
Testing Membership in Parenthesis Languages

Mihal Parnas

The Aademi College

of Tel-Aviv-Ya�o

Tel-Aviv, Israel

mihalp�mta.a.il

Dana Ron

�

Department of EE { Systems

Tel-Aviv University

Ramat Aviv, Israel

danar�eng.tau.a.il

Ronitt Rubinfeld

NEC Researh Institute

Prineton, NJ

ronitt�researh.nj.ne.om

June 16, 2003

Abstrat

We ontinue the investigation of properties de�ned by formal languages. This study was

initiated by Alon et. al. [AKNS00℄ who desribed an algorithm for testing properties de�ned by

regular languages. Alon et. al. also onsidered several ontext free languages, and in partiular

Dyk languages, whih ontain strings of properly balaned parentheses. They showed that the

�rst Dyk language, whih ontains strings over a single type of pairs of parentheses, is testable

in time independent of n, where n is the length of the input string. However, the seond Dyk

language, de�ned over two types of parentheses, requires
(logn) queries.

Here we desribe a sublinear-time algorithm for testing all Dyk languages. Spei�ally, the run-

ning time of our algorithm is

~

O(n

2=3

=�

3

), where � is the given distane parameter. Furthermore,

we improve the lower bound for testing Dyk languages to

~

(n

1=11

) for onstant �. We also

desribe a testing algorithm for the ontext free language L

rev

= fuu

r

vv

r

: u; v 2 �

�

g, where

� is a �xed alphabet. The running time of our algorithm is

~

O(

p

n=�), whih almost mathes

the lower bound given by Alon et. al. [AKNS00℄.

1 Introdution

Property testing [RS96, GGR98℄ is a relaxation of the standard notion of a deision problem:

property testing algorithms distinguish between inputs that have a ertain property and those that

are far from having the property. More preisely, for any �xed property P, a testing algorithm

for P is given query aess to the input and a distane parameter �. The algorithm should output

\aept" with high probability if the input has the property P, and output \rejet" if the input

is �-far from having P. By �-far we mean that more than an �{fration of the input should be

modi�ed so that the input obtains the desired property P.

Testing algorithms whose query omplexity is sublinear and even independent of the input size,

have been designed for testing various algebrai and ombinatorial properties (see [Ron01℄ for a

survey).

�

Supported by the Israel Siene Foundation (grant number 32/00-1).

1

Motivated by the desire to understand in what sense the omplexity of testing properties of

strings is related to the omplexity of formal languages, Alon et. al. [AKNS00℄, have shown that

all properties de�ned by regular languages are testable in time that is independent of the input size.

Spei�ally, given a regular language L, they desribe an algorithm that tests, using

~

O(1=�) queries,

whether a given string s belongs to L or is �-far from any string in L. This result was later extended

by Newman [New00℄ to properties de�ned by bounded-width branhing programs. However, Alon

et. al. [AKNS00℄ showed that the situation hanges quite dramatially for ontext-free languages.

In partiular, they prove that there are ontext-free languages that are not testable even in time

square root in the input size. The question remains whether ontext-free languages an be tested

in sublinear time. In this paper, we give evidene for an aÆrmative answer by presenting sublinear

time testers for ertain important sublasses of the ontext-free languages.

Dyk Languages. One important sublass of the ontext-free languages is the Dyk language,

whih inludes strings of properly balaned parentheses. Strings suh as \(()())" belong to this

lass, whereas strings suh as \(()" or \) (" do not. If we allow more than one type of parentheses

then \([℄)" is a balaned string but \([)℄" is not. Formally, the Dyk language D

m

ontains all

balaned strings that ontain at most m types of parentheses. Thus for example \(()())" belongs

to D

1

and \([℄)" belongs to D

2

.

Dyk languages appear in many ontexts. For example, these languages desribe a property that

should be held by ommands in most ommonly used programming languages, as well as various

subsets of the symbols/ommands used in latex. Furthermore, Dyk languages play an important

role in the theory of ontext-free languages. As stated by the Chomsky-Sh�otzenberger Theorem,

every ontext-free language an be mapped to a restrited subset of D

m

[Sh63℄. A omprehensive

disussion of ontext free languages and Dyk languages an be found in [Har78, Koz97℄.

Thus testing membership in D

m

is a basi and important problem. Alon et. al. [AKNS00℄, have

shown that membership in D

1

an be tested in time

~

O(1=�), whereas membership in D

2

annot be

tested in less than a logarithmi time in the length n of the string.

Our Results.

� We present an algorithm that tests whether a string s belongs to D

m

. The query omplexity

and running time of the algorithm are

~

O

�

n

2=3

=�

3

�

, where n is the length of s. The omplexity

does not depend on m, the number of di�erent types of parentheses.

� We prove a lower bound of
(n

1=11

= log n) on the query omplexity of any algorithm for testing

D

m

for m > 1.

� We onsider the ontext free language L

rev

= fuu

r

vv

r

: u; v 2 �

�

g, where � is any �xed

alphabet and u

r

denotes the string u in reverse order. We show that L

rev

an be tested in

~

O(

p

n=�) time, where n is the length of the string. Our algorithm almost mathes the
(

p

n)

lower bound of Alon et. al [AKNS00℄ on the number of queries required for testing L

rev

.

The struture of our testing algorithm for D

m

. Our testing algorithm for D

m

ombines

loal heks with global heks. Spei�ally, the �rst part of the test randomly selets onseutive

substrings of the given input string, and heks that they do not onstitute a witness to the string

not belonging to D

m

. The seond, more elaborate part of the test, veri�es that non-onseutive

pairs of substrings that are supposed to ontain mathing parentheses, in fat do. In partiular, the

string is partitioned into �xed bloks (onseutive substrings), and the algorithm omputes various

statistis onerning the numbers of opening and losing parentheses in the di�erent bloks. Using

these statistis it is possible to determine whih pairs of bloks should ontain many mathing

2

parentheses in ase that the string in fat belongs to D

m

. The testing algorithm then randomly

selets suh pairs of bloks and veri�es the existene of suh a mathing between opening parentheses

in one blok and losing parentheses in the other blok.

Organization. In Setion 2 we desribe the neessary preliminaries. Our testing algorithm for

Dyk Languages is presented in Setion 3, and the lower bound in Setion 4. The testing algorithm

for L

rev

appears in Setion 5.

2 Preliminaries

Let s = s

1

: : : s

n

be a string over an alphabet �

m

= f0; : : : ; 2m� 1g where 2i; 2i+ 1 orrespond to

the i

th

type of opening and losing parentheses. We will use the following notation for strings and

substrings.

De�nition 1 (Substrings) For a string s = s

1

: : : s

n

and i � j, we let s

i;j

denote the substring

s

i

; s

i+1

; :::; s

j

. If s

0

; s

00

are two strings, then s

0

s

00

denotes the onatenation of the two strings.

De�nition 2 (Dyk Language) The Dyk language D

m

an be de�ned reursively as follows:

1. The empty string belongs to D

m

.

2. If s

0

2 D

m

, � = 2i is an opening parenthesis and � = 2i+1 is a mathing losing parenthesis,

for some 0 � i � m� 1, then �s

0

� 2 D

m

.

3. If s

0

; s

00

2 D

m

, then s

0

s

00

2 D

m

.

It is lear from the reursive de�nition of D

m

that the parentheses in a string s have a nested

struture and are balaned. The �rst step of our algorithm will test if the string s is a legal string

when we view it as a string in D

1

, using the test given by [AKNS00℄. Furthermore, the algorithm

will test if onseutive substrings of s an be extended to a legal string in D

m

. The following

de�nitions address these aspets formally.

De�nition 3 (Single-Parentheses Mapping) Given a string s over �

m

, we de�ne a mapping

� whih maps s to a string �(s) over �

1

= f0; 1g as follows: Every opening parenthesis is mapped

to 0, and every losing parentheses is mapped to 1.

The following laim is immediate from the de�nition of D

1

.

Claim 1 For every string s suh that �(s) 2 D

1

, there exists a unique perfet mathing between

opening and losing parentheses in s, suh that eah opening parenthesis s

j

is mathed to a losing

parenthesis s

k

, and no two mathed pairs \ross". That is, if s

j

1

is mathed to s

k

1

, and s

j

2

to s

k

2

where j

1

< k

1

, and j

1

< j

2

< k

2

, then either k

1

< j

2

or k

1

> k

2

. We denote this unique perfet

mathing by M(s).

Thus for example if s = \([)℄", so that s =2 D

2

but �(s) 2 D

1

, then M(s) = f(s

1

; s

4

); (s

2

; s

3

)g.

De�nition 4 (Consisteny of Substrings) We say that a substring s

0

over �

m

is D

m

-Consistent,

if there exists a string s 2 D

m

suh that s

0

is a onseutive substring of s.

3

Thus for example s

0

= \)[℄)[" is D

2

-onsistent beause s = \((s' ℄ = \(()[℄)[℄" 2 D

2

, while s

0

=

\)[))[" is not D

2

-onsistent.

The seond part of our algorithm �nds disjoint pairs of substrings suh that there exist opening

parentheses in the �rst substring that should be mathed to losing parentheses in the seond

substring. The algorithm veri�es that these pairs of parentheses math in type as required. The

following onepts will be needed for this part of the algorithm.

De�nition 5 (Parentheses Numbers) For any substring s

0

of s, de�ne

n

0

(s

0

)

def

= Number of opening parentheses in s

0

;

and

n

1

(s

0

)

def

= Number of losing parentheses in s

0

:

Fat 2 A string s belongs to D

1

if and only if: (1) For every pre�x s

0

of s, n

0

(s

0

) � n

1

(s

0

); (2)

n

0

(s) = n

1

(s).

The above fat implies that any string s

0

over �

1

= f0; 1g is D

1

-onsistent, sine for suh a

string there exist integers k and ` suh that 0

k

s

0

1

`

2 D

1

. In this ase we an view s

0

as having

an exess of k losing parentheses and ` opening parentheses, assuming k and ` are the smallest

integers suh that 0

k

s

0

1

`

2 D

1

. The following de�nition extends this notion of exess parentheses

in a substring to any alphabet �

m

.

De�nition 6 (Exess numbers) Let s

0

be a substring over �

m

, and let k and ` be the smallest

integers suh that 0

k

�(s

0

)1

`

2 D

1

. Then k is alled the exess number of losing parentheses in s

0

,

and ` is the exess number of opening parentheses in s

0

. Denote k by e

1

(s

0

) and ` by e

0

(s

0

).

For example if s

0

= \℄[()℄)(", then e

1

(s

0

) = 2 and e

0

(s

0

) = 1. It is possible to ompute the exess

numbers from the parentheses numbers as follows.

Claim 3 The following two equalities hold for every substring s

0

,

e

1

(s

0

) = max

s

00

pre�x of s

0

(n

1

(s

00

)� n

0

(s

00

)) (1)

e

0

(s

0

) = max

s

00

suÆx of s

0

(n

0

(s

00

)� n

1

(s

00

)) (2)

In both ases the maximum is also over the empty pre�x (suÆx) s

00

, for whih n

1

(s

00

)�n

0

(s

00

) = 0.

3 The Algorithm for Testing D

m

In the following subsetions we desribe several building bloks of our algorithm. Reall that the

algorithm has two main parts. Let s be a string over �

m

. First we test that �(s) 2 D

1

. For

simpliity of this introdutory disussion, assume that if �(s) passes this test, then �(s) atually

belongs to D

1

(and is not only lose to a string in D

1

). Next we test that onseutive substrings of

s are D

m

-onsistent. In the next stage we estimate the exess numbers for substrings of s. Using

these estimates we �nd pairs of substrings that ontain a signi�ant number of mathed pairs of

parentheses aording to the perfet mathing M(s) guaranteed by Claim 1, and hek that these

pairs math in type.

4

To do the latter, we break the string into n

1=3

substrings eah of length n

2=3

, whih we refer to as

bloks. We de�ne a weighted graph, whose verties orrespond to these bloks, and in whih there

is an edge between blok i and blok j > i if and only if the mathingM(s) mathes between exess

opening parentheses in blok i to exess losing parentheses in blok j. The weight of eah edge is

simply the number of orresponding mathed pairs of exess parentheses. As we show subsequently,

this weight an be determined by the values of the exess numbers for every onseutive sequene of

bloks. Hene, if we were provided with these exat values, we ould verify, for randomly seleted

pairs of bloks that are onneted by an edge in the graph, whether their exess parentheses math

as required. Sine we do not have these exat values, but rather approximate values, we use our

estimates of the exess values to onstrut an approximation of the above graph, and to perform

the above veri�ation of mathing exess parentheses.

3.1 Cheking D

m

-Consisteny

It is well known that it is possible to hek in time O(n) using a stak whether a string s over

�

m

whose length is n belongs to D

m

. This is done as follows: The symbols of s are read one by

one. If the urrent symbol read is an opening parenthesis then it is pushed onto the stak. If it

is a losing parenthesis, then the top symbol on the stak is popped and ompared to the urrent

symbol. The algorithm rejets if the symbol popped (whih must be an opening parenthesis) does

not math the urrent symbol. The algorithm also rejets if the stak is empty when trying to pop

a symbol, that is, there is a missing mathing symbol, or if the stak is not empty after reading all

symbols. Otherwise the algorithm aepts. The above algorithm an be easily modi�ed to hek

whether a substring s

0

is D

m

-onsistent. The only two di�erenes are: (1) When reading a losing

parenthesis and �nding that the stak is empty, the algorithm does not rejet but rather ontinues

with the next symbol. (2) If the algorithm has ompleted reading the string without �nding a

mismathed pair of parentheses, then it aepts even if the stak is not empty. Thus the algorithm

rejets only if it �nds a mismath in the type of parentheses.

3.2 A Preproessing Stage

An important omponent of our algorithm is aquiring good estimates of the exess numbers of

di�erent substrings of the given input string s. We start by desribing a preproessing step based

on whih we an obtain suh estimates for a �xed set of basi substrings of s (of various lengths).

By sampling from suh a substring s

0

, we obtain estimates of the parentheses numbers n

0

(s

0

) and

n

1

(s

0

). Using these estimates we an derive estimates for the exess numbers of any given substring

of s.

Let r = log(n

1=3

=Æ), where 0 < Æ < 1 is a parameter that is set subsequently. For eah

j 2 f0; 1; : : : ; rg, we onsider the partition of s into 2

j

onseutive substrings eah of length n=2

j

.

We assume for simpliity that n is divisible by 2

r

= n

1=3

=Æ. Thus the total number of substrings is

O(n

1=3

=Æ), where the longest is the whole string s, and the shortest ones are of length Æ � n

2=3

. We

refer to these substrings as the basi substrings of s.

For eah basi substring s

0

of length n=2

j

, we uniformly and independently selet a sample of

m

j

symbols from s

0

, where

m

j

= �

n

2=3

2

2j

�

log

3

(n=Æ)

Æ

2

;

for some suÆiently large onstant . Let m

0

j

be the number of opening parentheses in the sample,

andm

1

j

be the number of losing parentheses in the sample. Our estimates of the number of opening

5

and losing parentheses in s

0

are respetively:

n̂

0

(s

0

) =

m

0

j

m

j

� js

0

j =

m

0

j

m

j

�

n

2

j

and n̂

1

(s

0

) =

m

1

j

m

j

�

n

2

j

:

Lemma 4 With probability at least 1 � o(1), for eah of the basi substrings s

0

� s, jn̂

0

(s

0

) �

n

0

(s

0

)j � (Æ � n

2=3

)=(24 log(n=Æ)) and jn̂

1

(s

0

) � n

1

(s

0

)j � (Æ � n

2=3

)=(24 log(n=Æ)). The total size of

the sample is O

�

n

2=3

� log

3

(n=Æ)=Æ

2

�

.

