
To appear: SIAM J. on Computing, manuscript no. 0255151.

Robust Characterizations of Polynomials with

Applications to Program Testing

�

Ronitt Rubinfeld

y

Madhu Sudan

z

Abstract

The study of self-testing and self-correcting programs leads to the search for ro-

bust characterizations of functions. Here we make this notion precise and show such a

characterization for polynomials. From this characterization, we get the following ap-

plications. We construct simple and e�cient self-testers for polynomial functions. Our

characterizations provide results in the area of coding theory, by giving extremely fast

and e�cient error-detecting schemes for some well known codes. This error-detection

scheme plays a crucial role in subsequent results on the hardness of approximating

some NP-optimization problems.

1 Introduction

The study of program checkers [Blu88][BK89], self-testing programs [BLR90] and self-correcting

programs [BLR90][Lip91] was introduced in order to allow one to use a program P to com-

pute a function without trusting that P works correctly. A program checker checks that the

program gives the correct answer on a particular input, a self-testing program for f tests that

program P is correct on most inputs, and a self-correcting program for f takes a program

P that is correct on most inputs and uses it to compute f correctly on every input with

high probability. The program checker, self-tester and self-corrector may call the program

�

This paper uni�es and extends part of the results contained in Gemmell et al. [GLRSW91] and Rubinfeld

and Sudan [RS92].

y

Cornell University. email: ronitt@cs.cornell.edu. This work is supported by ONR Young Investigator

grant N00014-93-1-0590 and the United States{Israel Binational Science Foundation grant 92-00226. Part

of this work was done while the author was at Princeton University, supported by DIMACS (Center for

Discrete Mathematics and Theoretical Computer Science), NSF-STC88-09648.

z

I.B.M. Thomas J. Watson Research Center. email: madhu@watson.ibm.com. Part of this work was done

when the author was a student at the University of California at Berkeley under the support of NSF PYI

Grant CCR 8896202.

1



as a black box, are required to do something other than to actually compute the function,

and should be much simpler and at least di�erent from any program for the function f in

the precise sense de�ned by [BK89]. It is straightforward to show that checkers, self-testers

and self-correctors for functions are related in the following way: If f has a self-tester and

a self-corrector, then it can be shown that f has a program result checker. Conversely, if f

has a checker, then it has a self-tester (though not necessarily a self-corrector). It is argued

in [BK89] and [BLR90] that this provides an attractive alternative method for attacking the

problem of program correctness.

One of the main goals of the research in the area of self-testing/correcting programs and

program checking is to �nd general techniques for �nding very simple and e�cient self-testers,

self-correctors and checkers for large classes of problems. In fact, some success towards

this goal has been achieved. For example, in [BK89], it is shown how to use techniques

from the area of interactive proof systems in order to write checkers. Using these and

other techniques, checkers (and hence self-testers) have been found for a variety of problems

[AHK, BK89, Rub90, Kan90, BFLS91, BF91]. If a function is random self-reducible, i.e., the

value of the function at any input can be inferred from its value at randomly chosen inputs,

then it has a self-corrector [BLR90][Lip91]. This provides self-correctors for a surprising

range of functions, including the class of linear functions (homomorphisms between groups)

and polynomials.

In the direction of characterizing functions that have self-testers, some success has been

achieved in [BLR90]. They give a number of methods of constructing self-testers for func-

tions, some of which we mention here: They observe that any checker for a function can

be used to construct a self-tester for the function. They present a particular method of

constructing self-testers for a variety of functions based on a method of bootstrapping from

tests over smaller domains. They also show another method of constructing self-testers for all

linear functions, i.e., functions that act as homomorphisms between groups, in other words

satisfy f(x) + f(y) = f(x+ y) for a group operation +.

The main focus of this paper is to study and understand the functions which have self-

testers, and to broaden the class of functions that are known to have self-testers. The

linearity tester of [BLR90] is the starting point for this paper. A particularly interesting

feature of this linearity tester is that it breaks the task of self-testing a function into the two

tasks of (1) testing it for certain \structural properties" and (2) using the structural property

to then identify the function precisely. In this paper we introduce a new notion { a function

family tester { which helps delineate these two tasks more clearly. We �rst introduce some

terminology:

We work with functions de�ned over some �nite domain D. The distance between two

functions f and g over the domain D is the fraction of points x 2 D where the two functions

disagree:

d(f; g) �

jfx 2 Djf(x) 6= g(x)gj

jDj

We say that two functions are �-close if d(f; g) � �. In some of the informal discussions

that follow, we drop the � and just describe two functions as being close. In such cases, it is

2



implied that we are talking of some small enough �. In terms of this notion a self-tester for

a function f may be de�ned as follows:

A �-self-tester T for a function f over a domain D, is a (randomized) oracle program that

takes as input a program P and behaves as follows:

� Accepts P if d(P; f) = 0.

� Rejects P (with high probability) if P and f are not �-close.

� Behaves arbitrarily otherwise.

Testers for function families using robust characterizations Let F be a family of

functions. An �-function family tester T for the family F , takes as input a program P and

tests if there exists a function f 2 F such that P is �-close to f .

The notion of a function family tester captures the notion of verifying properties of a function

as follows: Let P be a property we wish to test for. Let F be the family of all functions that

have the property P. Then a function family tester for F can be used to test if a program P

\essentially" has the property P (i.e., there exists a function with property P that is close

to P ). To make some of these abstract de�nitions concrete, let us work with the simple

example of the property of linearity among functions from Z

p

to Z

p

. For this example, the

family of functions we work with is F

linear

� ff

a

ja 2 Z

p

; f

a

(x) = a � xg. Thus a tester

for the family of linear functions veri�es that the computation of a program P is essentially

linear.

The existence of a function family tester for any class of functions implies a powerful char-

acterization of the family. In particular, consider any program that is rejected by the tester.

In order to reject the program, the tester will have found some evidence in the small set

of sampled points which \proves" that P can not be a member of F . In other words, all

members of F must satisfy some property on the set of inputs that are examined by the

family tester. Thus all members of F satisfy a \local" property (by local we mean a property

on a set of small size { we de�ne this notion more formally in Section 2). Moreover, if all

such local properties are satis�ed, then the tester accepts the function, implying that these

local constraints form a characterization of the family. Thus in order for a function family

to have a tester, it needs to have a local characterization. In our example, such a local

characterization of linear functions is the property that 8x; y 2 Z

p

, f(x) + f(y) = f(x+ y).

If a function is not linear then there exists a counterexample of size three that proves that

it is not linear.

However, local characterizations do not form a su�cient condition for the construction of

testers. Typically an exact local characterization of a family of functions involves a universal

quanti�cation, which is not feasible to verify. In our example, the characterization of linear

functions by the property 8x; y 2 Z

p

, f(x)+f(y) = f(x+y) is not useful to test a purported

linear function since we cannot hope to e�ciently test that this holds for all possible pairs

x; y. Thus for a characterization to be useful for testing, it needs to be \robust", involving

the words \for most" rather than \for all". Speci�cally, let F be the function family that

3



satis�es the properties at all inputs, and let f be any function that satis�es the properties

at most inputs. Then f must be close to some g 2 F (see Section 2 for a more formal

de�nition). In our example, if f(x) + f(y) = f(x + y) is satis�ed by f for most x; y, then

f(x) = c � x for most x and some constant c.

Our results on function family testing One of the main emphases of this paper is

to �nd robust characterizations for the family of low degree univariate and multivariate

polynomials. In Section 3 we start by describing some (well-known) local characterizations of

univariate and multivariate polynomials and then prove that some of these characterizations

are actually robust characterizations. As an immediate consequence we get function family

testers for all low-degree polynomials over �nite �elds. For the case of polynomials over Z

p

,

our testers are very simple and do not even need to multiply elements of the �eld. Our

testers are the �rst testers that directly attempt to test the total degree of a polynomial (as

opposed to the testers of [BFLS91, FGLSS91, AS92], all of which test that the degree in each

variable is not too large). The proof of correctness of our tester also is di�erent from the

proofs of correctness of the other testers in that it does not rely on an inductive argument

based on the number of variables. This allows for its \e�ciency" to be independent of the

number of variables and provides the hope for the existence of a tester with nearly optimal

e�ciency.

A second emphasis of this paper is the notion of test sets that allows us to use the results

on function family testing to obtain self-testers for speci�c functions. Informally, a test set

is a set of points from the domain, such that no two functions from the family F agree with

each other on all the points from the test set. Our self-tester for a speci�c function f would

require, as a description of f , its value on all points in a test set. The complexity (running

time) of the self-tester will depend on the size of the test set.

