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Abstract

We introduce a new model of distributions gen-

erated by randomwalks on graphs. This model

suggests a variety of learning problems, us-

ing the de�nitions and models of distribution

learning de�ned in [6]. Our framework is gen-

eral enough to model previously studied distri-

bution learning problems, as well as to suggest

new applications. We describe special cases of

the general problem, and investigate their rel-

ative di�culty. We present algorithms to solve

the learning problem under various conditions.

1 INTRODUCTION

In this paper, we introduce a new model of distribu-

tions generated by random walks on graphs. This model

suggests a variety of learning problems, using the def-

initions and models of distribution learning de�ned by

Kearns et. al. [6]. Our framework is general enough

to model various noise processes, the Hamming ball

distribution learning problem studied by [6], and the

evolutionary tree model studied by Farach and Kannan

[2]. Other possible applications to problems in context-

sensitive spelling correction and unsupervised learning

are suggested.

In the most general description of our framework,

the distributions are generated by the following process,

which takes a speci�c graph, whose edges are labeled

with transition probabilities, as input: First, a start-

ing node is chosen according to a distribution from an

allowable subset of nodes of the graph, called centers.

Second, a random walk starting at the chosen center is
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taken according to transition probabilities on the edges

of the graph. Finally, the name of the last node of the

random walk is output.

The parameters de�ning the distribution are the set

of centers that the walks start from, the length of the

walk, the distribution according to which a center is

chosen, the structure of the graph, and the transition

probabilities. On this model it is natural to de�ne a va-

riety of learning problems depending on which parame-

ters are known and which are unknown to the learner.

In the model of distribution-learning de�ned in [6],

the learner has access to a set of samples generated ac-

cording to the speci�c distribution that it is trying to

learn. The random bits of the process that generates

the distribution are totally hidden from the learner, but

the learner has access to certain information about the

nature of the process generating the distribution. One

possible learning problem in this context involves e�-

ciently constructing a mechanism to generate a distri-

bution that is close to the target distribution, i.e., learn-

ing a generator. Another learning problem involves e�-

ciently constructing a mechanism which given a string,

evaluates the probability that it is output by the dis-

tribution to within a good approximation, i.e., learning

an evaluator. Our methods allow one to learn both an

evaluator and generator as de�ned in [6].

We describe in precise terms several interesting spe-

cial cases of this general problem. The �rst is the prob-

lem of learning the distribution when only the centers

are unknown to the learner, called the hidden centers

problem. Another special case is the problem of learn-

ing the distribution when the transition probabilities are

unknown, called the hidden transitions problem. We

show that the hidden transitions problem is at least as

hard as the hidden centers problem.

Next, we focus on �nding learning algorithms for the

hidden centers problem on large classes of graphs. We

begin with an algorithm that nontrivially approximates

distributions from bounded degree graphs with certain

properties, that was inspired by an algorithm from [6].

Our running time is polynomial in k � d

l

where k is the

number of centers, d is the degree bound of the graph

and l is the length of the walks, but depends only loga-

rithmically on the number of nodes in the graph. This

is useful for applications that have very large numbers

of nodes but low degree. We then investigate a second



line of algorithms which uses linear algebra techniques

to approximate the target distribution to within any de-

sired accuracy in the L

1

norm. We give an algorithm

that works for graphs that have well-conditioned tran-

sition probability matrices. The algorithm runs in time

polynomial in the number of nodes, but outputs a hy-

pothesis whose size depends only on the number of cen-

ters. This leads to space e�cient hypotheses that are

attractive when the graph is large but the number of

centers is small. We also give a more e�cient algorithm

for graphs whose transition matrices and submatrices of

transition matrices are well-conditioned.

1.1 APPLICATIONS

We describe how previously suggested distribution learn-

ing problems can be viewed within our framework. We

also suggest other settings in which our framework may

be of interest.

Hamming Ball Distributions. In [6], the problem

of learning Hamming ball distributions is studied. This

model is natural for concepts in which there are \canoni-

cal" examples of the concept, and in which the probabil-

ity of an output decreases as the number of attributes in

common with the canonical examples decreases. More

precisely, there is a set K of centers, each of which is an

n-bit binary vector. The output distribution is de�ned

as follows: Choose a center uniformly from K, ip each

of its bits independently with probability p, and then

output the resulting vector.

