1 and n=4� n=16, the signi�
ant range.

Note that the parenthesis index of a position is not determined by the position itself but rather

by the number of parentheses between this position and the middle of the string. Observe that for

every string s in the support of POS

n

, and for every two positions 1 � j � n=2 and n=2+1 � k � n,

su
h that s

j

is an opening parenthesis and s

k

is a
losing parenthesis, if �

s

(j) = �

s

(k), then s

j

and

s

k

must be of the same type. For a string s in the support of NEG

n

, the above is ne
essarily true

only for pairs j; k su
h that �

s

(j) = �

s

(k) = � and � is not a signi�
ant parenthesis index.

Lemma 14 Let � � 2

�6

. Then the probability that a string generated a

ording to NEG

n

is �-far

from PAR

2

, is at least 1� exp(�
(n)).

Proof: Consider all possible ways in whi
h a given string s that is generated a

ording to NEG

n

an be modi�ed in at most �n pla
es. There are

�

n

�n

�

sele
tions of subsets C � f1; : : : ; ng, jCj = �n,

and for ea
h i 2 C the symbol s

i

an be modi�ed to any one of �ve symbols (this in
ludes not

hanging s

i

whi
h a

ounts for the possibility of modifying less than �n positions). That is, there

are

�

n

�n

�

� 5

�n

� 2

((1+o(1))�H(�)+(log 5)��)�n

(12)

possible ways to modify the string, where H(�) is the binary entropy fun
tion (that is, H(�) =

� log(1=�) + (1� �) log(1=(1 � �))).

For ea
h string s in the support of NEG

n

, and for ea
h C � f1; : : : ; ng, jCj = �n and t 2

f�

2

[fagg

�n

, let the string s

(C;t)

be de�ned as follows: for every i =2 C, s

(C;t)

i

= s

i

, and for every

i 2 C, s

(C;t)

i

= t

i

. We say that the pair (C; t)
orre
ts s if s

(C;t)

is in PAR

2

. The probability that

a string generated a

ording to NEG

n

is �-
lose to PAR

2

is the probability over the
hoi
e of s

a

ording to NEG

n

that there exists a pair (C; t) that
orre
ts s. We thus
onsider any parti
ular

subset C and any parti
ular string t and show that the probability over the
hoi
e of s that (C; t)

orre
ts s is exponentially smaller than the number of pairs (C; t). By applying a union bound we

prove the lemma.

We shall a
tually prove a slightly stronger
laim. For a �xed
hoi
e of (C; t),
onsider the

pro
ess of sele
ting a string s a

ording to NEG

n

. Re
all that a string s is generated by �rst

uniformly sele
ting the sets of parentheses positions L and R, and then randomly setting the types

of parentheses in these positions (a

ording to the
hoi
e of the strings x and y). We shall show

that for every
hoi
e of L and R, the probability, taken only over the
hoi
e of types of parentheses,

that the resulting string is
orre
ted by (C; t), is suÆ
iently small. Details follow.

20

For a given
hoi
e of L � f1; : : : ; n=2g, jLj = n=4 and R � fn=2 + 1; : : : ; ng, jRj = n=4, let

S(L;R) denote the subset of words in the support of NEG

n

that have opening parentheses in the

positions in L and
losing parentheses in the positions in R. Then either for every string s 2 S(L;R)

we have that �

1

(s

(C;t)

) 2 PAR

1

, or for every string s 2 S(L;R), �

1

(s

(C;t)

) =2 PAR

1

. In other words,

in the latter
ase, no matter how the types of parentheses are set in the positions determined by L

and R, the resulting string is not
orre
ted by (C; t). Thus assume from now on that L and R are

su
h that �

1

(s

(C;t)

) 2 PAR

1

. Note that for every s 2 S(L;R), the mat
hing M(s

(C;t)

) is exa
tly

the same. Let us thus denote it by M(L;R;C; t).

1

Let n=2+ 1 � k

1

< k

2

< : : : < k

n=4

� n be the indi
es in R in sorted order. Sin
e jCj = �n, the

number of indi
es k

i

su
h that either k

i

2 C or k

i

is mat
hed by M(L;R;C; t) to some ` 2 C is at

most 2�n. Therefore, there must be at least n=8�2�n positions k

i

for i 2 fn=16+1; : : : ; n=4�n=16g,

su
h that k

i

=2 C, and M(L;R;C; t) mat
hes k

i

to some j

i

0

2 L su
h that j

i

0

=2 C. If (C; t)
orre
ts

a string s 2 S(L;R), then it must be the
ase that the strings x and y (as de�ned in the des
ription

of NEG

n

) are su
h that all the above n=8� 2�n pairs of positions mat
hed by M(L;R;C; t), have

the same type of parentheses within ea
h pair. The probability of this event, taken over the
hoi
e

of x and y is at most 2

�(n=8�2�n)

.

Sin
e the above is true for every L and R (su
h that �

1

(s

(C;t)

) 2 PAR

1

for every s 2 S(L;R)),

we obtain a bound on the probability that the given (C; t)
orre
ts a string s generated a

ording

to NEG

n

.

Applying Equation (12), whi
h gives a bound on the number of
hoi
es of (C; t), we see that if

we sele
t � so that (H(�) + (log 5) � �) is suÆ
iently smaller than (1=8 � 2�), then we are done. A

hoi
e of � = 1=64 will do.

The following simple
laim will be useful later on. It states that with suÆ
iently high probability

over the
hoi
e of a string generated by one of the two distributions de�ned above, the parenthesis

index of every position does not deviate by mu
h from its expe
ted value.

Claim 15 With probability at least 7=8 over the
hoi
e of a string s a

ording to POS

n

(similarly,

NEG

n

), for every 1 � j � n=2 su
h that s

j

is an opening parenthesis, and for every n=2+1 � k � n

su
h that s

k

is a
losing parenthesis,

�

�

�

�

�

s

(j) �

n=2� j

2

�

�

�

�

�

p

log n �minf(n=2� j); jg

and

�

�

�

�

�

s

(k)�

k � n=2

2

�

�

�

�

�

p

log n �minf(k � n=2); (n� k)g

Proof: We prove the
laim
on
erning 1 � j � n=2. The se
ond
laim
on
erning n=2 < k � n is

proved analogously. Let us �x an index j and assume, without loss of generality, that j � n=4, so

that minf(n=2 � j); jg = j. Re
all that for any string in the support of NEG

n

, the total number

of opening parentheses among the �rst n=2 positions is exa
tly n=4. Hen
e, �

s

(j) deviates by more

than

p

log n � j from

n=2�j

2

if and only if the number of opening parentheses in s among the �rst

j positions deviates by more than

p

logn � j from

j

2

(the expe
ted number of parentheses). The

probability that there are at most

j

2

�

p

logn � j parentheses in these positions is

P

j=2�

p

j log n

i=0

�

j

i

�

�

�

n=2�j

n=4�i

�

�

n=2

n=4

�

�

P

j=2�

p

j log n

i=0

�

j

i

�

�

�

n=2�j

n=4�j=2

�

�

n=2

n=4

�

1

This mat
hing
learly does not depend on the type of parentheses in t but only on whether they are opening or

losing parentheses, but for simpli
ity we denote it as if it depends on t.

21

= O

0

�

j=2�

p

j log n

X

i=0

�

j

i

�

�

2

n=2�j

=

p

n=2� j

2

n=2

=

p

n=2

1

A

= O

�

2

j

� n

�2

� 2

�j

�

= O(n

�2

) (13)

Similarly, the probability that there are at least

j

2

+

p

logn � j parentheses in these positions is

O(n

�2

) as well. By applying a union bound over all positions j, we get that the probability

that there is a large deviation from the expe
tation for any of the indi
es is O(n

�1

), whi
h for a

suÆ
iently large n is smaller than 1=8.

4.2 On Distinguishing POS

n

from NEG

n

Let A be a possibly randomized testing algorithm for PAR

2

that asks at most �n

1=11

= log n queries

for � � e

�7

. We de�ne two randomized pro
esses P

pos

and P

neg

that intera
t with A. The

following
laim will follow immediately from their de�nition.