Other implications of low-degree testing The task of constructing family testers for

the family of low-degree polynomials is closely related to the task of error-detection in Reed

Solomon codes. In fact, a low-degree test can be described as a \randomized" error-detector

that determines whether the number of errors in a received word is small or not. In this

sense, the error-detectors we construct have the feature that they are highly e�cient and

can be used to get estimates on the distance of a received word from a valid codeword.

This perspective can similarly be applied to the results of [BLR90] to get randomized error-

detecting and correcting schemes for the Hadamard codes that probe the received word in

only a constant number of bits to detect an error or �nd any bit of the codeword closest to

the received word. In fact, it has been shown by M. Naor [Nao92] that these results can be

used to construct codes for which error-detection/correction can be performed by uniform

quasi-polynomial sized circuits of constant depth. In Section 7 we de�ne the notion of a

\locally testable code" - a notion that precisely describes the relationship between testing

and error-correcting codes. We also provide applications of our testers to the construction

of \locally testable codes" in the section.

A di�erent perspective on the construction of family testers is to view it as the following

approximation problem:

4



Given a family of functions F and a function P , estimate the distance d(P;F)

between P and F to within a small multiplicative error.

A tester for a function family F essentially yields such an approximator (provided d(P;F)

is smaller than half) by de�ning some new quantities �(P;F) that are easy to estimate by

random sampling and then showing that some approximate relations hold between �(P;F)

and d(P;F). For example, the linearity test of [BLR90] may be viewed as trying to ap-

proximate the distance d(f;F

linear

). To approximate this distance they de�ne the quantity

�(f;F

linear

) � Pr[f(x) + f(y) 6= f(x + y)] which is easy to approximate. Then they show

that �(f;F

linear

)=3 � d(f;F

linear

) � 9=2�(f;F

linear

). The testers given here de�ne simi-

lar quantities related to low-degree polynomials and show similar approximate relationships.

Such inequalities may be of independent interest.

The task of low-degree testing forms a central ingredient in the proof of MIP = NEXPTIME

due to [BFL91]. The tester given here provides an alternate mechanism that works in their

setting. The e�ciency of low-degree testing also becomes very important to the ensuing

results on hardness of approximations [FGLSS91, ALMSS92] and therefore a lot of attention

has been paid to this problem [BFL91, BFLS91, FGLSS91, AS92]. However all these results

focus on tests that are close variants of the test given in [BFL91]. The low-degree test

given here is fundamentally di�erent from the ones mentioned above and originated from

independent considerations in the work of [GLRSW91]. The e�ciency of the tester shown

here may also be found in [RS92]. It turns out that this tester is particularly well-suited

to such multiple prover applications and provides a one round, constant prover proof that a

function is a low degree polynomial over �nite �elds. This is observed in subsequent work

of [ALMSS92] (see also [Sud92]) and follows by using an improved analysis for Lemma 11

from [AS92]. This turns out to play a crucial role in the NP = PCP(log n;O(1)) result

of [ALMSS92], which in turn provides hardness results for a wide variety of approximation

problems. An exact description of the relevance of the various testers and the chronology of

contributions maybe found in Section 8.

Organization of Paper The rest of this paper is organized as follows. In Section 2 we

formally de�ne the notions of local characterizations - exact and robust. Section 3 lists some

(well-known) exact characterizations of low-degree polynomials. Sections 4 and 5 show that

two of these exact characterizations are robust. In Section 6 we describe the applications

of these characterizations to self-testing of programs. In Section 7 we de�ne a notion of

locally-testable codes (based on the notion of probabilistically checkable proofs) and show

applications of our testers to such codes. Section 8 contains some concluding remarks.

2 Local Characterizations: Exact and Robust

In this section we make precise the notion of a local characterization and what we mean

by exact and robust characterizations. We will also isolate a parameter associated with the

robust characterizations that captures the e�ciency of the tester suggested by the charac-

terization.

5



We will use D to represent a �nite domain. We will consider here, families of functions F

where f 2 F maps elements from D to a range R. We illustrate these de�nitions using the

example of linear functions. Here the domain and range are Z

p

and the family of functions

is ff

a

ja 2 Z

p

where f

a

(x) = a � xg.

De�nition 1 (Neighborhoods) A k-local neighborhood N is an ordered tuple of (not nec-

essarily distinct) k points from D . A k-local collection of neighborhoods N is a set of k-local

neighborhoods.

De�nition 2 (Properties) A k-local property P is a function from (D�R)

k

to f0; 1g. We

say that a function f satis�es a property P over a neighborhood N if P(f(x; f(x))g

x2N

) = 1.

De�nition 3 (Exact Characterizations) A property P over a collection of neighborhoods

N is an exact characterization of a family of functions F if a function f satis�es P over all

neighborhoods N 2 N exactly when f 2 F . The characterization is k-local if the property P

(and the collection N ) is k-local.

In our example, the collection of neighborhoods N = f(x; y; x+ y)jx; y 2 Z

p

g. The property

P is 3-local and is satis�ed by f on the triple (x

1

; x

2

; x

3

) if f(x

1

)+f(x

2

) = f(x

3

). Thus over

the collection of neighborhoods N , P gives a 3-local characterization of the family of linear

functions.

De�nition 4 (Robust Characterizations) A property P over a collection of neighbor-

hoods N is said to be an (�; �)-robust characterization of F , if whenever a function f satis�es

P on all but � fraction of the neighborhoods in N , it is �-close to some function g 2 F .

Moreover, all members of F satisfy P on all neighborhoods in N .

To continue with the example of linear functions, the theorem of [BLR90] can be used to

say that P over the neighborhood N is a (

9

2

(

2

9

� �);

2

9

� �)-robust characterization of linear

functions for any constant �.

The exact constant � determining closeness is not very important for the family of multivari-

ate polynomials. For most of the characterizations we consider here, it can be shown that

any function f is ((1 + o(1))�)-close to some member g of F if f is

1

4

-close to g and violates

only a � fraction of the neighborhood constraints. Thus for the purposes of this paper, we

�x the value of � to be

1

4

.

In order to test if f is close to some member of F , one would need to sample at least

1

�

of

the neighborhoods in N and test if P holds on these neighborhoods. Hence, the parameter

1

�

is referred to as the e�ciency of the characterization.

6



3 Exact Characterizations of Polynomials

In this section we start by describing some (well-known) exact local characterizations of

polynomial functions. In later sections we will show that some of these characterizations can

be made robust.

The family of degree d polynomials can be characterized in a number of ways. The dif-

ferent characterizations arise from looking at di�erent collections of neighborhoods N . The

property P has to remain invariant in the following sense: P will be satis�ed by f on a neigh-

borhoodN if there exists a polynomial that agrees with f on all points in N . The complexity

of a neighborhood test, i.e., testing whether a constraint is being satis�ed by a neighborhood,

is also in
uenced by the choice of the neighborhood. Thus by choosing the characterizations

appropriately, we might be able to tradeo� the simplicity of the neighborhood test against

the number of times the test needs to be repeated. The di�erent characterizations also have

to be quali�ed by di�erent restrictions on the underlying ring. For instance, some charac-

terizations hold only for �nite �elds while others hold only for rings of the form Z

m

. We will

take care to point out the restrictions on the characterizations. We give examples of possible

neighborhoods and their corresponding tests.

1. Univariate polynomials

The following characterization of univariate polynomials holds for a function f mapping

a ring R to itself.

(a) Characterization: f : R 7! R is a polynomial of degree at most d if and only if

8x

0

; : : : ; x

d+1

2 R, there exists a polynomial g

x

0

;:::;x

d+1

of degree at most d such

that f(x

i

) = g

x

0

;:::;x

d+1

(x

i

).

(b) Neighborhood structure: N = R

d+2

, i.e., all possible (multi)-subsets of R of size

d+ 2.

(c) Complexity of neighborhood test: A test of the above nature involves �nding

the (unique) degree d polynomial g that agrees with f at the points x

0

; : : : ; x

d

and then evaluating g(x

d+1

) and verifying that this equals f(x

d+1

). Standard

interpolation techniques (see, for instance, [dW70]) imply that this is equivalent

to computing coe�cients �

0

; : : : ; �

d+1

, where the f�

i

g's depend only on the fx

i

g's,

and verifying that

P

d+1

i=0

�

i

�f(x

i

) = 0. The �

i

's can be computed using elementary

algorithms with O(d

2

) additions, subtractions and multiplications over R.

2. Univariate polynomials using evenly spaced points

This characterization works over the ring Z

m

. Let �

i

=

�

d+1

i

�

(�1)

i+1

. The interpola-

tion identity for degree d polynomials on evenly spaced points, x; x+h; : : : ; x+(d+1)�h,

reduces to

P

d+1

i=0

�

i

f(x + i � h) = 0. We refer to x as the starting point and h as the

o�set.