The Hamming ball distributions are equivalent to

distributions generated by random walks on the follow-

ing graph: Let G be the complete graph on 2

n

nodes,

each node representing a di�erent n-bit binary vector.

The probability of going from vector u to v depends on

the number of bits ipped to turn u into v | if the Ham-

ming distance between u and v is h, then the edge (u; v)

is assigned the probability p

h

(1 � p)

n�h

. The learning

problem of [6] is exactly the distribution learning prob-

lem from random walks of length 1 on G, where the

transition probabilities are known but the centers are

unknown.

We mention the hypercube distribution, that is re-

lated, but not equivalent, to the Hamming ball distri-

bution: Let G be the complete graph on 2

n

nodes, each

node representing a di�erent n-bit binary vector. The

probability of going from vector u to vector v is

1

n+1

if

the Hamming distance between u and v is � 1, and 0

otherwise. The distribution is generated by choosing a

random center and performing a random walk of length

pn.

Noise Processes. In general, our framework can also

be viewed as follows: the centers are \prototypes" and

the random walk on the graph is a \noise" process that

perturbs the prototypes. In this framework, a walk

along an edge corresponds to a \change" of an attribute

of the prototype. The Hamming ball and the hypercube

distributions are natural graphs on which to study such

noise processes.

Cavender-Farris Distributions. The second model

that �ts into our framework is the model of Cavender-

Farris Trees used to study evolution [2]. In this model

there is a rooted (directed) tree with probabilities as-

sociated with each edge. The nodes have labels from

f0; 1g. The label of the root is determined according to

some probability p

r

. The nodes are labeled as follows.

For any edge (u; v), let P

uv

denote the probability on an

edge (u; v). Then, the label on node v is determined by

ipping the label of node u with probability P

uv

. The

distribution output is the vector containing the labels

of each of the leaf nodes in some prede�ned order. The

learner, however, is not given the probabilities used to

generate the labels. Given a set of such vectors, it is

shown how to reconstruct the probabilities on the tree

as well as the distribution on the initial bit at the root,

thus giving a learning algorithm for the distribution.

This model is a special case of our model where the

probabilities on the edges of the graph are not known

to the learner. We show this by a reduction from the

problem of learning the tree T in the model of [2] to a

learning problem in our model. Given T , let G be a lev-

eled graph whose nodes have labels that are of the form

(i; x), where i denotes the level containing the node and

x is an n-bit binary vector. At the �rst level are the two

nodes (0; (0; : : : ; 0)) and (0; (1; : : : ; 1)). Construct level

i + 1 from level i as follows. The nodes in level i + 1

are (i+1; x) for all possible n-bit binary vectors x (even

though some of them will be unreachable from level i

at the end of the procedure and can be deleted). Given

two nodes u = (i; x) and v = (i+1; x

0

), use the following

procedure to determine whether to insert an edge from

u to v. Call as the state of level i in T the string that

would be output at the leaves if no bit ipping were to

take place in any level below i, given the current node

labels at state i. Add an edge (u; v) to G if the structure

of T allows level i+ 1 to have state x

0

given that level i

has state x. For instance, if T is a binary tree of height

2, (0000) at level 0 (corresponding to a 0 at the root)

is not consistent with (0111) at level 1, since the only

valid states for level 1 would be (1111); (1100); (0011);

and (0000). Once G has as many levels as T , the con-

struction is complete. The two top-level nodes are the

centers, and the hypothesis class is restricted by the de-

pendencies among probabilities resulting from the fact

that there is a many-to-many dependence (which can

be expressed explicitly) between the set of probabilities

on T and those on G. The answer to the learning prob-

lem on G from this hypothesis class then can be used

to determine the probabilities on T .

Context-Sensitive Spelling Correction. Another

setting in which that our model may be useful is one

similar to that studied by Golding and Roth [3] for

use in context-sensitive spelling correction. They study

the problem of �nding and correcting spelling mistakes

which are not found by dictionary based approaches, be-

cause the misspelled word is also an English word. An

example is \I had fruit pie for desert tonight," where

the spell checker should know to change \desert" to

\dessert". Words that need to be disambiguated are

modeled by confusion sets. In our example, the confu-



sion set is fdesert; dessertg. One method that is sug-

gested associates every member of a confusion set with

a characteristic vector containing the words and gram-

matical structures that are likely to occur in the vicinity

of the given word. The \correct" version of each word

in the text is determined using a Bayesian approach.