Proof: We prove the bound for n̂

0

(s

0

). The bound for n̂

1

(s

0

) diretly follows sine n

0

(s

0

)+n

1

(s

0

) =

js

0

j = n̂

0

(s

0

)+ n̂

1

(s

0

). By an additive Cherno� bound, for any �xed substring s

0

of length n=2

j

, and

for any given 0 <

j

< 1,

Pr

h

jn̂

0

(s

0

)� n

0

(s

0

)j >

j

�

n

2

j

i

< 2 exp(�2m

j

2

j

): (3)

Setting

j

=

2

j

n

1=3

�

Æ

24 log(n=Æ)

so that

j

�

n

2

j

=

Æ

24 log(n=Æ)

� n

2=3

, for any suh string the probability

that jn̂

0

(s

0

) � n

0

(s

0

)j >

Æ

24 log(n=Æ)

� n

2=3

is at most 2 exp(�2m

j

2

j

) = 1=poly(n=Æ). Sine the total

number of basi substrings onsidered is O(n

1=3

=Æ), all estimates are within the stated error.

Sine there are 2

j

basi substrings of length n=2

j

, then the total size of the sample is:

r

X

j=0

2

j

�m

j

=

 � n

2=3

� log

3

(n=Æ)

Æ

2

�

r

X

j=0

1

2

j

= O

n

2=3

� log

3

(n=Æ)

Æ

2

!

We assume from now on that the quality of our estimates n̂

0

(s

0

) and n̂

1

(s

0

) is in fat as stated in

the lemma for every basi substring s

0

. We refer to this as the suessful preproessing assumption.

Assumption 5 (Suessful Preproessing Assumption) For eah of the basi substrings s

0

,

jn̂

0

(s

0

)� n

0

(s

0

)j � (Æ � n

2=3

)=(24 log(n=Æ)), and the same bound holds for n̂

1

(s

0

).

3.3 Obtaining Estimates of Exess numbers

We �rst onsider obtaining estimates for n

0

(s

0

) and n

1

(s

0

) for substrings s

0

of s of the form de�ned

in the next laim.

Claim 6 Let s

0

= s

k;`

be any substring of s suh that k = t

1

� (Æ � n

2=3

) + 1 and ` = t

2

� (Æ � n

2=3

),

for 0 � t

1

< t

2

� n

1=3

=Æ. Then s

0

is the onatenation of at most 2 log js

0

j+ 1 basi substrings.

Proof: Let s

b

be the longest basi substring suh that s

b

� s

0

. Therefore s

0

is of the form

s

0

= s

left

s

b

s

right

. Consider the substring s

right

. It is not hard to verify that if we partition s

right

into basi substrings starting from left to right, and eah time hoose the longest possible basi

substring that is ontained in s

right

, then eah suh basi substring will over at least 1=2 of what

remains of s

right

. Thus the total number of basi substrings needed to over s

right

is at most log js

0

j.

Similarly, the total number of basi substrings needed to over s

left

is at most log js

0

j as well. It

diretly follows that s

0

is a onatenation of at most 2 log js

0

j+1 basi substrings. See Figure 1 for

an illustration of the proof.

Assume that the substring s

0

is the onatenation of the basi substrings s

1

; :::; s

t

. Then we an

estimate n

0

(s

0

) by n̂

0

(s

0

) =

P

t

i=1

n̂

0

(s

i

), where n̂

0

(s

i

) is the estimate we got above for the basi

substring s

i

. Similarly, we an estimate n

1

(s

0

).

6

s’

s1 s2

s

s3

lk

Figure 1: An illustration for Claim 6. The partition of the string s into basi substrings is represented by

separating lines with di�erent thikness. Spei�ally, the middle, thikest line represents the partition of s

into the two basi substrings of length n=2, the two less thiker lines represent the next partition into four

substrings of length n=4 and so on. Eah square orresponds to a substring of length Æ � n

2=3

, where s is

the onatenation of all these substrings (smallest basi substrings). The substring s

0

starts at index k and

ends at index `, where both are multiples of Æ � n

2=3

. In the illustration, s2 = s

b

, s1 = s

left

and s3 = s

right

(note that there were two possible hoies for the largest basi substring s

b

that is ontained in s

0

). The

substrings s1 and s2 are further partitioned eah into two basi substrings, the �rst of length at least half

of s1 (respetively, s2).

Corollary 7 Under Assumption 5, for every substring s

0

as in Claim 6, jn̂

0

(s

0

)�n

0

(s

0

)j < Æ �n

2=3

=4

and jn̂

1

(s

0

)� n

1

(s

0

)j < Æ � n

2=3

=4.

We next onsider how to obtain estimates for the exess number of opening parentheses of a

given substring s

0

= s

k;`

(where k and ` are assumed to be as in Claim 6), and similarly for the

exess number of losing parentheses. To this end we appeal to Claim 3, and use our estimates for

the total number of opening and losing parentheses in ertain pre�xes and suÆxes of s

0

. As we

show below, for the purpose of getting an additive estimate of the exess to within Æ � n

2=3

for any

substring, it is enough to use estimates of n

0

and n

1

for pre�xes and suÆxes of the substring that

are multiples of Æ � n

2=3

. Spei�ally,

Claim 8 Let s

0

= s

k;`

be as in Claim 6, and de�ne two sets

Pre�x = fs

00

js

00

= s

k;`

0

; `

0

= t

0

2

� (Æ � n

2=3

) + 1; t

1

� t

0

2

< t

2

g

SuÆx = fs

00

js

00

= s

k

0

;`

; k

0

= t

0

1

� (Æ � n

2=3

) + 1; t

1

< t

0

1

� t

2

g:

Let

ê

0

(s

0

) = max

s

00

2SuÆx

(n̂

0

(s

00

)� n̂

1

(s

00

)); ê

1

(s

0

) = max

s

00

2Pre�x

(n̂

1

(s

00

)� n̂

0

(s

00

)):

Then, under Assumption 5, jê

0

(s

0

)� e

0

(s

0

)j � Æ � n

2=3

and jê

1

(s

0

)� e

1

(s

0

)j � Æ � n

2=3

:

Proof: We prove the laim for ê

0

(s

0

). The proof for ê

1

(s

0

) is analogous. Let s

00

= s

b;`

be the

suÆx of s

0

for whih the maximum is obtained in Equation (2) of Claim 3. (Reall that s

b;`

may be the empty string in whih ase b = ` + 1.) Let b

0

be the index losest to b of the form

b

0

= t

0

1

� (Æ � n

2=3

) + 1, where t

1

< t

0

1

� t

2

. Sine by de�nition of b

0

we have jb

0

� bj � Æ � n

2=3

=2,

we know that n

0

(s

b

0

;`

) � n

1

(s

b

0

;`

) � n

0

(s

b;`

) � n

1

(s

b;`

) � Æ � n

2=3

=2. But by de�nition of s

b;`

,

n

0

(s

b;`

)� n

1

(s

b;`

) = e

0

(s

0

), and so

n

0

(s

b

0

;`

)� n

1

(s

b

0

;`

) � e

0

(s

0

)� Æ � n

2=3

=2:

By Corollary 7, jn̂

0

(s

b

0

;`

) � n

0

(s

b

0

;`

)j � Æ � n

2=3

=4, and jn̂

1

(s

b

0

;`

) � n

1

(s

b

0

;`

)j � Æ � n

2=3

=4. Hene,

n̂

0

(s

b

0

;`

)� n̂

1

(s

b

0

;`

) � e

0

(s

0

)� Æ � n

2=3

. But by de�nition, ê

0

(s

0

) � n̂

0

(s

b

0

;`

)� n̂

1

(s

b

0

;`

), and the laim

follows.

7

3.4 The Mathing Graph

Before de�ning the mathing graph, we extend the notion of the perfet mathingM(s) guaranteed

by Claim 1, to strings s for whih �(s) =2 D

1

. In this ase we do not obtain a perfet mathing, but

rather a mathing of all the parentheses in the string that are not exess parentheses with respet

to the whole string. Spei�ally, by de�nition of the exess numbers, the string ~s = 0

e

1

(s)

�(s)1

e

0

(s)

belongs to D

1

. Thus we let M(s) be the restrition of M(~s) to pairs of parentheses that are both in

s. For example, if s = \(℄ ℄ ([)", then M(s) mathes between s

1

and s

2

and between s

5

and s

6

.

In all that follows we assume that n

2=3

is an even integer. It is not hard to verify that this

an be done without loss of generality. We partition the given string s into n

1=3

onseutive and

disjoint substrings, eah of length n

2=3

, whih we refer to as bloks.

De�nition 7 (Neighbor Bloks) We say that two bloks i and j are neighbors in a string s,

if the mathing M(s) mathes between exess opening parentheses in blok i and exess losing

parentheses in blok j.

De�nition 8 (The Mathing Graph of a String) Given a string s, we de�ne a weighted graph

as follows. The verties of the graph are the n

1=3

bloks of s. Two bloks i < j are onneted by an

edge (i; j) if and only if they are neighbor bloks (as de�ned above). The weight w(i; j) of the edge

(i; j) is the number of exess opening parentheses in blok i that are mathed by M(s) to exess

losing parentheses in blok j. The resulting graph is alled the mathing graph of s, and is denoted

by G(s). The set of edges of the graph is denoted by E(G(s)).

Block 1 Block 2 Block 3 Block 4 Block 5

1 1 1

2

1

4

[[([([] [([() []] () [[]])])])]] ()

Figure 2: An example of the mathing graph of a string in D

2

. The string onsists of 5 bloks outlined by

retangles, with 6 symbols in eah blok. The numbers below the edges are the weights of the edges.

Note that sine we extended the mathing M(s) also to strings s suh that �(s) =2 D

1

, then

the graph G(s) is well de�ned also for suh strings. By the properties of the mathing M(s) whih

guarantees that mathed pairs do not "ross", we get:

Claim 9 For every string s, the mathing graph G(s) is planar, and therefore jE(G(s))j � 3n

1=3

.

It is possible to determine whih bloks are neighbors in G(s), and what is the weight of the

edge between them, using the exess numbers e

1

and e

0

as follows. We �rst introdue one more

de�nition.

De�nition 9 (Intervals) For a given string s, let I

i;j

denote the substring, whih we refer to as

interval, that starts at blok i and ends at blok j (inluding both of them). If j < i then I

i;j

is the

empty interval.

8

Note that I

i;i

is just blok number i.

Claim 10 Let s be a given string and let i < j be two bloks in G(s). De�ne:

x(i; j)

def

= minfe

1

(I

i+1;j

); e

0

(I

i;i

)g � e

1

(I

i+1;j�1

) ; (4)

where if I

i+1;j�1

is empty (that is, j = i+ 1), then e

1

(I

i+1;j�1

) = 0. Then we have the following:

(1) If x(i; j) > 0 then i and j are neighbors in G(s). (2) If i and j are neighbors in G(s) then

w(i; j) = x(i; j).

Proof: We �rst observe that for both parts of the laim the premise implies that e

0

(I

i;i

) > 0. That

is, the i'th blok has exess opening parentheses. We next observe that the sequene e

1

(I

i+1;j

) is

monotonially non-dereasing with j. In partiular, e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

).

Item (1): Suppose that x(i; j) > 0. By de�nition of x(i; j) we have that both e

0

(I

i;i

) �

e

1

(I

i+1;j�1

) > 0 and e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

) > 0 (sine minfe

0

(I

i;i

); e

1

(I

i+1;j

)g � e

1

(I

i+1;j�1

) =

x(i; j) > 0). The �rst inequality implies that there are exess opening parentheses in blok i that

are not mathed to losing parentheses in the interval I

i+1;j�1

. The seond inequality implies that

there are exess losing parentheses in blok j that are not mathed to opening parentheses in

the interval I

i+1;j�1

. It follows that there must be exess opening parentheses in blok i that are

mathed to exess losing parentheses in blok j, and so i and j are neighbors in G(s) as laimed.

Item (2): Suppose that i and j are neighbors in G(s). We �rst observe that all e

1

(I

i+1;j�1

)

exess losing parentheses in the interval I

i+1;j�1

are mathed to exess opening parentheses in

blok i, and that there are e

0

(I

i;i

)� e

1

(I

i+1;j�1

) > 0 additional exess opening parentheses in blok

i. We onsider two subases (for an illustration see Figure 3):

If e

0

(I

i;i

) � e

1

(I

i+1;j

), so that x(i; j) = e

0

(I

i;i

)�e

1

(I

i+1;j�1

), then all exess opening parentheses

in blok i are mathed to losing parentheses in the interval I

i+1;j

, that is, to losing parentheses in

bloks i+1 to j. By what we have observed above, e

1

(I

i+1;j�1

) of them are mathed to parentheses

in bloks i + 1 to j � 1, and all the remaining e

0

(I

i;i

) � e

1

(I

i+1;j�1

) = x(i; j) exess opening

parentheses in blok i are mathed to losing parentheses in blok j. Thus we have veri�ed the

seond item in ase that e

0

(I

i;i

) � e

1

(I

i+1;j

).

If on the other hand e

0

(I

i;i

) > e

1

(I

i+1;j

), so that x(i; j) = e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

), then all

exess losing parentheses in the interval I

i+1;j

are mathed to exess opening parentheses in blok

i. Amongst them e

1

(I

i+1;j�1

) are from bloks i + 1 to j � 1, and all the remaining e

1

(I

i+1;j

) �

e

1

(I

i+1;j�1

) = x(i; j) are from blok j. Thus we have veri�ed the seond item in ase that e

0

(I

i;i

) >

e

1

(I

i+1;j

).

It is not hard to verify that based on the symmetry of the mathing, if i and j are neighbors in

the graph G(s) then also w(i; j) = minfe

0

(I

i;j�1

); e

1

(I

j;j

)g � e

0

(I

i+1;j�1

). Reall that if �(s) 2 D

1

then by Claim 1 the mathing M(s) is a perfet mathing between opening and losing parentheses

in s. In partiular it ontains all parentheses that are exess parentheses in the n

1=3

bloks of s.

We thus obtain:

Corollary 11 Let s be a string suh that �(s) 2 D

1

. Then,

X

(k;`)2E(G(s)); k<`

w(k; `) =

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

)) :

9

((((((

Block i Block jBlocks i+1 to j-1

))))))))))

Block i Block jBlocks i+1 to j-1

))))(((((((()))

Figure 3: An illustration for Claim 10. The parentheses shown in the �gure (all of the same type for

simpliity) are all exess parentheses. Spei�ally, in the top �gure e

0

(I

i;i

) = 6, e

1

(I

i+1;j�1

) = 4 and

e

1

(I

i+1;j

) = 10. In the bottom �gure e

0

(I

i;i

) = 8, e

1

(I

i+1;j�1

) = 4 and e

1

(I

i+1;j

) = 7. In both �gures the 4

exess losing parentheses in the interval I

i+1;j�1

are all mathed to the last 4 exess parentheses in blok i.

The top �gure orresponds to the ase that e

0

(I

i;i

) � e

1

(I

i+1;j

), so that x(i; j) = e

0

(I

i;i

)� e

1

(I

i+1;j�1

) = 2.

In this ase the remaining 2 exess opening parentheses from blok i are mathed to the �rst 2 exess losing

parentheses in blok j (where these are exess parentheses with respet to all the interval I

i+1;j

). The bottom

�gure orresponds to the ase that e

0

(I

i;i

) > e

1

(I

i+1;j

), so that x(i; j) = e

1

(I

i+1;j

) � e

1

(I

i+1;j�1

) = 3, and

in fat all 3 exess losing parentheses in blok j are mathed to exess opening parentheses in blok i.

We next turn to the ase in whih we only have estimates of the exess numbers. Here we de�ne

a graph based on the estimates we have for the exess numbers. This graph ontains only relatively

\heavy" edges in order to overome approximation errors.

De�nition 10 (The Approximate Mathing Graph) Given a string s, we partition it into

bloks of size n

2=3

, and de�ne a graph

^

G(s) whose verties are the n

1=3

bloks of s. A pair of bloks

i < j will be onneted by an edge (i; j) if and only if minfê

1

(I

i+1;j

); e

0

(I

i;i

)g�ê

1

(I

i+1;j�1

) � 4Æn

2=3

,

where ê

0

and ê

1

are as de�ned in Claim 8, and if I

i+1;j�1

is empty then ê

1

(I

i+1;j�1

) = 0.