(a) Characterization: f : Z

m

7! Z

m

is a polynomial of degree at most d if and only

if 8x; h 2 Z

m

,

P

d+1

i=0

�

i

f(x+ i � h) = 0.

7



(b) Neighborhood structure: De�ne the neighborhood sets N

x;h

� fx+i �hg

d+1

i=0

. Then

the neighborhood collection is N =

S

x;h2Z

m

N

x;h

.

(c) Complexity of Neighborhood Test: Notice that the constants �

i

are now indepen-

dent of x and h and can be precomputed once and for all. In fact, due to the

special relationship between the �

i

's, given the value of f at the points x+ i � h,

we can compute the above summation with O(d

2

) additions and subtractions and

no multiplications (see appendix).

3. Multivariate polynomials using lines

This characterization applies to m-variate functions over a �nite �eld F . De�ne the

notion of a line through the space F

m

as follows: For x̂;

^

h 2 F

m

, the line l

x̂;

^

h

through

x̂ with o�set

^

h is the set of points fx̂+ i �

^

hji 2 Fg. We will often refer to the line in

its parametric form l

x̂;

^

h

(i). Observe that a polynomial f of total degree d, restricted

to a line l

x̂;

^

h

(i) becomes a univariate polynomial of degree at most d in the parameter

i. This gives us the following characterization of degree d polynomials over su�ciently

large �nite �elds (jF j � 2d+ 1).

1

(a) Characterization: The function f : F

m

7! F is a polynomial of degree at most d

if and only if 8x̂;

^

h 2 F

m

, f restricted to l

x̂;

^

h

(i) is a univariate polynomial in i of

degree at most d (see appendix for a proof).

(b) Neighborhood Structure: Let the neighborhoods be lines. Then N � fN

x̂;

^

h

=

l

x̂;

^

h

jx̂;

^

h 2 F

m

g.

(c) Complexity of Neighborhood Test: In this form the characterization is not very

local since the counterexamples are lines, i.e., collections of jF j points. But this

characterization is interesting to us because it says that the characterization of

multivariate polynomials can be reduced to the characterization of univariate

polynomials (on these lines). Thus we �nd that we can now use, for instance,

Characterization 1 to �nd counterexamples of size at most d+2. The complexity

of a neighborhood test here is no more than the complexity of the neighborhood

test in Characterization 1.

4. Multivariate polynomials using axis parallel lines

This characterization is a specialization of the characterization above, in terms of

special lines - axis parallel lines. We say that a line is axis parallel if the o�set

^

h

contains only one non-zero coordinate.

(a) Characterization: f : F

m

7! F is a polynomial of degree at most d in each variable

if and only if 8 axis parallel lines, f restricted to the line is a univariate polynomial

of degree at most d. Notice that here we characterize polynomials di�erently, i.e.,

in terms of individual degree in each variable rather than total degree.

1

The above characterization is not the tightest possible in its requirement of the parameter jF j. Indeed,

for the case of �elds of prime order this can be improved to the optimal case jF j � d + 2 and this has been

shown recently in [FS94]. For arbitrary �nite �elds it turns out that jF j � d+2 is not a su�cient condition

for this characterization to hold. A counterexample to this e�ect is also shown in [FS94].

8



(b) Neighborhood Structure: The neighborhoods here are sets of the form N

i;

^

�

�

f(�

1

; : : : ; �

i�1

; t; �

i

; : : : ; �

m�1

)jt 2 Fg, for every choice of

^

� 2 F

m�1

, and every

choice of i 2 f1; : : : ;mg. Then N =

S

i2f1;:::;mg;

^

�2F

m�1

N

i;

^

�

.

(c) Complexity of Neighborhood Test: The complexity of a neighborhood test is the

same as the complexity of Characterization 1.

5. Multivariate polynomials: evenly spaced points

A combination of Characterizations 2 and 3 gives the following characterization of

polynomials over Z

p

, provided p is large enough for Characterization 3 to hold.

(a) Characterization: f : Z

m

p

7! Z

p

is a polynomial of degree at most d if and only if

8x̂;

^

h 2 Z

m

p

,

P

d+1

i=0

�

i

f(x̂+ i

^

h) = 0, where �

i

= (�1)

i+1

�

d+1

i

�

.

(b) Neighborhood Structure: The neighborhoods here are of the form N

x̂;

^

h

� fx̂ +

i

^

hji 2 f0; : : : ; d+ 1gg. Then N �

S

x̂;

^

h2Z

m

p

N

x̂;

^

h

.

(c) Complexity of Neighborhood Test: The complexity of this neighborhood test is

the same as the complexity in Characterization 2.

6. Multivariate polynomials: evenly spaced points - 2

This characterization is a trivial consequence of the characterization above, and seems

weaker since its neighborhood structure is larger than those of the ones above. But it

turns out that this characterization is much more useful due to the kind of robustness

it yields. This characterization holds for polynomials over Z

p

, for p > 10d.

(a) Characterization: f : Z

m

p

7! Z

p

is a polynomial of degree at most d if and only

if 8x̂;

^

h 2 Z

m

p

, the values of f at the points fx̂ + i

^

hji 2 f0; : : : ; 10dgg agree with

some univariate polynomial g of degree at most d in t.

(b) Neighborhood Structure: The neighborhoods here are sets of the form N

x̂;

^

h

�

fx̂+ i

^

hji 2 f0; : : : ; 10dgg. Then N �

S

x̂;

^

h2Z

m

p

N

x̂;

^

h

.

(c) Complexity of the neighborhood test: Once again it turns out that the complexity

of this test is within a constant factor of the complexity of the test in Charac-

terization 2, i.e., O(d

2

) additions and subtractions and no multiplications (see

appendix).

All characterizations above turn out to be robust. The robustness of Characterization 1 is

straightforward and omitted here (see, for instance, [Sud92]). The robustness of 4 follows

from the work of [BFL91] (see also [BFLS91, FGLSS91, AS92, Lun92]). Robustness of 2, 3,

5 and 6 are presented in Sections 4 and 5.

A typical robust characterization theorem for degree d polynomials in m variables over a

�nite �eld F would go as follows:

9



There exists a �

0

(which may be a function of d;m; jF j) such that for � � �

0

, if

the fraction of neighborhoods where P satis�es the local constraints is at least

1� �, then P is �-close to some degree d polynomial (where � is some function of

�).

An important parameter in determining the e�ciency of a tester, is the relationship between

�

0

and m; d; jF j. For instance, if �

0

=

1

dm log jF j

, then this implies that we will have to test

that the local property holds for at least dm log jF j randomly chosen neighborhoods before

we can satisfy ourselves that P is close to some polynomial. Our main thrust will be to get

a theorem that holds for as high a �

0

as possible.

2

In what follows, we show �rst that Characterization 5 above is robust with �

0

= �(

1

d

2

). This

proof gives a simple and e�cient tester for the family of multivariate polynomials that works

with O(d

3

) probes into f . Robustness of the characterizations in 2 and 3 follow as special

cases. This bound on �

0

is in contrast to the robustness of 4 that has an inherent dependency

on m.

Next we show a robustness of Characterization 6. The e�ciency of this test is analyzed

modulo the e�ciency of a certain test for bivariate polynomials and is shown to be within a

constant factor of the bivariate test. We also show that the e�ciency of the bivariate test is

O(d), giving a test for multivariate polynomials that works with O(d

2

) probes into f .

4 A Robust Characterization of Polynomial Functions

In this section, we prove the robustness of Characterization 5. We consider a function

(program) P mapping m variables from Z

p

to Z

p

and prove the following:

Theorem 5 For �

0

=

1

2(d+2)

2

, if P : Z

m

p

7! Z

p

satis�es

� � Pr

x;h2

R

Z

m

p

"

P (x) 6=

d+1

X

i=1

�

i

P (x+ i � h)

#

� �

0

then there exists a degree d polynomial g : Z

m

p

7! Z

p

that is 2�-close to P .

This theorem makes very minimal requirements on the �eld size required for its validity.

The theorem is valid whenever Characterization 5 holds and Friedl and Sudan, [FS94], have

shown that this holds for p � d+2 - the smallest conceivable �eld size for which the test could

be de�ned. We do not know of other testers that work with such a minimal requirement on

the �eld size.

We de�ne g(x) to be maj

h2Z

m

p

f

P

d+1

i=1

�

i

P (x + ih)g, where maj of a set is the function that

picks the element occurring most often (choosing arbitrarily in the case of ties). First we

show that g is 2�-close to P . Later in this section we show that g is a low-degree polynomial.