Given the characteristic vectors of each member of the

confusion set and the corresponding information about

the current word, the member of the confusion set that

was most likely to have generated the current word is

chosen. Since even words within confusion sets have

multiple usages, it may be useful to represent the word

as a collection of characteristic vectors. For each mem-

ber of a confusion set, one can think of the true char-

acteristic vector as a set of centers which generates a

distribution on the observed vectors via a random walk

on a graph in which nodes correspond to vectors (such

as the hypercube). Given the observed vectors of a sin-

gle member of the confusion set, the learner learns the

distribution on the vectors. Then, the spell checker may

use the distribution information in order to choose the

most likely member of the confusion set analogously to

[3].

Classi�cation and Unsupervised Learning. Fi-

nally, consider a classi�cation system in which a small

number of classes recursively branch o� into smaller

classes. For instance, the class of credit card holders

have yuppies and women as subclasses. These sub-

classes have further subclasses of their own, such as pa-

trons of a speci�c restaurant. It is possible for a subclass

to be part of two larger classes. A natural way to model

such a system is via a directed acyclic graph. Consider

the distributions generated from random walks starting

at one of a small number of centers. Learning algo-

rithms for such distributions might be used to suggest

interesting subclasses of people to target for marketing

promotions. One such classi�cation system is readily

available as part of the Penn Tree Bank.

2 PRELIMINARIES

Given any distribution D on X = f0; 1g

n

, let D(x) de-

note the probability that D outputs x. We use x 2 D

to denote that x is chosen according to probability dis-

tribution D. We use [n] to denote f1; 2; : : : ; ng.

Given two distributionsD

1

; D

2

on f0; 1g

n

, some mea-

sures that capture the distance between them are,

(a) the L

1

-norm de�ned by

L

1

(D

1

; D

2

) =

X

x2X

jD

1

(x)�D

2

(x)j;

(b) the Kullback-Leibler (KL) divergence de�ned by

KL(D

1

kD

2

) =

X

x2X

D

1

(x) log

D

1

(x)

D

2

(x)

:

Note that the �rst is a true metric while the second is

not, since it does not satisfy symmetry and triangle in-

equality. KL-divergence, however, captures the distance

in an information-theoretic sense [1].

In order to formally de�ne what it means to learn

a distribution, we need the following de�nitions of a

generator and an evaluator for a distribution from [6].

De�nition 1 Let D

n

be a class of distributions over

f0; 1g

n

: We say that D

n

has polynomial-size generators

if there are polynomials p(�) and r(�) such that for any

n � 1, and for any distribution D 2 D

n

, there is a

circuit F

D

, of size at most p(n) and with r(n) input bits

and n output bits, whose induced distribution on f0; 1g

is exactly D when the distribution of the r(n) bits is

uniform. Thus, if r 2 f0; 1g

r(n)

is a randomly chosen

vector, then the random variable F

D

(r) is distributed

according to D.

De�nition 2 Let D

n

be a class of distributions over

f0; 1g

n

: We say that D

n

has polynomial-size evaluators

if there is a polynomial p(�) and such that for any n �

1, and for any distribution D 2 D

n

, there is a circuit

E

D

, of size at most p(n) and with n input bits, that, on

input y 2 f0; 1g

n

outputs the binary representation of

the probability assigned to y by D. Thus, if y 2 f0; 1g

n

,

then E

D

(y) is the weight of y under D. We call E

D

an

evaluator for D.

One can treat an evaluator E as a distribution where

the probabilities are de�ned according to the output of

E.

We de�ne what it means to learn a distribution in

time t(�; �; n). Our de�nition is based on the ones in [6]:

De�nition 3 Let D

n

be a class of distributions. We

say that D

n

is �-learnable in time t(�; �; n) under dis-

tance measure d with a generator (resp. evaluator) if

there is an algorithm that, when given inputs 0 < � � 1,

� > 0 and access to an oracle for any unknown target

distribution D 2 D

n

, runs in time t(�; �; n) and outputs

a generator F (resp. an evaluator E) that with prob-

ability at least 1 � �, satis�es d(D;F ) (resp. d(D;E))

� �.

Analogous de�nitions of learning a class of distributions

by a hypothesis class can be made.

3 THE RANDOM WALK MODEL

DistributionsGenerated by RandomWalks. Our

distributions come from a special class D

n

generated by

random walks on a graph in the following manner.