Note that in the de�nition above we use the exat value e

0

(I

i;i

), as opposed to the approximate

values ê

1

(I

i+1;j

). This is done beause our testing algorithm will have time to ompute the value

e

0

(I

i;i

) exatly for ertain bloks, where as it will only approximate the values ê

1

(I

i+1;j

). The

following lemma is entral to our algorithm and its analysis.

Lemma 12 Suppose Assumption 5 holds. Then for any given string s, the graph

^

G(s) is a subgraph

of G(s), and every vertex in

^

G(s) has degree at most 1=(2Æ). Furthermore, if �(s) is Æ-lose to a

string in D

1

, then

^

G(s) \aounts for most of the exess" in s. Namely,

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

)) � 19Æn:

Proof: By Claim 8, for every interval I

i;j

of the string s, jê

0

(I

i;j

) � e

0

(I

i;j

)j � Æ � n

2=3

, and

jê

1

(I

i;j

) � e

1

(I

i;j

)j � Æ � n

2=3

. By de�nition of

^

G(s), for every edge (i; j) 2 E(

^

G(s)), we have

minfê

1

(I

i+1;j

); e

0

(I

i;i

)g � ê

1

(I

i+1;j�1

) � 4Æn

2=3

. Therefore

x(i; j) = minfe

1

(I

i+1;j

); e

0

(I

i;i

)g � e

1

(I

i+1;j�1

) � 4Æn

2=3

� 2Æn

2=3

= 2Æn

2=3

:

By Claim 10, this implies that there exists an edge (i; j) 2 E(G(s)), and that this edge has weight

x(i; j) � 2Æn

2=3

. Sine this is true for every edge (i; j) 2 E(

^

G(s)), we get that

^

G(s) is a subgraph

of G(s), and every vertex in

^

G(s) has degree at most n

2=3

=(2Æn

2=3

) = 1=(2Æ).

On the other hand, for every edge (i; j) 2 E(G(s)) suh that w(i; j) = x(i; j) � 6Æn

2=3

, we have

that

minfê

1

(I

i+1;j

); e

0

(I

i;i

)g � ê

1

(I

i+1;j�1

) � x(i; j) � 2Æn

2=3

� 4Æn

2=3

10

and so (i; j) is an edge in

^

G(s) as well. SineG(s) is planar, the total weight of edges (i; j) 2 E(G(s))

suh that w(i; j) < 6Æn

2=3

, is at most 3n

1=3

� 6Æn

2=3

= 18Æn. Hene,

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

0

�

X

(k;`)2E(G(s)); k<`

x(k; `)

1

A

� 18Æn: (5)

If �(s) is Æ-lose to D

1

, then M(s) mathes all parentheses in s but at most 2Æn parentheses. To

verify this, assume in ontradition that more than 2Æn parentheses are left unmathed by M(s).

In other words, that e

0

(s)+ e

1

(s) > 2Æn. But in suh a ase it is neessary to modify more than Æn

symbols in s so as to obtain a string ~s suh that e

0

(~s) = e

1

(~s) = 0 (so that �(~s) 2 D

1

). This would

ontradit the fat that �(s) is Æ-lose to a string in D

1

. By de�nition of G(s) this implies that

X

(k;`)2E(G(s)); k<`

w(k; `) �

1

2

0

�

0

�

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

))

1

A

� 2Æn

1

A

: (6)

Combining Equations (5) and (6) together with Claim 10, we obtain

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

))� 19Æn

and the proof of Lemma 12 is ompleted.

3.5 Mathing Between Neighbors

We de�ne mathing substrings as follows.

De�nition 11 (Mathing substrings) Let s

0

be a substring of opening parentheses and let s

00

be

a substring of losing parentheses. We say that s

0

and s

00

math if s

0

s

00

2 D

m

.

Given a string s, it is possible to determine for any two neighbor bloks i < j in G(s), whih

pairs of exess parentheses within these bloks should math. Let E

0

(i) denote the (non-onseutive)

substring of exess opening parentheses in blok i, and let E

1

(j) denote the substring of exess

losing parentheses in blok j. By de�nition, jE

0

(i)j = e

0

(I

i;i

) and jE

1

(j)j = e

1

(I

j;j

).

We �rst �nd E

0

(i) and E

1

(j). This is done by a slight modi�ation to the D

m

-onsisteny

proedure (see Subsetion 3.1). Namely, when reading blok i, the substring E

0

(i) onsists of those

opening parentheses that are left on the stak when the proedure terminates. On the other hand,

the substring E

1

(j) onsists of those losing parentheses, that when read, the stak is found to be

empty.

Reall that by Claim 10, for every two bloks i < j that are neighbors in G(s), there are

w(i; j) = x(i; j) exess opening parentheses in blok i that are mathed to exess losing parentheses

in blok j, where x(i; j) is as de�ned in Claim 10, Equation (4). Note that there are e

1

(I

i+1;j�1

)

exess opening parentheses in blok i that are mathed to exess losing parentheses in the interval

I

i+1;j�1

. Similarly, there are e

0

(I

i+1;j�1

) losing parentheses in blok j that are mathed to opening

parentheses in I

i+1;j�1

. Observe that either all e

0

(I

i;i

) exess opening parentheses in blok i get

mathed to exess losing parentheses in bloks i+1; � � � ; j, or all e

1

(I

j;j

) exess losing parentheses

in blok j get mathed to opening parentheses in bloks i; � � � ; j � 1. This leads to the following

exat mathing proedure, with two ases: The �rst orresponds to the situation when all of the

11

exess losing parenthesis in blok j are mathed to parentheses in the interval I

i;j�1

. In partiular

this implies that those parentheses in blok j that are mathed to parentheses in blok i onstitute

a suÆx of the exess substring E

1

(j). The seond ase orresponds to the situation when all of the

exess opening parentheses in blok i are mathed to parentheses in the interval I

i+1;j

, and so a

pre�x of E

0

(i) is mathed to a substring of E

1

(j).

In what follows, for a (onseutive) substring s

0

of E

0

(i), we denote by F

i

(s

0

) and L

i

(s

0

) the

positions in E

0

(i) of the �rst and last symbols of s

0

, respetively. Similarly, for a substring s

00

of

E

1

(j), we denote by F

j

(s

00

) and L

j

(s

00

) the positions of the �rst and last symbols of s

00

in E

1

(j)

respetively.

Exat Parentheses Mathing Proedure(i; j)

1. If e

1

(I

i+1;j

) < e

0

(I

i;i

): Let s

00

be the suÆx of E

1

(j) of length x(i; j), and let s

0

be the substring

of E

0

(i) suh that L

i

(s

0

) = e

0

(I

i;i

)� e

1

(I

i+1;j�1

), where js

0

j = js

00

j.

2. If e

1

(I

i+1;j

) � e

0

(I

i;i

): Let s

0

be the pre�x of E

0

(i) of length x(i; j), and let s

00

be the substring

of E

1

(j) suh that F

j

(s

00

) = e

0

(I

i+1;j�1

) + 1, where js

00

j = js

0

j.

3. If s

0

and s

00

math, then return suess, otherwise return fail.

It may be veri�ed that L

i

(s

0

) = e

0

(I

i;i

) � e

1

(I

i+1;j�1

) and F

j

(s

00

) = e

0

(I

i+1;j�1

) + 1, no matter

whih step of the proedure is applied. Hene, the two ases an atually be merged into one, but

the above formulation will be helpful in understanding a variant of this proedure that is presented

subsequently.

An Example. Consider for example the string from Figure 2, and the neighboring bloks i = 1

and j = 4. Then E

0

(1) = \[[([([", that is, the blok onsists only of exess parentheses, and

E

1

(4) = \℄) ℄)". Thus, e

0

(I

1;1

) = 6. The other relevant values are: x(1; 4) = 2, e

1

(I

2;4

) = 3,

and e

1

(I

2;3

) = 1. Hene s

00

is the suÆx of length 2 of E

1

(4), that is, s

00

= \℄)". We also get that

L

i

(s

0

) = 6 � 1 = 5, and so s

0

is the substring of E

0

(1) of length 2 that ends at position 5, that is

s

0

= \([". The substrings s

0

and s

00

math of ourse sine s

0

s

00

2 D

2

.

Sine we only have estimates ê

1

(I

i+1;j�1

) and ê

0

(I

i+1;j�1

) of the exess numbers in the interval

I

i+1;j�1

, then we apply the following partial mathing proedure to any pair of neighbor bloks

i < j in

^

G(s). The proedure is basially the same as the exat mathing proedure, but it searhes

for a possibly smaller math in a larger range (where the size of the math and the range are

determined by the quality of the approximation we have). Thus we de�ne

x̂(i; j)

def

= minfê

1

(I

i+1;j

); e

0

(I

i;i

)g � ê

1

(I

i+1;j�1

)� 2Æn

2=3

;

and look for mathing substrings of length x̂(i; j). Furthermore, we only allow mathes of loations

that have an even number of symbols between them. If s 2 D

m

and bloks i and j are neighbors in

G(s), then the existing mathing between exess opening parentheses in blok i and exess losing

parentheses in blok j, should in fat obey this onstraint.

Partial Parentheses Mathing Proedure(i; j)

1. If ê

1

(I

i+1;j

) < e

0

(I

i;i

) � Æn

2=3

: Let ŝ

00

be the suÆx of E

1

(j) of length x̂(i; j). Searh for a

mathing substring ŝ

0

of E

0

(i) suh that L

i

(ŝ

0

) is in the range

�

e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)� 3Æn

2=3

; e

0

(I

i;i

)� ê

1

(I

i+1;j�1

) + Æn

2=3

�

(7)

12

and suh that L

i

(ŝ

0

) has opposite parity from the parity of F

j

(ŝ

00

). If x̂(i; j) � 0 then ŝ

00

is

the empty string, and a mathing exists trivially.

2. If ê

1

(I

i+1;j

) � e

0

(I

i;i

) + Æn

2=3

: Let ŝ

0

be the pre�x of E

0

(i) of length x̂(i; j). Searh for a

mathing substring ŝ

00

of E

1

(j) suh that F

j

(ŝ

00

) is in the range

(ê

0

(I

i+1;j�1

) + 1� Æn

2=3

; ê

0

(I

i+1;j�1

) + 1 + 3Æn

2=3

) (8)

where again, F

j

(ŝ

00

) should have opposite parity from that of L

i

(ŝ

0

).

3. If jê

1

(I

i+1;j

) � e

0

(I

i;i

)j � Æn

2=3

: Searh for a mathing as desribed in Step 1 above. If a

mathing is not found, searh for a mathing as desribed in Step 2 above.

4. If a mathing was found, then return suess, otherwise return fail.

To implement either step in the above proedure, we run a linear time string mathing algo-

rithm [KMP77℄.

Lemma 13 Assume that Assumption 5 holds. Then we have the following:

1. If s 2 D

m

, then for every two neighbor bloks i < j in

^

G(s), the partial mathing proedure

desribed above sueeds in �nding a mathing.

2. Let s be any given string and onsider any three bloks i < j

1

< j

2

suh that j

1

and j

2

are

both neighbors of i in

^

G(s). Suppose that the partial mathing proedure sueeds in �nding

a mathing between substrings ŝ

0

and

^

t

0

of E

0

(i) and substrings ŝ

00

of E

1

(j

1

) and

^

t

00

of E

1

(j

2

),

respetively. Then, under Assumption 5, ŝ

0

and

^

t

0

overlap by at most 6Æn

2=3

. An analogous

statement holds for triples i

1

< i

2

< j suh that i

1

and i

2

are both neighbors of j in

^

G(s).

Proof:

Part 1: By Lemma 12,

^

G(s) is a subgraph of G(s). In other words, every two bloks i < j that are

neighbors in

^

G(s), are also neighbors in G(s). If s 2 D

m

, then this implies that the exat mathing

proedure would sueed in �nding a math between substrings s

0

of E

0

(i) and s

00

of E

1

(j) in either

Step 1 or Step 2 of the proedure.

We onsider the �rst ase, and show that in this ase the partial mathing proedure an

�nd a math between ŝ

0

and ŝ

00

in Step 1 (the seond ase is handled analogously). In this ase,

e

1

(I

i+1;j

) < e

0

(I

i;i

), and there is a mathing between the suÆx s

00

of E

1

(j) that has length x(i; j),

and the substring s

0

of E

0

(i) of the same length that ends in position L

i

(s

0

) = e

0

(I

i;i

)�e

1

(I

i+1;j�1

).

By Claim 8, onditioned on Assumption 5, we know that for every k; `, jê

1

(I

k;`

) � e

1

(I

k;`

)j �

Æn

2=3

. It follows that ê

1

(I

i+1;j

) < e

0

(I

i;i

) + Æn

2=3

and that

x(i; j) � 4Æn

2=3

� x̂(i; j) � x(i; j): (9)

Therefore, either ê

1

(I

i+1;j

) < e

0

(I

i;i

) � Æn

2=3

, or jê

1

(I

i+1;j

) � e

0

(I

i;i

)j � Æn

2=3

, and in either ase,

the proedure tries to �nd a math as de�ned in Step 1.

Sine x̂(i; j) � x(i; j), the substring ŝ

00

de�ned in Step 1 is a suÆx of s

00

. Sine we know

that s

0

mathes s

00

in this ase, then there is a pre�x ŝ

0

of s

0

that mathes ŝ

00

, and we just have

to show that the partial mathing proedure an �nd it. Let ê

1

(I

i+1;j

) = e

1

(I

i+1;j

) + y, and

ê

1

(I

i+1;j�1

) = e

1

(I

i+1;j�1

) + z where �Æn

2=3

� y; z � Æn

2=3

. Hene,

jŝ

0

j = x̂(i; j) = x(i; j) + y � z � 2Æn

2=3

= js

0

j+ y � z � 2Æn

2=3

13

and so

L

i

(ŝ

0

) = L

i

(s

0

)� (y � z � 2Æn

2=3

) = e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)� (y � 2Æn

2=3

):

The mathing substring that the partial mathing algorithm searhes for is allowed to end at a

position in the range (e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)�3Æn

2=3

; e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)+Æn

2=3

), whih ontains

L

i

(ŝ

0

). This ensures that a mathing is found.

Part 2: Let i < j

1

< j

2

be a given triple as de�ned in the lemma. We �rst show that regardless of

whether �(s) 2 D

1

or not, given the exat values of e

0

(I

i+1;j

1

�1

), e

1

(I

i+1;j

1

�1

), e

0

(I

i+1;j

2

�1

), and

e

1

(I

i+1;j

2

�1

), the mathing de�ned by the exat mathing proedure would not ause any overlaps.

This fat will be used to bound the overlap aused by the partial mathing proedure.

Let s

0

and t

0

be substrings of E

0

(i) that the exat mathing proedure tries to math to substrings

s

00

of E

1

(j

1

) and t

00

of E

1

(j

2

) respetively. We next show the following inequalities:

1. L

i

(t

0

) < F

i

(s

0

), that is, the exat mathing algorithm would not ause any overlap: By

de�nition of the exat mathing proedure, (no matter whih step is applied), L

i

(t

0

) =

e

0

(I

i;i

)� e

1

(I

i+1;j

2

�1

), L

i

(s

0

) = e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

), and js

00

j = js

0

j = x(i; j

1

). Thus,

F

i

(s

0

) = e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

)� x(i; j

1

) + 1

= e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

)� (minfe

1

(I

i+1;j

1

); e

0

(I

i;i

)g � e

1

(I

i+1;j

1

�1

)) + 1

= e

0

(I

i;i

)�minfe

1

(I

i+1;j

1

); e

0

(I

i;i

)g+ 1

� e

0

(I

i;i

)� e

1

(I

i+1;j

1

) + 1 (10)

Sine j

1

� j

2

� 1 and e

1

(I

i+1;j

) is monotonially non-dereasing with j, we have that

e

1

(I

i+1;j

2

�1

) � e

1

(I

i+1;j

1

), and so L

i

(t

0

) < F

i

(s

0

) as desired.

2. As observed in Part 1 of this proof, x̂(i; j) � x(i; j) and so jŝ

00

j � js

00

j.