2

A secondary parameter of interest is the relationship between � and �. In all the proofs that follow, we

will only show that � = 2�. Actually, once such a result is shown it can be shown again that any � > � works.

10



Lemma 6 g and P agree on more than 1� 2� fraction of the inputs from Z

m

p

.

Proof: Consider the set of elements x such that Pr

h

[P (x) =

P

d+1

i=1

�

i

P (x + i � h)] <

1=2. If the fraction of such elements is more than 2� then it contradicts the condition that

Pr

x;h

[

P

d+1

i=0

�

i

P (x+ i � h) = 0] = �. For all remaining elements, P (x) = g(x). 2

In the following lemmas, we show that the function g satis�es the interpolation formula for

all x; h and is therefore a degree d polynomial. We do this by �rst showing that for all x,

g(x) is equal to the interpolation of P at x by most o�sets t. We then use this to show that

the interpolation formula is satis�ed by g for all x; h.

Lemma 7 For all x 2 Z

m

p

, Pr

h

[g(x) =

P

d+1

i=1

�

i

P (x+ i � h)] � 1� 2(d+ 1)�.

Proof: Observe that h

1

; h

2

2

R

Z

m

p

implies

x+ i � h

1

2

R

Z

m

p

and x+ j � h

2

2

R

Z

m

p

) Pr

h

1

;h

2

[P (x+ i � h

1

) =

d+1

X

j=1

�

j

P (x+ i � h

1

+ j � h

2

)] � 1� �

) Pr

h

1

;h

2

[P (x+ j � h

2

) =

d+1

X

i=1

�

i

P (x+ i � h

1

+ j � h

2

)] � 1� �

Combining the two we get

Pr

h

1

;h

2

[

P

d+1

i=1

�

i

P (x+ i � h

1

) =

P

d+1

i=1

P

d+1

j=1

�

i

�

j

P (x+ i � h

1

+ j � h

2

)

=

P

d+1

j=1

�

j

P (x+ j � h

2

)]

� 1� 2(d+ 1)�

The lemma now follows from the observation that the probability that the same object is

drawn twice from a set in two independent trials lower bounds the probability of drawing the

most likely object in one trial: Suppose the objects are ordered so that p

i

is the probability

of drawing object i, and p

1

� p

2

� : : :. Then the probability of drawing the same object

twice is

P

i

p

2

i

�

P

i

p

1

p

i

= p

1

. 2

Lemma 8 For all x; h 2 Z

m

p

, if � �

1

2(d+2)

2

, then

P

d+1

i=0

�

i

g(x + i � h) = 0 (and thus g is a

degree d polynomial [dW70]).

Proof: Observe that, since h

1

+ ih

2

2

R

Z

m

p

, we have for all 0 � i � d+ 1

Pr

h

1

;h

2

[g(x + i � h) =

d+1

X

j=1

�

j

P ((x+ i � h) + j � (h

1

+ ih

2

))] � 1� 2(d+ 1)�

Furthermore, we have for all 1 � j � d+ 1

Pr

h

1

;h

2

[

d+1

X

i=0

�

i

P ((x+ j � h

1

) + i � (h+ j � h

2

)) = 0] � 1� �

11



Putting these two together we get

Pr

h

1

;h

2

[

d+1

X

i=0

�

i

g(x+ i � h) =

d+1

X

j=1

�

j

d+1

X

i=0

�

i

P ((x+ j � h

1

) + i � (h+ j � h

2

)) = 0] > 0

The lemma follows since the statement \

P

d+1

i=0

�

i

g(x + i � h) = 0" is independent of h

1

; h

2

,

and therefore if its probability is positive, it must be 1. 2

Proof (of Theorem 5): Theorem 5 follows from Lemmas 6 and 8 2

5 E�cient tester for polynomials

In this section we prove the robustness of Characterization 6. Recall that this charac-

terization uses the collection of neighborhoods N = fN

x;h

jx; h 2 Z

m

p

g where N

x;h

=

(x; x + h; : : : ; x + 10dh). The following theorem shows that the e�ciency of this charac-

terization is O(d), i.e., if a function satis�es the consistency test on all but a O(

1

d

) fraction

of the neighborhoods then it is close to a polynomial.

Theorem 9 There exists a constant c such that for 0 � � �

1

cd

, if f is a function from Z

m

p

to Z

p

that satis�es the neighborhood consistency test on all but a � fraction of the collection

of neighborhoods N = fN

x;h

jx; h 2 Z

m

p

g (where N

x;h

= fx; x+ h; : : : ; x+ 10dhg), then there

exists a polynomial g : Z

m

p

! Z

p

of total degree at most d such that d(f; g) � (1 + o(1))�

(provided p > 10d.)

In the rest of this section we prove this theorem for the case d � 1. (The case d = 0 amounts

to proving that f is a constant and is omitted as a straightforward exercise.)

Fix a function f that satis�es the neighborhood constraints on all but a � fraction of the

neighborhoods.

The proof follows the same basic outline as the one in Section 4, but in order to achieve

the better e�ciency, we use ideas that can be thought of in terms of error-correction. Thus

many of the steps that were quite simple in Section 4 require more work here. In Section 4

the function g was de�ned to be the value that occurs most often (for most h) when one

looks at the evaluation at x of the unique polynomial that agrees with the values of f at

x + h; :::; x + (d + 1)h. Here we view the values of a polynomial at x + h; :::; x + 10dh as a

code word. Intuitively, the values of f at x + h; :::; x + 10dh will often have enough good

information in it to allow us to get back to a correct codeword. The function g de�ned

below can be thought of as the value that occurs most often (for most h) when one looks at

the polynomial de�ned by the error correction of the values of f at x; x + h; : : : ; x + 10dh

evaluated at x. We then show that g has the following properties:

1. g(x) = f(x) with probability at least 1� � � o(�) if x is picked randomly from Z

m

p

.

2. On every neighborhood N

x;h

, g is described by a univariate polynomial of degree d.

12



Notice that Characterization 6 now implies that g is a degree d polynomial.

Notation: For x; h 2 Z

m

p

, we let P

x;h

(i) be (the unique) polynomial in i that satis�es

P

x;h

(i) = f(x + ih) for at least 6d values of i 2 f0; : : : ; 10dg. If no such polynomial exists

then P

x;h

is de�ned to be error.

Let g : Z

m

p

7! Z

p

be g(x) � plurality

h

fP

x;h

(0)g

where the plurality is taken over P 's that are not error.

In Section 4 it is shown that if one computes the value of a polynomial function at x by

interpolating from the values of the function along o�set h

1

that are in turn computed by

interpolating from the values of the function along o�set h

2

, then one would get the same

answer as if one had computed the value of the function at x by interpolating from the values

of the function along o�set h

2

which in turn are computed by interpolating from the values of

the function along o�set h

1

. This is not hard to see because it turns out that an interpolation

is a weighted summation and obtaining the identity amounts to changing the order of a

double summation (see for instance Lemma 7). Here g is actually an interpolation of the

error-correction of the values of the function, which is no longer a simple algebraic function

of the observed values. We repair the situation by constructing a bivariate polynomial Q(i; j)

that agrees with f(x + i � h

1

+ j � h

2

) for most values of i and j. This allows us to get back

to simple interpolation where we work with the function Q(i; j) rather than f . Lemma 10

shows when such a bivariate polynomial can be set up to agree with a matrix of values m

ij

.

Lemma 11 shows how to use this polynomial to simulate the e�ect of the interchange in the

order of the summation.

The following lemma follows directly from the axis parallel characterization of polynomials.

Lemma 10 For X;Y � Z

p

with jXj; jY j > d + 2, if fr

i

g

i2X

and fc

j

g

j2Y

are univariate

(degree d) polynomials such that for all i 2 X and j 2 Y , r

i

(j) = c

j

(i), then there exists a

polynomial Q(:; :) such that for all i; j Q(i; j) = r

i

(j) = c

j

(i).

Lemma 11 (Matrix Polynomial Lemma) Given families of univariate degree d polyno-

mials fr

i

g

10d

i=0

and fc

j

g

10d

j=0

and a matrix fm

ij

g

10d;10d

i=0;j=0

that satisfy:

� For 90% of the i's in f0; : : : ; 10dg, r

i

(j) = m

ij

for all j 2 f0; : : : ; 10dg.

� For 90% of the j's in f0; : : : ; 10dg, c

j

(i) = m

ij

for all i 2 f0; : : : ; 10dg.

Then there exists a bivariate polynomial Q(�; �) of degree d in each variable such that for all

i

0

; j

0

2 f0; : : : ; 10dg the following holds:

� For at least 90% of the i's in f0; : : : ; 10dg, Q(i; j

0

) = m

ij

0

.