Let G = (V;E) be a directed graph where the nodes

have labels from f0; 1g

n

for some n > 0. We use N to

denote jV j, N � 2

n

. P is an assignment of transition

probabilities to the edges of G such that for all vertices

v 2 V , the probabilities on the transitions out of v sum

to 1. P can be represented by a transition matrix in the

following manner: Each node is associated with both

a row and column in P , and the entry P

ij

is equal to

the probability of a transition to node i given that one

is at node j. The columns of P (but not necessarily

the rows) sum up to 1 (P is stochastic). Since G can be

reconstructed by including edges for each transition that



has nonzero probability in P , we only need to specify P

in order to specify the distribution. However, it is often

convenient to refer to the edges and nodes of the graph.

Let K be a distribution on V . K will typically have

nonzero support only on a small subset of V , referred

to as the centers. L is a distribution on positive integers.

De�nition 4 rw(P;L;K) is a distribution where an out-

put is generated by the following procedure: Pick an in-

teger l according to L. Pick a node v according to K.

Take a random walk starting from v and picking edges

according to the probabilities dictated by P . After the

l

th

step output the current node.

The Learning Model. In this model the learner has

access to a set X of samples independently generated

from the target distribution. Let P

N

be a class of graphs

on N nodes and their transition probabilities. Let K

N

be a class of distributions on N nodes. Let L be a class

of distributions on positive integers. The concept class

C

N

� P

N

�L

N

�K

N

is a set of distributions where each

member of C

N

is of the form rw(P;L;K), for P 2 P

N

,

L 2 L

N

and K 2 K

N

. Depending on the nature of

the learning problem, this class is restricted in terms of

the class C

N

. For instance, if the graph and the tran-

sition probabilities (P

�

) are assumed to be known by

the learner, then the hypothesis class of the learner is

restricted to fP

�

g � L

N

� K

N

. Since some combina-

tions of restrictions are more natural than others, we

give names to them. When all parameters are known

except for K, we call the learning problem the hidden

centers problem. We investigate a special case of the

hidden centers problem, when K

N

contains only K

k

N

,

the distributions that have weight on at most k nodes.

If P is hidden but all else is known we call it the hidden

transitions problem. We explore relationships between

variants of the problem in Section 4.

4 RELATIONSHIPS BETWEEN

VARIANTS OF THE LEARNING

PROBLEM

Depending on the amount and nature of the informa-

tion that is available to the user, the learning problem

and its di�culty varies. In this section we show some

relationships between di�erent variants of the problem.

4.1 HIDDEN CENTERS VERSUS HIDDEN

TRANSITIONS

It can be shown that learning the distribution where the

probabilities on the edges are not known (hidden tran-

sitions) is at least as di�cult as when the distributions

on the centers is not known (hidden centers).

Given a distribution P , let P

+

be the class of tran-

sition probabilities that can be achieved by adding one

more node to the graph with indegree 0. More formally,

P

+

= fP

+

j P

+

u;v

= P

u;v

8u; v 2 [N ],

P

v2[N ]

P

+

v;N+1

=

1, P

+

N+1;v

= 0; 8v 2 [N ]g. Let K

+

be distribution

on [N + 1] which outputs N + 1 with probability 1.

Given distribution L, de�ne L

+

as follows: L

+

(u+1) =

L(u) 8u 2 Z. Given a class of distributions L, de�ne

L

+

to be L

+

= fL

+

jL 2 Lg.

Theorem 5 If there is an �-learning algorithm with a

generator (resp. evaluator) for the hidden transitions

concept class P

+

� L

+

� fK

+

g, then there is an �-

learning algorithm with a generator (resp. evaluator)

for the hidden centers concept class fPg � L �K.

Proof. We give a learning algorithm for fPg�L�K.

Suppose the target distribution is D = rw(P;L;K).

