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Abstract

We introduce the model of batch checking, which allows one to
check the result of a program on many inputs at once. We show
that one can batch check programs for linear functions with very little
overhead in the running time.

1 Introduction

In order to have faith that a program being used is giving the correct answers,
a general theory of checking programs was introduced by Blum in [1] [3] [5].
This approach is concerned with the task of checking that a program gives
the correct answer on a particular given input. In Blum’s model, a very
important idea is to allow the checker to call the program on other inputs
while checking it on a given input (as long as the program is not assumed to
be correct on the other inputs either). The checker may then output “PASS”
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if it thinks that the program is correct on the given input, or “FAIL” if it
thinks that it has found a bug in the program - i.e. the program is wrong on
some input, though not necessarily the given input. The checker may output
either “PASS” or “FAIL” if the program is correct on the given input, but is
incorrect on other inputs. This additional leniency has been used to construct
very simple checkers for a surprising number of problems. However, since the
program is being called on other inputs, there is often some overhead in the
running time when using a checker.

Though many programmers are willing to spend some time overhead in
order to verify that their programs give correct answers, for some applica-
tions, where efficiency is crucial, even a constant multiplicative time over-
head makes checking undesirable. In this paper, we define a variant model
of checking, called batch checking: Often greater efficiency can be achieved
if the user does not need to know immediately whether the program gives
the correct result. In this case, the checker can wait until the program has
been called on several inputs and check that the program is correct on all of
the inputs at once. Batch checking can allow greater efficiency, and we give
examples of functions, such as the class of linear functions, for which batch
checking allows one to reduce the overhead of the checking process to the
point where it is arbitrarily small.

2 The Batch Checking Model

A program checker as defined by Blum [1] [3] [5] is a checker that checks
whether a program is correct on a particular input. A batch checker is a
checker that checks whether the program is correct on several inputs at once,
and outputs “FAIL” if the program is incorrect on any of the inputs:

DEFINITION 2.1 (probabilistic batch program checker) A probabilistic batch
program checker for f is a probabilistic oracle program Ry which is used
to verify, for any program P that supposedly evaluates f, that P outputs the
correct answer on several given inputs in the following sense. On given inputs
x1,..., T, and confidence parameter (3, R? has the following properties:

1. If 3i such that P(x;) # f(z;) then Rf outputs “FAIL” (with probability
>1-5)



2. If P is a correct program for every input then R}D outputs “PASS” (with
probability > 1 — 3).

The probabilities are with respect to the coin tosses of Ry. Ry is only allowed
to access P as a black-box oracle. The batch checker should be simpler or at
least different than any program for the function f. See [1][3] for a discussion
of how to enforce this in a quantifiable way.

Often a batch checker can be made more efficient than calling the checker
for each of the inputs separately. For example, a self-testing/correcting pair
[4] can be used to construct a checker: use the self-tester (a program which
verifies that a program for f is correctly computing f on most of the inputs)
to test the program. If the program fails the test, output “FAIL” and halt,
and if the program passes, use the self-corrector (a program which uses a
program that correctly computes f on most inputs in order to correctly
compute f on all inputs) to compute the correct result for the input being
checked with high confidence, and compare the “correct” result to the output
of the program on that input. Suppose the self-tester requires total time 7T,
and the self-corrector requires total time S, then the incremental time is
T + S. To check m inputs, rather than running the checker m times, for a
total running time of m(T + S), the tester need only be run once, giving a
total running time of T+ mJS. Since T time is usually much larger than S
(for example, the self-tester for the mod function makes several hundred calls
to the program while the self-corrector makes fewer than 20), this savings
can be quite significant.

3 Batch Checking for Linear Functions

The technique given in this section can be used to reduce the multiplicative
overhead to arbitrarily close to 1 for any function with the linearity property
as defined in [4]. Essentially the linearity property is the property that
it is easy to compute f(z) if one is given the values of f(z1), f(x2) where
1 + x9 = x for free:

DEFINITION 3.1 (Linearity Property) Suppose f is a function that maps a
group G to a group H. We say that [ is linear if, for all z and y in G,
flx+cy) = f(x) +r f(y) where +g and + are the group operations over G



and H, respectively. +¢c and +g are assumed to be much simpler and more
efficient to compute than the function f.

Examples of linear functions include integer multiplication, modular mul-
tiplication, integer division, the mod function and modular exponentiation.

Our batch checker uses the existence of checkers for any function that has
the linearity property [4], but the batch checker works independently of how
the checking is done. We present the specific batch checker that results from
applying the technique to the mod R function. It is easy to see how to apply
the technique to other linear functions.

The technique is based on the idea of Freivalds [7, Freivalds] used in the
checker for matrix multiplication. Freivalds’ idea was also used in a related
manner by [6, Fiat Naor| where many modular exponentiation computations
are verified by doing very few modular exponentiation computations.

3.1 Batch Checker for the Mod Function

The following program checks that a program P purporting to compute the
function f(z) = z mod R for z € [0...2"R] gives the correct answer on
T1, ... Tm. Mod_Result_Checker(x,1/4) is a checker that checks that P gives
the correct answer on input z, with error probability at most 1/4.

We use +, and -, to refer to addition mod gq.

Program Mod Function Batch_Checker(n, R, z1,. .., 2y, )

Fori=1,...,0(log(1/3)) do:
Randomly generate m-bit 0/1 vector a = (ay, ..., Q)
sumin «— 0
sumout «— 0
Fori=1,...,m do
SUMIN <— SUMIN +Ran Oy * T;
sumout < sumout +g o - P(x;)
Verify that sumout = P(sumin)
Call Mod_Result_Checker(sumin,1/4)
If verification fails or checker returns “FAIL” then
output “FAIL” and stop.
Output “PASS”.



Proof: [of correctness of batch checker| Since the mod R function is linear,
f (X pon i) = Y pa;f(x;). Thus, if P is always correct, the checker outputs
“PASS”.

We first use Freivald’s technique to show that if there isan [ € [1...m]
such that P(x;) # f(x;), then with probability at least 1/2, > a; P(z;) <>
> raif(z;) (and therefore the call to Mod_Result_Checker is likely to return
‘FAIL’): Let R = {0,1}". Let k be such that P(xy) # f(zx). Let the
good set of a’s (those for which the checker is likely to catch a mistake)
G = {ala € R, pa;P(x;) # S raif(z;)} and the bad set G = R — G.
We show a 1 — 1 mapping from G to G, showing that |G| > |G], and thus
Pro[SraiP(x;) # Y paif(z)] > 1/2. For a = ajay ..., € G, note that
a=0q... Qp 10§01 .. Gy € G (& is just a with the 7" bit flipped). The
mapping from « to & is 1 — 1.

Suppose Y p;P(z;) # Y paif(x;). If the verification that sumout =
P(sumin) passes (Y g a; P(x;) = P(Xpon ;x;)), we know that
P(X pon i) =# Y paif(x;) = f(X gan a;x;). Then the call to Mod_Result_Checker
passes with probability at most 1/4. Thus the batch checker outputs “FAIL”
with probability at least 1/8 after one iteration. The fact that O(log(1/5))
iterations suffice follows from standard arguments. W

Let T'(n) be the running time of P on inputs of size n. From the self--
testing/correcting pair for the mod function, a checker for the mod function
can be designed such that Mlod_Result_Checker requires at most ¢ - T'(n)
total time for constant c¢. The total work done by the batch checker is
(¢ +m)T(n) + O(n - m). Since the program is called on all of the m x;’s
regardless of whether any checking is done, the multiplicative running time
overhead required by batch checking is less than 1 4 <L

m
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