3. L

i

(ŝ

0

) � L

i

(s

0

) � 4Æn

2=3

: We �rst observe that by Lemma 12, x(i; j

2

) =

minfe

1

(I

i+1;j

2

); e

0

(I

i;i

)g � e

1

(I

i+1;j

2

�1

) � 6Æn

2=3

. Sine j

1

� j

2

� 1 and e

1

(i + 1; j) is

monotonially non-dereasing with j, neessarily e

1

(I

i+1;j

1

) � e

0

(I

i;i

) � 6Æn

2=3

. Therefore,

ê

1

(I

i+1;j

1

) � e

0

(I

i;i

) � 5Æn

2=3

, and so the partial mathing proedures would apply Step 1.

Thus, the substring ŝ

0

may end in the worst ase in position

e

0

(I

i;i

)� ê

1

(I

i+1;j

1

�1

)� 3Æn

2=3

� e

0

(I

i;i

)� e

1

(I

i+1;j

1

�1

)� 4Æn

2=3

= L

i

(s

0

)� 4Æn

2=3

:

4. F

i

(ŝ

0

) � F

i

(s

0

)� 4Æn

2=3

: Using the previous inequalities we get,

F

i

(ŝ

0

) = L

i

(ŝ

0

)� x̂(i; j)

� L

i

(s

0

)� 4Æn

2=3

� x̂(i; j)

= (F

i

(s

0

) + x(i; j)) � 4Æn

2=3

� x̂(i; j)

� F

i

(s

0

)� 4Æn

2=3

(11)

5. L

i

(

^

t

0

) � L

i

(t

0

) + 2Æn

2=3

: As noted previously, by de�nition of the exat mathing proedure,

L

i

(t

0

) = e

0

(I

i;i

) � e

1

(I

i+1;j

2

�1

) + 1. If the math between

^

t

0

and

^

t

00

is found in Step 1 of the

partial mathing proedure, then

L

i

(

^

t

0

) � e

0

(I

i;i

)� ê

1

(I

i+1;j

2

�1

) + Æn

2=3

� e

0

(I

i;i

)� e

1

(I

i+1;j

2

�1

) + 2Æn

2=3

= L

i

(t

0

) + 2Æn

2=3

:

If the math is found in Step 2, then

L

i

(

^

t

0

) = x̂(i; j) � e

0

(I

i;i

)� ê

1

(I

i+1;j

2

�1

)� 2Æn

2=3

< L

i

(t

0

):

14

As a result we get

F

i

(ŝ

0

) � F

i

(s

0

)� 4Æn

2=3

> L

i

(t

0

)� 4Æn

2=3

� L

i

(

^

t

0

)� 6Æn

2=3

:

and therefore the overlap is at most 6Æn

2=3

. We have thus proved the laim for triples i < j

1

< j

2

.

The analogous laim for triples i

1

< i

2

< j is proved similarly.

3.6 Putting it all together

Algorithm 1 Test if s 2 D

m

1. Let Æ =

�

200

.

2. D

1

-test: Test that �(s) 2 D

1

with distane parameter Æ and on�dene 9=10. If this test

rejets, then output rejet.

3. Partition the string s into n

1=3

substrings of length n

2=3

eah, whih we refer to as \bloks".

4. D

m

-onsisteny test: Selet 100=� bloks uniformly, and hek that they are D

m

-onsistent.

If any of the bloks seleted is not D

m

-onsistent then output rejet.

5. Perform the preproessing step on the basi substrings of s (de�ned based on the above setting

of Æ).

6. Mathing test: Uniformly selet 100=� bloks and for eah �nd its neighboring bloks in

^

G(s). For eah seleted blok, and for eah of its neighbors, hek that their exess parentheses

math orretly by invoking the partial mathing proedure. If the partial mathing proedure

fails for any of the seleted bloks then output rejet. Otherwise output aept.

Theorem 1 If s 2 D

m

then the above testing algorithm aepts with probability at least 2=3, and

if s is �-far from D

m

then the above test rejets with probability at least 2=3.

The query omplexity and running time of the algorithm are O

�

n

2=3

� log

3

(n=�)=�

3

�

.

Proof: Consider �rst the easier ase in whih s 2 D

m

. TheD

1

-test (Step 2) passes with probability

at least 9=10, and the D

m

-onsisteny test (Step 4) always passes. By Lemma 12, if Assumption 5

holds, then

^

G(s) is a subgraph of G(s). By Lemma 13 (using Assumption 5 one again), for

every two neighboring bloks i and j, the mathing of exess parentheses must sueed. Sine by

Lemma 4, Assumption 5 holds with high probability, this part of the theorem follows.

We now turn to the seond part of the theorem. We shall show that onditioned on Assumption 5

holding, if s is aepted with probability greater than 1=6, then it is �-lose to some string in D

m

.

This implies that onditioned on Assumption 5 holding, if s is �-far from D

m

then it is rejeted

with probability at least 5=6. Sine Assumption 5 holds with probability at least 5=6, this implies

that if s is �-far from D

m

then it is rejeted with probability at least 2=3, as required. Thus from

now on we assume that Assumption 5 holds.

If s is aepted with probability greater than 1=6 then neessarily it must pass eah part of the

test with probability greater than 1=6. This implies that:

1. �(s) is Æ-lose to a string in D

1

: otherwise, it would be rejeted in Step 2 of the algorithm

with probability at least 9=10;

15

2. All but at most an

�

4

-fration of the bloks of s are D

m

-onsistent: otherwise, an inonsistent

blok would be seleted in Step 4 with probability greater than 5=6, ausing the algorithm to

rejet in this step with probability greater than 5=6;

3. The fration of bloks i that have a neighbor j in

^

G(s) for whih the partial mathing proe-

dure would fail if exeuted on i and j is at most �=4: otherwise, one of these bloks would be

seleted in Step 6 with probability greater than 5=6, ausing the algorithm to rejet in this

step with probability greater than 5=6;

4. Combining the �rst item above (�(s) is Æ-lose to a string in D

1

) with Assumption 5, we

know by Lemma 12, that

^

G(s) is a planar graph, and furthermore,

X

(k;`)2E(

^

G(s)); k<`

x(k; `) �

1

2

n

1=3

X

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

))� 19Æn;

where x(k; `) is as de�ned in Claim 10, Equation (4).

To show that s is �-lose to a string in D

m

, we show how to modify s in at most �n positions

so that it beomes a string in D

m

. In partiular we show the existene of a nested non-rossing

mathing between opening and losing parentheses in the modi�ed string, suh that every mathed

pair math in type.

Making all bloks D

m

onsistent. First we onsider all bloks that are not D

m

-onsistent,

and turn them into onsistent bloks without modifying their exess parentheses. As stated in

the disussion following Fat 2, for every blok s

0

, the string �(s

0

) is D

1

-onsistent. Hene this

modi�ation an be done simply by onsidering the mathing indued on the non-exess parentheses,

and modifying at most 1=2 of the non-exess parentheses in the blok. Sine the fration of

inonsistent bloks is at most an �=4-fration of the bloks of s, the total number of symbols

modi�ed is at most

�

8

n.

Adjusting mathed exess parentheses. Next we need to \�x" the exess parentheses. Con-

sider the graph

^

G(s), and for every two bloks i < j that are neighbors in

^

G(s), onsider (as a

mental experiment) the result of running the partial mathing algorithm on their exess parenthe-

ses substrings E

0

(i) and E

1

(j) as desribed in Subsetion 3.5. Suppose that we sueed and �nd

a mathing between substring s

0

of E

0

(i) and substring s

00

of E

1

(j). Then we shall \ommit" to

the two mathed substrings with the exeption of the last 6Æn

2=3

symbols of s

0

and the �rst 6Æn

2=3

symbols of s

00

. In \ommitting" we mean that these symbols will not be modi�ed, and that the

mathing between the respetive symbols in s

0

and s

00

will be maintained in all future modi�ations.

Note that by Lemma 13, eah exess opening parenthesis is mathed in this way to at most one

exess losing parenthesis in one of the neighbors of blok i.

If the mathing algorithm does not sueed then we modify a substring s

0

of E

0

(i) so that it

mathes a designated substring s

00

of E

1

(j), with the exeption of 6Æn

2=3

onseutive symbols, and

we ommit to the two mathed substrings. More preisely, if e

1

(I

i;i

) < e

0

(I

i;i

) (so that ê

1

(I

i;i

) <

e

0

(I

i;i

)+Æn

2=3

), then we let � be the suÆx of E

1

(j) of length x̂(i; j)�6Æn

2=3

, where x̂(i; j) is as de�ned

in the partial mathing proedure. We then modify the substring of E

0

(i) of length x̂(i; j)� 6Æn

2=3

that ends at position e

0

(I

i;i

)� ê

1

(I

i+1;j�1

)� 6Æn

2=3

so that it mathes � . If e

1

(I

i;i

) � e

0

(I

i;i

) then

we modify the pre�x of length x̂(i; j)� 6Æn

2=3

of E

0

(i) so that it mathes the substring � of length

x̂(i; j) � 6Æn

2=3

of E

0

(i) that starts at position F

j

(�) = ê

0

(I

i+1;j�1

) + 1 + 6Æn

2=3

. It is not hard to

verify that in this manner we do not introdue any errors into the mathing.

16

Sine the fration of bloks that have at least one neighbor on whih the partial mathing

proedure fails is at most

�

4

, the total number of symbols modi�ed in this stage is at most

�

4

n. Note

that sine

^

G(s) is planar, the mathing de�ned so far is nested as required.

Adjusting non-mathed exess parentheses. At this stage the string s is omposed of three

types of onseutive substrings: (1) substrings inside the bloks that are strings in D

m

themselves;

(2) exess parentheses in one blok that are mathed to exess parentheses in another blok, to

whih we ommitted; (3) exess parentheses that are not mathed.

We now show how to hange s into a string in D

m

, but �rst let us bound the total number

of parentheses of type (3), whih must still be modi�ed. The total number of exess parentheses

is

P

n

1=3

i=1

(e

0

(I

i;i

) + e

1

(I

i;i

)). Let us think of eah edge (i; j) in

^

G(s) as \having to aount for"

x(i; j) pairs of exess parentheses. By Lemma 12, the total number of exess parentheses that

are not aounted to by the edges of

^

G(s) is at most 2 � 19Æn. In addition, by de�nition of the

approximate mathing proedure, the length of the mathed substring orresponding to the edge

is x̂(i; j) � x(i; j) � 4Æn

2=3

(see Equation 9). By our ommitting strategy, for every edge (i; j)

in

^

G(s), the number of pairs of symbols among the mathed x̂(i; j) pairs that we did not ommit

to is 6Æn

2=3

. Thus the total number of unommitted exess parentheses pairs per edge is at most

10Æn

2=3

. Sine

^

G(s) is planar, the total number of unommitted pairs is at most 30Æn. Hene there

are at most 60Æn exess parentheses that are aounted for by the edges of

^

G(s), but unommitted

for. If we add the 36Æn parentheses that are not aounted for we get a total of at most 96Æn

parentheses of type (3). We now show how to modify these at most 96Æn parentheses, so that we

get a string in D

m

. Sine Æ =

�

200

we modify in this step at most

�

2

n symbols.

Let t be the string obtained from s by removing all onseutive substrings of type (1). Note

that by removing suh substrings that are always even in length, we do not hange the parity of the

length of substrings between two mathed exess substrings of type (2). We show how to modify t

in a reursive way. Let t

0

and t

00

be two mathed substrings suh that between them there is only a

substring � of parentheses of type (3), where � may be empty. Thus, t is of the form t = �

0

t

0

�t

00

�

00

.

Note that j� j must be even, sine the position of the last symbol of t

0

has opposite parity than that

of the position of the last symbol of t

00

. Therefore, we modify � so that it is a string in D

m

and

ontinue reursively with the string �

0

�

00

. This string is even in length sine jtj and j� j are even

and jt

0

j = jt

00

j. Also as noted above by removing onseutive substrings that are even in length, we

do not hange the parity of the length of substrings between two mathed exess substrings of type

(2).

Finally we turn to the query omplexity and running time of the algorithm. Testing that �(s) 2

D

1

with distane parameter �

0

= Æ takes time O (log(1=�

0

)=�

0

) [AKNS00℄, whih is O (log(1=�)=�).

Testing that O(1=�) bloks are D

m

-onsistent takes time O

�

n

2=3

=�

�

. The preproessing step takes

time linear in the sample size, whih by Lemma 4 is O

�

n

2=3

� log

3

(n=�)=�

3

�

. Finally, by Lemma 12

the degree of every vertex (blok) in

^

G(s) is at most 1=(2Æ) = O(1=�). Therefore the last step takes

time O

�

n

2=3

=�

2

�

. The total running time and query omplexity is hene O

�

n

2=3

� log

3

(n=�)=�

3

�

.

4 A Lower Bound for D

2

In this setion we prove a lower bound of
(n

1=11

= log n) on the query omplexity of any algorithm

for testing D

2

, and hene for testing all Dyk languages. We �rst provide suh a bound for the

language PAR

2

whih is de�ned below and is a variant of D

2

, and then disuss how a very similar

argument an be applied to obtain the same lower bound for D

2

.

17

De�nition 12 (Parenthesis Languages) The parenthesis language PAR

m

over strings in �

m

[

�

0

, where �

0

is any alphabet that has no intersetion with �

m

, an be de�ned reursively as follows:

1. Any string s 2 (�

0

)

�

belongs to PAR

m

.

2. If s

0

2 PAR

m

, � = 2i is an opening parenthesis and � = 2i + 1 is a mathing losing

parenthesis, for some 0 � i � m� 1, then �s

0

� 2 PAR

m

.

3. If s

0

; s

00

2 PAR

m

, then s

0

s

00

2 PAR

m

.

We will prove the following theorem.

Theorem 2 Any algorithm for testing PAR

2

with distane parameter � � 2

�6

and suess proba-

bility of at least 2=3, requires �n

1=11

= log n queries, where � = e

�7

.

The high-level struture of our proof is similar to other lower-bound proofs for testing (see for

example [GR02, PR02, BR02℄ whih an be traed bak to [Yao77℄). In order to prove the theorem

we de�ne two distributions, alled POS

n

and NEG

n

, on strings over �

2

[f`a'g (that is, there are

two types of parentheses and one extra non-parenthesis symbol). Sine we have only two types of

parentheses, it will be onvenient to let �

2

= f(;); [; ℄g. The support of the �rst distribution, POS

n

,

ontains only strings in PAR

2

, while with extremely high probability, a string seleted aording

to the seond distribution, NEG

n

, is 2

�6

-far from PAR

2

. Roughly speaking, what we show is

that an algorithm that asks less than �n

1=11

= log n queries annot distinguish with suÆiently high

probability between a string seleted aording to the �rst distribution (whih should be aepted)

and a string seleted aording to the seond distribution (whih should almost always be rejeted).

4.1 The Two Distributions

In what follows we assume for simpliity that the length n of the strings, is divisible by 32. In both

distributions the support of the distributions is only on strings s suh that �

1

(s) 2 PAR

1

, where

we extend the mapping �

1

(�) de�ned in De�nition 3, so that it maps every `a' to `a'. Furthermore,

the strings have a relatively simple struture: there are always n=4 opening parentheses among

the �rst n=2 symbols (the left half of the string), and n=4 losing parentheses among the last n=2

symbols (the right half of the string). All other symbols are `a's. The strings di�er only in the

atual positions of the parentheses in the string and in their type:

De�nition 13 (Parenthesis Types) We say that an opening parenthesis is of type 0 if it is `(',

and is of type 1 if it is `['. Similarly, we say that a losing parenthesis is of type 0 if it is `)', and

it is of type 1 if it is `℄'. Thus, `(' and ')', and similarly `[' and '℄', are said to have the same type.

4.1.1 The First Distribution, POS

n

.

This distribution is simply uniform over all strings in PAR

2

that have n=4 opening parentheses

among the �rst n=2 positions, and n=4 losing parentheses (of orresponding types) among the last

n=2 positions. To be preise, a string s is generated in the following manner:

1. Uniformly selet a subset L � f1; : : : ; n=2g suh that jLj = n=4. These will be the positions

in s of the opening parentheses.