Consider a new distribution D

0

= rw(P

0

; L

0

;K

0

) as fol-

lows. Let K

0

= K

+

. Let the graph underlying P

0

be

the same as that underlying P , with the addition of

an extra node N + 1. Node N + 1 has no incoming

edges, and has an outgoing edge to every center in the

support of K, with transition probability K(v). Note

that D

0

outputs the same distribution as D and D

0

is

in P

+

� L

+

� fK

+

g. Thus an algorithm for learning

P

+

�L

+

�fK

+

g by a generator (resp. evaluator) gives

an algorithm for learning fPg � L �K. 2

4.2 FIXED VERSUS BOUNDED LENGTH

WALKS

Given an algorithm to learn in polynomial time distri-

butions generated by �xed length walks on a graph, it

is often possible to learn certain types of distributions

generated by bounded-length walks. For the hidden cen-

ters problem, this is achieved through taking the graph

for the bounded-length walk distribution, adding self-

loops to every node v such that the transition probabil-

ities on the self-loops determine the distribution on the

bounded-length walks, and scaling the transition prob-

abilities of the other edges directed out of v so that they

sum to 1. The learner then learns the distribution on

the new graph for �xed-length walks.

For example, on level graphs, if one can learn distri-

butions generated by �xed length walks one can learn

distributions generated by walks with the distributions

on lengths that correspond to sums of independently

chosen random (0; 1) variables. More precisely, given

any p

1

; : : : ; p

l

such that 0 � p

i

� 1, de�ne random vari-

able L =

P

l

i=1

L

i

, where L

i

is a random (0; 1) vari-

able that is equal to 1 with probability p

i

. On the

level graph, nodes at level i are given self-loops with

transition probability p

i

, and the transition probabili-

ties of the other edges directed out of i are scaled so

that the probabilities of all edges directed out of i sum

to 1. Then, distributions generated by random walks of

length l on the new graph are equivalent to distributions

generated by random walks of length distributed as L

on the old graph.

For graphs that are not leveled, adding a self-loop

of constant probability p at each node generates a dis-

tribution corresponding to walk lengths distributed ac-

cording to L(i) = (1� p)

i

p

l�i

, which is the normal dis-

tribution.



5 HIDDEN CENTERS VIA SET

COVER

In this section we consider the concept class C

�;l;k;d

N

of

distributions of the type rw(P;L;K), where the outde-

gree of any node in the graph is at most d, and at any

one node, all of the nonzero outgoing transition proba-

bilities are equal. L is a distribution that always picks

a �xed integer l. K is the uniform distribution on an

unknown subset of k centers from P . Let 0 � � � 1

be such that for any walk of length l starting from any

node in the graph and progressing according to P , the

probability of being at node v after l steps is at most �

l

for any node v.

For graphs with good expansion, � is known to be

small by the following fact. Let �

2

denote the second

eigenvalue of a graph.

Fact 6 Let P

t

(u; v) denote the probability that a ran-

dom walk on an expander starting from node u is at node

v after t steps and let �(u) denote the stationary proba-

bility of u. Then, P

t

(u; v) = �(v)+O(�

t

2

p

�(v)=�(u)).

1

Since �

2

is bounded by a constant less than one for

expanders, by this fact, �

l

= max

v;u

P

l

(u; v) is bounded

away from one.

In [6], the learning problem is solved by �nding a

good set of centers and de�ning K

0

as the uniform dis-

tribution over this set. They show that the distribution

generated by picking the starting points according to K

0

is close to the distribution generated by picking them ac-

cording to K. The algorithm presented here is inspired

by the one in [6].

Algorithm. Let X be the set of samples and m = jXj.

To produce an approximation to D

T

= rw(P;L;K), we

�rst form a list of nodes that are likely candidates for

centers as follows. We take all the nodes that are exactly

l steps away from every x 2 X and include them in our

list of candidate centers. For every candidate node y in

this list, we keep an associated set of sample points that

one can reach in l steps from y. The next step is to cover

the set X of sample points using these smaller subsets

and to return the candidate centers associated with the

subsets used in the set-cover as our set of centers. We

perform the set-cover using a greedy approximation al-

gorithm as in [6]. This algorithm returns at most k lgm

subsets (and corresponding centers). Then our hypoth-

esis distribution is D

H

= rw(P;L;K

0

), where K

0

is the

uniform distribution on the centers. For technical rea-

sons, we mix D

H

with the uniform distribution and re-

turn D

H

0

(x) = (1� q)D

H

(x)+ q=N . We will determine

q later.

Let

� = lg

�

N

2

d

l

k lgm

N

2

� N + d

l

k lgm

�

�

l

(�d)

l

k

lg

1

�

1

When the indegrees and outdegrees equal d, � is the

uniform distribution.