Claim 16 The distribution on answers provided by the pro
ess P

pos

is equivalent to those obtained

from querying a string that is randomly generated a

ording to POS

n

. Similarly, the distribution

on answers provided by the pro
ess P

neg

is equivalent to those obtained from querying a string that

is randomly generated a

ording to NEG

n

.

In parti
ular, at any stage of the intera
tion, ea
h pro
ess
onsiders the set of strings that are

onsistent with the intera
tion so far. Given a new query, the probability distribution on the

answer is determined by the relative fra
tion of strings in the set that are
onsistent with that

answer (be
ause both distributions are uniform over their support). While we won't be able to

ompute these probabilities exa
tly, we shall be able to bound them, and this will suÆ
e for our

proof.

4.2.1 The Pro
ess P

pos

.

We start by des
ribing P

pos

. At ea
h step of the intera
tion the pro
ess maintains the set of

positions already queried by the algorithm, and the answers it has provided (that is, what is the

symbol in ea
h queried position). In addition, the pro
ess P

pos

maintains a subset, denoted

mat
hed, of disjoint pairs (j; k) of previously queried positions, where 1 � j � n=2, n=2 + 1 �

k � n, and both positions were answered by parentheses having the same parenthesis index (as

explained next). With ea
h su
h pair it asso
iates a
ommon parenthesis index 1 � � � n=4. The

�nal generated string s will be su
h that for every pair (j; k) 2 mat
hed, �

s

(j) = �

s

(k) = �, and

for any other two queried positions j

0

; k

0

su
h that (j

0

; k

0

) =2 mat
hed, �

s

(j

0

) 6= �

s

(k

0

). We stress

that the pro
ess only \
ommits" to the parenthesis index of a subset of pairs of queried positions,

and not to the parenthesis index of every queried position that is answered by a parenthesis.

Before
ontinuing with the des
ription of the pro
ess, we introdu
e two de�nitions. The �rst

de�nition is of the query-answer history of an intera
tion between a testing algorithm and the

pro
ess P

pos

. This history
ontains the positions queried by the algorithm and the symbols that

the pro
ess returns as answers. In addition it in
ludes the information
on
erning queried positions

that the pro
ess de
ides to mat
h. Clearly, in an a
tual exe
ution of the algorithm su
h information

is not provided dire
tly. However, it is also
lear that giving this extra information to the algorithm

an only help it.

22

De�nition 16 (Query-Answer History) The query-answer history h of length T is a sequen
e

of T triples (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) su
h that for every 1 � i � T the following holds:

� The query qu

i

is an index in 1; : : : ; n.

� The answer ans

i

is either an `a' or a parenthesis.

� The mat
hing information ma

i

is either NO-MATCH or a pair (qu

i

0

; �

i

) where i

0

< i, and

�

i

2 f1; : : : ; n=4g. In the latter
ase (qu

i

0

; qu

i

) 2 mat
hed, with the asso
iated parenthesis

index �

s

(qu

i

0

) = �

s

(qu

i

) = �

i

. In the former
ase there is no qu

i

0

, i

0

< i su
h that (qu

i

0

; qu

i

) 2

mat
hed. In parti
ular, if ans

i

= `a', then ne
essarily ma

i

= NO-MATCH. Furthermore, the

pairs in the subset mat
hed are disjoint and the parenthesis indi
es �

i

of pairs in mat
hed

are distin
t.

We note that if for some i the mat
hing information ma

i

is NO-MATCH then it only means that

qu

i

is not mat
hed to any previous query qu

i

0

where i

0

< i. It is possible that there may be a

subsequent query qu

i

00

where i

00

> i su
h that (qu

i

; qu

i

00

) 2 mat
hed.

De�nition 17 (Compatibility) We say that a string s of length n and a history h =

(qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) of length T are
ompatible if the following holds:

1. For every 1 � i � T , s

qu

i

= ans

i

;

2. If ma

i

= (qu

i

0

; �

i

) for i

0

< i, then �

s

(qu

i

) = �

s

(qu

i

0

) = �

i

.

3. If ma

i

= NO-MATCH then for every i

0

< i su
h that ans

i

0

is a parenthesis, �

s

(qu

i

) 6= �

s

(qu

i

0

).

The set of strings in the support of POS

n

that are
ompatible with h is denoted by S(h).

Given a history h = (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) of length T , let qu

T+1

be a new query.

We would like to determine the distribution on ans

T+1

and ma

T+1

,
onditioned on the history h.

Sin
e POS

n

is uniform over its support, the response provided by the pro
ess is determined by

the relative fra
tion of strings in S(h) that are
onsistent with ea
h possible response. We thus

partition S(h) into disjoint subsets as follows:

De�nition 18 For a given history h of length T , let S

a

(h; qu

T+1

) denote the subset of all strings

s 2 S(h) su
h that s

q

T+1

= `a', and let S

par

(h; qu

T+1

) denote the subset of all strings s 2 S(h) su
h

that s

q

T+1

is a parenthesis.

For every 1 � � � n=4 and 1 � i � T , let S

�;qu

i

(h; qu

T+1

) denote the subset of all strings

s 2 S

par

(h; qu

T+1

) su
h that �

s

(qu

T+1

) = �

s

(qu

i

) = �, and let S

no-mat
h

(h; qu

T+1

) denote the

subset of all strings s 2 S

par

(h; qu

T+1

) su
h that �

s

(qu

T+1

) 6= �

s

(qu

i

) for every 1 � i � T .

Note that there may exist 1 � � � n=4 and 1 � i � T , su
h that the set S

�;qu

i

(h; qu

T+1

) is empty

due to the
ompatibility requirement with h.

The Distribution on P

pos

's answers. Given the above de�nition, the probability that ans

T+1

is

an `a' is jS

a

(h; qu

T+1

)j=jS(h)j, and the probability that it is a parenthesis is jS

par

(h; qu

T+1

)j=jS(h)j.

Conditioned on it being a parenthesis, P

pos

needs to determine its type, and it needs to determine

ma

T+1

(if ans

T+1

is `a' then ne
essarily ma

T+1

is NO-MATCH).

For ea
h su
h qu

i

, where 1 � i � T , and for ea
h 1 � � � n=4, the probability that ma

T+1

=

(qu

i

; �) is jS

�;qu

i

(h; qu

T+1

)j=jS

par

(h; qu

T+1

)j. The probability that ma

T+1

= NO-MATCH,
on-

ditioned on position qu

T+1

being a parenthesis, is jS

no-mat
h

(h; qu

T+1

)j=jS

par

(h; qu

T+1

)j. Finally,

23

after determining ma

T+1

the pro
ess
an determine ans

T+1

: If ma

T+1

= (qu

i

; �) for some 1 � i � T ,

then ans

T+1

is a parenthesis of the same type as ans

i

. If ma

T+1

= NO-MATCH then one of the

two types of parentheses is sele
ted with equal probability.

4.2.2 The Pro
ess P

neg

.

The pro
ess P

neg

is almost identi
al to P

pos

. Here too, for every history h of length T and a new

query qu

T+1

, P

neg

onsiders the set S(h) of strings in the support of NEG

n

that are
ompatible

with h, and the
orresponding subsets S

a

(h; qu

T+1

) and S

�;qu

i

(h; qu

T+1

) � S

par

(h; qu

T+1

), whi
h

are de�ned analogously to the way that they were de�ned above. Given these subsets, the proba-

bility that the answer ans

T+1

is set to `a' or is a parenthesis whose type is yet to be determined,

is the same as des
ribed for P

pos

, and the same holds for the setting of ma

T+1

. The di�eren
e

between the two pro
esses is in the
hoi
e of the type of parenthesis, in
ase the pro
ess de
ides

that ans

T+1

is a parenthesis that is mat
hed to a previous query. Suppose that ma

T+1

= (qu

i

; �)

for some 1 � i � T . Then the setting of ans

T+1

depends on �: If � is non-signi�
ant, then ans

T+1

is

of the same type as ans

i

, and if � is signi�
ant, then one of the two types of parentheses is sele
ted

with equal probability (as in the
ase of NO-MATCH).