2. Uniformly selet a subset R � fn=2 + 1; : : : ; ng suh that jRj = n=4. These will be the

positions in s of the losing parentheses.

18

3. Uniformly selet a binary string x 2 f0; 1g

n=4

. The string x will be used to determine the

type of parentheses.

4. Let j

1

; j

2

; : : : ; j

n=4

be the elements of L where n=2 � j

1

> j

2

> � � � > j

n=4

� 1. Then, for

every 1 � i � n=4, if x

i

= 0 then s

j

i

=`(', and if x

i

= 1 then s

j

i

=`['.

5. Similarly, onsider a sorted order of the indies in R, only here the order is reversed so that

n=2+ 1 � k

1

< k

2

< � � � < k

n=4

� n. Then, for every 1 � i � n=4, if x

i

= 0 then s

k

i

=`)', and

if x

i

= 1 then s

k

i

=`℄'.

6. For every i =2 L [R, let s

i

=`a'.

Thus, eah string in the support of POS

n

has probability

�

n=2

n=4

�

�2

� 2

�n=4

.

4.1.2 The Seond Distribution, NEG

n

.

This distribution is similar to POS

n

(and in partiular its support ontains the support of POS

n

),

with the exeption that not all pairs of parentheses (j

i

; k

i

) as de�ned above have the same type.

In partiular, the generating proedure is the same as that of POS

n

desribed above, with the

exeption of Steps 3 and 5 that are modi�ed below.

1,2. As desribed for POS

n

.

3. Uniformly selet a binary string x 2 f0; 1g

n=4

, and a binary string y 2 f0; 1g

n=8

.

4. As desribed for POS

n

.

5. Consider a sorted order of the indies in R so that k

1

< k

2

< � � � < k

n=4

. Then, for every i

suh that 1 � i � n=16 or n=4�n=16+1 � i � n=4, if x

i

= 0 then s

k

i

=`)', and if x

i

= 1 then

s

k

i

=`℄'. For every n=16 + 1 � i � n=4� n=16, if y

i�n=16

= 0 then s

k

i

=`)', and if y

i�n=16

= 1

then s

k

i

=`℄'.

That is, as opposed to POS

n

, here the string x determines only the type of the �rst n=16

and the last n=16 parentheses on the right side of the string, while the string y determines

the type of the remaining n=8 middle parentheses.

6. As desribed for POS

n

.

Thus, eah string in the support of NEG

n

has probability

�

n=2

n=4

�

�2

� 2

�3n=8

.

range
significant
range

significant

matching parentheses

)]..([.. ([..])..

n/16 n/8 n/16 n/16 n/8

[(.. ..)]

 n/16

Figure 4: An illustration of strings in the two distributions. The horizontal line represents a string. The

entral vertial line represents the middle of the string { to the left of it there are only opening parentheses

and to the right only losing parentheses. The other dashed vertial lines represent the borders of the regions

in whih reside the �rst and last n=16 parentheses and the middle n=8 parentheses in eah side. The middle

n=8 pairs must math in POS

n

and do not neessarily math in NEG

n

.

19

4.1.3 Properties of the Distributions

The following de�nitions will be entral to our analysis.

De�nition 14 (Parenthesis Index) Let s be a string in the support of NEG

n

(whih in parti-

ular ontains the support of POS

n

), and let 1 � j � n=2 be a position suh that s

j

is an opening

parenthesis. The parenthesis index of j in s is the number of opening parentheses s

j

0

suh that

j � j

0

� n=2. We denote the parenthesis index of j in s by �

s

(j).

Analogously, for a position n=2+1 � k � n suh that s

k

is a losing parenthesis, the parenthesis

index of k in s is the number of losing parentheses s

k

0

suh that n=2 + 1 � k

0

� k.

De�nition 15 (Signi�ant Index, Signi�ant Range) We say that a parenthesis index 1 �

� � n=4 is signi�ant if n=16 + 1 � � � n=4� n=16. Otherwise, it its non-signi�ant. We shall all

the range of indies between n=16 + 1 and n=4� n=16, the signi�ant range.

Note that the parenthesis index of a position is not determined by the position itself but rather

by the number of parentheses between this position and the middle of the string. Observe that for

every string s in the support of POS

n

, and for every two positions 1 � j � n=2 and n=2+1 � k � n,

suh that s

j

is an opening parenthesis and s

k

is a losing parenthesis, if �

s

(j) = �

s

(k), then s

j

and

s

k

must be of the same type. For a string s in the support of NEG

n

, the above is neessarily true

only for pairs j; k suh that �

s

(j) = �

s

(k) = � and � is not a signi�ant parenthesis index.

Lemma 14 Let � � 2

�6

. Then the probability that a string generated aording to NEG

n

is �-far

from PAR

2

, is at least 1� exp(�
(n)).

Proof: Consider all possible ways in whih a given string s that is generated aording to NEG

n

an be modi�ed in at most �n plaes. There are

�

n

�n

�

seletions of subsets C � f1; : : : ; ng, jCj = �n,

and for eah i 2 C the symbol s

i

an be modi�ed to any one of �ve symbols (this inludes not

hanging s

i

whih aounts for the possibility of modifying less than �n positions). That is, there

are

�

n

�n

�

� 5

�n

� 2

((1+o(1))�H(�)+(log 5)��)�n

(12)

possible ways to modify the string, where H(�) is the binary entropy funtion (that is, H(�) =

� log(1=�) + (1� �) log(1=(1 � �))).

For eah string s in the support of NEG

n

, and for eah C � f1; : : : ; ng, jCj = �n and t 2

f�

2

[fagg

�n

, let the string s

(C;t)

be de�ned as follows: for every i =2 C, s

(C;t)

i

= s

i

, and for every

i 2 C, s

(C;t)

i

= t

i

. We say that the pair (C; t) orrets s if s

(C;t)

is in PAR

2

. The probability that

a string generated aording to NEG

n

is �-lose to PAR

2

is the probability over the hoie of s

aording to NEG

n

that there exists a pair (C; t) that orrets s. We thus onsider any partiular

subset C and any partiular string t and show that the probability over the hoie of s that (C; t)

orrets s is exponentially smaller than the number of pairs (C; t). By applying a union bound we

prove the lemma.

We shall atually prove a slightly stronger laim. For a �xed hoie of (C; t), onsider the

proess of seleting a string s aording to NEG

n

. Reall that a string s is generated by �rst

uniformly seleting the sets of parentheses positions L and R, and then randomly setting the types

of parentheses in these positions (aording to the hoie of the strings x and y). We shall show

that for every hoie of L and R, the probability, taken only over the hoie of types of parentheses,

that the resulting string is orreted by (C; t), is suÆiently small. Details follow.

20

For a given hoie of L � f1; : : : ; n=2g, jLj = n=4 and R � fn=2 + 1; : : : ; ng, jRj = n=4, let

S(L;R) denote the subset of words in the support of NEG

n

that have opening parentheses in the

positions in L and losing parentheses in the positions in R. Then either for every string s 2 S(L;R)

we have that �

1

(s

(C;t)

) 2 PAR

1

, or for every string s 2 S(L;R), �

1

(s

(C;t)

) =2 PAR

1

. In other words,

in the latter ase, no matter how the types of parentheses are set in the positions determined by L

and R, the resulting string is not orreted by (C; t). Thus assume from now on that L and R are

suh that �

1

(s

(C;t)

) 2 PAR

1

. Note that for every s 2 S(L;R), the mathing M(s

(C;t)

) is exatly

the same. Let us thus denote it by M(L;R;C; t).

1

Let n=2+ 1 � k

1

< k

2

< : : : < k

n=4

� n be the indies in R in sorted order. Sine jCj = �n, the

number of indies k

i

suh that either k

i

2 C or k

i

is mathed by M(L;R;C; t) to some ` 2 C is at

most 2�n. Therefore, there must be at least n=8�2�n positions k

i

for i 2 fn=16+1; : : : ; n=4�n=16g,

suh that k

i

=2 C, and M(L;R;C; t) mathes k

i

to some j

i

0

2 L suh that j

i

0

=2 C. If (C; t) orrets

a string s 2 S(L;R), then it must be the ase that the strings x and y (as de�ned in the desription

of NEG

n

) are suh that all the above n=8� 2�n pairs of positions mathed by M(L;R;C; t), have

the same type of parentheses within eah pair. The probability of this event, taken over the hoie

of x and y is at most 2

�(n=8�2�n)

.

Sine the above is true for every L and R (suh that �

1

(s

(C;t)

) 2 PAR

1

for every s 2 S(L;R)),

we obtain a bound on the probability that the given (C; t) orrets a string s generated aording

to NEG

n

.

Applying Equation (12), whih gives a bound on the number of hoies of (C; t), we see that if

we selet � so that (H(�) + (log 5) � �) is suÆiently smaller than (1=8 � 2�), then we are done. A

hoie of � = 1=64 will do.

The following simple laim will be useful later on. It states that with suÆiently high probability

over the hoie of a string generated by one of the two distributions de�ned above, the parenthesis

index of every position does not deviate by muh from its expeted value.

Claim 15 With probability at least 7=8 over the hoie of a string s aording to POS

n

(similarly,

NEG

n

), for every 1 � j � n=2 suh that s

j

is an opening parenthesis, and for every n=2+1 � k � n

suh that s

k

is a losing parenthesis,

�

�

�

�

�

s

(j) �

n=2� j

2

�

�

�

�

�

p

log n �minf(n=2� j); jg

and

�

�

�

�

�

s

(k)�

k � n=2

2

�

�

�

�

�

p

log n �minf(k � n=2); (n� k)g

Proof: We prove the laim onerning 1 � j � n=2. The seond laim onerning n=2 < k � n is

proved analogously. Let us �x an index j and assume, without loss of generality, that j � n=4, so

that minf(n=2 � j); jg = j. Reall that for any string in the support of NEG

n

, the total number

of opening parentheses among the �rst n=2 positions is exatly n=4. Hene, �

s

(j) deviates by more

than

p

log n � j from

n=2�j

2

if and only if the number of opening parentheses in s among the �rst

j positions deviates by more than

p

logn � j from

j

2

(the expeted number of parentheses). The

probability that there are at most

j

2

�

p

logn � j parentheses in these positions is

P

j=2�

p

j log n

i=0

�

j

i

�

�

�

n=2�j

n=4�i

�

�

n=2

n=4

�

�

P

j=2�

p

j log n

i=0

�

j

i

�

�

�

n=2�j

n=4�j=2

�

�

n=2

n=4

�

1

This mathing learly does not depend on the type of parentheses in t but only on whether they are opening or

losing parentheses, but for simpliity we denote it as if it depends on t.

21

= O

0

�

j=2�

p

j log n

X

i=0

�

j

i

�

�

2

n=2�j

=

p

n=2� j

2

n=2

=

p

n=2

1

A

= O

�

2

j

� n

�2

� 2

�j

�

= O(n

�2

) (13)

Similarly, the probability that there are at least

j

2

+

p

logn � j parentheses in these positions is

O(n

�2

) as well. By applying a union bound over all positions j, we get that the probability

that there is a large deviation from the expetation for any of the indies is O(n

�1

), whih for a

suÆiently large n is smaller than 1=8.

4.2 On Distinguishing POS

n

from NEG

n

Let A be a possibly randomized testing algorithm for PAR

2

that asks at most �n

1=11

= log n queries

for � � e

�7

. We de�ne two randomized proesses P

pos

and P

neg

that interat with A. The

following laim will follow immediately from their de�nition.

Claim 16 The distribution on answers provided by the proess P

pos

is equivalent to those obtained

from querying a string that is randomly generated aording to POS

n

. Similarly, the distribution

on answers provided by the proess P

neg

is equivalent to those obtained from querying a string that

is randomly generated aording to NEG

n

.

In partiular, at any stage of the interation, eah proess onsiders the set of strings that are

onsistent with the interation so far. Given a new query, the probability distribution on the

answer is determined by the relative fration of strings in the set that are onsistent with that

answer (beause both distributions are uniform over their support). While we won't be able to

ompute these probabilities exatly, we shall be able to bound them, and this will suÆe for our

proof.

4.2.1 The Proess P

pos

.

We start by desribing P

pos

. At eah step of the interation the proess maintains the set of

positions already queried by the algorithm, and the answers it has provided (that is, what is the

symbol in eah queried position). In addition, the proess P

pos

maintains a subset, denoted

mathed, of disjoint pairs (j; k) of previously queried positions, where 1 � j � n=2, n=2 + 1 �

k � n, and both positions were answered by parentheses having the same parenthesis index (as

explained next). With eah suh pair it assoiates a ommon parenthesis index 1 � � � n=4. The

�nal generated string s will be suh that for every pair (j; k) 2 mathed, �

s

(j) = �

s

(k) = �, and

for any other two queried positions j

0

; k

0

suh that (j

0

; k

0

) =2 mathed, �

s

(j

0

) 6= �

s

(k

0

). We stress

that the proess only \ommits" to the parenthesis index of a subset of pairs of queried positions,

and not to the parenthesis index of every queried position that is answered by a parenthesis.

Before ontinuing with the desription of the proess, we introdue two de�nitions. The �rst

de�nition is of the query-answer history of an interation between a testing algorithm and the

proess P

pos

. This history ontains the positions queried by the algorithm and the symbols that

the proess returns as answers. In addition it inludes the information onerning queried positions

that the proess deides to math. Clearly, in an atual exeution of the algorithm suh information

is not provided diretly. However, it is also lear that giving this extra information to the algorithm

an only help it.

22

De�nition 16 (Query-Answer History) The query-answer history h of length T is a sequene

of T triples (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) suh that for every 1 � i � T the following holds:

� The query qu

i

is an index in 1; : : : ; n.

� The answer ans

i

is either an `a' or a parenthesis.

� The mathing information ma

i

is either NO-MATCH or a pair (qu

i

0

; �

i

) where i

0

< i, and

�

i

2 f1; : : : ; n=4g. In the latter ase (qu

i

0

; qu

i

) 2 mathed, with the assoiated parenthesis

index �

s

(qu

i

0

) = �

s

(qu

i

) = �

i

. In the former ase there is no qu

i

0

, i

0

< i suh that (qu

i

0

; qu

i

) 2

mathed. In partiular, if ans

i

= `a', then neessarily ma

i

= NO-MATCH. Furthermore, the

pairs in the subset mathed are disjoint and the parenthesis indies �

i

of pairs in mathed

are distint.

We note that if for some i the mathing information ma

i

is NO-MATCH then it only means that

qu

i

is not mathed to any previous query qu

i

0

where i

0

< i. It is possible that there may be a

subsequent query qu

i

00

where i

00

> i suh that (qu

i

; qu

i

00

) 2 mathed.

De�nition 17 (Compatibility) We say that a string s of length n and a history h =

(qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) of length T are ompatible if the following holds:

1. For every 1 � i � T , s

qu

i

= ans

i

;

2. If ma

i

= (qu

i

0

; �

i

) for i

0

< i, then �

s

(qu

i

) = �

s

(qu

i

0

) = �

i

.

3. If ma

i

= NO-MATCH then for every i

0

< i suh that ans

i

0

is a parenthesis, �

s

(qu

i

) 6= �

s

(qu

i

0

).

The set of strings in the support of POS

n

that are ompatible with h is denoted by S(h).

Given a history h = (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) of length T , let qu

T+1

be a new query.

We would like to determine the distribution on ans

T+1

and ma

T+1

, onditioned on the history h.

Sine POS

n

is uniform over its support, the response provided by the proess is determined by

the relative fration of strings in S(h) that are onsistent with eah possible response. We thus

partition S(h) into disjoint subsets as follows:

De�nition 18 For a given history h of length T , let S

a

(h; qu

T+1

) denote the subset of all strings

s 2 S(h) suh that s

q

T+1

= `a', and let S

par

(h; qu

T+1

) denote the subset of all strings s 2 S(h) suh

that s

q

T+1

is a parenthesis.

For every 1 � � � n=4 and 1 � i � T , let S

�;qu

i

(h; qu

T+1

) denote the subset of all strings

s 2 S

par

(h; qu

T+1

) suh that �

s

(qu

T+1

) = �

s

(qu

i

) = �, and let S

no-math

(h; qu

T+1

) denote the

subset of all strings s 2 S

par

(h; qu

T+1

) suh that �

s

(qu

T+1

) 6= �

s

(qu

i

) for every 1 � i � T .