� For at least 90% of the j's in f0; : : : ; 10dg, Q(i

0

; j) = m

i

0

j

.

13



Proof: Let X be the set of good rows of M , i.e., those with the property that r

i

(j)

equals c

j

(i) for all values of j 2 f0; : : : ; 10dg. Similarly, let Y be the set of good columns.

It can now be seen that the conditions of Lemma 10 are applicable, implying that there

exists a polynomial Q(i; j) such that Q(i; j) = r

i

(j) = c

j

(i) for all (i; j) 2 X � Y , where

jXj and jY j are both at least 9d. But for any i 2 X, there exists a unique polynomial

describing all the elements in its row and Q agrees with it on 90% of its elements. Thus,

for i 2 X, Q(i; j) = m

ij

for all j 2 f0; : : : ; 10dg. In particular this holds for j = j

0

, i.e., for

all i 2 X, Q(i; j

0

) = m

ij

0

. Similarly by using the columns indexed by Y one can show that

Q(i

0

; j) = m

i

0

j

for all j 2 Y . The lemma follows since the cardinalities of X and Y are at

least 9d. 2

The following lemmas are analogous to Lemmas 6, 7 and 8 of Section 4. Lemma 12 and

Corollary 13 roughly correspond to Lemma 7. Lemma 12 essentially states that the plurality

in the de�nition of g is actually an overwhelming majority. This may be obtained by setting

i

0

= 0 in the statement of the lemma. The slightly stronger statement used here is needed

later. Lemma 14 is similar to Lemma 6 and shows that g and f agree at all but a � + o(�)

fraction of the places. Lemma 15 shows that g is a multivariate polynomial of degree d.

Lemma 12 There exists a constant c

1

such that for �

1

= c

1

�, the following holds:

8x 2 F

m

; i

0

2 f0; : : : ; 10dg; Pr

h

1

;h

2

[P

x;h

1

(i

0

) = P

x+i

0

h

1

;h

2

(0)] � 1� �

1

Proof: Pick h

1

; h

2

2

R

Z

m

p

and de�ne M = fm

ij

g to be the matrix given by m

ij

=

f(x + ih

1

+ jh

2

). We show that M satis�es the conditions required by Lemma 11 (with

j

0

= 0), with probability at least 1� �

1

. This su�ces to prove the lemma since this implies

that the polynomial P

x;h

1

is the polynomial Q(i; j) restricted to j = 0 and that P

x+i

0

h

1

;h

2

is

Q(i

0

; j). Thus P

x;h

1

(i

0

) = P

x+i

0

h

1

;h

2

(0) = Q(i

0

; 0).

Any row of the matrix, other than the 0th row, represents a random neighborhood (inde-

pendent of x) and satis�es the neighborhood constraint with probability 1 � �. Thus with

probability at least 1 � 10� we have that the fraction of rows that don't have a degree d

polynomial describing them is at most 0:1. An analogous argument can be made for the

columns. Thus M satis�es the conditions required by Lemma 11 with probability at least

1� 20�. The lemma is satis�ed with the choice of c

1

= 20. 2

Corollary 13 For x 2 Z

m

p

; i 2 f0; : : : ; 10dg, Pr

h

[g(x + ih) = P

x;h

(i)] � 1� 2�

1

.

Proof: Let B be the set of h's that violate P

x;h

(i) = majority

h

1

fP

x+ih;h

1

(0)g. For all

h 62 B notice that g(x + ih) = P

x;h

(i). Also for h in B, the probability, for a randomly

chosen h

1

, that P

x+ih;h

1

(0) 6= P

x;h

(i) is at least 1=2. Thus with probability at least

jBj

2p

m

,

we �nd that a randomly chosen pair (h; h

1

) violates the condition P

x+ih;h

1

(0) = P

x;h

(i).

Applying Lemma 12 we get that

jBj

p

m

is at most 2�

1

. 2

We next show that g and f agree in most places:

14



Lemma 14 d(f; g) � �(1 + o(1)).

Proof: Let B

0

be the set of x's that satisfy f(x) 6= P

x;h

(0) for at least 1 � 2�

1

fraction

of the h's in Z

m

p

. Observe that due to Corollary 13, for all x 62 B

0

, f(x) is the same as

g(x) (g(x) can disagree with P

x;h

(0) on at most 2�

1

fraction of the h's). The size of B

0

as a

fraction of Z

m

p

can be at most

�

1�2�

1

. Thus we �nd that d(f; g) �

�

1�2�

1

= �(1 + o(1)). 2

Notation: For x; h 2 Z

m

p

, we de�ne P

(g)

x;h

(i) to be (the unique) polynomial in i that satis�es

P

(g)

x;h

(i) = g(x + ih) for at least 9d values of i 2 f0; : : : ; 10dg. If no such polynomial exists

then P

(g)

x;h

is de�ned to be error.

Lemma 15 There exists a constant 
 such that if � �

1


d

then 8x; h g(x) = P

(g)

x;h

(0).

Proof: As in the proof of Lemma 12 we will pick a convenient matrix on which we will

apply Lemma 11. This time the matrix of choice is obtained by picking h

1

; h

2

2

R

Z

m

p

and

letting m

ij

= g(x+ ih+ j(h

1

+ ih

2

)).

We will now show that Lemma 11 can be applied to this matrix with high probability (for

i

0

= j

0

= 0). Observe that every row fm

ij

g

10d

j=0

represents a random neighborhood containing

the �xed point x+ ih and hence Corollary 13 implies that P

x+ih;h

1

+ih

2

(j) agrees with m

ij

for

any choice of j with probability 1�2�

1

. Thus, for every i, with probability at least 1�2cd�

1

,

P

x+ih;h

1

+ih

2

(j) agrees withm

ij

for all but

1

cd

fraction of the j's. Thus with probability at least

1�22cd�

1

, this holds for at least 90% of the rows, including the row i = 0. By picking c > 10

we satisfy the conditions required of the rows in Lemma 11. A similar argument based on

the columns shows that the conditions required of the columns are also true with probability

1�20cd�

1

�o(1) (all columns except for the 0th one represent random neighborhoods). Thus

the conditions required for Lemma 11 are satis�ed with probability at least 1�42cd�

1

�o(1).

Applying Lemma 11 we �nd that there exists a bivariate polynomial Q(i; j) such that it

agrees with m

i0

for 90% of the i's. Thus P

(g)

x;h

(i) = Q(i; 0). We now argue that m

00

= Q(0; 0)

and this will complete the proof, since m

00

= g(x).

By Lemma 11 we �nd that m

0j

= Q(0; j) for 90% of the j's, implying P

(g)

x;h

1

(j) = Q(0; j). By

Corollary 13 we also �nd that m

00

= P

x;h

1

(0) with probability at least 1� 2�

1

. In order to

show that this equals Q(0; 0) it now su�ces to show that P

(g)

x;h

1

(�) = P

x;h

1

(�).

This last part follows from the following observation: For j 6= 0, x + jh

1

is distributed

uniformly over F

m

and thus with probability 1� (1+o(1))� we have g(x+ jh

1

) = f(x+ jh

1

)

(by Corollary 13). Hence with probability at least 1� 10� � o(1), g(x + jh

1

) = f(x + jh

1

)

for 90% of the j's. But both the polynomials P

x;h

1

(j) and P

(g)

x;h

1

(j) agree with f(x+ jh

1

) and

g(x+ jh

1

) for 90% of the j's respectively. Thus P

(g)

x;h

1

(�) must agree with P

x;h

1

(�) on at least

80% of the inputs, implying P

(g)

x;h

1

(�) = P

x;h

1

(�).

Thus with probability at least 1� (42cd�

1

+2�

1

+10�+ o(1)) (over random choices of h

1

and

h

2

) the identity g(x) = P

(g)

x;h

(0) holds. But this event is deterministic (independent of h

1

and

15



h

2

) and hence if its probability is positive then it must always hold. If � < 1=((20)(541)d),

then �

1

< 1=(541d) and then the above probability is positive. 2

Proof (of Theorem 9): Lemma 15 implies that along each line l

x;h

, g can be described

by a univariate polynomial of degree at most d. Characterization 6 can now be applied to

infer that g is a polynomial of total degree at most d. From Lemma 14 we now know that f

and g di�er in at most �(1 + o(1)) fraction of the places. This completes the proof. 2

6 Self-Testing Polynomials

In this section we complement the results of [BF90][Lip91] by showing how to construct a

self-tester for any polynomial function. The results can also be generalized to give self-testers

and self-correctors for functions in �nite dimensional function spaces that are closed under

shifting and scaling.