Thus the two pro
esses di�er only in the way they answer queries whose position is mat
hed to a

previously answered query, and the
ommon parenthesis index is signi�
ant. Therefore,
onditioned

on the history
ontaining no su
h mat
h, the two
orresponding distributions on query-answer

histories are exa
tly the same.

4.3 Intera
ting with P

pos

and P

neg

The next lemma is
entral to the proof of Theorem 2. In the lemma and in all that follows we

assume that the testing algorithm A re
eives, for ea
h query qu

i

it asks, not only the answer ans

i

but also the mat
hing information ma

i

. Clearly, any lower bound that holds under this assumption

also holds when the algorithm is not provided with this extra information.

Lemma 17 Let A be an algorithm that asks at most �n

1=11

= log n queries for � � e

�7

and

is provided, for ea
h query qu

i

, with an answer ans

i

and the mat
hing information ma

i

, gen-

erated by P

pos

(similarly, P

neg

). Consider the distribution on query-answer histories h =

(qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) for T � �n

1=11

= log n, that is indu
ed by the random de-

isions of A and P

pos

(similarly, P

neg

). Then the probability that there exists an index 1 � i � T

su
h that ma

i

= (qu

i

0

; �) where i

0

< i and � is a signi�
ant parenthesis index, is at most 1=4.

Proof: We shall refer to a mat
h as des
ribed in the lemma, as a su

essful mat
h. Sin
e as long

as a su

essful mat
h does not o

ur, the two pro
esses P

pos

and P

neg

behave exa
tly the same,

it suÆ
es to prove the lemma for one of them. Let this pro
ess be P

pos

.

We shall break the intera
tion between A and P

pos

into phases. A phase ends whenever

the pro
ess responds with a mat
h between the newly queried position and a previously queried

position. We may assume, without loss of generality, that on
e the algorithm views a mat
h between

positions 1 � j � n=2 and n=2 + 1 � k � n with parenthesis index � � n=16, then it does not

ask any additional queries in the intervals [j; n=2℄ and [n=2 + 1; k℄. Similarly, if the mat
h has

parenthesis index � > n=4 � n=16, then the algorithm does not ask any additional queries in the

intervals [1; j℄ and [k; n℄.

Hen
e, as long as a su

essful mat
h does not o

ur, at the end of ea
h phase we either have a

new mat
h � � n=16 that is greater than any previous mat
h �

0

� n=16, or we have a new mat
h

� > n=4 � n=16 that is smaller than any previous mat
h �

0

> n=4 � n=16. We next de�ne the

24

progress that a new query
an make in terms of getting a new mat
h that is
loser to the signi�
ant

range [n=16 + 1; n=4 � n=16℄.

De�nition 19 (Progress) Let h = (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) be a given history of

length T that does not
ontain a mat
h in the signi�
ant range, and let �

0

(h) be the maximum over

all �

i

� n=16 su
h that ma

i

= (qu

i

0

; �

i

) for some i

0

< i. If no su
h mat
h exists then �

0

(h) = 0.

Similarly, let �

0

0

(h) be the minimum over all �

i

> n=4 � n=16 su
h that ma

i

= (qu

i

0

; �

i

), where if

no su
h mat
h exists then �

0

0

(h) = n=4 + 1. We say that a new query qu

T+1

makes progress x, for

some integer x, if:

1. ans

T+1

2 f(; [;); ℄g for some j � T (the new query is answered by a parenthesis).

2. ma

T+1

= (qu

j

; �

T+1

) for some 1 � j � T (the new query is mat
hed to a previously queried

position), where �

T+1

� �

0

(h) + x and �

T+1

� �

0

0

(h) � x.

π π

π’

π

+ x T+1

(()
j

0

0 0

]
quT+1

()])]]])

0

>=

k

0

([[(([
0 0j’ k’

Figure 5: An illustration for De�nition 19 and Claim 17.1. The new query, qu

T+1

is mat
hed to an opening

parenthesis on the left side of the string. Here j

0

, k

0

and �

0

, stand for j

0

(h), k

0

(h) and �

0

(h), respe
tively.

The following
laim is
entral to the proof of Lemma 17, and will be proved subsequently.

Claim 17.1 Let h = (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) be a query-answer history

h of length T < �n

1=11

= log n and let �

0

(h) and �

0

0

(h) be as in De�nition 19. Let

(j

0

(h); k

0

(h)) and (j

0

0

(h); k

0

0

(h)), where j

0

(h); j

0

0

(h) � n=2 and k

0

(h); k

0

0

(h) > n=2, be

the
orresponding pairs of mat
hed queried positions having parenthesis index �

0

(h) and

�

0

0

(h), respe
tively. Suppose that �

0

(h) � n=(4 log n), and that �

0

(h) does not devi-

ate by more than

p

logn �minf(n=2� j

0

(h)); j

0

(h)g from (n=2 � j

0

(h))=2 and by more than

p

logn �minf(k

0

(h)� n=2); (n� k

0

(h))g from (k

0

(h) � n=2)=2. Suppose that an analogous bounds

hold for �

0

0

(h). Then for any possible new query qu

T+1

2 f1; : : : ; ng, the probability that the new

query makes progress at least n

10=11

, is at most n

�1=11

.

Completing the proof of Lemma 17. Re
all that as stated in Claim 16, for every algorithm

A, the distribution on answers provided by P

pos

is identi
al to those obtained from querying a

string that is randomly generated a

ording to POS

n

. By Claim 15, the probability that a string

generated by POS

n

does not obey the inequalities in Claim 15 is at most 1=8. Hen
e, for any

length of intera
tion, the probability that there exists a stage at whi
h either �

0

(h) or �

0

0

(h), as

determined in that stage for the
urrent history h, deviate by more than the
laim allows from

their expe
ted values, is at most 1=8. Conditioned on su
h an event not o

urring, we
an apply

Claim 17.1 as long as �

0

(h) � n=(4 log n) and �

0

0

(h) � n=4�n=(4 log n). If the algorithm performs

at most �n

1=11

= log n queries, and in ea
h it in fa
t makes progress of at most n

10=11

, then �

0

(h)

and �

0

0

(h) will be as required by Claim 17.1 prior to ea
h query. Hen
e, by applying Claim 15 and

25

Claim 17.1, if the algorithm asks at most �n

1=11

= log n queries, then the probability that it obtains

a su

essful mat
h is at most

1=8 + (�n

1=11

= log n) � n

�1=11

< 1=8 + � < 1=4:

Lemma 17 follows.

It thus remains to prove Claim 17.1.

4.3.1 An Intuitive Dis
ussion of the Validity of Claim 17.1

Assume �rst, without loss of generality, that the following
onditions hold:

1. qu

T+1

> n=2, and in parti
ular, k

0

(h) + n

10=11

� qu

T+1

� k

0

0

(h) � n

10=11

(or else
learly the

algorithm
annot make suÆ
ient progress).

2. qu

T+1

� k

0

(h) � k

0

0

(h)� qu

T+1

so that qu

T+1

is
loser to k

0

(h) than to k

0

0

(h).

The probability that qu

T+1

makes progress of at least n

10=11

is the probability,
onditioned on a

string s that is generated a

ording to POS

n

being
ompatible with h, that for some query-position

qu

i

< j

0

(h), we have �

s

(qu

i

) = �

s

(qu

T+1

).

In order to bound this probability, suppose that we generate s by �rst randomly sele
ting the

set L of all n=4 parentheses positions on the left half of the string, in a manner
onsistent with the

history h. Ea
h su
h
hoi
e of L determines the parentheses indi
es of all queries on the left half of

the string that were answered by parentheses. Denote the set of parentheses indi
es
orresponding

to the query positions by �(L). Next we
onsider the sele
tion of the parentheses positions on the

right half of the string, on
e again in a manner
onsistent with the history h. In parti
ular, in order

to be
onsistent, the number of parentheses positions sele
ted between k

0

(h) and k

0

0

(h) is exa
tly

n=4� (�

0

(h) + �

0

0

(h)).