Note that there may exist 1 � � � n=4 and 1 � i � T , suh that the set S

�;qu

i

(h; qu

T+1

) is empty

due to the ompatibility requirement with h.

The Distribution on P

pos

's answers. Given the above de�nition, the probability that ans

T+1

is

an `a' is jS

a

(h; qu

T+1

)j=jS(h)j, and the probability that it is a parenthesis is jS

par

(h; qu

T+1

)j=jS(h)j.

Conditioned on it being a parenthesis, P

pos

needs to determine its type, and it needs to determine

ma

T+1

(if ans

T+1

is `a' then neessarily ma

T+1

is NO-MATCH).

For eah suh qu

i

, where 1 � i � T , and for eah 1 � � � n=4, the probability that ma

T+1

=

(qu

i

; �) is jS

�;qu

i

(h; qu

T+1

)j=jS

par

(h; qu

T+1

)j. The probability that ma

T+1

= NO-MATCH, on-

ditioned on position qu

T+1

being a parenthesis, is jS

no-math

(h; qu

T+1

)j=jS

par

(h; qu

T+1

)j. Finally,

23

after determining ma

T+1

the proess an determine ans

T+1

: If ma

T+1

= (qu

i

; �) for some 1 � i � T ,

then ans

T+1

is a parenthesis of the same type as ans

i

. If ma

T+1

= NO-MATCH then one of the

two types of parentheses is seleted with equal probability.

4.2.2 The Proess P

neg

.

The proess P

neg

is almost idential to P

pos

. Here too, for every history h of length T and a new

query qu

T+1

, P

neg

onsiders the set S(h) of strings in the support of NEG

n

that are ompatible

with h, and the orresponding subsets S

a

(h; qu

T+1

) and S

�;qu

i

(h; qu

T+1

) � S

par

(h; qu

T+1

), whih

are de�ned analogously to the way that they were de�ned above. Given these subsets, the proba-

bility that the answer ans

T+1

is set to `a' or is a parenthesis whose type is yet to be determined,

is the same as desribed for P

pos

, and the same holds for the setting of ma

T+1

. The di�erene

between the two proesses is in the hoie of the type of parenthesis, in ase the proess deides

that ans

T+1

is a parenthesis that is mathed to a previous query. Suppose that ma

T+1

= (qu

i

; �)

for some 1 � i � T . Then the setting of ans

T+1

depends on �: If � is non-signi�ant, then ans

T+1

is

of the same type as ans

i

, and if � is signi�ant, then one of the two types of parentheses is seleted

with equal probability (as in the ase of NO-MATCH).

Thus the two proesses di�er only in the way they answer queries whose position is mathed to a

previously answered query, and the ommon parenthesis index is signi�ant. Therefore, onditioned

on the history ontaining no suh math, the two orresponding distributions on query-answer

histories are exatly the same.

4.3 Interating with P

pos

and P

neg

The next lemma is entral to the proof of Theorem 2. In the lemma and in all that follows we

assume that the testing algorithm A reeives, for eah query qu

i

it asks, not only the answer ans

i

but also the mathing information ma

i

. Clearly, any lower bound that holds under this assumption

also holds when the algorithm is not provided with this extra information.

Lemma 17 Let A be an algorithm that asks at most �n

1=11

= log n queries for � � e

�7

and

is provided, for eah query qu

i

, with an answer ans

i

and the mathing information ma

i

, gen-

erated by P

pos

(similarly, P

neg

). Consider the distribution on query-answer histories h =

(qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) for T � �n

1=11

= log n, that is indued by the random de-

isions of A and P

pos

(similarly, P

neg

). Then the probability that there exists an index 1 � i � T

suh that ma

i

= (qu

i

0

; �) where i

0

< i and � is a signi�ant parenthesis index, is at most 1=4.

Proof: We shall refer to a math as desribed in the lemma, as a suessful math. Sine as long

as a suessful math does not our, the two proesses P

pos

and P

neg

behave exatly the same,

it suÆes to prove the lemma for one of them. Let this proess be P

pos

.

We shall break the interation between A and P

pos

into phases. A phase ends whenever

the proess responds with a math between the newly queried position and a previously queried

position. We may assume, without loss of generality, that one the algorithm views a math between

positions 1 � j � n=2 and n=2 + 1 � k � n with parenthesis index � � n=16, then it does not

ask any additional queries in the intervals [j; n=2℄ and [n=2 + 1; k℄. Similarly, if the math has

parenthesis index � > n=4 � n=16, then the algorithm does not ask any additional queries in the

intervals [1; j℄ and [k; n℄.

Hene, as long as a suessful math does not our, at the end of eah phase we either have a

new math � � n=16 that is greater than any previous math �

0

� n=16, or we have a new math

� > n=4 � n=16 that is smaller than any previous math �

0

> n=4 � n=16. We next de�ne the

24

progress that a new query an make in terms of getting a new math that is loser to the signi�ant

range [n=16 + 1; n=4 � n=16℄.

De�nition 19 (Progress) Let h = (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) be a given history of

length T that does not ontain a math in the signi�ant range, and let �

0

(h) be the maximum over

all �

i

� n=16 suh that ma

i

= (qu

i

0

; �

i

) for some i

0

< i. If no suh math exists then �

0

(h) = 0.

Similarly, let �

0

0

(h) be the minimum over all �

i

> n=4 � n=16 suh that ma

i

= (qu

i

0

; �

i

), where if

no suh math exists then �

0

0

(h) = n=4 + 1. We say that a new query qu

T+1

makes progress x, for

some integer x, if:

1. ans

T+1

2 f(; [;); ℄g for some j � T (the new query is answered by a parenthesis).

2. ma

T+1

= (qu

j

; �

T+1

) for some 1 � j � T (the new query is mathed to a previously queried

position), where �

T+1

� �

0

(h) + x and �

T+1

� �

0

0

(h) � x.

π π

π’

π

+ x T+1

(()
j

0

0 0

]
quT+1

()])]]])

0

>=

k

0

([[(([
0 0j’ k’

Figure 5: An illustration for De�nition 19 and Claim 17.1. The new query, qu

T+1

is mathed to an opening

parenthesis on the left side of the string. Here j

0

, k

0

and �

0

, stand for j

0

(h), k

0

(h) and �

0

(h), respetively.

The following laim is entral to the proof of Lemma 17, and will be proved subsequently.

Claim 17.1 Let h = (qu

1

; ans

1

;ma

1

); : : : ; (qu

T

; ans

T

;ma

T

) be a query-answer history

h of length T < �n

1=11

= log n and let �

0

(h) and �

0

0

(h) be as in De�nition 19. Let

(j

0

(h); k

0

(h)) and (j

0

0

(h); k

0

0

(h)), where j

0

(h); j

0

0

(h) � n=2 and k

0

(h); k

0

0

(h) > n=2, be

the orresponding pairs of mathed queried positions having parenthesis index �

0

(h) and

�

0

0

(h), respetively. Suppose that �

0

(h) � n=(4 log n), and that �

0

(h) does not devi-

ate by more than

p

logn �minf(n=2� j

0

(h)); j

0

(h)g from (n=2 � j

0

(h))=2 and by more than

p

logn �minf(k

0

(h)� n=2); (n� k

0

(h))g from (k

0

(h) � n=2)=2. Suppose that an analogous bounds

hold for �

0

0

(h). Then for any possible new query qu

T+1

2 f1; : : : ; ng, the probability that the new

query makes progress at least n

10=11

, is at most n

�1=11

.

Completing the proof of Lemma 17. Reall that as stated in Claim 16, for every algorithm

A, the distribution on answers provided by P

pos

is idential to those obtained from querying a

string that is randomly generated aording to POS

n

. By Claim 15, the probability that a string

generated by POS

n

does not obey the inequalities in Claim 15 is at most 1=8. Hene, for any

length of interation, the probability that there exists a stage at whih either �

0

(h) or �

0

0

(h), as

determined in that stage for the urrent history h, deviate by more than the laim allows from

their expeted values, is at most 1=8. Conditioned on suh an event not ourring, we an apply

Claim 17.1 as long as �

0

(h) � n=(4 log n) and �

0

0

(h) � n=4�n=(4 log n). If the algorithm performs

at most �n

1=11

= log n queries, and in eah it in fat makes progress of at most n

10=11

, then �

0

(h)

and �

0

0

(h) will be as required by Claim 17.1 prior to eah query. Hene, by applying Claim 15 and

25

Claim 17.1, if the algorithm asks at most �n

1=11

= log n queries, then the probability that it obtains

a suessful math is at most

1=8 + (�n

1=11

= log n) � n

�1=11

< 1=8 + � < 1=4:

Lemma 17 follows.

It thus remains to prove Claim 17.1.

4.3.1 An Intuitive Disussion of the Validity of Claim 17.1

Assume �rst, without loss of generality, that the following onditions hold:

1. qu

T+1

> n=2, and in partiular, k

0

(h) + n

10=11

� qu

T+1

� k

0

0

(h) � n

10=11

(or else learly the

algorithm annot make suÆient progress).

2. qu

T+1

� k

0

(h) � k

0

0

(h)� qu

T+1

so that qu

T+1

is loser to k

0

(h) than to k

0

0

(h).

The probability that qu

T+1

makes progress of at least n

10=11

is the probability, onditioned on a

string s that is generated aording to POS

n

being ompatible with h, that for some query-position

qu

i

< j

0

(h), we have �

s

(qu

i

) = �

s

(qu

T+1

).

In order to bound this probability, suppose that we generate s by �rst randomly seleting the

set L of all n=4 parentheses positions on the left half of the string, in a manner onsistent with the

history h. Eah suh hoie of L determines the parentheses indies of all queries on the left half of

the string that were answered by parentheses. Denote the set of parentheses indies orresponding

to the query positions by �(L). Next we onsider the seletion of the parentheses positions on the

right half of the string, one again in a manner onsistent with the history h. In partiular, in order

to be onsistent, the number of parentheses positions seleted between k

0

(h) and k

0

0

(h) is exatly

n=4� (�

0

(h) + �

0

0

(h)).

Fixing L, onsider eah index � 2 �(L), where there are at most �n

1=11

= log n suh indies.

The probability that �

s

(qu

T+1

) = �, taken over the seletion of parentheses positions on the right

half of the string, is the probability that there are exatly ���

0

(h) parentheses between k

0

(h) and

qu

T+1

(inluding qu

T+1

), and exatly �

0

0

(h)� � parentheses between qu

T+1

and k

0

0

(h).

For the sake of this disussion, let us now make the following simplifying assumption by whih we

shall lose generality. Suppose that there is no query qu

i

, 1 � i � T suh that k

0

(h) < qu

i

< k

0

0

(h).

That is, qu

T+1

is the �rst query in this region. Consider in this ase the seletion of parentheses

positions on the right side of the string, and in partiular the seletion of n=4 � (�

0

(h) + �

0

0

(h))

positions between k

0

(h) and k

0

0

(h). Sine there is no onditioning on the way these parentheses

are allowed to be distributed (as there are no other queries in this region), it is not very hard

to verify that the probability that there are � � �

0

(h) parentheses between k

0

(h) and qu

T+1

and

�

0

0

(h)� � parentheses between qu

T+1

and k

0

0

(h) is relatively small. In partiular, it is of the order

of 1=

p

(qu

T+1

� k

0

(h)) � n

�5=11

.

In general there may be up to �n

1=11

= log n queried positions between k

0

(h) and k

0

0

(h) that in

partiular may ontain parentheses, and we must selet the string s onditioned on these positions

not mathing any queried position on the left hand side. Hene our argument is more ompliated.

4.3.2 Proof of Claim 17.1

We need to show that among all strings ompatible with the given query-answer history h, the

fration of strings in whih the new query qu

T+1

makes progress of at least n

10=11

is at most

26

n

�1=11

. Reall that we assume that the history h does not ontain any math in the signi�ant

region. We may assume without loss of generality that qu

T+1

> n=2 and that P

pos

deides that

this position should ontain a parenthesis (or else learly no progress is made). In order to simplify

our presentation, we also assume that �

0

0

(h) = n=4 + 1, that is, the history does not ontain any

math �

i

> n=4� n=16. It is not hard to verify that while this simpli�es the already umbersome

notation involved, removing the assumption does not hange the essene of the argument.

For a given history h and a new query qu

T+1

> n=2, onsider all the strings that are ompatible

with h and have a parenthesis in position qu

T+1

. That is, onsider the set S

par

(h; qu

T+1

) as de�ned

in De�nition 18. Then

Pr[qu

T+1

makes progress n

10=11

j h℄ �

P

���

0

(h)+n

10=11

P

1�i�T

jS

�;qu

i

(h; qu

T+1

)j

jS

par

(h; qu

T+1

)j

; (14)

where S

�;qu

i

(h; qu

T+1

) is also de�ned in De�nition 18. To this end it will be onvenient to use a

�ner partition of S

par

(h; qu

T+1

), sine it will be easier for us to relate the sizes of the subsets in

this partition. In partiular, the strings within eah subset have the following in ommon: The

subset L of n=4 parentheses positions in the left half of eah string is the same for all strings in the

subset. Furthermore, the substring s

j

0

(h);k

0

(h)

, where j

0

(h) and k

0

(h) are as de�ned in Claim 17.1,

is also the same for all strings in the subset. A formal de�nition follows.

De�nition 20 Let h, qu

T+1

, �

0

(h), j

0

(h), and k

0

(h) be as de�ned in Claim 17.1, and assume

that qu

T+1

> n=2 and �

0

0

(h) = n=4 + 1. Let w be a �xed substring of length k

0

(h) � j

0

(h) + 1,

and let L

0

� f1; : : : ; j

0

(h) � 1g, jL

0

j = n=4� �

0

(h) be a subset of parentheses positions. We de�ne

S

par

(h; qu

T+1

; w; L

0

) to be the subset of all strings in S

par

(h; qu

T+1

) suh that:

1. s

j

0

(h);k

0

(h)

= w;

2. For every j 2 L

0

, s

j

is a parenthesis, and for every j 2 f1; : : : ; j

0

(h) � 1g n L

0

, the symbol s

j

is an `a'.

Note that there may exist L

0

and w for whih S

par

(h; qu

T+1

; w; L

0

) is empty.

]) ?])]
0

0π

()
j0 k quT+1

∗ ∗ (∗ . . . ∗ [∗ ∗ (∗ ∗

{ w

Figure 6: An illustration for De�nition 20. The asterisks on the left half of the string represent the seleted

positions in L

0

, that inlude in partiular all queried positions that were answered by parentheses. The

question mark on the right represents the position of the new query, qu

T+1

. Here j

0

, k

0

and �

0

, stand for

j

0

(h), k

0

(h) and �

0

(h), respetively.

Observe that for a �xed w and L

0

and for every qu

i

� n=2, suh that ans

i

is a parenthesis, �

s

(qu

i

) =

�

s

0

(qu

i

) for every s; s

0

2 S

par

(h; qu

T+1

; w; L

0

). This is learly true for every j

0

(h) � qu

i

� n=2,

sine s

j

0

(h);n=2

is ompletely determined. As for qu

i

< j

0

(h), the parenthesis index of qu

i

is simply

�

0

(h) + jfj 2 L

0

; j � qu

i

gj. In the next de�nition we onsider subsets of S

par

(h; qu

T+1

; w; L

0

) in

whih for all strings s in the subset, �

s

(qu

T+1

) = �

s

(qu

i

) for some qu

i

< j

0

(h) (as determined by

L

0

and �

0

).

27

De�nition 21 Let h, qu

T+1

, �

0

(h), j

0

(h), and k

0

(h) be as de�ned in Claim 17.1, and assume that

qu

T+1

> n=2 and �

0

0

(h) = n=4 + 1. Let w and L

0

be as in De�nition 20. We denote by �(L

0

)

the set of parentheses indies of query-positions qu

i

< j

0

(h) that is indued by L

0

(and �

0

(h)).