Theorem 7 The above algorithm is a (� + �)-learning

algorithm for the class C

�;l;k;d

N

under the KL-divergence

that runs in time polynomial in (

k

2

lg

6

N

�

4

+

lg

2

n

�

2

lg

2

�

)d

l

The proof of Theorem 7 follows directly from the fol-

lowing theorem and its proof.

Theorem 8 KL(D

T

kD

H

0

) � � + �.

Proof. Let R denote the set of nodes x such that

D

T

(x) > 0. By de�nition,

KL(D

T

kD

H

0

) =

E

x2D

T

�

lg

D

T

(x)

D

H

0

(x)

�

=

X

x2R

D

T

(x) lg

1

D

H

0

(x)

�

X

x2R

D

T

(x) lg

1

D

T

(x)

:

We �rst lower bound

P

x2R

D

T

(x) lg(1=D

T

(x)). We

know that for all x 2 R, 1=(d

l

k) � D

T

(x) � �

l

. Then,

X

x2R

D

T

(x) lg

1

D

T

(x)

�

X

x2R

1

d

l

k

lg

1

�

l

�

l

(�d)

l

k lg

1

�

:

Next, we upper bound

X

x2R

D

T

(x) lg

1

D

H

0

(x)

=

E

x2D

T

�

lg

1

D

H

0

(x)

�

:

We do not have immediate access to the value of this

summation, but we estimate it using an upper bound

on

E

x2X

[lg(1=D

H

0

(x))]. Let k be the number of centers

of D

T

. Then greedy set cover will generate a solution

with at most k lgm centers. Due to the fact that no

node has outdegree > d, we know that for all x 2 X,

D

H

(x) � 1=(d

l

k lgm), and D

H

0

(x) �

1�q

k(lgm)�d

l

+

q

N

.

Setting q = 1=N ,

E

x2X

�

lg

�

1

D

H

0

(x)

��

� lg

�

N

2

d

l

k lgm

N

2

� N + d

l

k lgm

�

:

Using this bound and the uniform convergence result

of Haussler [5], one can conclude that for large enoughX

(whose size we will determine later)

E

x2D

T

[lgD

H

0

(x)]

is within � of

E

x2X

[lgD

H

0

(x)] with probability at least

(1 � �). Combining with the previous bound, we have

KL(D

T

kD

H

0

) � �+ �.

We now compute the minimum sample set size re-

quired to guarantee uniform convergence.

To use the result in [5] one needs to bound D

H

0

(x)

both fromabove and below. Note that 1=N

2

� D

H

0

(x) �

1, and thus 2 lgN � lg(1=D

H

0

(x)) � 0. Using the uni-

form convergence result of [5], a sample size of

m � O

�

k

2

lg

6

N

�

4

+

lg

2

n

�

2

lg

2

�

�

su�ces. 2

We now present a bound on the distance between D

H

and D

T

.



Corollary 9 L

1

(D

T

; D

H

) � 2=N + (2 lg 2)

p

� + �:

To show this, we give bounds on L

1

(D

H

; D

H

0

) and

L

1

(D

T

; D

H

0

).

Lemma 10 L

1

(D

H

; D

H

0

) � 2=N .

Proof. L

1

(D

H

; D

H

0

) =

P

x

jD

H

(x) � D

H

0

(x)j =

P

x

jq(D

H

(x) � 1=N )j � q

P

x

(D

H

(x) + 1=N ) = 2q: By

our choice of q = 1=N , the lemma follows. 2

Lemma 11 L

1

(D

T

; D

H

0

) � (2 lg 2)

p

� + �:

Proof. It can be shown [1] that for any two distri-

butions D;D

0

, 2 ln 2

p

KL(DkD

0

) � L

1

(D;D

0

):We plug

the bound obtained in Theorem 8 on KL(D

T

kD

H

0

) into

the equation to get the bound. 2

Proof (of Corollary 9). From the triangle inequality of

the L

1

-metric and the results of Lemmas 10 and 11, the

proof follows. 2

6 HIDDEN CENTERS VIA LINEAR

ALGEBRA

In this section we look at learning concepts from concept

class C

�

N

, which is of the form (fPg;K

k;�

N

;L

N

). K

k;�

N

is

the subset of K

k

N

(de�ned in Section 3) of distributions

on at most k centers, where each center u is output

with probability strictly greater than �. L

N

contains

only the distribution that outputs l with probability 1.