Previously, program testing was thought of as the following: pick a random input x and verify

that P (x) = f(x) by computing f via another program. This method has two problems: �rst,

it relies on believing the other program to be correct, and secondly, since testing is often

done at runtime [BLR90], it negates the bene�ts of designing faster programs, since the

computation time will be dominated by the computation time of the old program.

As in [BLR90], our testers are of a nontraditional form and use the robust characterization

of the function being tested: the tester is given a short speci�cation of the function in the

form of properties that the function must have, and veri�es that these properties \usually"

hold. We show that these properties are such that if the program \usually" satis�es these

properties, then it is essentially computing the correct function.

Test Sets Given that a function computes a polynomial, we want a way of specifying that

it is the correct polynomial. We do this by specifying the function value of the polynomial at

a number of inputs. It is easy to see that the number of inputs required is exactly the number

of inputs necessary to determine whether two degree d polynomials are distinct. Since any

two degree d univariate polynomial functions can only agree on d points, it su�ces to check

whether or not the polynomial functions agree at any d+ 1 points to determine whether or

not they are distinct. On the other hand, distinct multivariate polynomials can agree at an

unbounded number of points. However, it is well known that there exists a set of (d + 1)

m

points such that no two degree d, m-variate polynomials can agree at all points in the set.

We make the following de�nition:

De�nition 16 We say that T = f(x

1

; y

1

); : : : ; (x

t

; y

t

)g is a (d;m)-polynomial test set if there

is only one degree d, m variable polynomial f such that for all i 2 [1; :::; t]; f(x

i

) = y

i

.

A (d;m)-test set need only be of size (d+ 1)

m

.

When the number of variables is small, the provision that the value of the function is known

on at least (d+1)

m

points is not very restrictive since the degree is assumed to be small with

16



respect to the size of the �eld: Suppose one has a program for the RSA function x

3

mod m.

Traditional testing requires that the tester know the value of f(x) for random values of x.

Here one only needs to know the following simple and easy to generate speci�cation: f is a

degree 3 polynomial in one variable, and f(0) = 0; f(1) = 1; f(�1) = �1; f(2) = 8. These

function values are the same over any ring Z

m

of size at least 9.

6.1 Testing Algorithm

Our self-tester for a polynomial of degree d with m variables assumes that the speci�cation

of the polynomial is given by the value of the function on a (d;m)-polynomial test set.

Theorem 17 If f is a degree d polynomial in m variables over Z

p

, and the value of f is

given on a (d;m)-polynomial test set, then for � � O(1=d

2

), f has an (

�

2(d+2)

; 4�)-self-tester

on Z

p

with O((d+ 1)

m

=�+ d �max(d

2

;

1

�

)) calls to P .

The self-testing is done in two phases, one verifying that the program is essentially computing

some degree d polynomial function g, and the other verifying that the g is the correct

polynomial function by verifying that g (rather than P ) is correct on the polynomial test

set.

We now give the self-testing program that is used to prove Theorem 17.

For simplicity, in the description of our self-testing program, we assume that whenever the

self-tester makes a call to P , it veri�es that the answer returned by P is in the proper range,

and if the answer is not in the proper range, then the program notes that there is an error.

We use x 2

R

Z

m

p

to denote that x is chosen uniformly at random in Z

m

p

.

program Polynomial-Self-Test(P; �; �; T = ((x

1

; f(x

1

)); : : : ; (x

t

; f(x

t

))))

Degree Test

Repeat �(

1

�

log (1=�)) times

Pick x; h 2

R

Z

m

p

and test that

P

d+1

i=0

�

i

P (x+ i � h) = 0

Reject P if the test fails more than an � fraction of the time.

Equality Test

for j going from 1 to t do

Repeat �(log (d=�)) times

Pick h 2

R

Z

m

p

and test that f(x

j

) =

P

d+1

i=1

�

i

P (x

j

+ i � h).

Reject P if the test fails more than 1=4th of the time.

17



6.2 Correctness of Algorithm

Notation: Let � � Pr

x;h

[

P

d+1

i=0

�

i

P (x+ i � h) 6= 0]

We say program P is �-good if � �

�

2

and 8j 2 f1; : : : ; tg, Pr

h

[f(x

j

) =

P

d+1

i=1

�

i

P (x

j

+i�h)] �

3=4. We say P is �-bad if either � > 2� or if 9j such that Pr

h

[f(x

j

) =

P

d+1

i=1

�

i

P (x

j

+ i�h)] <

1=2. (Note that there are programs that are neither �-good or �-bad).

The following lemma is easy to prove :

Lemma 18 With probability at least 1� � an �-good program is passed by Polynomial-Self-

Test. With probability at least 1� � an �-bad program is rejected by Polynomial-Self-Test.

It is easy to see that if a program P

�

2(d+2)

-computes f , then it is �-good. On the other

hand, we need to show that if P does not 4�-compute f then it is �-bad. We show the

contrapositive, i.e. that if P is not �-bad, then it 4�-computes f .

If P is not �-bad, then � � 2�. Under this assumption, we show that there exists a function

g with the following properties:

1. g(x) = P (x) for most x.

2. 8x; t

P

d+1

i=0

�

i

g(x + it) = 0, and thus g is a degree d polynomial.

3. g(x

j

) = f(x

j

) for j 2 f0; 1; : : : ; dg.

The function g is as de�ned in the previous section on robust characterizations, and properties

(1) and (2) follow from the lemmas proved there. In order to show property (3), we also

have:

Lemma 19 g(x

j

) = f(x

j

)

Proof: Follows from the de�nition of g and the fact that P is not �-bad. 2

Theorem 20 The program Polynomial-Self-Test is a (

�

2(d+2)

; 4�)-self-testing program for

any degree d polynomial function over Z

m

p

speci�ed by its values at any (d;m)-polynomial

test set T , if � �

1

4(d+2)

2

.

Proof: Follows from Lemmas 18,8, and 19. 2

18



7 Locally Testable Codes

In this section we introduce some de�nitions related to coding and show the implications of

low-degree testing to generating codes with nice properties.

3

We start by describing some

standard parameters associated with error-correcting codes.

A n-letter string over the alphabet � is an element of �

n

. Given a string w 2 �

n

, the ith

character of w is denoted w

i

. Given strings w;w

0

2 �, the relative distance between w and

w

0

, denoted d(w;w

0

) is the fraction of indices i 2 f1; : : : ; ng where w

i

6= w

0

i

. (Here onwards

we will drop the term relative from the description of this parameter).

De�nition 21 (Error Correcting Code) A (k; n;�; a)-code consists of an alphabet �

such that log j�j = a and a function C : �

k

! �

n

, such that for any two strings m;m

0

2 �

k

,

the distance between C(m) and C(m

0

) is at least �.

For the purposes of this section we will restrict our attention to error-correcting codes within

a small range of the above parameters which are interesting for the applications to proba-

bilistically checkable proofs. We call these the good codes. Such codes need to have constant

relative distance. The encoded message is allowed to be much larger than the original mes-

sage size, as long as the �nal length is polynomially bounded. Perhaps the most interesting

aspect is the alphabet size. While the ultimate goal would be to get codes which work

over a constant sized alphabet, getting an alphabet size which is signi�cantly smaller than

the message size (smaller than any non-constant polynomial) turns out to be an important

intermediate goal. Here we choose this parameter to be polylogarithmic in the message size.

De�nition 22 (Good Code) A family of codes fC

i

g with parameters (k

i

; n

i

;�

i

; a

i

) is good

if k

i

! 1, n

i

is upper bounded by some polynomial in k

i

, �

i

> 0, and a

i

is upper bounded

by some function growing as polylog(k

i

).

A wide variety of codes described in practice satisfy the properties required of a good code.

In particular we describe the polynomial codes.

De�nition 23 (Polynomial Codes) Fix some � > 0. The polynomial codes fP

m

g are

chosen by letting d = dm

1+�

e and picking a �nite �eld F of size between 10d and 20d. The

code achieves k

m

=

�

m+d

m

�

and n

m

= jF j

m

over the alphabet F and works as follows: The

message is viewed as specifying the coe�cients of a degree d polynomial in m variables and

the encoding consists of the value of this polynomial at all inputs.

It may be veri�ed that fP

m

g forms a good code with distance at least 0:9. In what follows we

will try to describe how this family of codes and a related code have extremely \good" local

checkability properties. The following de�nition formalizes the notion of local checkability.

Informally, the de�nition expects that by probing a string in just p (randomly chosen) letters,

the veri�er can test if it close to a valid codeword and if not rejects it with probability at

least �.

3

These de�nitions are motivated by subsequent work in the area of proof checking where our tester has

found applications, most notably that of [ALMSS92].