For eah � 2 �(L

0

), let S

�

(h; qu

T+1

; w; L

0

) � S

par

(h; qu

T+1

; w; L

0

) be the subset of strings in

S

par

(h; qu

T+1

; w; L

0

) suh that position qu

T+1

has parenthesis index �.

Note that by de�nition of �(L

0

), eah � 2 �(L

0

) orresponds to a unique query position qu

i

< j

0

(h).

Reall that S

�;qu

i

(h; qu

T+1

) denotes the set of all strings ompatible with h in whih qu

T+1

is

mathed with qu

i

and both are assigned parenthesis index �. Hene, for eah � 2 �(L

0

) there

exists a unique qu

i

suh that S

�

(h; qu

T+1

; w; L

0

) � S

�;qu

i

(h; qu

T+1

).

Claim 17.2 For every h, qu

T+1

, w, and L

0

as in De�nition 20, and for every � 2 �(L

0

),

� � �

0

(h) + n

10=11

,

jS

�

(h; qu

T+1

; w; L

0

)j

jS

par

(h; qu

T+1

; w; L

0

)j

<

1

�

� n

�2=11

:

Before proving Claim 17.2, we apply it to obtain Claim 17.1. By de�nition, S

par

(h; qu

T+1

) =

S

L

0

;w

S

par

(h; qu

T+1

; w; L

0

). The subset of strings in S

par

(h; qu

T+1

) in whih qu

T+1

makes progress

n

10=11

, is the union over � � �

0

(h) + n

10=11

and over all qu

i

< T of the sets S

�;qu

i

(h; qu

T+1

). This

in turn (by our observation following De�nition 21), is equivalent to the union over all w, L

0

and

� 2 �(L

0

) suh that � � �

0

(h)+n

10=11

, of the sets S

�

(h; qu

T+1

; w; L

0

). Sine these sets are disjoint

and sine j�(L

0

)j < �n

1=11

= log n, using Equation (14) we get:

Pr[qu

T+1

makes progress n

10=11

j h℄

�

P

L

0

;w

P

�2�(L

0

); ���

0

(h)+n

10=11

�

�

S

�

(h; qu

T+1

; w; L

0

)

�

�

P

L

0

;w

�

�

S

par

(h; qu

T+1

; w; L

0

)

�

�

� max

L

0

;w

P

�2�(L

0

); ���

0

(h)+n

10=11

�

�

S

�

(h; qu

T+1

; w; L

0

)

�

�

�

�

S

par

(h; qu

T+1

; w; L

0

)

�

�

� j�(L

0

)j �

1

�

� n

�2=11

< n

�1=11

: (15)

Claim 17.1 thus follows from Claim 17.2.

4.3.3 Proof of Claim 17.2

Sine h, qu

T+1

, w and L

0

are �xed, we remove them from our notation. Namely we let �

0

= �

0

(h),

j

0

= j

0

(h), k

0

= k

0

(h), � = �(L

0

), S = S

par

(h; qu

T+1

; w; L

0

), and S

�

= S

�

(h; qu

T+1

; w; L

0

). Sine

the laim should hold for every � 2 �, � � �

0

(h) + n

10=11

, let us �x suh a �. Reall that we have

assumed without loss of generality that qu

T+1

> n=2.

We start with a desription of the underlying idea of the proof. One basi approah to proving

that S

�

is relatively small with respet to S, is to de�ne a one-to-many mapping from strings in

S

�

to relatively large subsets of strings in S. The mapping should be suh that di�erent strings in

S

�

are mapped to di�erent disjoint subsets of S. Our argument will be in similar vein: Instead of

mapping strings to subsets of strings, we do the following. We �rst partition S into disjoint subsets,

suh that eah subset U in the partition is either ontained in S

�

or is ontained in S n S

�

. We

then map eah subset U � S

�

in this partition to a relatively large olletion of disjoint subsets

fU

i

g of S. We shall show that:

28

1. For every suh subset U � S

�

and for all but a small fration of the U

i

's in the orresponding

olletion fU

i

g, the size of eah U

i

is of the same order as the size of U .

2. There exists a family U of subsets U � S

�

in the partition, suh that

(a) For every two subsets U;U

0

2 U , the respetive olletions fU

i

g and fU

0

i

g are disjoint

(that is, for every i; j, U

i

\ U

0

j

= ;).

(b)

�

�

S

U2U

U

�

�

is relatively large ompared to all of S

�

.

More details follow.

De�ning the Partition of S. Let k

1

< : : : < k

r

be all positions of queries in h inluding qu

T+1

that are greater than k

0

and were answered by parentheses, where qu

T+1

= k

t

for some 1 � t � r.

We assume without loss of generality that k

t

� k

0

� n� k

t

(the ase in whih k

t

is loser to n than

to k

0

is symmetri). Reall that k

0

is the queried position on the right half of the string having

the largest mathed parenthesis index where the mathed position is j

0

� n=2. Hene, with the

possible exeption of k

t

, no k

i

> k

0

is mathed to any queried position qu

`

� n=2. Sine � is the

set of all parentheses indies of queried positions qu

`

< j

0

that is indued by L

0

, we have that for

every string s 2 S, for every k

i

6= k

t

and for every � 2 �, �

s

(k

i

) 6= �.

We partition S into disjoint subsets aording to the number of parentheses between every two

positions k

i�1

and k

i

. For i = 1; : : : ; r + 1, let b

i

= k

i

� k

i�1

� 1 be the number of positions

stritly between k

i�1

and k

i

, and let q

i

be the number of queries between k

i

and k

i�1

. That

is, q

i

= jfqu

j

: k

i�1

< qu

j

< k

i

gj. Sine the k

i

's were de�ned to be the query positions that

were answered by parentheses, all the query positions stritly between k

i�1

and k

i

were neessarily

answered by an `a'.

Given the above notations b

i

and q

i

, for every string s 2 S and for every 1 � i � r + 1, the

number of parentheses between positions k

i�1

and k

i

ranges between 0 and b

i

� q

i

. Reall that

eah suh string ontains a total of n=4 parentheses among positions n=2 + 1; : : : ; n, where there

are �

0

parentheses among positions 1; : : : ; k

0

, and r parentheses in positions k

1

; : : : ; k

r

. Hene

the total number of parentheses between the k

i

's is n=4 � r � �

0

. We shall partition the strings

in S aording to the number of parentheses they have between every onseutive k

i�1

and k

i

.

Spei�ally, onsider any sequene D = d

1

; : : : ; d

r+1

that satis�es the following onstraints:

C1. For every 1 � i � r + 1, we have 0 � d

i

� b

i

� q

i

;

C2.

P

r+1

i=1

d

i

= n=4� r � �

0

.

Let S(D) denote the subset of strings in S suh that for every 1 � i � r + 1, there are exatly d

i

parentheses in positions k

i�1

< k < k

i

.

Note that given �

0

, the sequene D determines the parenthesis index of every k

i

, and in par-

tiular of k

t

. Spei�ally, the parenthesis index of k

j

in every string in S(D) is �

0

+

P

i�j

(d

i

+ 1).

The reason we add 1 to eah d

i

, i � j, is that we need to aount for the parentheses in the queried

positions k

1

; : : : ; k

j

, where d

i

is the number of parentheses stritly between these positions. Thus,

if D determines that the parenthesis index of some k

j

6= k

t

is in �, then S(D) is empty, sine

there is no string ompatible with h suh that the number of parentheses between the k

i

's is as D

designates. Otherwise, S(D) is non-empty, sine all other ompatibility requirements are obeyed.

In this ase either S(D) � S

�

if �

0

+

P

1�i�T

(d

i

+ 1) = �, or S(D) � S n S

�

.

If S(D) is non-empty, then the number of strings in S(D) depends on: (1) The number of ways

to selet d

i

positions for parentheses among the b

i

� q

i

available positions between k

i�1

and k

i

for

29

every 1 � i � r + 1, (2) The number of ways to set the types of the parentheses in the seleted

positions (that do not orrespond to previous queries) on both sides of the string.

Spei�ally, for any �xed sequene D = d

1

; : : : ; d

r+1

that satis�es onditions C1 and C2, the

total number of ways to selet d

i

positions for parentheses between k

i�1

and k

i

, for every 1 � i �

r + 1, is simply

Q

r+1

i=1

�

b

i

�q

i

d

i

�

. Reall that the set of positions L

0

of all parentheses positions to the

left of j

0

is already �xed for all strings in S, and that assuming S(D) is non-empty, the parenthesis

position of eah k

i

, i 6= t di�ers from the parenthesis position of eah of the j�j positions qu

i

< j

0

that were answered by a parenthesis. Therefore, the number of ways to set the types of parentheses

in the seleted positions to the left of j

0

and to the right of k

0

(inluding k

t

) is either 2

n=4�(�

0

+j�j+r)

or 2

n=4�(�

0

+j�j+r�1)

. The �rst value orresponds to the ase in whih the parenthesis index of k

t

is

not in � (and so the type of parenthesis in position k

t

is not determined), and the seond value to

the ase in whih the parenthesis index of k

t

belongs to �. Given the above disussion,

r+1

Y

i=1

�

b

i

� q

i

d

i

�

!

� 2

(n=4��

0

)�(j�j+r)

� jS(D)j �

r+1

Y

i=1

�

b

i

� q

i

d

i

�

!

� 2

(n=4��

0

)�(j�j+r�1)

(16)

De�ning the One-to-Many Mapping from eah S(D) � S

�

to subsets in S. Consider any

�xed sequene D = d

1

; : : : ; d

r+1

that satis�es onditions C1 and C2 and suh that S(D) is non-

empty and S(D) � S

�

. Let m = n

4=11

, and suppose that there exist two indies, 1 � u � t and

t+ 1 � v � r+ 1 suh that d

u

� b

u

� q

u

�m and d

v

� m. Then, for every 1 � g � m, we onsider

the subset of all strings that result from taking a string in S(D) and \moving" g parentheses from

the interval between k

v�1

and k

v

to the interval between k

u�1

and k

u

. More preisely, for eah

suh g we de�ne the subset S(D

g

) of strings that orrespond to the sequene

D

g

= d

1

; : : : ; d

u�1

; d

u

+ g; d

u+1

; : : : ; d

v�1

; d

v

� g; d

v+1

; : : : ; d

r+1

; (17)

where the d

i

's on whih D and D

g

di�er are underlined. As we shall show momentarily, all but a

relatively small number of these m = n

4=11

subsets are non-empty. Furthermore, under somewhat

stronger onditions on d

u

and d

v

, eah of these subsets is not muh smaller than S(D). Finally we

show that for every D

0

6= D suh that S(D

0

) � S

�

, the subsets D

0

g

that are de�ned analogously to

the D

g

's in Equation (17) are all disjoint from the D

g

's. More details are next provided. Reall

that D is �xed, and so the following holds for every D suh that S(D) � S

�

.

Properties of the Mapping from D to the D

g

's.

P1. For all but at most (r � 1) � j�j < �

2

n

2=9

= log

2

n of the D

g

's, S(D

g

) 6= ;.

This is true sine for every k

i

6= k

t

, the number of indies g suh that �

s

(k

i

) 2 � for some string

s 2 S(D

g

), is at most j�j < �n

1=11

= log n, and the number of k

i

's is r � 1 < �n

1=11

= log n.

P2. For every D

0

6= D suh that S(D

0

) is not empty and S(D

0

) � S

�

, the sequenes D

0

1

; : : : ;D

0

m

all di�er from D

1

; : : : ;D

m

.

To verify this, assume in ontradition that for D

0

6= D, D

0

= d

0

1

; : : : ; d

0

r

, we have D

g

= D

0

g

0

.

That is, d

i

= d

0

i

for every i 6= u; v; d

u

+ g = d

0

u

+ g

0

; and d

v

� g = d

0

v

� g

0

. But, sine

P

t

i=1

d

i

=

P

t

i=1

d

0

i

= � � �

0

� t, we have g = g

0

, and so D = D

0

.

30

P3. For every D

g

suh that S(D

g

) is non-empty, if

d

u

+m �

b

u

� q

u

2

+

p

3(b

u

� q

u

) and d

v

�m �

b

v

� q

v

2

�

p

3(b

v

� b

v

) (18)

then jS(D

g

)j � e

�18

jS(D)j.

To verify this, onsider the ratio jS(D

g

)j=jS(D)j. By Equation (16) this ratio equals at least

�

b

u

�q

u

d

u

+g

�

�

�

b

v

�q

v

d

v

�g

�

�

b

u

�q

u

d

u

�

�

�

b

v

�q

v

d

v

�

Let us lower bound

�

b

u

�q

u

d

u

+g

�

=

�

b

u

�q

u

d

u

�

. A lower bound on

�

b

v

�q

v

d

v

�g

�

=

�

b

v

�q

v

d

v

�

is obtained similarly. If

d

u

+g � (b

u

�q

u

)=2 then

�

b

u

�q

u

d

u

+g

�

>

�

b

u

�q

u

d

u

�

and we are done. Otherwise, d

u

+g > (b

u

�q

u

)=2,

but by our assumption on d

u

in Equation (18), we also know that d

u

+ g � (b

u

� q

u

)=2 +

p

3(b

u

� q

u

). On the other hand,

�

b

u

�q

u

d

u

�

�

�

b

u

�q

u

(b

u

�q

u

)=2

�

, and so

�

b

u

�q

u

d

u

+g

�

�

b

u

�q

u

d

u

�

�

�

b

u

�q

u

(b

u

�q

u

)=2+

p

3(b

u

�q

u

)

�

�

b

u

�q

u

(b

u

�q

u

)=2

�

Let us denote b

u

� q

u

by b. Then the expression we have is:

�

b

b=2+

p

3b

�

�

b

b=2

�

=

Q

p

3b�1

i=0

(b=2� i)

Q

p

3b

i=1

(b=2 + i)

=

Q

p

3b�1

i=0

(1� i � (2=b))

Q

p

3b

i=1

(1 + i � (2=b))

>

Q

p

3b�1

i=0

exp(�3i=b))

Q

p

3b

i=1

exp(3i=b)

= exp

0

�

�(6=b)

p

3b

X

i=1

i

1

A

> e

�9

(19)

Clearly the above an be extended to the ase in whih the roles of u � t and v > t are reversed:

that is, D is suh that

d

u

�m �

b

u

� q

u

2

�

p

3(b

u

� q

u

) and d

v

+m �

b

v

� q

v

2

+

p

3(b

v

� b

v

): (20)

In this ase the D

g

's are de�ned the same as in Equation (17) exept that d

u

is dereased by g and

d

v

is inreased by g.

De�ning Families of Subsequenes D. If there existed one �xed hoie of u and v for whih

the onstraints on d

u

and d

v

desribed in Equation (18) or in Equation (20) were valid for every

D suh that S(D) � S

�

, then we would be essentially done with our proof. While this is not the

ase, we shall show that there exists a hoie of u; v for whih the sum of the sizes of the sets S(D),

suh that D obeys the onstraints in one of the two equations, is relatively large. This will suÆe

for our purposes. (Note that if we allow di�erent hoies of pairs (u; v) then the disjointness laim

in Property P2 does not neessarily hold.)