Fixing L,
onsider ea
h index � 2 �(L), where there are at most �n

1=11

= log n su
h indi
es.

The probability that �

s

(qu

T+1

) = �, taken over the sele
tion of parentheses positions on the right

half of the string, is the probability that there are exa
tly ���

0

(h) parentheses between k

0

(h) and

qu

T+1

(in
luding qu

T+1

), and exa
tly �

0

0

(h)� � parentheses between qu

T+1

and k

0

0

(h).

For the sake of this dis
ussion, let us now make the following simplifying assumption by whi
h we

shall lose generality. Suppose that there is no query qu

i

, 1 � i � T su
h that k

0

(h) < qu

i

< k

0

0

(h).

That is, qu

T+1

is the �rst query in this region. Consider in this
ase the sele
tion of parentheses

positions on the right side of the string, and in parti
ular the sele
tion of n=4 � (�

0

(h) + �

0

0

(h))

positions between k

0

(h) and k

0

0

(h). Sin
e there is no
onditioning on the way these parentheses

are allowed to be distributed (as there are no other queries in this region), it is not very hard

to verify that the probability that there are � � �

0

(h) parentheses between k

0

(h) and qu

T+1

and

�

0

0

(h)� � parentheses between qu

T+1

and k

0

0

(h) is relatively small. In parti
ular, it is of the order

of 1=

p

(qu

T+1

� k

0

(h)) � n

�5=11

.

In general there may be up to �n

1=11

= log n queried positions between k

0

(h) and k

0

0

(h) that in

parti
ular may
ontain parentheses, and we must sele
t the string s
onditioned on these positions

not mat
hing any queried position on the left hand side. Hen
e our argument is more
ompli
ated.

4.3.2 Proof of Claim 17.1

We need to show that among all strings
ompatible with the given query-answer history h, the

fra
tion of strings in whi
h the new query qu

T+1

makes progress of at least n

10=11

is at most

26

n

�1=11

. Re
all that we assume that the history h does not
ontain any mat
h in the signi�
ant

region. We may assume without loss of generality that qu

T+1

> n=2 and that P

pos

de
ides that

this position should
ontain a parenthesis (or else
learly no progress is made). In order to simplify

our presentation, we also assume that �

0

0

(h) = n=4 + 1, that is, the history does not
ontain any

mat
h �

i

> n=4� n=16. It is not hard to verify that while this simpli�es the already
umbersome

notation involved, removing the assumption does not
hange the essen
e of the argument.

For a given history h and a new query qu

T+1

> n=2,
onsider all the strings that are
ompatible

with h and have a parenthesis in position qu

T+1

. That is,
onsider the set S

par

(h; qu

T+1

) as de�ned

in De�nition 18. Then

Pr[qu

T+1

makes progress n

10=11

j h℄ �

P

���

0

(h)+n

10=11

P

1�i�T

jS

�;qu

i

(h; qu

T+1

)j

jS

par

(h; qu

T+1

)j

; (14)

where S

�;qu

i

(h; qu

T+1

) is also de�ned in De�nition 18. To this end it will be
onvenient to use a

�ner partition of S

par

(h; qu

T+1

), sin
e it will be easier for us to relate the sizes of the subsets in

this partition. In parti
ular, the strings within ea
h subset have the following in
ommon: The

subset L of n=4 parentheses positions in the left half of ea
h string is the same for all strings in the

subset. Furthermore, the substring s

j

0

(h);k

0

(h)

, where j

0

(h) and k

0

(h) are as de�ned in Claim 17.1,

is also the same for all strings in the subset. A formal de�nition follows.

De�nition 20 Let h, qu

T+1

, �

0

(h), j

0

(h), and k

0

(h) be as de�ned in Claim 17.1, and assume

that qu

T+1

> n=2 and �

0

0

(h) = n=4 + 1. Let w be a �xed substring of length k

0

(h) � j

0

(h) + 1,

and let L

0

� f1; : : : ; j

0

(h) � 1g, jL

0

j = n=4� �

0

(h) be a subset of parentheses positions. We de�ne

S

par

(h; qu

T+1

; w; L

0

) to be the subset of all strings in S

par

(h; qu

T+1

) su
h that:

1. s

j

0

(h);k

0

(h)

= w;

2. For every j 2 L

0

, s

j

is a parenthesis, and for every j 2 f1; : : : ; j

0

(h) � 1g n L

0

, the symbol s

j

is an `a'.

Note that there may exist L

0

and w for whi
h S

par

(h; qu

T+1

; w; L

0

) is empty.

]) ?])]
0

0π

()
j0 k quT+1

∗ ∗ (∗ . . . ∗ [∗ ∗ (∗ ∗

{ w

Figure 6: An illustration for De�nition 20. The asterisks on the left half of the string represent the sele
ted

positions in L

0

, that in
lude in parti
ular all queried positions that were answered by parentheses. The

question mark on the right represents the position of the new query, qu

T+1

. Here j

0

, k

0

and �

0

, stand for

j

0

(h), k

0

(h) and �

0

(h), respe
tively.

Observe that for a �xed w and L

0

and for every qu

i

� n=2, su
h that ans

i

is a parenthesis, �

s

(qu

i

) =

�

s

0

(qu

i

) for every s; s

0

2 S

par

(h; qu

T+1

; w; L

0

). This is
learly true for every j

0

(h) � qu

i

� n=2,

sin
e s

j

0

(h);n=2

is
ompletely determined. As for qu

i

< j

0

(h), the parenthesis index of qu

i

is simply

�

0

(h) + jfj 2 L

0

; j � qu

i

gj. In the next de�nition we
onsider subsets of S

par

(h; qu

T+1

; w; L

0

) in

whi
h for all strings s in the subset, �

s

(qu

T+1

) = �

s

(qu

i

) for some qu

i

< j

0

(h) (as determined by

L

0

and �

0

).

27

De�nition 21 Let h, qu

T+1

, �

0

(h), j

0

(h), and k

0

(h) be as de�ned in Claim 17.1, and assume that

qu

T+1

> n=2 and �

0

0

(h) = n=4 + 1. Let w and L

0

be as in De�nition 20. We denote by �(L

0

)

the set of parentheses indi
es of query-positions qu

i

< j

0

(h) that is indu
ed by L

0

(and �

0

(h)).

For ea
h � 2 �(L

0

), let S

�

(h; qu

T+1

; w; L

0

) � S

par

(h; qu

T+1

; w; L

0

) be the subset of strings in

S

par

(h; qu

T+1

; w; L

0

) su
h that position qu

T+1

has parenthesis index �.

Note that by de�nition of �(L

0

), ea
h � 2 �(L

0

)
orresponds to a unique query position qu

i

< j

0

(h).

Re
all that S

�;qu

i

(h; qu

T+1

) denotes the set of all strings
ompatible with h in whi
h qu

T+1

is

mat
hed with qu

i

and both are assigned parenthesis index �. Hen
e, for ea
h � 2 �(L

0

) there

exists a unique qu

i

su
h that S

�

(h; qu

T+1

; w; L

0

) � S

�;qu

i

(h; qu

T+1

).

Claim 17.2 For every h, qu

T+1

, w, and L

0

as in De�nition 20, and for every � 2 �(L

0

),

� � �

0

(h) + n

10=11

,

jS

�

(h; qu

T+1

; w; L

0

)j

jS

par

(h; qu

T+1

; w; L

0

)j

<

1

�

� n

�2=11

:

Before proving Claim 17.2, we apply it to obtain Claim 17.1. By de�nition, S

par

(h; qu

T+1

) =

S

L

0

;w

S

par

(h; qu

T+1

; w; L

0

). The subset of strings in S

par

(h; qu

T+1

) in whi
h qu

T+1

makes progress

n

10=11

, is the union over � � �

0

(h) + n

10=11

and over all qu

i

< T of the sets S

�;qu

i

(h; qu

T+1

). This

in turn (by our observation following De�nition 21), is equivalent to the union over all w, L

0

and

� 2 �(L

0

) su
h that � � �

0

(h)+n

10=11

, of the sets S

�

(h; qu

T+1

; w; L

0

). Sin
e these sets are disjoint

and sin
e j�(L

0

)j < �n

1=11

= log n, using Equation (14) we get:

Pr[qu

T+1

makes progress n

10=11

j h℄

�

P

L

0

;w

P

�2�(L

0

); ���

0

(h)+n

10=11

�

�

S

�

(h; qu

T+1

; w; L

0

)

�

�

P

L

0

;w

�

�

S

par

(h; qu

T+1

; w; L

0

)

�

�

� max

L

0

;w

P

�2�(L

0

); ���

0

(h)+n

10=11

�

�

S

�

(h; qu

T+1

; w; L

0

)

�

�

�

�

S

par

(h; qu

T+1

; w; L

0

)

�

�

� j�(L

0

)j �

1

�

� n

�2=11

< n

�1=11

: (15)

Claim 17.1 thus follows from Claim 17.2.