19



De�nition 24 (Locally Testable Code) For a positive integer p and a positive real num-

ber �, an (n; k;�; a)-code C over the alphabet � is (p; �)-locally testable if the following exist

� A probability space 
 which can be e�ciently sampled.

� Functions q

1

; q

2

; : : : ; q

p

: 
! f1; : : : ; ng.

� A boolean function V : 
��

p

! f0; 1g.

with the property that for all w 2 �

n

, if

Pr

r2


h

V (r; w

q

1

(r)

; : : : ; w

q

p

(r)

) = 0

i

< �

then there exists a (unique) string m 2 �

k

such that d(w;C(m)) < �=2. Conversely, if

w = C(m) for some m, then V (r; w

q

1

(r)

; : : : ; w

q

p

(r)

) = 1 for all r 2 
.

Before we describe the kind of locally checkable codes that our testers provide we attempt to

motivate the de�nition above by showing that (seemingly minor) modi�cations of the above

de�nitions yield important concepts in proof checking - namely, probabilistically checkable

proofs. We consider especially probabilistically checkable proofs over a large alphabet in

which number of alphabets that a veri�er is allowed to probe is a parameter. This concept

is an important ingredient in the recursive construction of probabilistically checkable proofs

[AS92, ALMSS92, BGLR93] and is also of independent interest in complexity theory [LS91,

FL92a]. The original de�nition of probabilistically checkable proofs is due to [AS92] based on

an implicit notion in [FGLSS91]. A very closely related notion - that of holographic proofs -

appears in the work of [BFLS91]. The particular choice of parameters made in the following

de�nition is due to [BGLR93].

De�nition 25 (PCP) Given functions r; p; a; � : Z

+

! Z

+

, a language L � f0; 1g

�

is said

to be in PCP[r; p; a; �] if there exists a polynomially growing function n(l), an alphabet � of

size a(l) such that for all integers l > 0 the following exist:

� A probability space 
 which can be sampled using r(l) bits.

� Functions q

1

; q

2

; : : : ; q

p(k)

: 
! f1; : : : ; n(l)g.

� A boolean function V : f0; 1g

l

�
��

p

! f0; 1g.

with the property that for all x 2 f0; 1g

l

, if w 2 �

n(l)

satis�es

Pr

r2


h

V (x; r; w

q

1

(r)

; : : : ; w

q

p

(r)

) = 0

i

< �

then x 2 L. Conversely, if x 2 L, then there exists w 2 �

n

(l) such that for all r 2 
,

V (x; r; w

q

1

(r)

; : : : ; w

q

p

(r)

) = 1.

20



It turns out that there is strong correlation between PCP[log; p; polylog; �], and good codes

which are (p; �) locally checkable. In particular the codes we describe next translate into

such probabilistically checkable proofs.

The robust characterization of polynomials described in Theorem 9 shows that the polyno-

mial codes are (d+2;
(1=d))-locally testable. Observe further that for the polynomial codes

the growth of d is polylogarithmic in k. It seems that the approach above cannot hope to

give codes which are testable using fewer than 
(d) probes. However this is not the case. We

describe next a simple way of modifying the codes so as to give codes with appreciably better

local-testability. These codes are obtained by observing that the codes we have constructed

so far use a much smaller alphabet size than necessary for \goodness".

De�nition 26 (Polynomial-Line Codes) Fix some � > 0. The polynomial-line codes

fL

m

g are chosen by letting t = dm

1+�

e and picking a �nite �eld F of size between 10d

and 20d. The code achieves k

m

=

�

m+d

m

�

=(d + 1) and n

m

= jF j

2m

over the alphabet F

d+1

.

As in the polynomial codes, the message again consists of

�

m+d

d

�

�eld elements and is viewed

as a degree d polynomial speci�ed by its coe�cients. Given a message polynomial p, the

codeword is constructed as follows: For every pair of �eld elements x̂;

^

h 2 F

m

, let l

x̂;

^

h

be

the line through x̂ with o�set

^

h as in Characterization 3. p restricted to l

x̂;

^

h

is a univari-

ate polynomial of degree d. Let C

x̂;

^

h

2 F

d+1

be the vector of coe�cients of this univariate

polynomial. The codeword consists of fC

x̂;

^

h

g

x̂;

^

h2F

m

.

It is easy to see that the Polynomial-Line Codes are also good codes. The proof of Theorem 9

can be transformed to show that the Polynomial-Line Codes are locally testable with a

constant number of probes. More speci�cally the following can be shown.

Proposition: The Polynomial-Line Codes are (2;
(1=d))-locally testable.

Better analysis of some portions of our proof yields even better statements about the

Polynomial-Line Codes. This is described in the next section.

8 Conclusions

There has been a spate of results about low-degree tests in the last few years. A brief listing

includes the low-degree test of [BFL91, Lun92] which was the �rst test for multivariate

polynomials, the results of [BFLS91, FGLSS91] obtained independently and concurrently

with ours (from [GLRSW91, RS92]), and subsequent works of [AS92, ALMSS92, FHS94,

PS94, FS94]. Here we summarize some of their achievements along with a comparison

with our results. We start by distinguishing the merits of our tester from those of [BFL91,

BFLS91].

Program checking The test of [BFL91][Lun92], in the program checking setting allows

the self-tester to be convinced that the program is computing a multivariate polynomial

21



function of low degree in polynomial time. However, the tests are somewhat complicated to

perform, because they involve the reconstruction of a univariate polynomial given its values

at a number of points (which in turn requires multiplications and matrix inversions), and

later the evaluation of the reconstructed polynomial at random points. If the given function

is a function of a single variable then the [BFL91][Lun92] tester is no simpler than a program

evaluating the polynomial. Therefore it does not have the \little-oh" property de�ned by

[BK89] nor is it di�erent from the program evaluating the polynomial, in the sense de�ned

by [BLR90], and does not give a self-tester or checker. Our test in contrast is di�erent since

it requires no multiplications to perform the test.

Relationship with proof checking. The low-degree tester forms a crucial ingredient in

the recent results on proof checking. Our result from Section 4 gives a very simple proof of

one of the relatively hard parts of the proof of MIP=NEXPTIME shown by [BFL91]. The

hardness of the analysis of the tester of [BFL91] (and its simpli�cations, see for instance,

[FGLSS91]) is in their need to rely on the isoperimetric properties of them-dimensional grid.

Our proof on the other hand does not seem to require any combinatorics, and is instead

based on elementary algebraic/probabilistic techniques. This di�erence may be explained

as follows: The success of the test does indeed depend on the isoperimetric properties of a

graph related to the neighborhood structure. In the case of the test of [BFL91] this graph

turns out to be in the m-dimensional grid. In our case, the underlying graph turns out to

be a complete graph. This graph is obviously much easier to analyse for its properties and

hence the proof is devoid of any combinatorial statements.

We now describe some of the subsequent results and the role of our tester in these results.

The contrast is described in terms of locally-testable codes.

Locally testable codes The low-degree test described in [BFL91, BFLS91] gives rise to

good codes which also have nice local checkability property. A sequence of improvements

[BFL91, BFLS91, FGLSS91] culminated in the work of [AS92] which achieves asymptotically

optimal bound for such codes by showing that they are (2;
(1=m))-locally testable. The

highlight of the work of [AS92] is that the locality bounds are independent of the degree

of the polynomial that they work with. However, the dependence of � on m, is inherent

for such codes and � ! 0 as m ! 1. The Polynomial-Line Codes described in Section 7

seem to have no inherent reason why � should go to zero. This turns out to be indeed the

case. [ALMSS92] observe that a combination of the analysis of [AS92] and that of Section 5

implies that there exists a constant � > 0 such that the Polynomial-Line Codes are (2; �)-

locally testable, provided that the �eld F is of cardinaltity at least d

2

. As mentioned in

Section 7 this translates into a proof of NP � PCP[log; O(1); polylog;
(1)] in [ALMSS92].

By employing the technique of recursive proof checking, due to [AS92], on such proof systems

[ALMSS92] go on to prove that NP � PCP[log; O(1); O(1);
(1)]. The local testability of

the Polynomial-Line codes has been further improved in two ways recently. [PS94] have

shown that the codes are (2; �)-locally checkable over this works for linear sized �elds as

well, for some � > 0. In a di�erent direction [FS94] show that the Polynomial-Line codes

are (2; �)-locally checkable for all � < 1=8.

22



9 Acknowledgments

We are very grateful to Avi Wigderson for suggesting that our tester in Section 4 can be

made more e�cient, as well as his technical help in proving the theorems of Section 5. We

are also very grateful to Sasha Shen for pointing out that the tester given in [GLRSW91]

works for multivariate polynomials. In particular, Characterization 3 and its relevance to our

test are due to him. We are grateful to Dick Lipton for illuminating conversations on the use

of the testers presented here, and to Mike Luby, Sha� Goldwasser and Umesh Vazirani for

technical suggestions. We would also like to thank Dieter van Melkebeek and the anonymous

referees for pointing out numerous errors in earlier versions.