Let

D

u;v

def

= fD : Equation (18) holds for d

u

and d

v

g (21)

and

D

!

u;v

def

= fD : Equation (20) holds for d

u

and d

v

g: (22)

31

Let

D

u;v

def

= D

u;v

[D

!

u;v

and

~

D

u;v

def

= fD

g

: D 2 D

u;v

g:

Then by Properties P1{P3,

�

�

�

�

�

�

[

D

g

2

~

D

u;v

S(D

g

)

�

�

�

�

�

�

=

X

D

g

2

~

D

u;v

jS(D

g

)j =

X

D

g

2

~

D

u;v

: S(D

g

)6=;

jS(D

g

)j

�

X

D2D

u;v

(m� �

2

n

2=9

= log

2

n) � e

�18

� jS(D)j

� e

�19

� n

4=11

�

X

D2D

u;v

jS(D)j: (23)

Every D Belongs to at Least one Family D

u;v

. We next show that for every D suh that

S(D) � S

�

, there exist u � t and v > t suh that D 2 D

u;v

. Let us �x D. By our assumption on

the query-answer history (i.e., the deviation of �

0

from its expeted value),

�

�

�

�

�

0

�

k

0

� n=2

2

�

�

�

�

<

p

log n �minf(k

0

� n=2); (n � k

0

)g =

p

log n(k

0

� n=2) (24)

where in the equality we have used the assumption that k

0

is loser to n=2 than to n. Let

x =

1

2

r+1

X

i=1

b

i

� (n=4� r � �

0

):

What does x measure? Reall that

P

r+1

i=1

b

i

is the number of positions between k

0

+ 1 and n that

have not been queried, and amongst whih it remains to selet

P

r+1

i=1

d

i

= (n=4� r� �

0

) positions

for parentheses. Let us refer to these positions as undetermined . Sine the overall number of

parentheses in the right half of the string is exatly half the total number of positions in that

half, x measures the deviation from the expeted value amongst the undetermined positions. By

de�nition,

P

r+1

i=1

b

i

= n� r � k

0

. Therefore, x = n=2� r=2� k

0

=2� n=4 + r + �

0

. Combining this

equality with Equation (24) we get

�

p

logn(k

0

� n=2) + r=2 < x <

p

logn(k

0

� n=2) + r=2:

Let

x

1

=

1

2

t

X

i=1

b

i

� (� � t� �

0

) and x

2

=

1

2

r+1

X

i=t+1

b

i

� (n=4� (r � t)� �):

Reall that we are onsidering a setting D suh that S(D) � S

�

. That is, for every s 2 S(D)

we have �

s

(k

t

) = �. In other words, there are � � �

0

� t parentheses amongst the undetermined

positions between k

0

+ 1 and k

t

� 1. Thus x

1

measures the deviation from the expetation of the

number of parentheses amongst the undetermined positions between k

0

+ 1 and k

t

� 1. Similarly,

x

2

measures the deviation from the expetation of the number of parentheses amongst the unde-

termined positions between k

t

+ 1 and n. By de�nition, x

1

+ x

2

= x. We onsider the following

ases:

32

1. x

1

and x

2

have an opposite sign (or at least one of them is 0). That is, there is an \extra

number" of parentheses between k

0

+ 1 and k

t

� 1 and a \missing number" of parentheses

between k

t

+1 and n (amongst the undetermined positions and with respet to the expeted

numbers). Consider �rst the ase that x

1

� 0 and x

2

� 0. Reall that m = n

4=11

and that

t � r � �n

1=11

= log n. Also note that by de�nition of x we have � � t� �

0

=

1

2

P

t

i=1

b

i

� x

1

.

Therefore,

t

X

i=1

(d

i

+m) =

t

X

i=1

d

i

!

+ t �m

� (� � t� �

0

) + (�n

1=11

= log n) � n

4=11

=

1

2

t

X

i=1

b

i

� x

1

+ �n

5=11

= log n

�

1

2

t

X

i=1

b

i

+ �n

5=11

= log n (25)

=

1

2

t

X

i=1

(b

i

� q

i

)

!

+

1

2

t

X

i=1

q

i

+ �n

5=11

= log n

�

1

2

t

X

i=1

(b

i

� q

i

)

!

+

v

u

u

t

t

X

i=1

(b

i

� q

i

) (26)

where Equation (25) follows from our assumption that x

1

� 0, and the last inequality is due

to the fat that

P

t

i=1

b

i

� � � �

0

� t (or else there annot be � parentheses up till position

k

t

), and so

t

X

i=1

(b

i

� q

i

) � � � �

0

� �n

1=11

= log n � n

10=11

� �n

1=11

= log n:

Similarly, using our assumption that x

2

� 0 we an obtain

r+1

X

i=t+1

(d

i

�m) �

1

2

t

X

i=1

(b

i

� q

i

)

!

�

v

u

u

t

t

X

i=1

(b

i

� q

i

): (27)

For 1 � i � t, let y

i

= (d

i

+ m) �

1

2

(b

i

� q

i

). Then Equation (26) states that

P

t

i=1

y

i

�

q

P

t

i=1

(b

i

� q

i

). Sine

P

t

i=1

y

2

i

� (

P

t

i=1

y

i

)

2

, it follows that there must exist u � t suh

that y

u

�

p

b

u

� q

u

, or else

P

t

i=1

y

2

i

>

P

t

i=1

(b

i

� q

i

) � (

P

t

i=1

y

i

)

2

. That is, d

u

+ m �

1

2

(d

u

� q

u

) +

p

b

u

� q

u

. Similarly, it follows from Equation (26) that there exists v > t suh

that d

v

�m �

1

2

(b

v

� q

v

)�

p

b

v

� q

v

. Therefore, D 2 D

u;v

.

If x

1

� 0 and x

2

� 0, then we an similarly show that D 2 D

!

u;v

for some u � t and v > t.

2. x

1

and x

2

have the same sign. Consider the ase that this sign is negative (the positive ase

is dealt with analogously). By de�nition of x and using Equation (24),

x � �

p

log n � (k

0

� n=2) � �

q

log n � 2(�

0

+

p

log n � (n� k

0

)):

Reall that by one of the premises of Claim 17.2, �

0

< n=(4= log n), and so for a suÆiently

large n we have that x � �

p

(n� k

0

). Sine x

1

+x

2

= x, neessarily, either x

1

� �

p

(k

t

� k

0

)

33

or x

2

� �

p

(n� k

t

) (or both). If x

1

� �

p

(k

t

� k

0

) = �

q

t+

P

t

i=1

b

i

, then by modifying

Equation (26) so as to take into aount this bound on x

1

, we an obtain that

t

X

i=1

(d

i

+m) �

1

2

t

X

i=1

(b

i

� q

i

)

!

+

v

u

u

t

t

X

i=1

(b

i

� q

i

) +

v

u

u

t

t+

t

X

i=1

q

i

+

t

X

i=1

(b

i

� q

i

)

�

1

2

t

X

i=1

(b

i

� q

i

)

!

+

v

u

u

t

3

t

X

i=1

(b

i

� q

i

)

and so there exists u � t suh that d

u

+m �

1

2

(b

u

� q

u

) +

p

3(b

u

� q

u

). On the other hand,

using x

2

< 0 we an apply the same argument as in the previous item to get that there exists

v > t suh that d

v

�m �

1

2

(b

v

� q

v

)�

p

b

v

� q

v

, and hene D 2 D

u;v

.

Finishing the Proof of Claim 17.2. Finally, let u

0

� t and v

0

> t be suh that

P

D2D

u;v

jS(D)j

is maximized. The number of pairs u � t and v > t is bounded by �

2

n

2=11

, and every D suh that

S(D) � S

�

belongs to some D

u;v

. Thus by applying Equation (23), we get

jS

�

j

jSj

�

�

2

n

2=11

�

P

D2D

u

0

;v

0

jS(D)j

P

D

g

2

~

D

u

0

;v

0

jS(D

g

)j

� �

2

n

2=11

� exp(19) � n

�4=11

�

1

�

� n

�2=11

where the last inequality is by de�nition of � = e

�7

. We have ompleted proving Claim 17.2 (and

hene Claim 17.1 and Lemma 17).

4.4 Wrapping Up the Proof of Theorem 2.

Reall that the statistial di�erene between two distributions D

1

and D

2

over a �nite domain U is

de�ned as the maximum over all subsets U

0

� U , of the di�erene between the probability weight

of U

0

aording to D

1

and the probability weight of U

0

aording to D

2

. As an immediate orollary

of Lemma 17 we thus get:

Corollary 18 For any algorithm A that asks at most �n

1=11

= log n queries for � � e

�7

, onsider

the distributions on query-answer sequenes when it interats with P

pos

and P

neg

respetively.

Then the statistial di�erene between the two distributions is at most 1=4.

Assume ontrary to Theorem 2 that there exists a testing algorithm A that asks less than

�n

1=11

= log n queries and aepts with probability at least 2=3 every string in PAR

2

, and rejets

with probability at least 2=3 every string that is 2

�6

-far from PAR

2

.

Let D

A

pos

and D

A

neg

denote the distributions on query-answer sequenes when algorithm A

interats with P

pos

and P

neg

respetively. By Claim 16, the distribution D

A

pos

is equivalent to

the distribution on query-answer sequenes resulting from the exeution of A on a string generated

aording to POS

n

(where every suh string belongs to PAR

2

). By our assumption on A, we thus

have

Pr

�

A(D

A

pos

) = aept

�

� 2=3: (28)

Sine an analogous statement holds for D

A

neg

, then by applying Lemma 14 we obtain

Pr

�

A(D

A

neg

) = aept

�

< 1 � 1=3 + exp(�
(n)) � 1: (29)

34

But by Corollary 18, if A asks q < �n

1=11

= log n queries, then the statistial di�erenes between

the two distributions is at most 1=4. This implies that

jPr[A(D

A

pos

) = aept ℄� Pr[A(D

A

neg

) = aept ℄ � 1=4

But this stands in ontradition to Equations (28) and (29).

4.5 Adapting the Lower-Bound Argument to D

2

Given the distributionsPOS

n=2

andNEG

n=2

, we de�ne distributionsPOS

0

n

andNEG

0

n

over strings

in �

2

, where now there are two types of parentheses and no additional symbols. For every string s

of length n=2 generated by POS

n=2

(similarly, NEG

n=2

), onsider the string s

0

where eah `a' in s is

replaed by a mathing opening and losing parenthesis in s

0

, and eah parenthesis in s is replaed by

two parentheses of the same type in s

0

. The resulting string s

0

is generated by POS

0

n

(respetively,

NEG

0

n

) with the same probability that s is generated by POS

n=2

(respetively, NEG

n=2

). Then it

is not hard to verify that using these two distributions we an obtain the following theorem.

Theorem 3 Any algorithm for testing D

2

with distane parameter � � 2

�6

and suess probability

of at least 2=3, requires
(n

1=11

= log n) queries.

5 Testing uu

r

vv

r

in

~

O(

p

n=�) time

Let L

rev

= fuu

r

vv

r

: u; v 2 �

�

g, where � is any �xed alphabet and u

r

denotes the string u in

reverse order. In this setion, we show that the following algorithm tests whether w = w

0

� � �w

n�1

2

�

n

belongs to L

rev

or is �-far from any word in the language. The query omplexity and running

time of the algorithm are

~

O(

p

n=�). Reall that Alon et. al. [AKNS00℄ have shown a lower bound

of
(

p

n) for a onstant �, on the query omplexity of testing algorithms for this lass.

Algorithm 2 Test for L

rev

1. Let I = f0; : : : ;

p

n� 1g and J = f0;

p

n; 2

p

n; : : : ; n�

p

ng.

2. Pik m =

1

1

�

log n indies p

1

; : : : ; p

m

independently and uniformly from f0; : : : ; n� 1g.

3. For eah index i 2 I, let the bakward pattern of i be the vetor x =

w

(i�p

1

) mod n

; : : : ; w

(i�p

m

) mod n

. For eah index j 2 J , let the forward pattern of j be the

vetor y = w

(j+p

1

) mod n

; : : : ; w

(j+p

m

) mod n

.

4. Output aept if there exists a pair i 2 I and j 2 J (where not both are 0) suh that the

bakward pattern of i and the forward pattern of j are the same. Otherwise output rejet.

In order to implement the last step we simply onstrut a trie that ontains both the bakward

patterns of the indies i 2 I and the forward patterns of the indies j 2 J . That is, we onstrut a

tree whose edges are labeled by alphabet symbols in �. Eah leaf of the tree is assoiated with two

subsets: the subset of indies in I whose bakward pattern orresponds to the path from the root

of the tree to the leaf, and the subset of indies in J whose forward pattern orresponds to this

path. If for some leaf both subsets are non-empty, then the algorithm aepts. Hene the above

algorithm runs in time (jIj+ jJ j) �m = O((

p

n log n)=�).

Theorem 4 The above algorithm is a property tester for L

rev

. Furthermore, the algorithm has a

one-sided error.

35

Proof: We �rst show that if w 2 L

rev

then the test always aepts. Let w = uu

r

vv

r

. We say that

i; j 2 [n℄ are paired with respet to w if i+j = (2juj�1) mod n. In other words, i and j are either in

symmetri positions with respet to uu

r

, or with respet to vv

r

. By de�nition, if i and j are paired

with respet to w, then w

i

= w

j

. Furthermore, for every o�set p, (w

i

� p) mod n = (w

j

+ p) mod n

(and vie versa). In partiular, for any seletion of p

1

; : : : ; p

m

, the forward pattern of j and the

bakward pattern of i are idential. But by our seletion of I and J , there must exist i 2 I and

j 2 J that are paired with respet to w. To see why this is true, observe that (2juj�1) mod n, whih

ranges between 1 and n� 1, an be written as (a

1

�

p

n+ a

0

) mod n, for some 0 � a

1

; a

0

�

p

n� 1.

Hene, a

0

2 I and a

1

�

p

n 2 J , and the test neessarily aepts w.

Next we show that if w is �-far from L

rev

, then the test rejets it with probability of at least

2=3. We say that i; j 2 f0; : : : ; n � 1g are a ompatible pair with respet to w if (j � i) mod n is

odd, and if w

(i�`) mod n

= w

(j+`) mod n

for at least a 1� � fration of the indies ` 2 [n℄. We laim

that if there exists a ompatible pair i; j with respet to w, then w is �-lose to L

rev

. To see this,

assume that i < j, and let u = w

0

; : : : ; w

b

j+i

2

�1

and v = w

j+i+1

; : : : ; w

b

n+j+i�1

2

. It is not hard to

verify that w is �-lose to uu

r

vv

r

.

Thus, if w is �-far from L

rev

, then there is no ompatible pair with respet to w. It follows

that for every �xed pair i 2 I and j 2 J (that are neessarily not ompatible), the probability that

the bakward pattern of i is idential to the forward pattern of j is at most (1� �)

(

1

log n)=�

< n

�

1

.

Applying the union bound, and using the fat that the total number of pairs onsidered by the

algorithm is n, if

1

> 2 then the probability that the test aepts w is smaller than 1=3, as required.

Referenes

[AKNS00℄ N. Alon, M. Krivelevih, I. Newman, and M Szegedy. Regular languages are testable

with a onstant number of queries. SIAM Journal on Computing, pages 1842{1862,

2000.

[BR02℄ M. Bender and D. Ron. Testing properties of direted graphs: Ayliity and onne-

tivity. Random Strutures and Algorithms, pages 184{205, 2002.

[GGR98℄ O. Goldreih, S. Goldwasser, and D. Ron. Property testing and its onnetion to learning

and approximation. JACM, 45(4):653{750, 1998.

[GR02℄ O. Goldreih and D. Ron. Property testing in bounded degree graphs. Algorithmia,

pages 302{343, 2002.

[Har78℄ M. Harrison. Introdution to formal language theory. Addison-Wesley, 1978.

[KMP77℄ D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern mathing in strings. SIAM

Journal on Computing, 6(2):323{350, 1977.

[Koz97℄ D. Kozen. Automata and Computability. Springer Verlag, 1997.

[New00℄ I. Newman. Testing of funtions that have small width branhing programs. In Proeed-

ings of the Forty-First Annual Symposium on Foundations of Computer Siene, pages

251{258, 2000.

[PR02℄ M. Parnas and D. Ron. Testing the diameter of graphs. Random Strutures and Algo-

rithms, 20(2):165{183, 2002.

36

[Ron01℄ D. Ron. Property testing. In Handbook of Randomized Computing, Volume II, pages

597{649, 2001.

[RS96℄ R. Rubinfeld and M. Sudan. Robust haraterization of polynomials with appliations

to program testing. SIAM Journal on Computing, 25(2):252{271, 1996.

[Sh63℄ N. Chomsky M. P. Shotzenberger. The algebrai theory of ontext-free languages. In

Computer Programming and Formal Languages, P. Bra�ort and D. Hirshberg, Eds,

North Holland, pages 118{161, 1963.

[Yao77℄ A.C. Yao. Probabilisti omputation, towards a uni�ed measure of omplexity. In

Proeedings of the Eighteenth Annual Symposium on Foundations of Computer Siene,

pages 222{227, 1977.

37