4.3.3 Proof of Claim 17.2

Sin
e h, qu

T+1

, w and L

0

are �xed, we remove them from our notation. Namely we let �

0

= �

0

(h),

j

0

= j

0

(h), k

0

= k

0

(h), � = �(L

0

), S = S

par

(h; qu

T+1

; w; L

0

), and S

�

= S

�

(h; qu

T+1

; w; L

0

). Sin
e

the
laim should hold for every � 2 �, � � �

0

(h) + n

10=11

, let us �x su
h a �. Re
all that we have

assumed without loss of generality that qu

T+1

> n=2.

We start with a des
ription of the underlying idea of the proof. One basi
 approa
h to proving

that S

�

is relatively small with respe
t to S, is to de�ne a one-to-many mapping from strings in

S

�

to relatively large subsets of strings in S. The mapping should be su
h that di�erent strings in

S

�

are mapped to di�erent disjoint subsets of S. Our argument will be in similar vein: Instead of

mapping strings to subsets of strings, we do the following. We �rst partition S into disjoint subsets,

su
h that ea
h subset U in the partition is either
ontained in S

�

or is
ontained in S n S

�

. We

then map ea
h subset U � S

�

in this partition to a relatively large
olle
tion of disjoint subsets

fU

i

g of S. We shall show that:

28

1. For every su
h subset U � S

�

and for all but a small fra
tion of the U

i

's in the
orresponding

olle
tion fU

i

g, the size of ea
h U

i

is of the same order as the size of U .

2. There exists a family U of subsets U � S

�

in the partition, su
h that

(a) For every two subsets U;U

0

2 U , the respe
tive
olle
tions fU

i

g and fU

0

i

g are disjoint

(that is, for every i; j, U

i

\ U

0

j

= ;).

(b)

�

�

S

U2U

U

�

�

is relatively large
ompared to all of S

�

.

More details follow.

De�ning the Partition of S. Let k

1

< : : : < k

r

be all positions of queries in h in
luding qu

T+1

that are greater than k

0

and were answered by parentheses, where qu

T+1

= k

t

for some 1 � t � r.

We assume without loss of generality that k

t

� k

0

� n� k

t

(the
ase in whi
h k

t

is
loser to n than

to k

0

is symmetri
). Re
all that k

0

is the queried position on the right half of the string having

the largest mat
hed parenthesis index where the mat
hed position is j

0

� n=2. Hen
e, with the

possible ex
eption of k

t

, no k

i

> k

0

is mat
hed to any queried position qu

`

� n=2. Sin
e � is the

set of all parentheses indi
es of queried positions qu

`

< j

0

that is indu
ed by L

0

, we have that for

every string s 2 S, for every k

i

6= k

t

and for every � 2 �, �

s

(k

i

) 6= �.

We partition S into disjoint subsets a

ording to the number of parentheses between every two

positions k

i�1

and k

i

. For i = 1; : : : ; r + 1, let b

i

= k

i

� k

i�1

� 1 be the number of positions

stri
tly between k

i�1

and k

i

, and let q

i

be the number of queries between k

i

and k

i�1

. That

is, q

i

= jfqu

j

: k

i�1

< qu

j

< k

i

gj. Sin
e the k

i

's were de�ned to be the query positions that

were answered by parentheses, all the query positions stri
tly between k

i�1

and k

i

were ne
essarily

answered by an `a'.

Given the above notations b

i

and q

i

, for every string s 2 S and for every 1 � i � r + 1, the

number of parentheses between positions k

i�1

and k

i

ranges between 0 and b

i

� q

i

. Re
all that

ea
h su
h string
ontains a total of n=4 parentheses among positions n=2 + 1; : : : ; n, where there

are �

0

parentheses among positions 1; : : : ; k

0

, and r parentheses in positions k

1

; : : : ; k

r

. Hen
e

the total number of parentheses between the k

i

's is n=4 � r � �

0

. We shall partition the strings

in S a

ording to the number of parentheses they have between every
onse
utive k

i�1

and k

i

.

Spe
i�
ally,
onsider any sequen
e D = d

1

; : : : ; d

r+1

that satis�es the following
onstraints:

C1. For every 1 � i � r + 1, we have 0 � d

i

� b

i

� q

i

;

C2.

P

r+1

i=1

d

i

= n=4� r � �

0

.

Let S(D) denote the subset of strings in S su
h that for every 1 � i � r + 1, there are exa
tly d

i

parentheses in positions k

i�1

< k < k

i

.

Note that given �

0

, the sequen
e D determines the parenthesis index of every k

i

, and in par-

ti
ular of k

t

. Spe
i�
ally, the parenthesis index of k

j

in every string in S(D) is �

0

+

P

i�j

(d

i

+ 1).

The reason we add 1 to ea
h d

i

, i � j, is that we need to a

ount for the parentheses in the queried

positions k

1

; : : : ; k

j

, where d

i

is the number of parentheses stri
tly between these positions. Thus,

if D determines that the parenthesis index of some k

j

6= k

t

is in �, then S(D) is empty, sin
e

there is no string
ompatible with h su
h that the number of parentheses between the k

i

's is as D

designates. Otherwise, S(D) is non-empty, sin
e all other
ompatibility requirements are obeyed.

In this
ase either S(D) � S

�

if �

0

+

P

1�i�T

(d

i

+ 1) = �, or S(D) � S n S

�

.

If S(D) is non-empty, then the number of strings in S(D) depends on: (1) The number of ways

to sele
t d

i

positions for parentheses among the b

i

� q

i

available positions between k

i�1

and k

i

for

29

every 1 � i � r + 1, (2) The number of ways to set the types of the parentheses in the sele
ted

positions (that do not
orrespond to previous queries) on both sides of the string.

Spe
i�
ally, for any �xed sequen
e D = d

1

; : : : ; d

r+1

that satis�es
onditions C1 and C2, the

total number of ways to sele
t d

i

positions for parentheses between k

i�1

and k

i

, for every 1 � i �

r + 1, is simply

Q

r+1

i=1

�

b

i

�q

i

d

i

�

. Re
all that the set of positions L

0

of all parentheses positions to the

left of j

0

is already �xed for all strings in S, and that assuming S(D) is non-empty, the parenthesis

position of ea
h k

i

, i 6= t di�ers from the parenthesis position of ea
h of the j�j positions qu

i

< j

0

that were answered by a parenthesis. Therefore, the number of ways to set the types of parentheses

in the sele
ted positions to the left of j

0

and to the right of k

0

(in
luding k

t

) is either 2

n=4�(�

0

+j�j+r)

or 2

n=4�(�

0

+j�j+r�1)

. The �rst value
orresponds to the
ase in whi
h the parenthesis index of k

t

is

not in � (and so the type of parenthesis in position k

t

is not determined), and the se
ond value to

the
ase in whi
h the parenthesis index of k

t

belongs to �. Given the above dis
ussion,

r+1

Y

i=1

�

b

i

� q

i

d

i

�

!

� 2

(n=4��

0

)�(j�j+r)

� jS(D)j �

r+1

Y

i=1

�

b

i

� q

i

d

i

�

!