References

[AHK] L. Adleman, M. Huang, and K. Kompella. E�cient checkers for number-

theoretic computations. Submitted to Information and Computation.

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation

and the intractability of approximation problems. In Proceedings of the 33rd

IEEE Symposium on Foundations of Computer Science, pages 14{23, 1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization

of NP. In Proceedings of the 33rd Annual IEEE Symposium of the Foundations

of Computer Science, pages 2{13, 1992.

[Bab93] L. Babai. Transparent (holographic) proofs. Springer-Verlag Lecture Notes on

Computer Science, 10th Annual Symposium on Theoretical Aspects of Computer

Science, 665:525{533, 1993.

[BF90] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In

Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer

Science, Springer Verlag LNCS 415, pages 37{48, 1990.

[BF91] L. Babai and L. Fortnow. Arithmetization: A new method in structural com-

plexity theory. Computational Complexity, 1:41{66, 1991.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has

two-prover interactive protocols. Computational Complexity, 1:3{40, 1991.

[BFLS91] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in

polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on

Theory of Computing, pages 21{31, 1991.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilistically

checkable proofs. In Proceedings of the 25th Annual ACM Symposium on Theory

of Computing, pages 294{304, 1993.

23



[BK89] M. Blum and S. Kannan. Program correctness checking : : : and the design

of programs that check their work. In Proceedings of the 21st Annual ACM

Symposium on Theory of Computing, pages 86{97, 1989.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications

to numerical problems. In Proceedings of the 22nd Annual ACM Symposium on

Theory of Computing, pages 73{83, 1990.

[Blu88] M. Blum. Designing programs to check their work. Technical Report TR{88{

009, International Computer Science Institute, 1988.

[dW70] Van der Waerden. Algebra, volume 1. Frederick Ungar Publishing Co., Inc.,

1970.

[FGLSS91] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating

clique is almost NP-complete. In Proceedings of the 32nd IEEE Symposium on

Foundations of Computer Science, pages 2{12, 1991.

[FHS94] K. Friedl, Z. Hatsagi, and A. Shen. Low-degree tests. In Proceedings of the 5th

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 57{64, 1994.

[FL92a] U. Feige and L. Lovasz. Two-prover one-round proof systems: Their power

and their problems. In Proceedings of the 24th ACM Symposium on Theory of

Computing, pages 733{744, 1992.

[FS94] K. Friedl and M. Sudan. Improvements to total degree tests. Manuscript, 1993.

[GLRSW91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-

testing/correcting for polynomials and for approximate functions. In Proceedings

of the 23rd Annual ACM Symposium on Theory of Computing, pages 32{42,

1991.

[Kan90] S. Kannan. Program Result Checking with Applications. PhD thesis, University

of California, Berkeley, 1990.

[Lip91] R. Lipton. New directions in testing. Distributed Computing and Cryptography,

DIMACS Series in Discrete Math and Theoretical Computer Science, American

Mathematical Society, 2:191{202, 1991.

[LS91] D. Lapidot and A. Shamir. Fully parallelized multi prover protocols for NEX-

PTIME. In Proceedings of the 32nd IEEE Symposium on Foundations of Com-

puter Science, pages 13{18, 1991.

[Lun92] C. Lund. The Power of Interaction. ACM Distinguished Dissertations. The

MIT Press, 1992.

[Nao92] M. Naor, April 1992. Personal Communication.

24



[PS94] A. Polishchuk and D. Spielman. Nearly-linear size holographic proofs. In Pro-

ceedings of the 26th Annual ACM Symposium on the Theory of Computing,

pages 194{203.

[RS92] R. Rubinfeld and M. Sudan. Testing polynomial functions e�ciently and over

rational domains. In Proceedings of the 3rd Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 23{43, 1992.

[Rub90] R. Rubinfeld. A Mathematical Theory of Self-Checking, Self-Testing and Self-

Correcting Programs. PhD thesis, University of California at Berkeley, 1990.

[She91] A. Shen. Personal Communication, May 1991.

[Sud92] M. Sudan. E�cient Checking of Polynomials and Proofs and the Hardness of

Approximation Problems. PhD thesis, University of California at Berkeley, 1992.

A Appendix

A.1 Evenly spaced points

The following algorithm may be used to test if a function f

(0)

on m evenly spaced points {

x; x+ h; : : : ; x+ (m� 1)h { (where m > d+ 1) agrees with a degree d polynomial.

for i = 1 to d+ 1 do

for j = 1 to m� i

f

(i)

(x+ jh) = f

(i�1)

(x+ (j + 1)h)� f

(i�1)

(x+ jh)

endfor

endfor

verify f

(d+1)

(x+ jh) = 0, for all j 2 f0; : : : ;m� d� 2g.

The correctness of this algorithm follows from the following well-known fact:

Fact 27 f

(i)

(x) is a degree d�i polynomial if and only if f

(i�1)

is a degree d�i+1 polynomial.

(Follows from the fact that f

(i)

acts as the discrete derivative of f

(i�1)

.)

This implies that f

(d)

is a constant if and only if f

(0)

is a degree d polynomial, implying in turn

that f

(d+1)

is identically zero if and only if f

(0)

is a degree d polynomial. Observe further that

the algorithm performs O(md) additions and subtractions and no multiplications. Lastly it

can also be checked that in casem = d+2, then algorithm simply veri�es that

P

d+1

i=0

�

i

f

(0)

(x+

ih) = 0, where �

i

= (�1)

i+1

�

d+1

i

�

.

25



A.2 Characterizations

Lemma 28 (axis parallel lines) f : Z

m

p

7! Z

p

is a polynomial in m variables of de-

gree at most d in each variable if and only if for all i 2 f1; : : : ;mg, �

j

2 Z

p

(j 6= i),

f(�

1

; : : : ; �

i�1

; x

i

; : : : ; �

m

) is a polynomial in x

i

of degree at most d.

Proof [Sketch]: It is clear that every polynomial of degree d in each variable restricted

to axis parallel lines, behaves as a univariate polynomial of degree d. The other direction

can be proved by induction on m. The base case m = 1 is obvious. For general m > 1, let

f

i

(x

1

; : : : ; x

m�1

) be the function f(x

1

; : : : ; x

m�1

; i). By induction f

i

is a polynomial of degree

d inm�1 variables. Now consider the function h(x

1

; : : : ; x

m

) �

P

d

i=0

�

(d)

i

(x

m

)f

i

(x

1

; : : : ; x

m�1

)

(where �

(d)

i

is the unique polynomial of degree d in one variable that is 1 at x

m

= i and 0 for

other values of x

m

2 f0; : : : ; dg).

It is clear by construction that h is a polynomial of degree at most d in each variable. We

now argue that f and h are identical. Fix x

1

= �

1

; : : : ; x

m�1

= �

m�1

. It is clear that

h(x

1

; : : : ; x

m

) = f(x

1

; : : : ; x

m

) for x

m

2 f0; : : : ; dg. Moreover, both h and f are degree d

polynomials in x

m

which agree at d + 1 places. Hence f and h must agree at all values of

x

m

. Since this held for any choice of �

i

's, f and h agree everywhere. 2

Lemma 29 (general lines) For p � 2d+ 1, f : Z

m

p

7! Z

p

is a polynomial in m variables

of total degree at most d if and only if 8x̂;

^

h 2 Z

m

p

; f(x̂+ t �

^

h) is a univariate polynomial in

t of degree at most d.

Proof: It is clear that every polynomial restricted to lines must become a degree d

polynomial in the parameter describing the line. Here we prove the other direction of the

characterization. We �rst observe that since the set of all lines includes the axis parallel

lines, we can use Lemma 28 to show that f is a polynomial in m variables with degree at

most d in each variable. Having got this weak characterization, we will now strengthen this

to a tighter one. By induction on the number of variables, we can assume that f restricted

to any value of the last variable x

m

is a polynomial of total degree at most d in the variables

x

1

; : : : ; x

m�1

. Thus f becomes a function in x

1

through x

m

of total degree d

0

� 2d.

Assume for contradiction that d

0

> d. Now consider the function f(t �

^

h) for

^

h 2

R

Z

m

p

.

The coe�cient of t

d

0

is a polynomial in

^

h of degree d

0

which with probability at least 1�

d

0

p

should be non-zero. (Note that to make this probability positive, we need 2d < p.) Thus f

restricted to this line is a polynomial of degree d

0

> d, which violates the given condition on

f . 2

26