We assume that P is nonsingular and that the bound �

is known to the learner.

The set H of hypothesis distributions is C

�

N

. Since

the hypothesis class only contains hypotheses where the

number of centers is at most k, learning and storing such

a distribution in terms of its centers lead to signi�cant

compression over storing the probability of outputting

each node.

6.1 NONSINGULAR P

Let b be a vector representing the target distribution.

Our sample set X comes from the target distribution

D

T

= rw(P;L;K).

Algorithm. Calculate

^

b, the observed distribution,

where entry i takes the value 1=jXj times the number of

occurences of i in X. Construct and solve the equation

P

l

x̂ =

^

b for x̂. Label as centers those nodes whose

entries in x̂ are greater than �.

Let x denote the vector representation of the actual

distributionK on the centers. Since

^

b is only an approx-

imation to the vector b, we consider the stability of the

system in order to show that x̂ is a good approximation

to x. We use theorems from [4] to show the following

error bound.

Theorem 12 kx̂� xk=kxk � �(P ) � k

^

b� bk=kbk.

Here, �(A) = kA

l

k � k(A

l

)

�1

k is called the condition

number of A. kAk denotes any norm of matrix A. In

general we will be interested in the 1-norm, which is

de�ned by

kAk

1

= max

1�j�n

m

X

i=1

a

ij

for an m� n matrix A.

With this bound, we can state the following theorem

about learning via equation solving.

Theorem 13 The class C

2�

N

is �-learnable under the L

1

-

norm in time poly(1=�; 1=�;N ).

Proof. We use the bound on the sensitivity of such a

system and look at su�cient samples so that the error

in each row of

^

b is less than �=(�(P

l

)N ). Thus, kx̂� xk

is bounded by �=�(P

l

). Since kxk = kbk = 1, the total

error kx̂ � xk is upper bounded by � by Theorem 13.

In the worst case any one element of x̂ can have error �.

Thus any center node appears with probability strictly

greater than � and any noncenter node appears with

probability at most �. Therefore it is not possible to

have a node i that has zero probability and a node j

that has nonzero probability in x such that x̂

i

� x̂

j

:

Picking the k elements with the highest values returns

exactly the k nonzero elements in D

T

.

To analyze the run-time, we need to determine how

many samples are needed to ensure with high proba-

bility that each reachable node will have error at most

�=(�(P

l

)N ). Using Hoe�ding bounds for each entry sep-

arately, we conclude that poly(1=�; 1=�;N ) samples are

su�cient. 2

6.2 VERY LARGE GRAPHS

For very large graphs, we give an algorithm whose run-

time and sample complexity is polynomial in the num-

ber of samples that can be generated and d

l

, and only

depends logarithmically on the number of nodes in the

graph. Given a graph with probabilities represented by

matrix P , and a set X of samples, let T (P;X; l) be the

following transformation on P . Remove fromP the rows

and columns for all nodes except (a) those nodes from

which a walk can reach a member of X within l steps,

(b) those nodes that are reachable from the nodes men-

tioned in (a) within l steps. As a result of this \pruning"

of the graph, there will be nodes in the new graph whose

outgoing probabilities do not add up to 1. For any such

node i, add a new node v

i

to the graph and add an edge

(i; v

i

) whose probability makes the outgoing probability

of i equal to 1. Let v

i

have a self-loop with probability

1.

In this section we consider the graphs with probabil-

ity matrix P that satis�es the following properties: For

any set of k centers in the graph, with high probabil-

ity over the set X of samples generated, T (P;X; l) is a

nonsingular matrix.



A class of graphs that satis�es this property is the

graphs that are acyclic with the exception that each

node has a self-loop. Such a graph is upper triangular,

and this property is preserved by the transformation T .

We now de�ne the notion of the condition number

of the result of such a transformation.

De�nition 14 The k-center condition number of a ma-

trix P representing a graph and its transition probabili-

ties, denoted �

max

(P; l; k), is the maximum over all pos-

sible center sets of size k and all possible polynomial size

sample sets X for each of these center sets (where the

walk is of length l), of the quantity �(T (P;X; l)).

With this information, we have a bound on the condi-

tion number of the pruned matrix for any sample set

arising from center sets of size k. Therefore, our prob-

lem reduces to the case of the previous section, only with

a matrix of size O(kd

2l

), where the condition number is

at most �

max

(P; l; k).
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