� 2

(n=4��

0

)�(j�j+r�1)

(16)

De�ning the One-to-Many Mapping from ea
h S(D) � S

�

to subsets in S. Consider any

�xed sequen
e D = d

1

; : : : ; d

r+1

that satis�es
onditions C1 and C2 and su
h that S(D) is non-

empty and S(D) � S

�

. Let m = n

4=11

, and suppose that there exist two indi
es, 1 � u � t and

t+ 1 � v � r+ 1 su
h that d

u

� b

u

� q

u

�m and d

v

� m. Then, for every 1 � g � m, we
onsider

the subset of all strings that result from taking a string in S(D) and \moving" g parentheses from

the interval between k

v�1

and k

v

to the interval between k

u�1

and k

u

. More pre
isely, for ea
h

su
h g we de�ne the subset S(D

g

) of strings that
orrespond to the sequen
e

D

g

= d

1

; : : : ; d

u�1

; d

u

+ g; d

u+1

; : : : ; d

v�1

; d

v

� g; d

v+1

; : : : ; d

r+1

; (17)

where the d

i

's on whi
h D and D

g

di�er are underlined. As we shall show momentarily, all but a

relatively small number of these m = n

4=11

subsets are non-empty. Furthermore, under somewhat

stronger
onditions on d

u

and d

v

, ea
h of these subsets is not mu
h smaller than S(D). Finally we

show that for every D

0

6= D su
h that S(D

0

) � S

�

, the subsets D

0

g

that are de�ned analogously to

the D

g

's in Equation (17) are all disjoint from the D

g

's. More details are next provided. Re
all

that D is �xed, and so the following holds for every D su
h that S(D) � S

�

.

Properties of the Mapping from D to the D

g

's.

P1. For all but at most (r � 1) � j�j < �

2

n

2=9

= log

2

n of the D

g

's, S(D

g

) 6= ;.

This is true sin
e for every k

i

6= k

t

, the number of indi
es g su
h that �

s

(k

i

) 2 � for some string

s 2 S(D

g

), is at most j�j < �n

1=11

= log n, and the number of k

i

's is r � 1 < �n

1=11

= log n.

P2. For every D

0

6= D su
h that S(D

0

) is not empty and S(D

0

) � S

�

, the sequen
es D

0

1

; : : : ;D

0

m

all di�er from D

1

; : : : ;D

m

.

To verify this, assume in
ontradi
tion that for D

0

6= D, D

0

= d

0

1

; : : : ; d

0

r

, we have D

g

= D

0

g

0

.

That is, d

i

= d

0

i

for every i 6= u; v; d

u

+ g = d

0

u

+ g

0

; and d

v

� g = d

0

v

� g

0

. But, sin
e

P

t

i=1

d

i

=

P

t

i=1

d

0

i

= � � �

0

� t, we have g = g

0

, and so D = D

0

.

30

P3. For every D

g

su
h that S(D

g

) is non-empty, if

d

u

+m �

b

u

� q

u

2

+

p

3(b

u

� q

u

) and d

v

�m �

b

v

� q

v

2

�

p

3(b

v

� b

v

) (18)

then jS(D

g

)j � e

�18

jS(D)j.

To verify this,
onsider the ratio jS(D

g

)j=jS(D)j. By Equation (16) this ratio equals at least

�

b

u

�q

u

d

u

+g

�

�

�

b

v

�q

v

d

v

�g

�

�

b

u

�q

u

d

u

�

�

�

b

v

�q

v

d

v

�

Let us lower bound

�

b

u

�q

u

d

u

+g

�

=

�

b

u

�q

u

d

u

�

. A lower bound on

�

b

v

�q

v

d

v

�g

�

=

�

b

v

�q

v

d

v

�

is obtained similarly. If

d

u

+g � (b

u

�q

u

)=2 then

�

b

u

�q

u

d

u

+g

�

>

�

b

u

�q

u

d

u

�

and we are done. Otherwise, d

u

+g > (b

u

�q

u

)=2,

but by our assumption on d

u

in Equation (18), we also know that d

u

+ g � (b

u

� q

u

)=2 +

p

3(b

u

� q

u

). On the other hand,

�

b

u

�q

u

d

u

�

�

�

b

u

�q

u

(b

u

�q

u

)=2

�

, and so

�

b

u

�q

u

d

u

+g

�

�

b

u

�q

u

d

u

�

�

�

b

u

�q

u

(b

u

�q

u

)=2+

p

3(b

u

�q

u

)

�

�

b

u

�q

u

(b

u

�q

u

)=2

�

Let us denote b

u

� q

u

by b. Then the expression we have is:

�

b

b=2+

p

3b

�

�

b

b=2

�

=

Q

p

3b�1

i=0

(b=2� i)

Q

p

3b

i=1

(b=2 + i)

=

Q

p

3b�1

i=0

(1� i � (2=b))

Q

p

3b

i=1

(1 + i � (2=b))

>

Q

p

3b�1

i=0

exp(�3i=b))

Q

p

3b

i=1

exp(3i=b)

= exp

0

�

�(6=b)

p

3b

X

i=1

i

1

A

> e

�9

(19)

Clearly the above
an be extended to the
ase in whi
h the roles of u � t and v > t are reversed:

that is, D is su
h that

d

u

�m �

b

u

� q

u

2

�

p

3(b

u

� q

u

) and d

v

+m �

b

v

� q

v

2

+

p

3(b

v

� b

v

): (20)

In this
ase the D

g

's are de�ned the same as in Equation (17) ex
ept that d

u

is de
reased by g and

d

v

is in
reased by g.

De�ning Families of Subsequen
es D. If there existed one �xed
hoi
e of u and v for whi
h

the
onstraints on d

u

and d

v

des
ribed in Equation (18) or in Equation (20) were valid for every

D su
h that S(D) � S

�

, then we would be essentially done with our proof. While this is not the

ase, we shall show that there exists a
hoi
e of u; v for whi
h the sum of the sizes of the sets S(D),

su
h that D obeys the
onstraints in one of the two equations, is relatively large. This will suÆ
e

for our purposes. (Note that if we allow di�erent
hoi
es of pairs (u; v) then the disjointness
laim

in Property P2 does not ne
essarily hold.)

Let

D

u;v

def

= fD : Equation (18) holds for d

u

and d

v

g (21)

and

D

!

u;v

def

= fD : Equation (20) holds for d

u

and d

v

g: (22)

31

Let

D

u;v

def

= D

u;v

[D

!

u;v

and

~

D

u;v

def

= fD

g

: D 2 D

u;v

g:

Then by Properties P1{P3,

�

�

�

�

�

�

[

D

g

2

~

D

u;v

S(D

g

)

�

�

�

�

�

�

=

X

D

g

2

~

D

u;v

jS(D

g

)j =

X

D

g

2

~

D

u;v

: S(D

g

)6=;

jS(D

g

)j

�

X

D2D

u;v

(m� �

2

n

2=9

= log

2

n) � e

�18

� jS(D)j

� e

�19

� n

4=11

�

X

D2D

u;v

jS(D)j: (23)

Every D Belongs to at Least one Family D

u;v

. We next show that for every D su
h that

S(D) � S

�

, there exist u � t and v > t su
h that D 2 D

u;v

. Let us �x D. By our assumption on

the query-answer history (i.e., the deviation of �

0

from its expe
ted value),

�

�

�

�

�

0

�

k

0

� n=2

2

�

�

�

�

<

p

log n �minf(k

0

� n=2); (n � k

0

)g =

p

log n(k

0

� n=2) (24)

where in the equality we have used the assumption that k

0

is
loser to n=2 than to n. Let

x =

1

2

r+1

X

i=1

b

i

� (n=4� r � �

0

):

What does x measure? Re
all that

P

r+1

i=1

b

i

is the number of positions between k

0

+ 1 and n that

have not been queried, and amongst whi
h it remains to sele
t

P

r+1

i=1

d

i

= (n=4� r� �

0

) positions

for parentheses. Let us refer to these positions as undetermined . Sin
e the overall number of

parentheses in the right half of the string is exa
tly half the total number of positions in that

half, x measures the deviation from the expe
ted value amongst the undetermined positions. By

de�nition,

P

r+1

i=1

b

i

= n� r � k

0

. Therefore, x = n=2� r=2� k

0

=2� n=4 + r + �

0

. Combining this

equality with Equation (24) we get

�

p

logn(k

0

� n=2) + r=2 < x <

p

logn(k

0

� n=2) + r=2:

Let

x

1

=

1

2

t

X

i=1

b

i

� (� � t� �

0

) and x

2

=

1

2

r+1

X

i=t+1

b

i

� (n=4� (r � t)� �):

Re
all that we are
onsidering a setting D su
h that S(D) � S

�

. That is, for every s 2 S(D)

we have �

s

(k

t

) = �. In other words, there are � � �

0

� t parentheses amongst the undetermined

positions between k

0

+ 1 and k

t

� 1. Thus x

1

measures the deviation from the expe
tation of the

number of parentheses amongst the undetermined positions between k

0

+ 1 and k

t

� 1. Similarly,

x

2

measures the deviation from the expe
tation of the number of parentheses amongst the unde-

termined positions between k

t

+ 1 and n. By de�nition, x

1

+ x

2

= x. We
onsider the following

ases:

32

1. x

1

and x

2

have an opposite sign (or at least one of them is 0). That is, there is an \extra

number" of parentheses between k

0

+ 1 and k

t

� 1 and a \missing number" of parentheses

between k

t

+1 and n (amongst the undetermined positions and with respe
t to the expe
ted

numbers). Consider �rst the
ase that x

1

� 0 and x

2

� 0. Re
all that m = n

4=11

and that

t � r � �n

1=11

= log n. Also note that by de�nition of x we have � � t� �

0

=

1

2

P

t

i=1

b

i

� x

1

.

Therefore,

t

X

i=1

(d

i

+m) =

t

X

i=1

d

i

!

+ t �m

� (� � t� �

0

) + (�n

1=11

= log n) � n

4=11

=

1

2

t

X

i=1

b

i

� x

1

+ �n

5=11

= log n

�

1

2

t

X

i=1

b

i

+ �n

5=11

= log n (25)

=

1

2

t

X

i=1

(b

i

� q

i

)

!

+

1

2

t

X

i=1

q

i

+ �n

5=11

= log n

�

1

2

t

X

i=1

(b

i

� q

i

)

!

+

v

u

u

t

t

X

i=1

(b

i

� q

i

) (26)

where Equation (25) follows from our assumption that x

1

� 0, and the last inequality is due

to the fa
t that

P

t

i=1

b

i

� � � �

0

� t (or else there
annot be � parentheses up till position

k

t

), and so

t

X

i=1

(b

i

� q

i

) � � � �

0

� �n

1=11

= log n � n

10=11

� �n

1=11

= log n:

Similarly, using our assumption that x

2

� 0 we
an obtain

r+1

X

i=t+1

(d

i

�m) �

1

2

t

X

i=1

(b

i

� q

i

)

!

�

v

u

u

t

t

X

i=1

(b

i

� q

i

): (27)

For 1 � i � t, let y

i

= (d

i

+ m) �

1

2

(b

i

� q

i

). Then Equation (26) states that

P

t

i=1

y

i

�

q

P

t

i=1

(b

i

� q

i

). Sin
e

P

t

i=1

y

2

i

� (

P

t

i=1

y

i

)

2

, it follows that there must exist u � t su
h

that y

u

�

p

b

u

� q

u

, or else

P

t

i=1

y

2

i

>

P

t

i=1

(b

i

� q

i

) � (

P

t

i=1

y

i

)

2

. That is, d

u

+ m �

1

2

(d

u

� q

u

) +

p

b

u

� q

u

. Similarly, it follows from Equation (26) that there exists v > t su
h

that d

v

�m �

1

2

(b

v

� q

v

)�

p

b

v

� q

v

. Therefore, D 2 D

u;v

.

If x

1

� 0 and x

2

� 0, then we
an similarly show that D 2 D

!

u;v

for some u � t and v > t.

2. x

1

and x

2

have the same sign. Consider the
ase that this sign is negative (the positive
ase

is dealt with analogously). By de�nition of x and using Equation (24),

x � �

p

log n � (k

0

� n=2) � �

q

log n � 2(�

0

+

p

log n � (n� k

0

)):

Re
all that by one of the premises of Claim 17.2, �

0

< n=(4= log n), and so for a suÆ
iently

large n we have that x � �

p

(n� k

0

). Sin
e x

1

+x

2

= x, ne
essarily, either x

1

� �

p

(k

t

� k

0

)

33

or x

2

� �

p

(n� k

t

) (or both). If x

1

� �

p

(k

t

� k

0

) = �

q

t+

P

t

i=1

b

i

, then by modifying

Equation (26) so as to take into a

ount this bound on x

1

, we
an obtain that

t

X

i=1

(d

i

+m) �

1

2

t

X

i=1

(b

i

� q

i

)

!

+

v

u

u

t

t

X

i=1

(b

i

� q

i

) +

v

u

u

t

t+

t

X

i=1

q

i

+

t

X

i=1

(b

i

� q

i

)

�

1

2

t

X

i=1

(b

i

� q

i

)

!

+

v

u

u

t

3

t

X

i=1

(b

i

� q

i

)

and so there exists u � t su
h that d

u

+m �

1

2

(b

u

� q

u

) +

p

3(b

u

� q

u

). On the other hand,

using x

2

< 0 we
an apply the same argument as in the previous item to get that there exists

v > t su
h that d

v

�m �

1

2

(b

v

� q

v

)�

p

b

v

� q

v

, and hen
e D 2 D

u;v

.

Finishing the Proof of Claim 17.2. Finally, let u

0

� t and v

0

> t be su
h that

P

D2D

u;v

jS(D)j

is maximized. The number of pairs u � t and v > t is bounded by �

2

n

2=11

, and every D su
h that

S(D) � S

�

belongs to some D

u;v

. Thus by applying Equation (23), we get

jS

�

j

jSj

�

�

2

n

2=11

�

P

D2D

u

0

;v

0

jS(D)j

P

D

g

2

~

D

u

0

;v

0

jS(D

g

)j

� �

2

n

2=11

� exp(19) � n

�4=11

�

1

�

� n

�2=11

where the last inequality is by de�nition of � = e

�7

. We have
ompleted proving Claim 17.2 (and

hen
e Claim 17.1 and Lemma 17).

4.4 Wrapping Up the Proof of Theorem 2.

Re
all that the statisti
al di�eren
e between two distributions D

1

and D

2

over a �nite domain U is

de�ned as the maximum over all subsets U

0

� U , of the di�eren
e between the probability weight

of U

0

a

ording to D

1

and the probability weight of U

0

a

ording to D

2

. As an immediate
orollary

of Lemma 17 we thus get:

Corollary 18 For any algorithm A that asks at most �n

1=11

= log n queries for � � e

�7

,
onsider

the distributions on query-answer sequen
es when it intera
ts with P

pos

and P

neg

respe
tively.

Then the statisti
al di�eren
e between the two distributions is at most 1=4.

Assume
ontrary to Theorem 2 that there exists a testing algorithm A that asks less than

�n

1=11

= log n queries and a

epts with probability at least 2=3 every string in PAR

2

, and reje
ts

with probability at least 2=3 every string that is 2

�6

-far from PAR

2

.

Let D

A

pos

and D

A

neg

denote the distributions on query-answer sequen
es when algorithm A

intera
ts with P

pos

and P

neg

respe
tively. By Claim 16, the distribution D

A

pos

is equivalent to

the distribution on query-answer sequen
es resulting from the exe
ution of A on a string generated

a

ording to POS

n

(where every su
h string belongs to PAR

2

). By our assumption on A, we thus

have

Pr

�

A(D

A

pos

) = a

ept

�

� 2=3: (28)

Sin
e an analogous statement holds for D

A

neg

, then by applying Lemma 14 we obtain

Pr

�

A(D

A

neg

) = a

ept

�

< 1 � 1=3 + exp(�
(n)) � 1: (29)

34

But by Corollary 18, if A asks q < �n

1=11

= log n queries, then the statisti
al di�eren
es between

the two distributions is at most 1=4. This implies that

jPr[A(D

A

pos

) = a

ept ℄� Pr[A(D

A

neg

) = a

ept ℄ � 1=4

But this stands in
ontradi
tion to Equations (28) and (29).

4.5 Adapting the Lower-Bound Argument to D

2

Given the distributionsPOS

n=2

andNEG

n=2

, we de�ne distributionsPOS

0

n

andNEG

0

n

over strings

in �

2

, where now there are two types of parentheses and no additional symbols. For every string s

of length n=2 generated by POS

n=2

(similarly, NEG

n=2

),
onsider the string s

0

where ea
h `a' in s is

repla
ed by a mat
hing opening and
losing parenthesis in s

0

, and ea
h parenthesis in s is repla
ed by

two parentheses of the same type in s

0

. The resulting string s

0

is generated by POS

0

n

(respe
tively,

NEG

0

n

) with the same probability that s is generated by POS

n=2

(respe
tively, NEG

n=2

). Then it

is not hard to verify that using these two distributions we
an obtain the following theorem.

Theorem 3 Any algorithm for testing D

2

with distan
e parameter � � 2

�6

and su

ess probability

of at least 2=3, requires
(n

1=11

= log n) queries.

5 Testing uu

r

vv

r

in

~

O(

p

n=�) time

Let L

rev

= fuu

r

vv

r

: u; v 2 �

�

g, where � is any �xed alphabet and u

r

denotes the string u in

reverse order. In this se
tion, we show that the following algorithm tests whether w = w

0

� � �w

n�1

2

�

n

belongs to L

rev

or is �-far from any word in the language. The query
omplexity and running

time of the algorithm are

~

O(

p

n=�). Re
all that Alon et. al. [AKNS00℄ have shown a lower bound

of
(

p

n) for a
onstant �, on the query
omplexity of testing algorithms for this
lass.

Algorithm 2 Test for L

rev

1. Let I = f0; : : : ;

p

n� 1g and J = f0;

p

n; 2

p

n; : : : ; n�

p

ng.

2. Pi
k m =

1

1

�

log n indi
es p

1

; : : : ; p

m

independently and uniformly from f0; : : : ; n� 1g.

3. For ea
h index i 2 I, let the ba
kward pattern of i be the ve
tor x =

w

(i�p

1

) mod n

; : : : ; w

(i�p

m

) mod n

. For ea
h index j 2 J , let the forward pattern of j be the

ve
tor y = w

(j+p

1

) mod n

; : : : ; w

(j+p

m

) mod n

.

4. Output a

ept if there exists a pair i 2 I and j 2 J (where not both are 0) su
h that the

ba
kward pattern of i and the forward pattern of j are the same. Otherwise output reje
t.

In order to implement the last step we simply
onstru
t a trie that
ontains both the ba
kward

patterns of the indi
es i 2 I and the forward patterns of the indi
es j 2 J . That is, we
onstru
t a

tree whose edges are labeled by alphabet symbols in �. Ea
h leaf of the tree is asso
iated with two

subsets: the subset of indi
es in I whose ba
kward pattern
orresponds to the path from the root

of the tree to the leaf, and the subset of indi
es in J whose forward pattern
orresponds to this

path. If for some leaf both subsets are non-empty, then the algorithm a

epts. Hen
e the above

algorithm runs in time (jIj+ jJ j) �m = O((

p

n log n)=�).

Theorem 4 The above algorithm is a property tester for L

rev

. Furthermore, the algorithm has a

one-sided error.

35

Proof: We �rst show that if w 2 L

rev

then the test always a

epts. Let w = uu

r

vv

r

. We say that

i; j 2 [n℄ are paired with respe
t to w if i+j = (2juj�1) mod n. In other words, i and j are either in

symmetri
 positions with respe
t to uu

r

, or with respe
t to vv

r

. By de�nition, if i and j are paired

with respe
t to w, then w

i

= w

j

. Furthermore, for every o�set p, (w

i

� p) mod n = (w

j

+ p) mod n

(and vi
e versa). In parti
ular, for any sele
tion of p

1

; : : : ; p

m

, the forward pattern of j and the

ba
kward pattern of i are identi
al. But by our sele
tion of I and J , there must exist i 2 I and

j 2 J that are paired with respe
t to w. To see why this is true, observe that (2juj�1) mod n, whi
h

ranges between 1 and n� 1,
an be written as (a

1

�

p

n+ a

0

) mod n, for some 0 � a

1

; a

0

�

p

n� 1.

Hen
e, a

0

2 I and a

1

�

p

n 2 J , and the test ne
essarily a

epts w.

Next we show that if w is �-far from L

rev

, then the test reje
ts it with probability of at least

2=3. We say that i; j 2 f0; : : : ; n � 1g are a
ompatible pair with respe
t to w if (j � i) mod n is

odd, and if w

(i�`) mod n

= w

(j+`) mod n

for at least a 1� � fra
tion of the indi
es ` 2 [n℄. We
laim

that if there exists a
ompatible pair i; j with respe
t to w, then w is �-
lose to L

rev

. To see this,

assume that i < j, and let u = w

0

; : : : ; w

b

j+i

2

�1

and v = w

j+i+1

; : : : ; w

b

n+j+i�1

2

. It is not hard to

verify that w is �-
lose to uu

r

vv

r

.

Thus, if w is �-far from L

rev

, then there is no
ompatible pair with respe
t to w. It follows

that for every �xed pair i 2 I and j 2 J (that are ne
essarily not
ompatible), the probability that

the ba
kward pattern of i is identi
al to the forward pattern of j is at most (1� �)

(

1

log n)=�

< n

�

1

.

Applying the union bound, and using the fa
t that the total number of pairs
onsidered by the

algorithm is n, if

1

> 2 then the probability that the test a

epts w is smaller than 1=3, as required.

Referen
es

[AKNS00℄ N. Alon, M. Krivelevi
h, I. Newman, and M Szegedy. Regular languages are testable

with a
onstant number of queries. SIAM Journal on Computing, pages 1842{1862,

2000.

[BR02℄ M. Bender and D. Ron. Testing properties of dire
ted graphs: A
y
li
ity and
onne
-

tivity. Random Stru
tures and Algorithms, pages 184{205, 2002.

[GGR98℄ O. Goldrei
h, S. Goldwasser, and D. Ron. Property testing and its
onne
tion to learning

and approximation. JACM, 45(4):653{750, 1998.

[GR02℄ O. Goldrei
h and D. Ron. Property testing in bounded degree graphs. Algorithmi
a,

pages 302{343, 2002.

[Har78℄ M. Harrison. Introdu
tion to formal language theory. Addison-Wesley, 1978.

[KMP77℄ D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern mat
hing in strings. SIAM

Journal on Computing, 6(2):323{350, 1977.

[Koz97℄ D. Kozen. Automata and Computability. Springer Verlag, 1997.

[New00℄ I. Newman. Testing of fun
tions that have small width bran
hing programs. In Pro
eed-

ings of the Forty-First Annual Symposium on Foundations of Computer S
ien
e, pages

251{258, 2000.

[PR02℄ M. Parnas and D. Ron. Testing the diameter of graphs. Random Stru
tures and Algo-

rithms, 20(2):165{183, 2002.

36

[Ron01℄ D. Ron. Property testing. In Handbook of Randomized Computing, Volume II, pages

597{649, 2001.

[RS96℄ R. Rubinfeld and M. Sudan. Robust
hara
terization of polynomials with appli
ations

to program testing. SIAM Journal on Computing, 25(2):252{271, 1996.

[S
h63℄ N. Chomsky M. P. S
hotzenberger. The algebrai
 theory of
ontext-free languages. In

Computer Programming and Formal Languages, P. Bra�ort and D. Hirs
hberg, Eds,

North Holland, pages 118{161, 1963.

[Yao77℄ A.C. Yao. Probabilisti

omputation, towards a uni�ed measure of
omplexity. In

Pro
eedings of the Eighteenth Annual Symposium on Foundations of Computer S
ien
e,

pages 222{227, 1977.

37

